
ABSTRACT

Semiparametric AUC Regression for Ordered Treatment Effects

Amy Buros, Ph.D.

Chairperson: Jack D. Tubbs, Ph.D.

We investigated distribution free methods for testing covariate adjusted treat-

ment effects when the researchers believe that these effects are ordered. Dodd and

Pepe (2003) proposed a semi-parametric logistic regression model for the area under

the ROC curve (AUC). Their approach was motivated by the observation that the

Mann-Whitney statistic is a non-parametric estimate of the AUC. Their results al-

low one to test hypotheses using distribution free methods when the covariates are

discrete, however, the standard errors generated using standard GLM software are

not correct since the Bernoulli data generated by the Mann-Whitney statistic are

correlated. They used the bootstrap method to estimate the standard errors for the

AUC regression parameters. Zhang (2008) and Zhang et. al (2011) considered an

analytical method for estimating the standard errors based on a modification of a

method by DeLong et. al (1988), as an alternative to the bootstrap procedure. In

Chapter Two, we compare the DeLong method to two alternative analytical methods

for estimating the standard errors. In Chapter Three, we extend the AUC regres-

sion model, with and without discrete covariates, to the situation where there are

k > 2 ordered treatment levels as the alternative hypothesis. This approach extends

the Jonckheere-Terpstra statistic (Jonckheere (1954) and Terpstra (1952)) to allow

for covariates. In Chapter Four, we introduce a multiple comparison method for



the Jonckheere-Terpstra statistic. Chapter Five gives a summary of the results and

describes future work.
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CHAPTER ONE

Introduction

1.1 Overview of the Problem

This dissertation investigates non-parametric methods that allow for the inclu-

sion of discrete covariates for testing hypotheses when there are greater than two

treatment arms. The problem was motivated by the ability of investigators to draw

confirmatory conclusions from a clinical trial that consists of a control group and mul-

tiple treatment arms. The inclusion of two or more treatment groups can enhance the

productivity of the clinical trial by providing supplemental information about a dif-

ferent characteristic of the active therapy. For example, increasing dosage studies to

ascertain the minimum effective dose for a drug; or combination drug therapies, illus-

trating if the combination of two or more drugs is preferable to each drug separately.

Specifically, we are interested in clinical trials when the primary response variable

is non-normal and treatment medians are ordered. In this dissertation, we consider

a distribution-free approach to this problem instead of using normalizing transfor-

mation or a generalized linear model based upon specifying an exponential family

distribution. Nonparametric methods have been extensively studied when testing for

the treatment medians without considering covariates (Lehmann (1975)). However,

clinical trials need to examine consistency of the treatment effects across subgroups

by adjusting for covariates which could have an impact upon the effectiveness of the

therapy (Zhang (2008)). Our objective is to investigate the inclusion of covariates in

the ordered multiple treatment arm scenario.

This chapter presents a nonparametric test for population medians using the

Area Under the ROC Curve (AUC) Regression proposed by Dodd and Pepe (2003).

Their approach was motivated by the relationship between the Mann-Whitney U

statistic and the nonparametric estimate of AUC using a generalized linear model.
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The model allows for the inclusion of covariates when estimating the AUC, hence,

the Mann-Whitney statistic using standard logistic regression software. However,

since these estimates are based on dependent Bernoulli data the associated standard

errors are incorrect. They suggested using the bootstrap when computing standard

errors. Zhang (2008) modified their approach by using a computationally simpler

method proposed by DeLong et al. (1988). Section 1.2 contains an introduction

and background to methods pertaining to AUC regression. Section 1.3 provides a

summary of the method proposed by Dodd and Pepe (2003). An outline of the

dissertation is given in section 1.4.

1.2 Background

Testing for differences in multiple treatment levels is increasingly common in

clinical studies. For non-normal data, the Kruskal Wallis test (Kruskal and Wal-

lis (1952)) has been extensively examined as a non-parametric method for testing

whether two or more samples originate from the same distribution. However, if the

treatments (three or more) are ordered a priori then the Jonckheere Trend test is more

powerful for testing for median differences among the treatments groups. In most clin-

ical investigations, one would like to investigate the differences in treatments while

accounting for covariates. Dodd and Pepe extended the use of the Mann-Whitney

statistic to a GLM context by exploiting the relationship between the Mann-Whitney

statistic and the AUC for the ROC curve.

1.2.1 Area under the ROC curve

The Reciever Operating Characteristics curve (ROC) provides a graphical mea-

sure for the accuracy of a binary classifier system to discriminate between two pop-

ulations. The ROC is a plot of the true positive rate (sensitivity) versus the false

positive rate (1 - specificity). The curve can be applied to diagnostic testing where

a continuous variable, Y, is used to classify subjects into either diseased (D) or non-

diseased
(
D̄
)

groups according to the classification rule of assigning a subject to the

2



disease group when Y > c for a specified threshold level c. The ROC curve plots

Pr[Y > c|D], the probability of correct classification vs. Pr[Y > c|D̄], the proba-

bility of a false positive, for all possible thresholds c, in the unit square from (0, 0)

to (1, 1). The ROC curve provides a visible means of assessing the accuracy of the

diagnostic test to make decisions about the threshold c, as determined by sensitivity

and specificity for the specific application.

When interpreting the ROC curve there are two extreme cases. The first case is

when the ROC curve is a diagonal line from (0, 0) through (1, 1). This plot indicates

that Y is a useless classifier and is equivalent to flipping a coin. In this case the

distribution of Y for the diseased group is identical to the distribution for the non-

diseased group. The second case is when the ROC curve passes through the vertex

(0, 1) illustrating that Y is a perfect classifier and that the kernel of the density

function for the diseased group is disjoint from the kernel of the density function for

the non-diseased group.

A commonly used summary statistic for the ROC curve is the area under the

ROC curve (AUC). The AUC is the probability that a randomly chosen subject is

classified into the correct group and is given by

Pr[Y D > Y D̄].

The AUC for a classifier Y ranges from 0.5 to 1, where AUC = 0.5 in the useless

classifier (diagonal line) and AUC = 1 in the perfect classifier. Figure 1.1 illustrates

the ability of the ROC curve and AUC to discriminate between two different densities.

Since, the AUC is a measure of discrepancy between two density functions, it can be

used to determine the effectiveness of an active treatment when compared with a

control group in a clinical trial setting. This follows since the Mann-Whitney rank

sum U statistic provides a nonparametric estimate of the AUC (Bamber (1975))

Dodd and Pepe (2003) proposed a method of using logistic regression to model

the AUC. The model allows for the inclusion of covariates when estimating the AUC.

The next section defines the Mann-Whitney U statistic and the semi-parametric AUC

3



Figure 1.1: The relationship between the ROC curve and AUC

regression model.

1.3 Semi-parametric AUC Regression Model

1.3.1 Mann-Whitney rank sum U Statistic

The Mann-Whitney U statistic was developed in 1947 (Mann and Whitney

(1947)) and provides a nonparametric approach for comparing the location parameters

for two independent samples. Let x1, ..., xn and y1, ..., ym be independent random

samples from Fx (.) and Fy (.) , respectively. Combine the two data sets and let

4



s1, ..., sn denote the ranks of x1, ..., xn. The Wilcoxon rank-sum statistic T is

T =
n∑
i=1

si,

and the Mann-Whitney U statistic is

U =

∑n
i=1

∑m
j=1 I (xi > yj)

nm
(1.1)

where

I (xi > yj) =


1 xi > yj

1
2

xi = yj

0 xi < yj

.

The relationship between T and U is

nmU = T − 1

2
n (n+ 1) .

It should be noted that one is unable to adjust for covariates using either of these

statistics. Van Elteren (1960) proposed a method for combining Mann-Whitney

statistics across discrete block or strata variables provided these variables do not

have a multiplicative effect with the treatment effects.

Dodd and Pepe (2003) provided a semi-parametric AUC regression model for

discrete covariates.

1.3.2 AUC Regression Model

Let Y D
i and Y D

j denote the ith response in the diseased (treatment) group

(i = 1, ..., ND) and the jth response variable in the non-diseased (control) population

(j = 1, ..., ND), respectively. Suppose one wished to determine whether or not Y

could be used as an effective classifier. In which case, one could test

H0 : Pr[Y D
i > Y D

j ] = 0.5 versus H1 : Pr[Y D
i > Y D

j ] > 0.5

or

H0 : AUC = .5 versus H1 : AUC > .5.

5



It has been shown that the Mann-Whitney statistic given in (1.1) is a non-parametric

estimate of AUC given by

AUC =

∑ND

i=1

∑ND
j=1 I(Y D

i > Y D
j )

NDND

. (1.2)

Suppose that one has a covariate X, then the covariate-specific AUC can be expressed

as

AUCij = Pr[Y D
i > Y D

j |Xi, Xj].

In many clinical settings one is interested in Y ’s ability to classify at a specific co-

variate X, in which case, the AUC of interest becomes

Pr[Y D
i > Y D

j |Xi = Xj = X]. (1.3)

Dodd and Pepe (2003) proposed the use of logistic regression for the AUC with the

generalized linear model, g (AUC) = XTβ, where g is a link function. The estimates

of parameters are solutions to the score equations

ND∑
i=1

ND∑
j=1

(Iij − AUCij)

var (Iij)

∂AUCij
∂β

,

The solutions can be found with commonly used GLM software, such as, SAS/Proc

Genmod (SAS (2008a)) or SAS/ Proc Logistic (SAS (2008b)).

It should be noted that the binary variables, Iij, in the score equations are

correlated. In which case, the solutions to these estimating equations are correct but

resulting standard errors as produced by the standard GLM software are incorrect.

Dodd and Pepe used the bootstrap to obtain the standard errors. Zhang (2008)

proposed a modification of the method provided by DeLong et al. (1988) to derive the

variance of the nonparametric AUC where the variance of the regression parameters

are calculated using the delta method (Zhang et al. (2011)).

1.4 Outline of the Dissertation

In this dissertation, we investigate semi-parametric regression models for the

AUC to determine the effect of covariates on the treatment effect. We examine a

6



procedure for testing k > 2 ordered treatment arms while adjusting for covariates. A

new multiple comparison method based on this model is also presented.

In chapter 2, we investigate two alternate analytical methods for estimating the

standard errors. The methods are compared with the bootstrap method suggested by

Dodd and Pepe (2003) and the analytical method by Zhang (2008). Both methods

are computationally feasible and simple to implement. They are based on procedures

given in Fligner and Policello (1981) and Birnbaum and Klose (1957). In chapter

3, we introduce the Jonckheere-Terpstra statistic (Jonckheere (1954) and Terpstra

(1952)) and apply it to the AUC regression framework. In Chapter 4, we introduce a

new method for multiple comparisons based on the model defined in Chapter 3. This

method is compared to two nonparametric multiple comparison methods. Chapter 5

contains concluding remarks and possible directions for future research.

