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Mode couplings and resonance instabilities in finite dust chains
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Employing a numerical simulation, the normal modes are investigated for finite, one-dimensional horizontal
dust chains in complex plasma. Mode couplings induced by the ion flow within the sheath are identified in the
mode spectra and the coupling rules are determined. Two types of resonance-induced instabilities are observed,
one bidirectional and one unidirectional. Bidirectional instability is found to cause melting of the chain with the
melting proceeding via a two-step process which obeys the Lindemann criterion. The relationship between the
normal mode spectra observed in finite systems and the wave dispersion relations seen in larger systems was also
examined using a dust chain model. For this case, the dispersion relation was obtained through multiplication of
the mode spectra matrix by a transition matrix. The resulting dispersion relations exhibit both the general features
observed in larger crystals as well as several characteristics unique to finite systems, such as discontinuities and

strong energy-density fluctuations.
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I. INTRODUCTION

Normal modes are used to describe the basic dynamics of
physical systems near equilibrium and the analysis of these
modes is a fundamental tool employed across various fields
of research including molecular chemical physics [1,2], fiber
optic physics [3], geophysics [4], and plasma physics [5].
In an ideal linear conservative system, the normal modes
are independent of one another. However, real systems are
nonlinear and dissipative in nature; thus the normal modes are
in general coupled to each other, i.e., there are interactions
between them. Mode coupling is therefore a fundamental
mechanism for many interesting phenomena such as energy
transfer in polyatomic molecules [1,2] or the internal reso-
nance in nonlinear dynamical systems [6,7]. The latter of these
is the mechanism leading to ergodicity, which is the underlying
foundation for statistical mechanics [6,7].

In the area of complex plasmas, mode coupling was
predicted for an infinite plasma crystal [8,9] between the
in-plane longitudinal [10,11] and out-of-plane transverse dust
lattice wave (DLW) [12-14]. The ambient ion flow in the
plasma sheath, where dust particles are levitated and the re-
sulting ion wake below the particles [15—17] can dramatically
enhance such coupling mechanisms from second (nonlinear)
to first (linear) order [18], allowing detection even at low-
amplitude particle displacements. Using a point charge model
[8,9,19-22] to simulate the ion wake, it has been shown
that resonance instability can be triggered when the two
coupled wave modes intersect. This phenomenon was recently
observed experimentally [18,23-25] in the thermal fluctuation
spectrum illustrated by a high-energy-density region at the
intersection between the DLWs. This enhanced energy density
corresponds to the resonance instability and can result in
melting of the plasma crystal at low neutral gas pressures
[23-26].

Recently, research on mode couplings has been extended to
include two-dimensional (2D) dust clusters both theoretically
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[20-22,27] and experimentally [28]. Instead of the continuous
high-energy-density region observed in the thermal fluctuation
spectrum for large crystals, normal mode spectra for dust
clusters exhibit a complex coupling pattern between discrete
horizontal and vertical modes even when the modes are not in
resonance. In this case, such coupling occurs only between
modes having specified symmetries and obeying specific
mode coupling rules, similar to the mode coupling seen in
polyatomic molecules [1,2]. The instabilities created by the
resonance between two coupled modes are discrete, reflecting
the discreteness of the normal modes [22,28].

Similar to large crystals, if the resonance instabilities are
strong enough, they can induce melting of the cluster with
the melting obeying the Lindemann criterion [22]. It is worth
noting that although melting and/or the solid-liquid transition
is a concept originally defined for large physical systems, it
has recently become a topic of increasing interest for finite
systems [29,30] and has been observed across a wide variety of
systems including electrons in quantum dots [31], ions in traps
[32], atomic clusters [33,34], and complex plasmas [35-37].
A theoretical generalization redefining melting in terms of the
(thermodynamic) phase space for small systems was recently
proposed by Proykova and Berry [34] but there are still many
open questions.

In this research, mode couplings and the resulting instabil-
ities and melting are investigated for a one-dimensional (1D)
horizontal finite chain formed within a complex plasma and
consisting of three to 20 dust particles. Unlike the circular dust
clusters previously studied, the chains exhibit no degeneracy
between modes due to their anisotropic nature, resulting in dif-
ferent characteristics in mode coupling, resonance instabilities,
and melting. The resulting normal mode eigenvectors resemble
waves with various numbers of wavelengths, allowing such
normal modes in finite systems to be compared to the waves
observed in larger systems. More importantly, there are a
number of other systems exhibiting chainlike structures, such
as polyatomic molecules or proteins, in which the dynamics
of mode couplings plays a major role. Unfortunately, mode
analysis for these systems is difficult due to their time scale
(picoseconds) and length scale (nanometers). Thus, a proper
study of complex plasma dust chains provides the potential
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to model mode coupling as well as other functions in such
microscopic complex systems on a macroscopic time and
length scale.

