
Although this work was published in somewhat different form many years ago, I am
reissuing it as a Baylor Computer Science technical report in an effort to keep everything
in the same place.

The FHDL Rom Tools

Peter M. Maurer
Department of Computer Science

Baylor University
Waco, TX 76798

Abstract
The FHDL (Functional Hardware Design Language) ROM tools provide a method for

specifying, simulating, and automatically laying out ROMs. The primary focus of the
ROM tools is on providing powerful methods for specifying microcode. Because the
ROM tools were designed to support both VLSI design projects and other course work in
hardware design, the ROM language contains many features that allow it to emulate other
ROM programming languages. This allows students to complete laboratory exercises
using a language that is similar to the one used in their textbook. Once the contents of a
ROM have been specified, the ROM can be simulated concurrently with the simulation of
the other hardware comprising the design. This allows designs to be debugged before
they are fabricated. Once a design has been completely verified, the ROM can be laid out
automatically and incorporated into a larger VLSI circuit.

The FHDL Rom Tools

Peter M. Maurer
Department of Computer Science

Baylor University
Waco, TX 76798

1 Introduction
The Read-Only-Memory or ROM is a fundamental part of many of today's computer

architectures[1,2,3]. In addition to their use in microcoding, they can be used to store tables of
constants, and other data that is required for special-purpose applications. The ROM tools
described in this paper were developed as part of a much larger scale project called the
Functional Hardware Design Language (FHDL)[4]. The FHDL system of tools was designed to
be a general-purpose simulation and synthesis system that could be used to construct complex
designs, simulate them to verify their correctness, and automatically lay them out. The
specification and simulation portions of the tools are particularly important, because they permit
students to experiment with complex designs without the expense and frustration of building
actual hardware.

Since it was our aim to create a uniform specification system in which one could specify all
portions of a design in a common format, it was necessary to include features for specifying the
contents of ROMs. One approach to handling ROMs would have been to reduce the ROM code
to a collection of gates, and use the gate-level features of FHDL to simulate and synthesize them.
The flaw in this approach is that it ignores the fact that ROMs have a well understood structure
both at the simulation level and at the layout level. Because the structure of a ROM is well
understood, one typically does not need the detail of a gate-level simulation to verify the
correctness of a ROM. The correctness of a ROM can be adequately verified by simulating the
ROM at a high level. Well understood algorithms can then be used to create the layout of the
ROM without the danger of introducing small-scale errors. This is precisely the approach taken
by the FHDL ROM tools.

The motivation for developing the FHDL ROM tools was to provide support for for courses
in computer architecture and sequential circuits. For IC design projects one could reasonably
expect researchers to be flexible enough to adapt their design style to the peculiarities of the
tools, particularly when the tools are considerably more efficient than manual design methods.
However in supporting course work, one typically does not have this flexibility. To simplify the
presentation of the material, textbook authors typically present microcode in terms of some
microcoding language. (See, for example [5].) To avoid confusing students, it is necessary to
provide a language that is either identical to or a close approximation of the language presented
in the textbook. The FHDL ROM compiler provides several features that allow the language to
be customized to resemble other ROM programming languages. There are, of course, languages
that cannot be approximated in any reasonable way by these tools, but the existing features
provide methods for handling most languages that we have encountered in the classroom.

2 The ROM Language.
ROM statements are broken into three main categories, those that define constants and

complex commands, those that perform formatting, and those that describe the contents of ROM
words. The constant-definition mechanism is similar to that found in many assembly languages.
Equate statements are used to assign expression values to symbols. Complex commands are
defined using a similar mechanism which will be described more fully below. Most formatting
is done using "field" statements which describe the width, position, and characteristics of various
portions of the ROM word. The "word" statement is used to define the contents of a single ROM
word. For some ROMs the constant and format definitions can become quite lengthy, so the
ROM compiler allows these statements to be placed in a separate file and included in each ROM
description to which they are applicable. (This feature is particularly useful for emulating other
ROM programming languages.) Figure 1 contains an example of a simple ROM description.

 Out: field position=0,width=16,cmdpos=0
 Zero: word 0
 One: word 1
 Two: word 2
 Minus_one: word 0xFFFF

Figure 1. A Simple ROM Description.