7



CHAPTER TWO

Estimating Standard Errors of AUC Regression

This chapter presents three analytical methods for computing the standard

errors for the regression parameters in AUC regression.

2.1 Introduction

Dodd and Pepe (2003) presented a semi-parametric logistic regression model

for the area under the receiver operating characteristics curve (AUC). Bamber (1975)

demonstrated that the Mann-Whitney statistic is an unbiased estimate of AUC =

P
(
Y D > Y D̄

)
. Dodd and Pepe (2003) used this result to develop an AUC regression

model that accommodates discrete and continuous covariates. However, since the

binary responses used in the Mann-Whitney statistics are correlated the standard

errors produced by software packages are incorrect. Zhang (2008) and Zhang et al.

(2011) presented a method given by DeLong et al. (1988) to estimate the variance

of the AUC, from which the delta method was used to estimate the standard errors

for the regression parameters. In this chapter, we present two alternative analytical

methods for estimating the variance of the AUC. The first method is based upon a

modification of a method given in Fligner and Policello (1981). The second method

considers an approach suggested by Birnbaum and Klose (1957) for computing upper

and lower bound on the variance of the Mann-Whitney statistic. Both methods can

be used to estimate the standard errors of the logistic regression parameters. The

three analytical methods are compared with the bootstrap method using a simulation

study and a problem arising from a real data application.

The AUC regression model by Dodd and Pepe (2003) and proposed bootstrap-

ping method for finding the standard errors is briefly described in Section 2.2. The

DeLong method (DeLong et al. (1988)), the Fligner method (Fligner and Policello

8



(1981)), and the Birnbaum method (Birnbaum and Klose (1957)) for variance estima-

tion of the AUC are described in Section 2.3. The method for computing parameter

estimates and standard errors as given by Zhang (2008) and Zhang et al. (2011) is

presented in Section 2.3.5. The methods are compared using a simulation study in

Section 2.4. The results for the three methods as applied to a real data example

are given in Section 2.5. Section 2.6 contains a brief discussion of the results and

conclusions.

2.2 Semi-parametric AUC Regression Model

Let Y D
i denote the ith response in the diseased (or treatment) group and Y D̄

j

the jth response variable in the non-diseased (or control) group for i = 1, ..., ND and

j = 1, ..., ND̄. Suppose that one wants to estimate the AUC as a linear function of

covariate X, then the covariate-specific AUC is

AUCij(Xi, Xj) = Pr
(
Y D
i > Y D̄

j |Xi, Xj

)
. (2.1)

It is rare that researchers are interested in estimating the AUC at different levels of

a covariate, so the AUC at a specified covariate level is

AUCij(X) = Pr
(
Y D
i > Y D̄

j |Xi = Xj = X
)
. (2.2)

Dodd and Pepe (2003) applied this model to the Generalized Linear Model

(GLM) framework. This approach allowed them to model the AUC and adjust the

treatment effects for covariates. Their model can be written as

g (AUCij) = XT
ijβ (2.3)

where g is a monotone increasing link function, Xij is a vector function of the covari-

ates Xi and Xj, and β is a vector of the model parameters of interest. Dodd and

Pepe proposed using the logistic or probit link function since

E
(
I
(
Y D
i > Y D̄

j

)
|Zi = zi, Zj = zj

)
= AUCij

9



In the case where there are no covariates, the Mann-Whitney ranked sum U statistic

given by,

ÂUC =

∑ND

i=1

∑ND̄
j=1 I

(
Y D
i > Y D̄

j

)
NDND̄

is an unbiased estimator of the AUC. Dodd and Pepe (2003) noted the parameters

can be estimated by the usual score equations given by

ND∑
i=1

ND∑
j

(Iij − AUCij)
var (Iij)

∂AUCij
∂β

.

where IiJ = I
(
Y D
i > Y D̄

j

)
is a Bernoulli random variable with probability of sucess

given by P (Y D > Y D̄). Solutions to the score equations can be found using statistical

software such as the SAS/ Proc Logistic (SAS (2008b)). However, the model given

above is based on the Mann-Whitney U statistic, which is just a sum of dependent

Bernoullli random variables. In which case, the usual standard errors of the estimates

are incorrect.

2.3 Estimation of Standard Errors

In this section, we discuss the four methods for finding the standard errors of

the AUC regression model.

2.3.1 Bootstrap Method

Zhang (2008)) summarized their bootstrap method in the following steps:

(1) Stratify the range of the covariate variable as S strata. With a discrete covari-

ate, each level of the covariate is a stratum. If the covariate is continuous, the

values should be discretized into stratum making sure to have enough data

in each strata.

(2) For a discrete covariate, generate all of the 0 or 1 indicator data within

each stratum s = 1, ..., S comparing the diseased and non-diseased group,

I
(
Y D
is > Y D̄

js

)
. The model is then g (AUCij) = β0 + βs.

(3) For a continuous covariate, an additional parameter is included in the model

in order to fit the from comparing two responses from different covariate
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values, such as I
(
Y D
is > Y D̄

js

)
where the covariate values are different but

from the same stratum s. The model for this case is g (AUCij) = β0 +β1Xi +

β2 (Xi −Xj).

(4) Use the logistic regression model to fit the data with covariates to obtain

parameter estiamtes.

(5) Bootstrap the original data within each stratum to compute the parameter

standard errors.

The bootstrapping procedure is computationally intensive and its use is highly

restrictive if the covariates are continuous. In the remainder of this section we propose

three analytical methods for estimating the standard errors for the regression param-

eters. The three methods are given as 1) DeLong (DeLong et al. (1988)), 2) Fligner

(Fligner and Policello (1981)), and 3) Birnbaum (Birnbaum and Klose (1957)).

2.3.2 DeLong Method

DeLong et al. (1988) proposed an analytical method for estimating the variance

of the AUC. The Mann Whitney rank sum U is the probability that an observation

from a diseased (or treatment) group will be greater than or equal to an observation

from a control (or placebo) group. Equivalence to the nonparametric AUC was first

shown by Bamber (1975) where an estimate of AUC is given by

ÂUC =

ND∑
i=1

ND̄∑
j=1

Iij (2.4)

where

Iij =


1 xi > yj

1
2

xi = yj

0 xi < yj

.

Let

V D
i =

1

ND

ND∑
j=1

Iij, V D
j =

1

ND

ND∑
i=1

Iij

11



for i = 1, ..., ND and j = 1, ..., ND̄ where V D
i is the relative rank of the ith response

of the diseased group in the non-diseased group and V D̄
j is the relative rank of a

non-diseased observation in the diseased group.

The DeLong estimate of the variance for the nonparametric AUC is

Var
(
ÂUC

)
=

Var
(
V D
)

ND

+
Var

(
V D
)

ND

. (2.5)

2.3.3 Fligner Method

Fligner and Policello (1981) proposed a modification of the general class of

nonparametric rank tests for the two-sample location parameter case. These included

the Mann-Whitney Wilcoxon test. The method allows one to test the equality of

two populations with fewer restriction on the shape of the null populations while

preserving power as in the original tests. Fligner’s procedure is based upon the use

of placement values.

Define X(1) ≤ X(2) ≤ ... ≤ X(m) and Y(1) ≤ Y(2) ≤ ... ≤ Y(n) to be the ordered X

and Y samples, where X and Y are the two populations of interest. Let Qi, i = 1, ...,m

be the rank of the ith smallest X observation in the combined sample and Rj be the

rank of of the jth smallest Y observation in the combined sample. The placement

value Pi = Qi − i is the number of Y observations less than Xi and Sj = Rj − j is

the placement value for Yj. Note, that the Mann-Whitney statistic can be expressed

in terms of the placement values where U =
∑m

i=1 Pi.

The Fligner estimate of the variance for the nonparametric AUC is

Var
(
ÂUC

)
=

∑(
Sj − S̄

)2
+
∑(

Pi − P̄
)2

+ P̄ S̄

(nm)2
(2.6)

where S̄ =
∑n

j=1 Sj/n and P̄ =
∑m

i=1 Pi/m are the mean of the placement values.

2.3.4 Modified Birnbaum Method

Birnbaum and Klose (1957) derived a sharp upper bound and sharp lower bound

for the variance of the Mann Whitney statistic. Our initial investigation of these

bounds found that they were somewhat conservative. As a result, we propose to use
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the midpoint between the upper and lower bound as a conservative estimate of the

variance of the AUC. Let p denote the AUC, p = Pr(X > Y ) and n,m the respective

samples sizes as in the previous section. The upper bound for the variance of the

Mann-Whitney statistics, U , as derived by Van Dantzig (1951).

σ2(U) ≤ mnp(1− p)max(m,n). (2.7)

The lower bound as derived by Birnbaum and Klose (1957) is

σ2(U) ≥


µν
[
µr(1− r)− (µ−1)2

12(ν−1)

]
µ−1
ν−1
≤ 2r

µν
[

4
3
r
√

2(µ− 1)(ν − 1)r − (µ+ ν − 2)r2 + r(1− r)
]

µ−1
ν−1
≤ 2r

(2.8)

where µ = min(m,n), ν = max(m,n), and r = min(p, 1− p). A simulation study in

section 2.4 will compare all four methods of estimation.

2.3.5 Delta Method for the AUC Regression

In this section, the methods proposed by Zhang (2008) and Zhang et al. (2011)

for estimating the standard errors in the logistic regression model are described. This

method can be used for each of the three analytic methods presented in the previous

section. The logistic regression model is

g (AUCi) = α + βxi

with link function g. Suppose that the covariate of interest Xi, is a binary covariate

such as gender. When x = 0, the model gives

α̂ = g(ÂUC | x = 0).

When x = 1, the model results in

α̂ + β̂ = g(ÂUC | x = 1)

An estimate of the β parameter is

β̂ = g(ÂUC | x = 1)− g(ÂUC | x = 0)
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If we assume independence among the levels of the covariate, the variances of the

parameters can be calculated as

var(α̂) = var(g(ÂUC | x = 0)),

and

var(β̂) = var(g(ÂUC | x = 0)) + var(g(ÂUC | x = 1)).

By use of the delta method when g is the logit function, we have

var(logit(ÂUCi)) =
var(ÂUCi)

ÂUCi
2
(1− ÂUCi

2
)
.