II. METHOD

In this work, the ion wake is modeled employing an
adaptation of the widely used point charge model [8,9,19-22].
This model assumes the potential around a dust particle
levitated in a plasma sheath to be described by a combination
of two potentials, one created by the dust particle with charge
Q and another by a positive point charge g located a distance
[ beneath it, representing the ion wake. Both of the potentials
assume a screened Coulomb (Debye-Hiickel or Yukawa) form
[20-22], as given by

exp(—|r —rol/A) exp(=|r —ryl/})

U = Q=

» ()
|r —ryl

where A is the screening length and r and r, are the real and
virtual particle positions, respectively. This model provides
a reasonable analytical approximation while offering the
advantage of highlighting qualitative features of the physical
process, such as the positive space charge effect beneath the
dust particle.

In a typical experiment on earth, dust particles are assumed
to be confined in the vertical direction within the potential
well formed by the electrostatic field and gravity, and in
the horizontal direction by the electric field produced by the
experimental setup [38]. In this case, the external forces acting
on the particles are

Fex = E; (x,y,2)0 — Mg,

(2)
Fx(y),exl = Ex(y)(xy)HZ)Q,

where x, y, and z are representative particle coordinates. The
electric field is assumed linear for small oscillations; thus E, =
Eo+ E.z,E, = E.x,and E, = E;y, where E| is the vertical
electric field at the equilibrium position. Since this research is
focused on determining the effects created by the ion wake,
other mechanisms such as charge variation are ignored. (Such
charge variations do not change the results qualitatively but do
renormalize the mode couplings [9].) Therefore, the particle
charge Q remains constant and the forces in Eq. (2) constitute
a parabolic potential well in both the vertical and horizontal
directions [38,39].

An N-body code, BOX_TREE [13,14,21,22,27,40,41], was
employed to simulate the dynamics of the dust system. Given
the small number of particles, the force on each particle due to
all other particles may be calculated directly from the potential
given in Eq. (1). All simulations assume an initially random
distribution of particles within a box of 10 x 10 x 10 mm?.
The center of mass of the particle system is located at
the center of the box, which is also defined as the origin
of the coordinate system. Simulation parameters are chosen
to represent normative experimental values, with a particle
diameter d = 8.89 um, a particle density of 1.51 g/cm?, a
particle charge Q = 3.5 x 10~ C (22000¢), and a screening
length A = 500 wm. The ion wake is modeled by assuming a
point charge ¢ of magnitude Q/4 to Q/8, located a distance
[ = A/2 below the dust particles. In order to form a horizontal
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chain, the confinement in the horizontal plane is fixed at
E, =5x10* V/m™? and Ej, = 3 x 10° V/m~?, providing
horizontal oscillation frequencies of fy = 2.9 Hz and f, =
22.3 Hz. The vertical confinement E is allowed to vary from
~1.5% 10° t0 3.5 x 10° V/m~2 (f. =~ 4.9 ~ 24 Hz).

To establish stability, the particle system is initially cooled
through friction as defined by Fy = —uM v, where v is the
particle velocity and ;1 = 10 s~!. A heat bath, created by
elastic random collisions between the dust particles and the
ambient gas particles [21,22] and representing a temperature
of 1 K, allows mutual particle interactions to dominate the
inherent thermal motion. Friction is removed after formation
of a stable horizontal chain along the x direction, though the
system remains in the heat bath.

Particle oscillations were tracked for approximately 16.67 s
with each particle’s position and velocity saved at intervals of
1/60 s. Mode spectra were obtained employing the technique
used in [21,22,28,42], where the time series of the particle
velocities is projected onto the direction of the eigenvectors
corresponding to each pure mode (i.e., modes calculated while
disregarding the ion wake effect). The normal mode spectrum
was then obtained through a Fourier transformation over time.

III. RESULTS AND DISCUSSION
A. Mode couplings

Due to the one-dimensional nature of the system, the 3N
normal modes (with N defined as the particle number) can be
equally divided into x, y, and z modes, with their eigenvectors
directed along the x, y, and z axes, respectively. Figure 1 shows
the x, z, and y mode eigenvectors for a seven-particle chain. As
can be seen, the normal modes in this case resemble a series of
nonuniform standing waves with differing numbers of unequal
wavelengths. Sorting the eigenvectors in ascending order by
number of wavelengths provides a natural index for the modes.
In our case, the modes in the three directions will be denoted
by x(n), y(n), and z(n) referring to the nth x, y, or z mode,
respectively. Here the first x, y, or z mode, corresponding to
motion of all particles as a whole, is also called a sloshing
mode. It can also be seen that eigenvectors for each of these
three mode types exhibit the same patterns. In other words,
eigenvectors corresponding to the ith x, y, or z mode have the
same magnitude (if normalized) at each particle position, no
matter whether their direction is along the x, y, or z direction.