Figure 1 illustrates the description of a ROM containing the constants 0, 1, 2, and -1. Each
word contains a single 16-bit field. The "cmdpos" parameter on the field statement indicates that
the value of the field will be supplied by the first parameter on each word statement. In this case
the label on the field statement is optional, but in other cases the name of the field can be used to
assign an explicit value to the field, using an expression of the form "12->Out" as an operand on
a "word" statement. The labels on the "word" statements are also optional, but if they are used in
an expression, their value is equal to the address of the word generated by the "word" statement.
By default, addresses are assigned sequentially starting from zero, but the user can alter this
assignment by using an "org" statement similar to that provided by most assembly languages.

Although the "field" and "word" statements provide the basic mechanism necessary to define
the contents of a ROM, there are several types of ROM coding that are difficult or cumbersome
without additional compiler support. For example, many ROM programming languages that are
presented in textbooks are modeled after more conventional assembly languages. The
commands used to describe the contents of a word are in the form of instructions with
meaningful operation codes such as "jump" or "skip." In some cases the format of the ROM
word depends on the operation code. For example, the ROM address field used by a "jump"
instruction might be used for an entirely different purpose in some other instruction. In many
cases the syntax of an instruction will depend on the operation code. For example, a jump
command might require a single operand to specify the address of the target ROM word while a
conditional jump might require two operands, one to specify the condition and one to specify the
target.

To solve these problems in a uniform way, an integrated mechanism was designed that
allows the user to define new operation codes, define multiple word-formats, associate operation
codes with a particular format, and associate fields with the values of the operation codes. To

illustrate how this mechanism is used, assume that it is necessary to construct a ROM using the
two word-formats illustrated in Figure 2.

Figure 2. Sample Word-Formats.

Figure 2 illustrates two different word-formats that will be used in the same ROM. The first
bit of each word determines the format. In the "jump" format there are two fields, a condition
and an address. The condition is coded as follows: 00-jump always, 01-don't jump (noop), 10-
jump on overflow, 11-jump on carry-out. The second format contains three horizontally-coded
control commands. The commands are interpreted differently depending on the value of the
second bit. The bit is set to zero to select a set of commands for performing arithmetic functions,
while it is set to one to select a set of commands for performing control functions. To program
this ROM we will define six operation codes: jump, noop, jovfl, jcarry, arithmetic, and control.
The definitions for these operation codes appear in Figure 3.

 jump: equ 0
 noop: equ 1
 jovfl: equ 2
 jcarry: equ 3
 arithmetic: equ 0
 control: equ 1

Figure 3. The definition of operation codes.

Next, each of the operation codes is assigned to a format as illustrated in Figure 4.

 jfmt: format jump,noop,jovfl,jcarry
 cfmt: format arithmetic,control

Figure 4. Assigning operation codes to formats.

Finally, the fields of each format are defined as illustrated in Figure 5.

 typej: field position=0,type=constant,default=1,format=jfmt
 condition: field position=1,width=2,type=opcode,format=jfmt
 address: field position=3,width=11,cmdpos=0,format=jfmt

 typec: field position=0,type=constant,default=0,format=cfmt
 set: field position=1,type=opcode,format=cfmt
 cmd1: field position=2,width=4,format=cfmt
 cmd2: field position=6,width=4,format=cfmt
 cmd3: field position=10,width=4,format=cfmt

Figure 5. Field definitions.

Note that in Figure 5, each field definition contains a reference to a format. The first field in
each format is constant and cannot be changed by the user. This field defines the format of the
word to the hardware. The field "condition" of format "jfmt" and the field "set" of format "cfmt"
are both of type "opcode." This implies that the value of the operation code as defined in Figure
3, will be placed in the field automatically. The "address" field of format "jfmt" contains the
parameter "cmdpos=0" which implies that the value of the field will be supplied by the first
operand of the microinstruction. The fields "cmd1" through "cmd3" must be explicitly assigned
values by the micro-instruction. (A default value of zero is used for any unspecified fields. The
field definition may supply a different default value, as illustrated by the definition of the field
"typej" in Figure 5.)