2.4 Simulation Study

A simulation study was designed to compare the three analytical methods

[DeLong, Fligner, and Birnbaum midpoint] to the bootstrap method proposed by

Dodd and Pepe. The simulation cases were adapted from an approach given by

Dodd and Pepe (2003). The models have a covariate consisting of three strata lev-

els with sample size n for each group and level. Data were generated such that

Y D̄
i = −log (u1)+ δ1i and Y D

i = −log (u2)+ δ0 +(δ1i + δ2i) where u1 ∼ exponential(1)

and u2 ∼ exponential(1). The parameters in the model can be derived using

AUCi = F (δ0 + δ2i)

where F (x) = (1 + e−x)
−1

is the cdf of a logistic random variable Balakrishnan and

Nevzorov (2003).

For i = 1 and δ2i = 0, one has

AUC1 = F (β0)

and when i = 2, .., S

AUCi = F (β0 + βi−1) ,

where β0 = δ0 and βj = δ2(j+1) where j = 1, ..., S−1. Table 2.1 and Table 2.2 contain

the results for sample sizes n = 30 and n = 100 in each level of each group when
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Table 2.1: Parameter estimates for the four methods (n = 30)

Bootstrap DeLong
True Coverage Coverage

Parameter Value Est. S.E. 95% CI Est. S.E. 95% CI

β0 0.15 0.16 0.32 0.963 0.14 0.31 0.959
β1 0.50 0.50 0.46 0.958 0.53 0.45 0.947
β2 1.00 1.02 0.49 0.971 1.03 0.47 0.955

Fligner Birnbaum
True Coverage Coverage

Parameter Value Est. S.E. 95% CI Est. S.E. 95% CI

β0 0.15 0.16 0.31 0.962 0.16 0.34 0.968
β1 0.50 0.50 0.45 0.968 0.51 0.49 0.976
β2 1.00 1.02 0.48 0.950 1.02 0.51 0.957

Table 2.2: Parameter estimates for the four methods (n = 100)

Bootstrap DeLong
True Coverage Coverage

Parameter Value Est. S.E. 95% CI Est. S.E. 95% CI

β0 0.15 0.15 0.17 0.956 0.15 0.17 0.952
β1 0.50 0.51 0.24 0.952 0.51 0.24 0.960
β2 1.00 1.00 0.25 0.957 1.01 0.25 0.951

Fligner Birnbaum
True Coverage Coverage

Parameter Value Est. S.E. 95% CI Est. S.E. 95% CI

β0 0.15 0.15 0.17 0.957 0.15 0.18 0.964
β1 0.50 0.51 0.24 0.953 0.51 0.26 0.966
β2 1.00 1.01 0.25 0.950 1.01 0.27 0.958

δ0 = 0.15, δ1i = 0, δ22 = 0.5, and δ23 = 1. Results represent 1000 realizations of the

model and bootstrap samples of size 200 for each population.

From both tables we can see that the Fligner method is nearly identical to

the DeLong method. The Birbaum method tends to come in just slightly above

the values obtained from the other methods. Based on this simulation, the Fligner
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method perform exceptionally well at estimating the standard errors. The Birnbaum

method clearly overestimates the standard errors, as we expected. In general we saw

coverage well above the other methods. The Fligner and DeLong methods had very

similar coverage close to the expected 95%. We would consider both methods a viable

replacement for the bootstrap.

2.5 Clinical Trial Example

All four methods were applied to data from a clinical trial investigating the

efficacy a drug for urinary incontinence in North American women using a placebo

control. This is the same example considered by Zhang (2008). The primary efficacy

measure is the percent change in number of episodes per week from baseline to the

final visit. The severity of the problem at baseline is used to define 4 strata and can

take values from 1, indicating mild, to 4, indicating severe. A covariate of interest

indicates whether a patient has had hormone replacement therapy (horm = yes(1)

or no(0)). We also investigated the interaction between disease severity and this

covariate. Since the data is non-normal and highly skewed in each group and level,

it is ideal for our nonparametric method. Overall we are interested in analyzing the

joint predictive and prognostic effects of the disease severity and hormone replacement

therapy.

The hypothesis of interest is

H0 : P
(
Y T > Y P

)
= 0.5

versus

H1 : P
(
Y T > Y P

)
> 0.5,

where Y T is the relative percent reduction in incontinence episodes from baseline

to endpoint for the treatment group and Y P is likewise for the the placebo group.

Note that we only considered the bootstrap, DeLong, and Fligner methods for the

estimates of the variance of the AUC. The AUC logistic regression model of interest

is
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logit(AUC(horm,z)) = β0 + β1I(horm = 0) + β2I(z = 1)

+ β3I(z = 2) + β4I(z = 3) + β5I(z = 1 & horm = 0)

+ β6I(z = 2 & horm = 0) + β7I(z = 3 & horm = 0)

The tables below summarize the results, with Table 2.3 containing a compar-

ison of the parameter estimates for the four methods and Table 2.4 containing a

comparison of the estimates of the AUC with confidence intervals for three methods,

excluding the Birnbaum method. We see that disease severity level 3 is significantly

different from the other levels for overall treatment effects. Also those patients with

disease severity level 3 that have had hormone replacement therapy has a significant

effect. While the bootstrap method results in insignificance for those patients in dis-

ease severity level 4 and no hormone replacement therapy The DeLong and Fligner

methods find significance as well.

2.6 Discussion

In this chapter, we investigated three analytical methods for computing the pa-

rameter estimates and standard errors for the semi-parametric AUC regression model,

as proposed by Dodd and Pepe (2003), with discrete covariates. All three were com-

pared to the bootstrapping method and were found to be much less computationally

intense to calculate and easier to implement.

The DeLong method used the relative rank of the observations, the Fligner

method made use of the relationship between the placement values and the AUC,

and our modified Birnbaum method used the midpoint of the sharp upper bound

and sharp lower bound of the AUC. We were able to calculate the standard errors

of the parameters and the variance of the AUC using the delta method based on

the development done by Zhang (2008) and (Zhang et al. (2011). Simulation studies

showed that for small sample sizes, the DeLong and Fligner methods are comparable

to the bootstrap method. We expected the midpoint method to be considerably

more conservative then the other methods presented in this paper. Note that we
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Table 2.3: Parameter Estimates for the Four Methods

Bootstrap DeLong
Parameters Level Estimate SD 95% CI SD 95% CI

Intercept -0.51 0.30 (-1.11, 0.08) 0.31 (-1.11, 0.09)
z 1 0.65 1.92 (-3.12, 4.41) 0.97 (-1.25, 2.54)
z 2 0.76 0.40 (-0.02, 1.55) 0.43 (-0.09, 1.62)
z 3 -1.46 0.72 (-2.87, -0.05) 0.63 (-2.69, -0.23)

Horm 0 -0.13 0.45 (-1.01, 0.75) 0.47 (-1.04, 0.79)
z*Horm 1 and 0 0.16 1.17 (-2.14, 2.46) 1.38 (-2.54, 2.86)
z*Horm 2 and 0 -0.43 0.66 (-1.72, 0.86) 0.78 (-1.96, 1.10)
z*Horm 3 and 0 1.71 0.90 (-0.05, 3.47) 0.91 (-0.07, 3.49)

Fligner Birnbaum
Parameters Level SD 95% CI SD 95% CI

Intercept 0.30 (-1.11 0.08) 0.32 (-1.14, 0.13)
z 1 0.75 (-0.85, 2.15) 0.77 (-0.86, 2.16)
z 2 0.42 (-0.08, 1.60) 0.46 (-0.14, 1.66)
z 3 0.62 (-2.7, -0.22) 0.70 (-2.83, -0.09)

Horm 0 0.45 (-1.01, 0.75) 0.49 (-1.09, 0.83)
z*Horm 1 and 0 1.17 (-2.14, 2.46) 1.21 (-2.21, 2.53)
z*Horm 2 and 0 0.75 (-1.93, 1.07) 0.83 (-2.06, 1.20)
z*Horm 3 and 0 0.90 (-0.05, 3.47) 0.99 (-0.23, 3.65)

Table 2.4: Estimates of AUC with the Four methods

AUC Bootstrap DeLong Fligner
z Horm Estimate 95% CI 95% CI 95% CI

1 0 0.458 (0.068, 0.848) (0.138, 0.778) (0.11, 0.81)
1 0.467 (0.019, 0.914) (0.140, 0.793) (0.127,0.807)

2 0 0.576 (0.420, 0.732) (0.412, 0.739) (0.418, 0.734)
1 0.437 (0.289, 0.585) (0.300, 0.575) (0.289, 0.585)

3 0 0.596 (0.435, 0.757) (0.428, 0.764) (0.432, 0.76)
1 0.878 (0.763, 0.993) (0.751, 1.000) (0.76, 0.996)

4 0 0.654 (0.497, 0.811) (0.514, 0.794) (0.502, 0.806)
1 0.625 (0.484, 0.766) (0.492, 0.759) (0.487, 0.763)

originally investigated using the maximum as an estimate of the variance, however

we found this to be overall too conservative. In general a 95% confidence interval of

18



the AUC, using only the sharp upper bound as the variance, covered the entire range

of all possible values of the AUC. We found the midpoint to be a more reasonable

estimate, although still somewhat overestimated. Any of these methods are simple to

implement but we found the Fligner and DeLong to be the most successful methods,

as they are both easy to implement, as compared to the bootstrap, and accurate in

estimation, as compared to our Birnbaum midpoint method.
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CHAPTER THREE

AUC Regression for k > 2 Ordered Treatment Effects

In this chapter, we extend the AUC regression model, with and without discrete

covariates, to the situation where there are k > 2 treatment levels as the alternative

hypothesis. This assumption allows one to test the null hypothesis with the Jonck-

heere Trend statistic (Jonckheere (1954) and Terpstra (1952)). A simulation study is

used to investigate the properties and performance of the new method. A real world

example is investigated to further illustrate the proposed method.

3.1 Jonckheere-Terpstra Statistic

Suppose that one observes data from k > 2 populations. Let Uuv, u < v =

2, 3..., k denote the Mann-Whitney statistic for the uth and vth samples given by

Uuv =
nu∑
s=1

nv∑
t=1

I (Xvt > Xus) .

Suppose that one is interested in testing

H0 : θ1 = θ2 = ... = θk

vs.

H1 : θ1 ≤ θ2 ≤ · · · ≤ θk

with at least one strict inequality. Terpstra (1952) and Jonckheere (1954) working

independently considered this problem and derived what is now called the Jonckheere-

Terpstra statistic,

V2 =
k∑∑

u<v

Uuv.

Computationally, V2 is the sum of k(k − 1)/2 Mann-Whitney statistics.

It has been shown that for ordered alternatives, the Jonckheere-Terpstra statis-

tic is preferable to tests of more general class difference alternatives (such as the
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Kruskal-Wallis). V2 has been shown to have an asymptotically normal distribution

under the null hypothesis where

Z =
V2 − E0 (V2)√
V ar0 (V2)

∼ N(0, 1)

when H0 is true where

E0 (V2) =
N2 −

∑k
j=1 n

2
j

4

and

V ar0 (V2) =
N2 (2N + 3)−

∑k
j=1 n

2
j (2nj + 3)

72
.