As representative examples, the mode spectra for a three-
(N =3)and aseven- (N =7) particle chain are shown in Fig. 2,
with the x, z, and y modes arranged from left to right. Coupling
between x and z modes can be clearly identified by multiple
spectral lines having the same frequency following the method
outlined in [21,22,28]. For example, in the seven-particle chain
[Fig. 2(b)], at the resonant frequency of x(6), f = 16 Hz, two
light spectral lines corresponding to the z(5) and z(7) modes
can be seen, implying that this mode is no longer a pure x
mode, but rather a mode with mixed polarization, consisting
of x(6), z(5), and z(7) components. In other words, the x(6)
mode is coupled to both the z(5) and z(7) modes. Conversely,
at the resonant frequencies of the z(5) and z(7) modes, f = 20
and 22 Hz respectively, two light spectral lines corresponding
to the x(6) mode can be found showing that the couplings

053101-2



MODE COUPLINGS AND RESONANCE INSTABILITIES IN ...

PHYSICAL REVIEW E 91, 053101 (2015)

z%
>

6> oS eSeSeS oS o S S S N O o o ”
x(1) z(1) y(1)

o> > o o © <o (o l b o o o & o o

x(2) 2(2) C e T y(2) s

© 0> > > 0 (o o 544 o o o o & o

ol t e /@
Lo oo 0éeéo oo b ¢ ¢ o© & b ¢ d PP o o P
x(4) z(4) y(4)

»&o o e>»oéo & Q l ® ? © l Q o & o P 2 o
x(5) 2(5) y(5)

© o¥o o o¥o o o} g o} l o o o o o °
x(6) 2(6) T ! y(6) - -

o © %o o> e o o g g o o o o g o o
X(7) 2(7) ’ T ’ y(7) -

FIG. 1. (Color online) Eigenvectors for the x, z, and y modes for a seven-particle chain.

x(6)z(5) and x(6)z(7) are both mutual. The extra spectral lines
resulting from these couplings form two additional branches
in the mode spectrum and correspond to particle motion in the
x and z directions, namely, the x. and z. branches.

By inspection of the mode spectra, coupling rules can be
determined and shown to be different from those found for
circular clusters [22,28]: (1) The y modes are not coupled with

X modes

()

z modes y modes

30

25

)

frequency (Hz
o

10

(&)]

mode number

either x or z modes. This is in excellent agreement with the
case for large 2D crystals, where the in-plane transverse DLW
shows no coupling to other waves [9,23-25]. (2) Between x
and z modes, coupling only occurs between modes having
adjacent indices. That is, the mode x(i) [or z(i)] will only
couple to z(i = 1) [or x(i £ 1)]. For i = 0 or N, coupling can
only occur with a single mode since indices of —1 and N+1

z modes

X modes y modes

5 10 15 20
mode number

FIG. 2. (Color online) Normal mode spectra for a three-particle chain with (a) E, = 6.0 x 10° V/m~2 and a seven-particle chain with

(b) E. =33 x10°V/m™2.
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FIG. 3. (Color online) (a), (b) Normal mode frequencies and (c), (d) average particle velocities as functions of E_ for a (a), (c) three- and
(b), (d) seven-particle chain. In (a) and (b), x and z modes are represented by blue solid and red dashed lines, respectively. In (c) and (d),
velocities in the x and z directions are represented by blue solid and red dashed lines, respectively.

are not allowed. (3) All couplings are mutual other than when a
sloshing mode is involved. Whenever a sloshing mode couples
to another mode, the sloshing mode remains pure while the
mode being coupled to acquires a sloshing component. This
unidirectional characteristic has also been observed for circular
clusters [22].

B. Resonance instabilities and melting

To analyze the resonances between coupled modes having
equal frequencies, simulations were conducted while varying
E} and holding E’ and E| constant. Using the three- and
seven-particle chalns as representatlve examples, the E,— fr
functions (frequency as a function of E?) for the x and z modes
are shown in Figs. 3(a) and 3(b). The x mode frequencies
were found to remain constant while the z mode frequencies
varied with E’. A lower limit for E was established in order
to maintain the 1D structure of the system; for E; values
below this limit, the one-dimensional structure of the chain
underwent the well-known zigzag transition [14].