Once these definitions are complete, one can proceed to create microcode for the ROM. A
considerable amount of external logic is required for this microcode to function correctly, but
this is beyond the scope of this paper. Figure 6 illustrates some microcode that uses the
definitions of Figures 3, 4 and 5.

 Add: control 12->cmd1,15->cmd2,0->cmd3
 arithmetic 10->cmd1,0->cmd2,6->cmd3
 jovfl OverFlow
 jcarry Negative
 jump NewOperation

Figure 6. Sample Microcode.

The main problem with the microcode in Figure 6, is that the function of the first two lines is
not apparent from the specification of the operands. The readability of this microcode can be
greatly improved by adding definitions for constants and complex commands. Suppose that part
of the hardware being controlled by this microcode is that pictured in Figure 7.

Figure 7. Sample Hardware.

Suppose that the load signals of the operand registers Op-1 and Op-2 pictured in Figure 7 are
activated by the expressions 12->cmd1 and 15->cmd2 pictured in Figure 6. Furthermore,
suppose that the load signal of the result register is activated by the expression 10->cmd1 and
that the ALU addition operation is selected by the expression 6->cmd3. The first step is to
provide definitions for the constants 12, 15, 10, and 6. However, the two sets of expressions that
appear in Figure 6 perform two specific operations. To make the microcode as readable as
possible, it is desirable to collect these expressions together into a single command that can be
used to perform the desired function. Figure 8 illustrates how this is done.

 Load1: equ 12
 Load2: equ 15
 LoadR: equ 10
 SelAdd: equ 6
 None: equ 0
 LoadOperands: command Load1->cmd1,Load2->cmd2,None->cmd3
 DoAddition: command LoadR->cmd1,SelAdd->cmd3,None->cmd1
 Add: control LoadOperands
 arithmetic DoAddition
 jovfl OverFlow
 jcarry Negative
 jump NewOperation

Figure 8. Sample Microcode with Improved Readability.

3 More Complex Addressing Schemes.
One method of performing conditional branching within a microprogram is illustrated by the

microcode of Figures 6 and 8. Another popular method for performing conditional branches is to
allow one or two low-order bits of the microinstruction address to be supplied by control signals
from the hardware. This presents a particular problem for microcoding languages, because a

"jump" microinstruction contains only a portion of the target address. It is necessary to be able
to specify which portion of the address is to be assigned to the address field.

To illustrate how this problem is solved in the FHDL ROM language, consider the word
format pictured in Figure 9, which is similar to the word format used in some models of the IBM
360[6].

Figure 9. A Complex Word Format.

The format pictured in Figure 9 is used for all words in the ROM. Every word specifies the
address of the next word. The field labeled "High-Order Bits" contains all bits of the address
except the low-order bit. The field labeled "Low-Order Bit Source" is a multi-bit field that
determines the source of the low-order address bit. For the purpose of this example, we will
assume that the Low-Order Bit Source is a two bit field that has the following meanings. A
value of 00 implies that the low-order bit is zero, while a value of 01 implies that the value of the
low-order bit is 1. A value of 10 implies that the low order bit is equal to the "carry-out" of the
ALU, while a value of 11 implies that the low order bit is equal to the overflow output of the
ALU.

The first problem is determining how to specify the value of the "High-Order Bits" field. If
we assume that addresses are eleven bits long, then the High-Order Bits field must be ten bits
long. However, if this field is simply declared as a ten-bit field, it is the ten low-order bits of the
address that will be placed in the field. The "bitpos" parameter of the "field" statement can be
used to override this behavior. The source data for any field is a sequence of bits that are
numbered sequentially from zero starting at the right. By default, the rightmost bits of the source
are assigned to the field, however when the "bitpos" parameter is specified, the transfer of data
into the field begins with the source-bit specified by the "bitpos" parameter. Therefore, the
High-Order Bits field must be specified with a "bitpos" parameter of 10, as illustrated in Figure
10.

The next problem is relieving the user of the responsibility of specifying the next address for
microinstructions that are executed sequentially. This can be done by specifying a default value
for the address field that specifies that the next address is to be used if none is specified by the
microinstruction. Figure 10 illustrates how this is done.