Puri (1965) derived the asymptotic efficiency and asymptotic power of the test. Odeh

(1971) originally provided tables of exact probabilities and critical values for nominal

values of α = 0.5, 0.2, 0.1, 0.05, 0.025, 0.01, and 0.005 for k = 3 groups and small

sample sizes (from n = 2 through 8). In addition he derives a recurrence formula

for computing the exact distribution. The asymptotic distribution and power is also

considered by Bartholomew (1961).

Randles and Wolfe (1991) presented an alternate method of calculating the

Jonckheere-Terpstra statistic as follows: Let

U∗s =
s−1∑
i=1

Uis

where U∗s is the Mann-Whitney statistic between the first (s− 1) groups and the

sth group for s = 2, ..., k. Odeh (1971) showed that U∗2 , ..., U
∗
k are independent and

the Jonckheere-Terpstra statistic can be written as the sum of k − 1 Mann-Whitney

statistics,

V2 =
k∑
s=2

U∗s .

To illustrate this method, let k = 3, in which case we compute k−1 = 2 Mann-

Whitney statistics. The first is U∗2 for H01 : α1 = α2 and U∗3 for H02 : (α1, α2) =

α3. In this alternative approach, we have exchanged an increase in book-keeping

(combining groups) with a significant decrease in the number of computed Mann-

Whitney statistics when k is moderate to large.
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Since the JT statistic is the sum of (k − 1) Mann-Whitney statistics, we can

use the approach given by Zhang (2008) for adding covariates when considering the

equality of the k treatment groups versus the ordered alternative hypotheses. A sim-

ulation study given in the next section presents a method for incorporating covariates

in the JT setting.

3.2 Simulation Study without Covariates

We want to investigate the performance of the Jonckheere-Terpstra statistic in

a model with k = 3 different treatment levels. Suppose we have the model

E (yij) = µ+ αi

where the treatment effect of interest is αi for i = 1, 2, 3. The cases of interest are:

(1) α1 < α2 < α3

(2) α1 < α2 = α3

(3) α1 = α2 < α3

(4) α1 = α2 = α3

Note that we expect situation 2 may not perform as well as the other cases. Recall

that to calculate the Jonckheere-Terpstra statistic we are grouping the first and second

groups together to compare to the third group, which would not be appropriate in

the second situation. We will still provide the results of the situation to see how

the Jonckheere-Terpstra statistic performs. For these four cases, we consider two

simulations from different distributions.

(1) We sample from a normal distribution with mean 0 and σ2 = 4, 16. Each

treatment group is of size n = 30. Figures 3.1, 3.2, and 3.3 contain the

results for the Jonckheere-Terpstra statistic, the corresponding Z score, and

p-value when σ2 = 4. Figures 3.4, 3.5 and, 3.6 contain the similar results

when σ2 = 16.
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(2) In this case Y = −log (u1) where u1 ∼ exponential(1). Each group has sample

size n = 30. Figures 3.7, 3.8, and 3.9 contain the results for the JT statistic,

Z score, and p-value.

The horizontal dotted lines on the figures represent the rejection region for Type I

error, type 1 error = 0.05. The results are based on 1000 realizations of the model.

In Figures 3.1 through 3.6 we see that the Jonckheere-Terpstra statistic performs

exceptionally well for normally distributed data. As anticipated, we reject the global

null hypothesis for the first, second, and third situations and fail to reject for the

fourth situation where the null is true.

When using the non-normal data, Figures 3.7, 3.8, and 3.9 indicate that the JT

statistic also performs well. We anticipate that one would reject the null hypotheses

in the first three cases and fail to reject in the fourth case. We observe an increase

in the values for the p-value of the JT statistic. This is especially in case 2, although

we are still correctly rejecting the null hypothesis whenever there is at least one

strict inequality in the treatment effects. Overall, the Jonckheere-Terpstra statistic

performs well when using non-normal data.

Figure 3.1: The Jonckheere-Terpstra Statistic for the four situations where ni = 30
and σ2 = 4
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Figure 3.2: The Z score

Figure 3.3: The p-value

Figure 3.4: The Jonckheere-Terpstra Statistic for the four situations where ni = 30
and σ2 = 16
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Figure 3.5: The Z score

Figure 3.6: The p-value

Figure 3.7: The Jonckheere-Terpstra Statistic for the four cases with non-normal
data

3.3 The JT Statistic with Discrete Covariates

Dodd and Pepe (2003) and Zhang (2008) presented procedures for including

discrete covariates in the general two populations case. This involved estimating the
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Figure 3.8: The Z-Scores

Figure 3.9: The p-values

correct standard errors by the bootstrap method or an alternative analytical method

(such as DeLong et al. (1988)). In order to add covariates to the Jonckheere-Terpstra

model framework we must address a few unique hurdles. For a discrete covariate, X

the model is given by

yijk = αi + βjxij + εijk

where αi is the treatment effect for i = 1, .., k, xij is the covariate vector and βj is

the unknown parameter for the jth covariate. Recall that the JT statistic is appro-

priate when an ordered alternative hypothesis holds. Thus we must assume that this

ordering holds for each level of the covariates. In which case, we assume that one of

the following situations are true:
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(1) αi + βj has the same ordering as the treatment effect αi for each value of the

covariate.

(2) βj is constant for all j.

These assumptions are highly restrictive, but if the covariate β violates the ordered

assumption of the model, the Jonckheere-Terpstra statistic will no longer appropriate.

Adapting the AUC logistic regression model approach to the problem consid-

ered by the Jonckheere-Terpstra statistic is simple to implement. Suppose that the

covariate, X is binary. If xij = 0

yijk = αi + εijk

the basic Jonckheere-Terpstra trend test considered in a previous section. If xij = 1

then

yijk = αi + β + εijk.

In this model the medians are simply shifted over βj units. Thus, the Jonckheere-

Terpstra statistic can be calculated by separating the data into groups based on

covariate values. For each level of the covariate (k − 1) Mann-Whitney statistics

are used to compute the JT statistic. Under the above assumption, the Jonckheere-

Terpstra statistic should come to the same conclusions at each level of the covariate.

The estimates of the parameter can be obtained using the methods described in

Zhang (2008) and Dodd and Pepe (2003) where the standard errors are computed

using the analytical method given in DeLong et al. (1988) and Zhang (2008). The

next section presents a simulation study to investigate the performance of the statistic

when including covariates.

3.4 Simulation Study

The purpose of this simulation study is to evaluate the performance of the

Jonckheere-Terpstra statistic when applied to AUC regression with discrete covari-

ates. Consider a model with k = 4 different treatment effects: a placebo and three
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ordered treatment levels. Cases were generated for models having a categorical co-

variate with three levels, xijk = I(0,1,2)(j), and sample size n for each group and level.

We assume that βj has the same ordering as αi. Data were generated such that

Y P
i = −log (u1) + α1 + βjxijk and Y T

i = −log (ui) + αi + βjxijk where i = 2, 3, 4. We

considered the Jonckheere-Terpstra statistic for the following five cases

(1) α1 < α2 < α3 < α4

(2) α1 < α2 < α3 = α4

(3) α1 = α2 < α3 < α4

(4) α1 = α2 = α3 < α4

(5) α1 = α2 = α3 = α4

The results for the Jonckheere-Terpstra statistic in all 5 cases are given in Figures

3.10, 3.11, and 3.12. The horizontal lines represent the rejection region for α =

0.05. The results are based on 500 realizations of the model. Table 3.1 gives the

average summary estimates from the box plots. Note that parameter estimates of the

treatment effects and covariate are given only for case 1 in Table 3.2.

We use the method given in Zhang (2008) to obtain estimates of the covariates

and individual intercepts for the treatment effects. We can see from the figures that

the Jonckheere-Terpstra statistic with discrete covariates performs exceptionally well

on skewed data. The first four cases have at least one strict inequality and each

have a significant Jonckheere-Terpstra statistic resulting in the rejection of the null

hypothesis. For cases 2,3, and 4 we observe increased p-values, but the same overall

significance results. As the number of strict inequalities decreases, our JT statistic

and Z scores become smaller and closer to the rejection line. The final case, with all

equalities, is almost entirely contained between the two lines and correctly fails to

reject the null. As expected, the Jonckheere-Terpstra statistic for each covariate is

approximately the same, since the data is simply shifted βj units. Overall, the model
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performs exceptionally well whenever the restrictive assumptions hold and the model

is appropriate.

Figure 3.10: The Jonckheere-Terpstra Statistic for the five cases by three levels of
the covariate βj (n=30)

Figure 3.11: The Z score corresponding to the Jonckheere-Terpstra statistic for the
five cases by three levels of βj

3.5 Clinical Trial Example

The method is applied to data from the cognitive rehabilitation study where the

purpose is to determine the efficacy of two treatment programs for preventing cogni-

tive impairment and functional decline in hospital patients 70 years of age or older.
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Figure 3.12: The p-values corresponding to the Jonckheere-Terpsta statistic for the
five cases by three levels of βj

Table 3.1: Average Jonckheere-Terpstra Statistic, Z score, and p-value estimates for
the five cases

Parameter JT Z Score p-value

Case 1 β0 3651 4.46 0.0005
β1 3655 4.47 0.0007
β2 3650 4.45 0.0006

Case 2 β0 3344 3.02 0.015
β1 3358 3.09 0.012
β2 3364 3.11 0.013

Case 3 β0 3402 3.29 0.008
β1 3385 3.21 0.009
β2 3412 3.34 0.008

Case 4 β0 3271 2.68 0.025
β1 3269 2.67 0.022
β2 3263 2.64 0.024

Case 5 β0 2703 0.01 0.24
β1 2696 −0.01 0.25
β2 2692 −0.03 0.25

A significant percentage of older patients in hospitals, experience delirium episodes.

This study was designed to help increase quality of life and reduce adverse events for

the elderly patient population. The Hospital Elder Life Program (HELP) was de-
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Table 3.2: Parameter Estimates for Case 1

True DeLong Coverage
Parameter Value Est S. E. 95% CI

α1 0.55 0.58 0.32 0.950
α2 0.90 0.91 0.34 0.948
α3 1.20 1.24 0.36 0.952
β1 0.50 0.48 0.47 0.948
β2 1.00 1.03 0.51 0.952

signed for delirium prevention and maintaining or improving cognitive and functional

ability. Researchers are investigating if including interactive gaming technology, the

WiiTM Nintendo system, can provide additional improvement in cognitive, functional,

and quality outcomes of patients.