For consistency with previous research, three types of reso-
nances can be defined following the framework established in
[22]. Type Lis defined as resonances involving a sloshing mode.
Due to its unidirectional characteristic as discussed above, this
creates an instability for the sloshing mode only, namely a
unidirectional instability. Type II resonances occur between
two mutually coupled modes and their E— fr functions repel
each other as they approach the 1ntersect10n This leads to a
forbidden frequency gap but does not create instabilities. Type

IIT resonances also occur between two mutually coupled modes
but their E.— fr functions are attractive and merge with one
another as they approach the intersection, leading to instability
for both modes, namely, a bidirectional instability.

In Figs. 3(c) and 3(d), the average particle velocities in
the x and z directions are plotted as functions of E. with
peaks exhibiting instabilities. Comparison of these results
with Figs. 3(a) and 3(b) shows that each peak occurs at an
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FIG. 4. (Color online) Normal mode spectra for a seven-particle
chain with E] = 1.985 x 10° V/m™.
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FIG. 5. (Color online) Normal mode spectra for a three-particle
chain with E] = 1.95 x 10° V/m™.

intersection between the E]— fr functions for two coupled
modes. A closer look shows that the E)— fr functions
are attractive and merge with each other as they approach
the intersection [inset in Fig. 3(b)], with the width of the
merged line equal to the width of the instability (the velocity
peak) illustrating one characteristic of a Type III resonance.
Furthermore, the bidirectional nature of the Type III resonance
can be clearly seen in both particle velocity (Figs. 3(c) and 3(d)
and spectral energy density (Fig. 4). The velocity increases in
both the x and z directions, while the energy density increases
for modes x(6) and z(5).

A Type I resonance occurs for a three-particle chain when
the z sloshing mode and the x(2) mode are equal in frequency
as evidenced again by the increase in both spectral energy den-
sity (Fig. 5) and particle velocity [inset in Fig. 3(c)]. The uni-
directional nature can be clearly seen in both with the energy
density increasing only for the sloshing mode and the velocity
increasing only in the z direction. As shown in Fig. 3(c), the
velocity peak for a Type I resonance is two orders of magnitude
lower than those for Type III, indicating that the coupling
strength for Type I is much weaker than that for Type III, in
agreement with the case for circular clusters [22]. Type II res-
onances have not been observed for one-dimensional chains.

As expected, nonequilibrium melting is observed induced
by the resonance instabilities. Similar to the case of circular
clusters [22], a Type I resonance is found to cause the system
to vibrate as a whole without melting, while a Type III
resonance will always cause melting provided the coupling
strength is large enough. (This can be “tuned” numerically
by varying the magnitude of the point charge ¢.) The melting
“threshold” is identified by the transition from a state where
all particles vibrate around their equilibrium positions to a
state where particles are “hopping” between their equilibrium
positions. This microscopic view has been employed in
extensive research on finite system melting [30,34-37] and its
agreement with the definition in terms of the (thermodynamic)
phase space [34] can be seen in [30].

Following [22,43], the instantaneous relative interparticle
distance fluctuation (IDF) u. was used to investigate the
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temporal evolution of the melting process. Due to the system’s
anisotropic characteristic, the instantaneous IDF in a specified
direction is defined by

N

2 loij — oijol
, 3)
NN -1 1;}. Tijo

Urel(o) =

where o can be x, y, or z; N is the particle number; o; ; and
o, jo are the instantaneous and equilibrium distances between
particles i and j along the specified direction; and r;;o =
v xl.zjo + yizjo + Zi2jO' As arepresentative example, Fig. 6 shows
Urel(s) as a function of time for the melting of a seven-particle
chain as induced by the x(4)z(5) resonance instability. Similar
to circular clusters, melting proceeds via a two-step process.
(See the movie included in the Supplemental Material [44].)In
the first step, particles exhibit growing oscillations with their
velocity oriented along the direction of the eigenvectors of the
excited modes. In the second step, starting at approximately 11
s, these vibrations become irregular with particles eventually
exhibiting hopping between their equilibrium positions as in-
dicated by a sudden increase in uej(y). (In this case, this occurs
at approximately 12.2 s.) A similar two-step process has been
reported for the melting of a 2D dust cluster triggered by the
motion of a single particle hanging underneath the cluster [35].