 High: field position=x,width=10,bitpos=10,default=*+1
 Low1: field position=x+10,width=1,default=0
 Low2: field position=x+11,width=1,default=*+1

Figure 10. Field Definitions for Sequential Addressing.

In Figure 10, the default value for the fields labeled "High" and "Low2" contain the symbol
"*," which represents the address of the current microinstruction. When such an expression
appears as the default value for a field, it is evaluated for every microinstruction containing the
field. The field "High" will receive the ten high-order bits of the next microinstruction, while the
field "Low2" will receive the low-order bit of the next microinstruction.

Even though in this example there is a single format for all microinstructions, it is still
convenient to define several formats for the purpose of distinguishing between sequentially
executed microinstructions and jump microinstructions. In fact, it is best to define three formats,
one for sequential microinstructions, one for unconditional jumps, and one for conditional jumps.
(It is possible to declare a field to be common to several formats, so it will not be necessary to
redefine the "Control" fields for each format.) Figure 11 illustrates how the address fields would
be defined for unconditional jumps. The format for conditional jumps can be defined in a
manner similar to that presented in Section 2.

 JHigh: field position=x,width=10,bitpos=10,cmdpos=0
 JLow1: field position=x+10,width=1,default=0
 JLow2: field position=x+11,width=1,cmdpos=0

Figure 11. Field Definitions for Unconditional Jumps.

4 Simulation.
Once the content of a ROM has been specified, simulation is quite simple. The simulation of

the ROM is scheduled as if it were an ordinary gate. The content of the ROM is stored in one or
more arrays, depending on the width of each ROM word. The maximum array width supported
by the simulator is 32-bits, but several arrays can be combined automatically to simulate ROMs
of greater widths. Simulation of the ROM is performed in conjunction with the simulation of the
ROMs sequencer and the circuitry under its control. It is the responsibility of the control
circuitry to supply the next address and to execute the microinstructions. Simulation of the ROM
involves extracting the appropriate words from the arrays, and reformatting the data into the
variables that represent the outputs of the ROM.

The ability to simulate a ROM at the high level in conjunction with a more detailed
simulation of the external logic gives an efficient method for debugging microcode prior to
creating the layout of a circuit.

5 Conclusion
The FHDL ROM language provides a powerful method for defining, simulating, and

automatically laying out ROMs. The ROM tools can be used in conjunction with other FHDL
tools to create a unified simulator for all portions of a circuit. Furthermore, the ROM tools can
be used to significantly speed up the process of creating the layout of a ROM. One of the most
attractive features of the FHDL ROM language is the ability to emulate other ROM
programming languages. This allows courses in ROM-based sequential circuits to use a unified
approach in both classroom work and laboratory exercises. The ability to test designs through
simulation rather than fabrication of hardware allows more laboratory exercises to be assigned,
since the time and expense of hardware fabrication is eliminated. Even when a design is
fabricated, pre-verification of the design through simulation can greatly reduce the amount of
time required to complete the design, because the detection of design flaws can be done before
fabrication of the design is attempted.

Future work on the ROM tools will extend the scope of the language to allow more types of
ROM programming languages to be emulated. Although the ROM language currently supports
most existing microcoding schemes, it is possible that some new scheme will require
enhancements to the language.

6 REFERENCES

1. M. V. Wilkes, "The Best Way to Design an Automatic Calculating Machine," Manchester University

Computer Inaugural Conference, Ferranti Ltd., London, 1951, pp. 16-21.

2. A. K. Agrawala, T. G. Rauscher, Foundations of Microprogramming, Academic Press, Inc., New York, 1976.

3. M. Shoji, CMOS Digital Circuit Technology, Prentice-Hall, Englewood Cliffs, NJ, 1988.

4. P. M. Maurer, "The Functional Hardware Design Language," Baylor Computer Science Technical Report,

http://hdl.handle.net/2104/5444, Oct 28, 2009.

5. S. Habib, Microprogramming and Firmware Engineering Methods, Van Nostrand Reinhold, New York, 1988.

6. S. G. Tucker, "Microprogram Control for System/360," IBM Systems Journal, Vol. 6, No. 4, 1967, pp. 222-

241.

7. C. Mead, L. Conway, Introduction to VLSI Systems, Addison-Wesley Publishing Company, Reading, Mass,

1980.