The response variable is the percent change in a patient’s score on a functional

test, the Patient Activities of Daily Living (ADL), from baseline (time of enrollment

in the study) to the end of the study (discharge from hospital care). The ADL score

ranges in value from 0 to 20, where a higher score indicates greater independence.

Functional abilities such as grooming, dressing, feeding, etc. are evaluated in the

patients. The null hypothesis is

H0 : αNo Treatment = αHELP = αHELP+Wii

vs.

H0 : αNo Treatment ≥ αHELP ≥ αHELP+Wii,

with at least one strict inequality where the ”no treatment” group was randomly

selected from historical (pre-HELP) data. A patient’s gender is a covariate (women(1)

or men (0)) of interest since we expect women to have a better response than men.

We assume that the covariate is constant for each treatment group. Table 3.3 contains

the mean (and standard deviation) of ADL at baseline and discharge for each of the

patient arms and the average percent ADL change per patient. The % change in
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ADL is calculated by

% ADL change =
ADL Score at Baseline− ADL Score at Discharge

ADL Score at Baseline
× 100

Table 3.4 gives the sample sizes by gender for each of the study arms. The majority

of patients see some function decline while in the hospital and the goal of this study is

to limit this. Table 3.3 illustrates that the patients in the study tend to have minimal

decline or even greater functional ability compared to the retrospective group. Since

we would like to see a higher patient ADL at discharge, a smaller or negative % ADL

change is more desirable.

Table 3.3: Average ADL Scores

Level No Treatment HELP HELP + Wii
Baseline 13.71 (6.16) 12.99 (5.42) 12.61 (5.27)

Discharge 13.27 (5.20) 12.85 (5.35) 13.21 (5.82)
Average % ADL Change 10.62 8.06 1.24

Table 3.4: Sample sizes by Gender

Level No Treatment HELP HELP + Wii
Female 80 67 68
Male 70 48 52
Total 150 115 120

The results given in Table 3.5, indicate significant difference in the treatment

effects for the three groups. The Jonckheere-Terpstra statistic is nearly identical when

adjusting for gender. The results demonstrate that the new rehabilitation program

involving the Wii is effective in reducing delirium episodes and increasing functional

status in older patients when compared with the historical control group of having no

treatment. In the next chapter we introduce a method for making multiple treatment

comparisons, thereby, enabling one to determine if there are any differences among

the two therapeutic treatment groups.
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Table 3.5: Average Jonckheere-Terpstra Statistic, Z score, and p-value estimates by
covariate

Parameter JT Z Score p-value

JTβ0 4166 4.56 0.0004
JTβ1 4167 4.56 0.0002

3.6 Discussion and Conclusions

In this chapter we presented a method for applying the Jonckheere Trend test to

a semi-parametric regression model with discrete covariates. Dodd and Pepe (2003)

introduced AUC regression by exploiting the relationship between the Mann-Whitney

U statistic and the AUC. Since the Jonckheere-Terpstra statistic can be shown to

be the sum of independent Mann-Whitney statistics, we were able to exploit this

relationship and extend the semi-parametric regression model to the case of having

k > 2 ordered treatment effects when one needs to adjust the model for discrete

covariates. The Jonckheere-Terpstra statistic is more powerful when used in cases

when treatment effects are ordered under the alternatives hypothesis. Since, this

ordered relationship must be maintained when introducing covariates, we placed a

restriction on the covariates such that one of the following conditions is true: 1) the

covariate is constant for all treatment levels, or 2) the covariate maintains the same

order as found in the unadjusted treatment effects.

The simulation study showed that the small-sample performance of the method

performs exceptionally well at detecting the specific differences in the treatment

groups. The results using the covariates performed equally well, but this was as

expected since these covariates are highly restrictive for the Jonckheere Trend test.
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CHAPTER FOUR

Multiple Comparison Methods for the Jonckheere Trend Tests

In the previous chapter, we extended the method suggested by Zhang (2008)

and Zhang et al. (2011) to the problem of testing for treatment differences under

the ordered alternative hypotheses as considered by the Jonckheere trend test. The

Jonckheere-Terpstra statistic is used to determine if there is an overall global treat-

ment difference among the k treatment levels. In this chapter, we present a new

multiple comparison procedure when the Jonckheere trend test is appropriate. A

simulation study is performed to compare the proposed method with two existing

nonparametric multiple comparison procedures (Shirley (1977) and Nashimoto and

Wright (2007)) that are used under the ordered alternative assumption. A real data

example is also presented.

4.1 Introduction

Multiple comparison methods are regularly used in many areas of data analysis.

A common goal of clinical trials is to compare active treatment groups with a placebo

group in order to determine the efficacy of the treatments as compared with a control.

The investigation does not usually end here as the investigators may be interested

in how and which treatments differ from the placebo or in some cases from each

other. For example, some treatment may work better for younger patients, for women

than versus men, or for patients with a lower body mass index. Questions of this

type require models that allow for covariance structure. Another question of interest

involves multiple comparison procedures. For example in dosage studies, researchers

are interested in determining the minimum effective dose of a treatment by comparing

many levels. In examples of this type, it is not enough to know that there are
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treatment differences. One needs to determine the lowest level dose for when a treat-

ment is effective.

Multiple comparison methods have been widely studied and there are many

different types of procedures where the choice of which one uses depends upon a

variety of factors and desired outcomes. However, each share a common attribute,

that as the number of comparisons increase there is an increase in the probability

of detecting treatment differences due to chance alone. Thereby, leading to incorrect

conclusions. Westfall et al. (1999) and Hsu (1996) provide extensive discussion on dif-

ferent multiple comparison methods and their properties. In this chapter, we present

a multiple comparison method using the Jonckheere-Terpstra statistic as applied in

the AUC regression setting in order to test for treatment differences in the case where

the alternative hypothesis has assumed ordered treatment effects. A brief discussion

of two existing multiple comparison procedures, Shirley (1977) and Nashimoto and

Wright (2007), is given in Section 4.2. The proposed multiple comparison method

is presented in Section 4.3. Section 4.4 provides a simulation study comparing our

method with the existing procedures. Section 4.5 uses an example given in Shirley

(1977) to compare the three methods. Conclusions and a final discussion are given in

Section 4.6.

4.2 Multiple Comparison Methods

The problem of interest is to determine differences in location parameters for

k > 2 treatment groups using a non-normal response variable, Y when the researchers

believe that the treatment effects are ordered under the alternative hypothesis. Shirley

(1977) and Nashimoto and Wright (2007) proposed nonparametric methods that have

been used for this situation. A brief discussion of their procedures is included below.

4.2.1 The Shirley Method

Shirley (1977) considered the problem of determining differences in treatment

groups that are created by increasing dosage levels of an active compound as compared
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with a zero dose control group. The test is a nonparametric version of a parametric

test given by Williams (1971).

Suppose there are k active treatment levels and a zero-dose control group.

Williams (1971) proposed a procedure based upon the maximum likelihood estimates

of the location parameters, Mi, subject to the constraint that M1 ≤ M2 ≤ ... ≤ Mk.

The statistic is

tk =
M̂k −X0

(S2/rk + S2/c)−1/2

where S2 is an estimate of the residual variance, c = r0 is the number of observations

in the control group and X0 is the control group sample mean. Williams (1971)

provided tables for the critical points of the tk statistic.

Shirley (1977) developed a nonparametric version of the Williams test by an-

alyzing the observed ranks instead of the actual data. The results were based on

the Wald-Wolfowitz limit theorem (Wald and Wolfowitz (1944)), where the vector

R̄ =
(
R̄0, R̄1, ...R̄k

)
has a limiting multivariate normal distribution and R̄i is the

mean rank of group i. The Shirley multiple comparison test is as follows. For equal

group sizes, let

t = CN,k

[
Max
1≤u≤k

k∑
j=u

R̄j(k − u+ 1)−R0

]
(4.1)

where CN,k = [(k + 1)(N + 1)/6]1/2 and N is the total sample size. t is shown to

be approximately distributed as Williams’ tk with ν = ∞. If the samples sizes are

unequal or there are a considerable number of ties in the data, the statistic becomes

t = CN,k

[
Max
1≤u≤k

(
k∑
j=u

rjR̄j/
k∑
j=u

rj

)
− R̄0

]
(4.2)

where CN,k = [(N(N + 1)/12)(1/rk + 1/C)]1/2. The Shirley multiple comparison test

compare each treatment level to the zero-dose control group using either equation

(4.1) or (4.2) and the critical points given by Williams (1971).

4.2.2 The Nashimoto and Wright Method

Hayter (1990) proposed a one-sided Studentized-range test for an ordered al-

ternative hypothesis. Nashimoto and Wright (2007) extended Hayter (1990) to a
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rank-based multiple comparison procedure (NPM). Assume the k populations are

identical except for possibly different locations and, Mi, then one has a significant

median inequality Mi < Mj for any 1 ≤ i < j ≤ k if

Max
i≤m≤m′≤j

(
R̄m′ − R̄m

σ/
√
n

)
≥ hα,k,ν (4.3)

where R̄i is the average rank for the ith group and σa =
√
N(N + 1)/12.

The critical value, hα,k,ν , is determined by Hayter (1990) so that the familywise

error rate is α. The degrees of freedom is ν =∞ when using equation (4.3). Hayter

(1990) provides the critical value, hα,k,ν for k = 3, 4, . . . , 9 with a range of degrees of

freedom, ν, between 5 and ∞ and α = 0.10, 0.05.

4.3 A New Multiple Comparison Method

In this section, we present a new procedure for multiple comparisons of k > 2

treatment medians when the alternative hypothesis is ordered. The method is based

upon AUC regression and the Jonckheere-Terpstra statistic. The Jonkcheere trend

test assumes

H0 : θ1 = θ2 = θ3 = . . . = θk (4.4)

versus

H1 : θ1 ≤ θ2 ≤ . . . ≤ θk

with at least one strict inequality. Note: the assumed direction of the inequality above

is without loss of generality. Suppose that one can reject the global hypothesis (4.4)

at the α-level, the problem of interest is to determine where the strict inequalities

hold while preserving the familywise error at α. Randles and Wolfe (1991) describe a

procedure originally proposed by Odeh (1971) as an alternate method of calculating

the Jonckheere-Terpstra statistic. That is, let

U∗s =
s−1∑
i=1

Uis

for s = 2, ..., k. U∗2 , U
∗
3 , ..., U

∗
k are independent Mann-Whitney statistics where U∗s is

the Mann-Whitney statistic for comparing the sth group with a group formed by
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combining the first (s− 1) groups. It should be pointed out that U∗s ≥ 0 whenever

the alternative hypothesis in (4.4) holds. The alternative form for the Jonckheere-

Terpstra statistic becomes

V2 =
k∑
s=2

U∗s .

The statistics U∗2 , U
∗
3 , . . . , U

∗
k can be used to define a multiple comparison pro-

cedure. Suppose that one rejects H0 at the α−level where

P (W ≥ V2 | H0 is true) = p ≤ α

in which case there is at least one strict inequality among the medians for the k

groups. Our objective is to find its location

(1) Compute

P (W ≥ U∗s | H0 is true) = ps.

(2) Let s1 be the smallest value such that ps ≤ α. In which case group s1 is

the first group for which a strict inequality holds when testing (4.4). Since

we knew that there was at least one strict inequality under the alternative

hypothesis, we are assured of having the above satisfied at least once when

the global null hypothesis (4.4) is rejected. Are there are any additional cases

with strict inequality? If s1 < k then continue to the next step, otherwise the

procedure has identified the single strict inequality as being between groups

(k − 1) and k.

(3) Test the new hypothesis

H0 : θs1 = θs1+1 = θs1+2 = . . . = θk (4.5)

versus

H1 : θs1 ≤ θs1+1 ≤ . . . ≤ θk

at the α/2-level. Repeat the above steps with the new hypothesis (4.5) to

identify the index s2 > s1 as at the smallest index satisfying ps ≤ α/2. Note
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one must recompute U∗s when testing (4.5) since we are no longer interested

in the first s1 − 1 groups.

(4) Repeat until one can no longer reject the new null hypothesis. Note: each

time we repeat the above step and form a new null hypothesis (new level),

the original level α becomes α/m at the mth level.

In the next section we investigate this procedure with the two existing procedures

using a simulation study.

4.4 Simulation

We conduct a simulation study to compare the Shirley (1977) method and the

Nashimoto and Wright (2007) test with the proposed multiple comparison test. The

model of interest is given by

yijk = µ+ αi + βj + εijk

where εijk = −log(u) and u ∼ exponential(1). The treatment of interest has k =

4 treatment groups and data are generated from models with the logit link. We

illustrate the model using a treatment effect, αi and a blocking factor βj where,

i = 1, 2, 3, 4, and j = 1, 2,, and β1 ≤ β2. Each treatment group has n = 30 and

results represent 1000 realizations of the model.

To investigate the proposed multiple comparison test we considered seven situa-

tions with k = 4 treatments. The three multiple comparison methods were performed

for each situation. The cases of interest are

(1) α1 < α2 < α3 < α4

(2) α1 < α2 < α3 = α4

(3) α1 = α2 < α3 < α4

(4) α1 < α2 = α3 < α4

(5) α1 = α2 = α3 < α4
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(6) α1 < α2 = α3 = α4

(7) α1 = α2 < α3 = α4

Tables 4.1 and 4.2 contain the results for the seven cases for the three multiple compar-

ison procedures. The tables indicate the proportion of the times the null hypothesis

was rejected for each case. The average for the ps are included for the new procedure.

Since, Shirley’s method is designed for comparing each of the treatment levels to a

zero treatment method, this method only compares α1 with α2, α3, and α4. Since, the

NPM method by Nashimoto and Wright (2007) performs all pairwise comparisons,

we have included the results for each comparison.

The simulated results show that the new method performed extremely well. It

outperforms the NPM method, which is shown to be very conservative. Nashimoto

and Wright’s method is also shown to be somewhat inconsistent. The Shirley method

performed well when comparing the active treatments to zero dose responses, however,

when comparing group 1 vs group 2 it is consistently inferior to the new method. As

expected this method easily rejects the comparison of group 1 with group 4, since

there is a large difference between the medians for these two groups. There are cases

when the proposed method has frequent occurrences of rejecting incorrectly by finding

a difference when there is no difference. For example in Case 5 the test is incorrectly

rejects the first two comparisons at a rate of almost 10%. Overall, however, the new

method performed extremely well and consistently detects the appropriate treatment

differences.

In the next section we compare the three comparison methods using an example

found in Shirley (1977).

4.5 Example

Shirley (1977) presented an example using the reaction times of mice to various

stimuli. The reaction times for each group is highly skewed. The original data had

many ties that were obscuring the results of the different nonparametric procedures.
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Table 4.1: Results for Cases 1 - 4

Case 1: α1 < α2 < α3 < α4

Proposed JT Shirley Nashimoto
Comparison % Rejected p-value Comparison % Rejected % Rejected
1 vs 2 0.932 0.013 1 vs 2 0.786 0.457
2 vs 3 0.909 0.011 2 vs 3 - 0.588
3 vs 4 0.842 0.012 1 vs 3 1.000 0.998

1 vs 4 1.000 1.000
3 vs 4 - 0.440
2 vs 4 - 1.000

Case 2: α1 < α2 < α3 = α4

1 vs 2 0.942 0.012 1 vs 2 0.859 0.563
2 vs 3 0.894 0.012 2 vs 3 - 0.711
3 vs 4 0.037 0.249 1 vs 3 1.000 1.000

1 vs 4 1.000 1.000
3 vs 4 - 0.001
2 vs 4 - 0.720

Case 3: α1 = α2 < α3 < α4

1 vs 2 0.105 0.251 1 vs 2 0.031 0.002
(1,2) vs 3 0.979 0.004 2 vs 3 - 0.689
3 vs 4 0.829 0.014 1 vs 3 0.886 0.581

1 vs 4 1.000 1.000
3 vs 4 - 0.001
2 vs 4 - 1.000

Case 4: α1 < α2 = α3 < α4

1 vs 2 0.939 0.012 1 vs 2 0.908 0.681
2 vs 3 0.037 0.251 2 vs 3 - 0.001
(2,3) vs 4 0.967 0.004 1 vs 3 0.875 0.679

1 vs 4 1.000 1.000
3 vs 4 - 0.703
2 vs 4 - 0.678

Therefore, we slightly modified the data as to eliminate many of the ties and give

the data a more ordered structure. The modified data and their respective ranks are

given in Table 4.3. The hypothesis of interest is

H0 : θ0 = θ1 = θ2 = θ3 (4.6)

vs.

H1 : θ0 ≤ θ1 ≤ θ2 ≤ θ3

41



Table 4.2: Results for Cases 5 - 7

Case 5: α1 = α2 = α3 < α4

Proposed JT Shirley Nashimoto
Comparison % Rejected p-value Comparison % Rejected % Rejected
1 vs 2 0.088 0.256 1 vs 2 0.041 0.006
(1,2) vs 3 0.086 0.246 2 vs 3 - 0.005
(1,2,3) vs 4 1.000 0.001 1 vs 3 0.026 0.002

1 vs 4 0.975 0.920
3 vs 4 - 0.001
2 vs 4 - 0.914

Case 6: α1 < α2 = α3 = α4

1 vs 2 0.948 0.012 1 vs 2 0.928 0.773
2 vs 3 0.046 0.248 2 vs 3 - 0.006
(2,3) vs 4 0.048 0.255 1 vs 3 0.921 0.773

1 vs 4 0.912 0.769
3 vs 4 - 0.005
2 vs 4 - 0.005

Case 7: α1 = α2 < α3 = α4

1 vs 2 0.098 0.249 1 vs 2 0.038 0.009
(1,2) vs 3 0.982 0.005 2 vs 3 - 0.785
3 vs 4 0.045 0.248 1 vs 3 0.904 0.748

1 vs 4 0.912 0.776
3 vs 4 - 0.003
2 vs 4 - 0.786

The Shirley (1977) method requires the calculation of t̄k for each treatment level.

Table 4.4 below gives the value of the test statistic as well as the critical point given

in Williams (1971), and whether each treatment level is considered significantly dif-

ferent from the control (level 0). Nashimoto and Wright (2007) consider all pairwise

comparisons, and thus ends up being more conservative then both Shirley and the

new method. Table 4.5 contains the results for the NPM test with the modified

Shirley data. The critical value given by Hayter (1990) is hα,k,∞ = 3.295. The NPM

procedure reaches the same conclusion as given with the Shirley test. Each treatment

level differs from the control, however, we are unable to find differences in reaction

times among the remaining three groups.
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Table 4.3: Modified reaction times in seconds of mice

Group 0 Group 1 Group 2 Group 3
Reaction Reaction Reaction Reaction

Time Rank Time Rank Time Rank Time Rank
2.35 8 2.80 12 9.80 39 7.00 26
3.00 13 2.27 6 3.24 18 9.90 40
3.10 15 3.80 22 5.80 24 9.46 38
2.10 2 9.40 36 7.80 28 8.80 33
2.20 3 8.40 31 2.60 10 8.85 34
2.21 4 3.15 16 2.30 7 3.45 21
2.22 5 3.20 17 6.20 25 9.00 35
2.79 11 4.40 23 9.42 37 8.48 32
2.00 1 3.25 19 7.82 29 2.40 9
3.05 14 7.40 27 3.40 20 7.89 30

Means 7.6 20.9 23.7 29.8

Table 4.4: Test statistics for Shirley’s method

Level Test Statistic 1% Critical Value Significance
t̄3 4.246 2.49 Yes
t̄2 3.079 2.48 Yes
t̄1 2.544 2.43 Yes

Table 4.5: Test Statistics for Nashimoto and Wright’s Method, NPM

Comparison Test Statistic Significance
0 vs 1 3.598 Yes
1 vs 2 0.757 No
2 vs 3 1.650 No
0 vs 2 4.355 Yes
1 vs 3 2.407 No
0 vs 3 6.005 Yes

The results on reaction times in mice for the four groups using the proposed

method are as follows. The Jonckheere-Terpstra statistic for the global hypothesis
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(4.6) is

P (W ≥ 487) = P (Z ≥ 4.513) = 0.000004 < α = 0.05

which is highly significant, hence, we conclude there is some difference among the

medians for the four treatment levels. In computing the p-value for U∗s , we observe

that

P (W ≥ U∗1 ) = P (W ≥ 92) = P (Z ≥ 3.175) = 0.00075.

Indicating that there is a significant difference between the group 1 and the control.

The new hypothesis becomes

H0 : θ1 = θ2 = θ3 (4.7)

vs

H1 : θ1 ≤ θ2 ≤ θ3

Excluding the control group, we find the new p-value for the Jonckheere-Terpstra

statistic is

P (W ≥ 208) = 0.0137 < 0.025.

Indicating that there is a significant treatment differences in the medians for the

remaining groups. We recomputed U∗s for s = 1, 2 and found

P (W ≥ U∗2 ) = P (W ≥ 61) = P (Z ≥ 0.832) = 0.203 (4.8)

and

P (W ≥ U∗3 ) = P (W ≥ 147) = P (Z ≥ 2.07) = 0.019 < 0.025. (4.9)

Thus, we determine that the next significant difference comes between groups 2 and

3. Since the p-value in equation (4.8) is too large, whereas, the p-value in equation

(4.9) is less than α/2 = 0.025. In which case, we conclude, with a family-wise error

of < 0.05, using the new procedure that

θ0 < θ1 = θ2 < θ3. (4.10)

As with the other two procedures, this method concludes that groups 1-3 are

significantly different from group 0. Whereas, the new method was the only procedure

to find a significant differences among groups 1, 2, and 3 at the 0.05 level.
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4.6 Discussion

If several treatment medians are to be compared with one another and the me-

dians satisfy an ordered assumption, then a test procedure can be chosen to have good

power properties under this ordered alternative. The method proposed in this paper

is an intuitive and simple multiple comparison procedure based on the Jonckheere-

Terpstra statistic. The method utilizes the ordered alternative assumption to allow

for less comparisons to be performed and yet still draw significant conclusions about

differences in treatment groups.

The simulation study showed the proposed method performed exceptionally

well with non-normal data. It correctly detected strict inequalities in every location

and outperformed two nonparametric multiple comparison procedures found in the

literature.
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CHAPTER FIVE

Conclusions and Future Work

In a clinical trial with multiple treatment arms, the evaluation of the active

treatments is of the utmost importance to investigators. Ascertaining the most ef-

fective drug or the most preferential treatment allows researchers to make better

decisions for patient outcomes. Our approach extends the case with an active treat-

ment and a control to multiple treatment arms. This approach allows one to model

the main effects of multiple arms as functions of a discrete covariate. In addition,

the proposed multiple comparison test accurately handles the multiplicity issue and

tests for treatment differences. Chapters 3 and 4 demonstrated that the approach is

promising for applications in this area.

Since the AUC regression model with the Jonckheere-Terpstra statistic with

covariates is a unique and complex situation, much research remains to be done. In

chapter 3, we discussed the method for estimating covariate effects with an ordered

alternative and multiple treatment effects. To include a covariate involved making

many significant assumptions. We did not address the situation where there are

interactions between two or more covariates or if the covariates are continuous. It

is possible more extensive assumptions would have to be made, but the potential

problem of interest is, can the proposed AUC regression model handle an interaction

variable?

A second area of interest is in the multiple comparisons problem. Our proposed

multiple comparison test was only tested with the no covariate situation with an

ordered alternative. More research would have to be done to include covariate effects

in this procedure.
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APPENDIX A

SAS Programs

A.1 SAS Code for Simulation Study using Fligner and Birnbaum’s Methods

This program compared the Fligner and the modified Birnbaum Methods to

the bootstrap and the DeLong method for estimating the standard errors of the

parameters of the binary AUC regression model with logit link in Chapter 2. The

following SAS file is the main file which calls the macros for the Fligner, the DeLong,

and the Birnbaum procedure.

%macro comp auc ( datase t= , num= , sample s i z e= , l e v e l =, l i n k=, i n t=, beta =);

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

use the a l t e r n a t i v e a n a l y t i c a l methods

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗ The F l i gne r method to compute the standard e r r o r ∗/

%place ( data=&dataset , y=x , group=therapy , s i z e=&sample s i z e ,

l e v e l=&l e v e l , i n t=&int , beta=&beta , r e t=pla ) ; run ;

proc append base = p r e s u l t data=pla f o r c e ; run ;

/∗ The DeLong method to compute the standard e r r o r ∗/

%delong ( datase t= &dataset , l e v e l=&l e v e l , s i z e=&sample s i z e ,

r e t= del , i n t=&i n t , beta=&beta ) ;

proc append base= d r e s u l t data=de l f o r c e ; run ;

/∗ The Birnbaum method to compute the standard e r r o r ∗/

%max( data=&dataset , y=x , group=therapy , s i z e=&sample s i z e ,

l e v e l=&l e v e l , i n t=&int , beta=&beta , r e t=mmm) ;

proc append base = mresult data=mmm fo r c e ;

run ;

%mend comp auc ;
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%macro sim auc ( sim time=, l e v e l= , i n t =, beta=, sample s i z e=, bnum= , l i n k=l o g i t ) ;

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

sim time : the number o f r e a l i z a t i o n s to be generated

l e v e l : the l e v e l number o f the d i s c r e t e c ova r i a t e

i n t : the i n t e r c e p t o f the AUC model

beta : the parameters f o r the c ova r i a t e l e v e l e f f e c t .

( the number o f the parameters = l e v e l −1 .

For example , when l e v e l =3, beta = 0 .5 1 . )

sample s i z e : the sample s i z e in each cova r i a t e l e v e l o f each group

bnum: the number o f resamples f o r each r e a l i z a t i o n in the boostrap

procedure

l i n k : the l i n k to be used f o r the GLM ( de f au l t i s l o g i t )

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ;

proc da ta s e t s l i b r a r y=WORK no l i s t ;

d e l e t e d r e s u l t ;

d e l e t e p r e s u l t ;

d e l e t e mresult ;

run ;

/∗∗∗∗∗∗∗∗ The true AUC ∗∗∗∗∗∗∗∗∗∗∗∗∗/

/∗read user input to macro v a r i a b l e s∗/

%l e t beta0=0;

%l e t D = 1 ;

%l e t beta&D = %nrbquote(%scan(%bquote (&beta ) , &D, %s t r ( ) ) ) ;

%do %whi le(%nrbquote (&&beta&D) ˜= ) ;

%l e t D = %eva l (&D + 1 ) ;

%l e t beta&D = %nrbquote(%scan(%bquote (&beta ) , &D, %s t r ( ) ) ) ;

%end ;

/∗ Compute the t rue AUC va lue s accord ing to the user input parameters ∗/

data auc true ( keep= va r i ab l e t rue ) ;

do cov=0 to &l e v e l −1;

v a r i ab l e=’ auc ’ | | put ( cov , 1 . ) ;
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beta= symget ( ’ beta ’ | | l e f t ( cov ) ) ;

t rue= 1/(1+exp(−beta−&i n t ) ) ;

output ;

end ;

run ;

data i n t t rue ;

v a r i ab l e=’ In t e r c ep t ’ ;

t rue=&i n t ;

run ;

data cov true ;

do cov=1 to &l e v e l −1;

v a r i ab l e=’ cov ’ | | put ( cov , 1 . ) ;

t rue= input ( symget ( ’ beta ’ | | l e f t ( cov ) ) , 4 . ) ;

output ;

end ;

run ;

data t rue ( drop= cov ) ;

l ength va r i ab l e $ 9 ;

s e t i n t t rue cov true auc true ;

run ;

proc s o r t data=true ; by va r i ab l e ; run ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Simulate the data

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

%do num =1 %to &sim time ;

data simdata ;

do cov= 0 to &l e v e l −1;

do n= 1 to &sample s i z e ;

beta= symget ( ’ beta ’ | | l e f t ( cov ) ) ;

t r e a t= −l og ( ranexp (0))+ beta+&i n t ;
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placebo= −l og ( ranexp ( 0 ) ) ;

output ;

end ;

end ;

run ;

data t r e a t ( keep=cov therapy x ) ;

s e t simdata ; x=t r e a t ; therapy= ’T ’ ; run ;

data placeb ( keep=cov therapy x ) ;

s e t simdata ; x=placebo ; therapy=’P ’ ; run ;

data simd ;

s e t t r e a t p laceb ; run ;

proc s o r t data=simd ; by cov therapy x ; run ;

%comp auc ( datase t= simd , num=&bnum , sample s i z e=&samples i ze ,

l e v e l=&l e v e l , l i n k=&l i nk , i n t=&int , beta =&beta ) ;

%end ;

%mend ;

/∗ Input the parameters and c a l l the main macro ∗/

%sim auc ( sim time=1, l e v e l =3, i n t =0.15 , beta=0.5 1 ,

sample s i z e =100 , bnum=200 , l i n k= l o g i t ) ;

1.1.1 SAS Macros for Alternative Procedures

The following SAS file include the macros for the Fligner and modified Birbaum

procedure, which is called by the main SAS file above. The SAS macro for the DeLong

procedure (and bootstrap) is given by Zhang (2008)

/∗ Birnbaum procedure f o r the standard e r r o r s in AUC r e g r e s s i o n ∗/

%macro max( data=, y=, group=, s i z e =, l e v e l =, i n t =, beta=, r e t =);

proc da ta s e t s l i b r a r y=WORK no l i s t ;

d e l e t e max auc ;
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run ;

ods l i s t i n g c l o s e ;

%do j=0 %to &l e v e l −1;

data mv;

s e t &data ;

i f cov=&j ;

run ;

proc s o r t data=mv;

by &group &y ;

run ;

proc iml ;

use mv;

read a l l ;

rep=x ;

x=J (&s i z e , 1 ) ;

do i=1 to &s i z e ;

x [ i ]= rep [ i ] ;

end ;

y=J (&s i z e , 1 ) ;

do i=1 to &s i z e ;

y [ i ] = rep [ i+&s i z e ] ;

end ;

/∗ Compute the U s t a t i s t i c ∗/

u0=0;

do i=1 to &s i z e ;

do j=1 to &s i z e ;

i f ( x [ j ]<y [ i ] ) then u0=u0+1;

e l s e i f ( x [ j ]=y [ i ] ) then u0=u0+1/ 2 ;

end ;

end ;

u0=u0/ (&s i z e ∗&s i z e ) ;
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/∗ Find the upper and lower bound as de f ined by Birnbaum ∗/

max= sq r t ( (&s i z e ∗&s i z e ∗u0∗(1−u0 )∗&s i z e )/ (&s i z e ∗∗2∗&s i z e ∗∗ 2 ) ) ;

q = 2∗u0 ;

r= min (u0 , (1−u0 ) ) ;

i f 1 < q then min = (&s i z e ∗&s i z e ∗ (&s i z e ∗r∗(1− r )

−(((&s i z e −1)∗∗2)/(12∗ (&s i z e −1)) ) ) )/ ( &s i z e ∗∗2∗&s i z e ∗∗ 2 ) ;

i f 1 > q then min = (&s i z e ∗&s i z e ∗ ( (4/3)∗r∗ s q r t (2∗ (&s i z e −1)∗ (&s i z e −1)∗r )

−(&s i z e+&s i z e −2)∗r∗∗2+r∗(1− r ) ) )/ (&s i z e ∗∗2∗&s i z e ∗∗ 2 ) ;

min1 = sq r t (min ) ;

sd=(min1+max)/ 2 ;

out=&j | | u0 | | sd ;

varname=’ cov ’ | | ’ e s t imate ’ | | ’ sd ’ ;

c r e a t e max1 from out [ colname=varname ] ;

append from out ;

qu i t ;

data max1 ;

s e t max1 ;

v a r i ab l e =’ auc ’ | | put ( cov , 1 . ) ;

run ;

proc append base= max auc data=max1 f o r c e ; run ;

%end ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Combining the de l t a methods and the Birnbaum method to

es t imate the beta

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

data maximum;

s e t max auc ;

g auc=log ( es t imate/(1− es t imate ) ) ;

sd g=sd/ ( e s t imate∗(1− es t imate ) ) ;

var g=sd g∗∗ 2 ;

run ;

data parm ( keep=g auc ) ;

s e t maximum;
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run ;

data var parm( keep=var g ) ;

s e t maximum;

run ;

proc iml ;

use parm ;

read a l l i n to e s t ;

i n t= e s t [ 1 , 1 ] ;

cov=J (&l e v e l −1 ,1) ;

do i= 1 to &l e v e l −1;

cov [ i ]= e s t [ i +1,1]− i n t ;

end ;

out=in t ;

do i=1 to &l e v e l −1;

out=out | | cov [ i ] ;

end ;

varname=’ In t e r c ep t ’ ;

do i=1 to &l e v e l −1;

varname=varname | | ca t s ( ’ cov ’ , char ( i ) ) ;

end ;

c r e a t e parm1 from out [ colname= varname ] ;

append from out ;

qu i t ;

proc t ranspose data=parm1 out =parm ;

run ;

data parm ( keep=va r i ab l e e s t imate ) ;

s e t parm ;

va r i ab l e= NAME ;

es t imate=co l 1 ;

run ;

proc iml ;
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use var parm ;

read a l l i n to e s t ;

i n t= e s t [ 1 , 1 ] ;

cov=J (&l e v e l −1 ,1) ;

do i= 1 to &l e v e l −1;

cov [ i ]= e s t [ i +1 ,1]+ in t ;

end ;

out=in t ;

do i=1 to &l e v e l −1;

out=out | | cov [ i ] ;

end ;

varname=’ In t e r c ep t ’ ;

do i=1 to &l e v e l −1;

varname=varname | | ca t s ( ’ cov ’ , char ( i ) ) ;

end ;

c r e a t e var parm1 from out [ colname= varname ] ;

append from out ;

qu i t ;

proc t ranspose data=var parm1 out =var parm ;

run ;

data var parm ( keep=va r i ab l e sd ) ;

s e t var parm ;

va r i ab l e= NAME ;

var=co l 1 ;

sd= sq r t ( var ) ;

run ;

data max p ;

merge parm var parm ;

by va r i ab l e ;

run ;

data max a l l ;

s e t max p max auc ;

run ;
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proc s o r t data=max a l l ;

by va r i ab l e ;

run ;

data &r e t ;

merge max a l l t rue ;

by va r i ab l e ;

c iu=est imate+sd∗ 1 . 9 6 ;

c i l=est imate−sd∗ 1 . 9 6 ;

i f ( c iu>t rue ) and ( c i l<t rue ) then h i t =1; e l s e h i t =0;

drop cov ;

run ;

%mend max ;

/∗ Run the macro to c a l c u l a t e the F l i gne r method o f standard e r r o r s ∗/

%macro p lace ( data=, y=, group=, s i z e =, l e v e l =, i n t =, beta=, r e t =);

proc da ta s e t s l i b r a r y=WORK no l i s t ;

d e l e t e p lace auc ;

run ;

ods l i s t i n g c l o s e ;

%do j=0 %to &l e v e l −1;

data pv ;

s e t &data ;

i f cov=&j ;

run ;

proc s o r t data=pv ;

by &group &y ;

run ;

proc rank data=pv t i e s=mean out=rankr ;

var &y ;

ranks rank ;

run ;

proc iml ;

use rankr ;
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read a l l ;

rep = rank ;

x=J (&s i z e , 1 ) ;

do i=1 to &s i z e ;

x [ i ]= rep [ i ] ;

end ;

p=J (&s i z e , 1 ) ;

q=1;

do i=1 to &s i z e ;

p [ i ]=x [ i ]−q ;

q=q+1;

end ;

meanp=J (&s i z e ,1)−1;

d i f f p=J (&s i z e , 1 ) ;

do i =1 to &s i z e ;

meanp=meanp+p [ i ] ;

end ;

do i=1 to &s i z e ;

meanp [ i ]=meanp [ i ] /&s i z e ;

end ;

do i =1 to &s i z e ;

d i f f p [ i ]=(p [ i ]−meanp [ i ] ) ∗∗ 2 ;

end ;

out = p | | d i f f p ;

varname=’p ’ | | ’ d i f f p ’ ;

c r e a t e p lace from out [ colname=varname ] ;

append from out ;
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qu i t ;

run ;

proc iml ;

use rankr ;

read a l l ;

rep =rank ;

y=J (&s i z e , 1 ) ;

do i=1 to &s i z e ;

y [ i ]= rep [ i+&s i z e ] ;

end ;

s=J (&s i z e , 1 ) ;

q=1;

do j=1 to &s i z e ;

s [ j ]=y [ j ]−q ;

q=q+1;

end ;

means=J (&s i z e ,1)−1;

d i f f s=J (&s i z e , 1 ) ;

do i=1 to &s i z e ;

means=means+s [ i ] ;

end ;

do i=1 to &s i z e ;

means [ i ]=means [ i ] /&s i z e ;

end ;

do i=1 to &s i z e ;

d i f f s [ i ]=( s [ i ]−means [ i ] ) ∗∗ 2 ;

end ;

out = s | | d i f f s ;

varname=’ s ’ | | ’ d i f f s ’ ;

c r e a t e p lace2 from out [ colname=varname ] ;

append from out ;

qu i t ;

run ;
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/∗Find the average ranks and sample s i z e s ∗/

proc means data=place nopr int ;

var p ;

output out=m1 mean=mean1 ;

run ;

proc means data=place2 nopr int ;

var s ;

output out=m2 mean=mean2 ;

run ;

proc means data=place nopr int ;

var d i f f p ;

output out= t o t a l sum=sum ;

run ;

proc means data=place2 nopr int ;

var d i f f s ;

output out= to t a l 2 sum=sum ;

run ;

data t o t a l ;

s e t t o t a l ;

group = 1 ;

run ;

data t o t a l 2 ;

s e t t o t a l 2 ;

group = 2 ;

run ;

data to t ;

s e t t o t a l t o t a l 2 ;

run ;

proc means data=tot nopr int ;

var sum ;

output out=num sum=sum ;

run ;

data var ;

merge M1 M2 num;
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cov=&j ;

keep mean1 mean2 sum cov ;

run ;

proc iml ;

use pv ;

read a l l i n to data ;

rep= data [ , 2 ] ;

x= J (&s i z e , 1 ) ;

do i= 1 to &s i z e ;

x [ i ]= rep [ i ] ;

end ;

y=J (&s i z e , 1 ) ;

do i= 1 to &s i z e ;

y [ i ]= rep [ i+&s i z e ] ;

end ;

/∗ compute u s t a t ∗/

u0=0;

do i=1 to &s i z e ;

do j=1 to &s i z e ;

i f ( x [ j ]<y [ i ] ) then u0=u0+1;

e l s e i f ( x [ j ]=y [ i ] ) then u0=u0+1/ 2 ;

end ;

end ;

u0=u0/ (&s i z e ∗&s i z e ) ;

out = &j | | u0 ;

varname = ’ cov ’ | | ’ e s t imate ’ ;

c r e a t e var1 from out [ colname=varname ] ;

append from out ;

qu i t ;

run ;
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data var ;

merge var var1 ;

var=(sum+mean1∗mean2)/ (&s i z e ∗∗2∗&s i z e ∗∗ 2 ) ;

s td=sq r t ( var ) ;

v a r i ab l e=’ auc ’ | | put ( cov , 1 . ) ;

drop sum ;

drop mean1 ;

drop mean2 ;

drop var ;

drop cov ;

run ;

proc append base=p lace auc data=var f o r c e ;

run ;

%end ;

data placement ;

s e t p lace auc ;

g auc=log ( es t imate/(1− es t imate ) ) ;

s td g=std/ ( e s t imate∗(1− es t imate ) ) ;

var g=std g∗∗ 2 ;

run ;

data parm ( keep= g auc ) ;

s e t placement ;

run ;

data var parm( keep= var g ) ;

s e t placement ;

run ;

proc iml ;

use parm ;

read a l l i n to e s t ;

i n t= e s t [ 1 , 1 ] ;

cov=J (&l e v e l −1 ,1) ;
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do i= 1 to &l e v e l −1;

cov [ i ]= e s t [ i +1,1]− i n t ;

end ;

out=in t ;

do i=1 to &l e v e l −1;

out=out | | cov [ i ] ;

end ;

varname=’ In t e r c ep t ’ ;

do i=1 to &l e v e l −1;

varname=varname | | ca t s ( ’ cov ’ , char ( i ) ) ;

end ;

c r e a t e parm1 from out [ colname= varname ] ;

append from out ;

qu i t ;

proc t ranspose data=parm1 out =parm ;

run ;

data parm ( keep=va r i ab l e e s t imate ) ;

s e t parm ;

va r i ab l e= NAME ;

es t imate=co l 1 ;

run ;

proc iml ;

use var parm ;

read a l l i n to e s t ;

i n t= e s t [ 1 , 1 ] ;

cov=J (&l e v e l −1 ,1) ;

do i= 1 to &l e v e l −1;

cov [ i ]= e s t [ i +1 ,1]+ in t ;

end ;

out=in t ;

do i=1 to &l e v e l −1;
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out=out | | cov [ i ] ;

end ;

varname=’ In t e r c ep t ’ ;

do i=1 to &l e v e l −1;

varname=varname | | ca t s ( ’ cov ’ , char ( i ) ) ;

end ;

c r e a t e var parm1 from out [ colname= varname ] ;

append from out ;

qu i t ;

proc t ranspose data=var parm1 out =var parm ;

run ;

data var parm ( keep=va r i ab l e std ) ;

s e t var parm ;

va r i ab l e= NAME ;

var=co l 1 ;

std= sq r t ( var ) ;

run ;

data p lace p ;

merge parm var parm ;

by va r i ab l e ;

run ;

data p lace a l l ;

s e t p lace p p lace auc ;

run ;

proc s o r t data=place a l l ;

by va r i ab l e ;

run ;

data &r e t ;

merge p lace a l l t rue ;

by va r i ab l e ;

c iu=est imate+std∗ 1 . 9 6 ;

c i l=est imate−std∗ 1 . 9 6 ;
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i f ( c iu>t rue ) and ( c i l<t rue ) then h i t =1; e l s e h i t =0;

run ;

%mend p lace ;
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