It can be seen that ue)(r) and uy ;) exhibit sudden increases
at the same point in time, while the increase in u; ri(,) occurs
at a later time. This agrees with the fact that the instability
is induced by the x and z mode resonance. The growth rate
of the regular oscillations occurring in the first stage of the
process is usually different between the x and z motion, but
the threshold of u,, obtained by averaging the values of
over the ten data frames collected immediately before particle
hopping, is in the range of 0.1 & 0.03 for both x and z motions
(inset in Fig. 6). These values agree with those obtained for
circular clusters [22] and are in excellent agreement with the
Lindemann criterion for macroscopic Coulomb systems [43].
Therefore, the Lindemann criterion, which was originally used

10.5 11 11.5 12 12.5 13 135 14
time (s)

FIG. 6. (Color online) () as a function of time for the melting
of a seven-particle chain induced by the x(4)z(5) resonance instability.
Urel(o) in the x, z, and y directions is represented by blue thick lines,
red thin lines, and green dotted lines, respectively.
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FIG. 7. (Color online) (a) Normal mode spectra for a 20-particle
chain and the dispersion relations obtained from the spectra corre-
sponding to the (b) x, (c) y, and (c) z modes.

for equilibrium melting driven by temperature increase, is
also suitable for nonequilibrium melting driven by resonance
instabilities, even for extremely anisotropic systems such as
dust chains within a complex plasma.

C. Relationship between normal modes and dispersion relations

As mentioned above, a horizontal dust chain exhibits
mode eigenvectors resembling a series of nonuniform stand-
ing waves with differing numbers of unequal wavelengths;
therefore, it can be employed as a model for examination
of the relationship between the normal modes arising within
finite systems and the dispersion properties of larger systems.
For this purpose, we conducted a simulation of horizontal
chains comprised of 20 particles. As can be seen in the normal
mode spectrum [Fig. 7(a)], the x, y, z and x., z. branches
are similar to the case found for chains having fewer particles
(Fig. 2). The dispersion relations for DLWs [Figs. 7(b)-7(d)]
can be obtained by multiplying the mode spectra matrix by the
transition matrix defined by

N
—ikx;
Up ko) = E einre ", €]
i=1

where ¢; () 1s the eigenvector for the nth o mode at particle
position i (where o can be x, y, or z), and k is a specified
wave number. Figures 7(b)—7(d) show the dispersion relations
obtained from the x, y, and z modes and correspond to
the longitudinal, in-plane, and out-of-plane transverse DLWs,
respectively. As shown, the in-plane transverse DLW exhibits
optical wave characteristics and shows no coupling to other
waves, in agreement with previous research [9,23-25,45].
The longitudinal and out-of-plane transverse waves exhibit
curved dispersion relations with rising and falling branches,
similar to those observed experimentally and numerically for
2D [10-14,18,23-25] and 1D [12,45] structures. In particular,
the additional dispersion branches induced by coupling as
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mode number

|
:

intensity
o [$)]

ooo Z 2/\/\{\ 6

) ka

FIG. 8. (Color online) (a) The transition matrix for a 20-particle
horizontal chain as defined by Eq. (4) in the text. (b) The eigenvectors
for the third, tenth, and 18th normal modes (left panel) and
corresponding intensity over k in the transition matrix (right panel).

observed in previous experiments [18,23-25] can be clearly
seen.

On the other hand, the dispersion relations also exhibit
characteristics that are different from those observed in large
crystals. The first of these is that the curves appear to be
formed in discrete stripes within the frequency regime. This is
obviously caused by the finite nature of the system; there are
exactly 20 stripes having frequencies equal to the 20 normal
modes. Secondly, the energy densities between the rising and
falling branches show a much stronger fluctuation than those
observed in larger systems.

Both the similarities and differences discussed above can be
explained by plotting the transition matrix directly (Fig. 8). The
transition matrix U,  represents the transformation between
the two bases, the normal mode eigenvectors, and the Fourier
series in k space. Thus, the intensity in any given row is
obtained by Fourier transformation [Eq. (4)] of each mode’s
eigenvectors over x. The transition from an almost linear
structure of mode spectra [as seen in Fig. 7(a)] to a curved
structure of dispersion relations [Figs. 7(b)-7(d)] can be
easily understood by noting the curved (nonlinear) relationship
between the mode number n and wave number k£ shown in
Fig. 8(a). The matrix also exhibits strong intensity fluctuations
over k for each normal mode. This can be seen more clearly by
plotting the intensity over k for specified modes. Figure 8(b)
shows this intensity for the third, tenth, and 18th normal
modes alongside their eigenvectors. Since a mode with an
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frequency (Hz)

FIG. 9. (Color online) The longitudinal dispersion relation ob-
tained by inspection of the middle 20 particles within a 50-particle
chain.

ideal sinusoidal wave structure would result in a single sharp
peak in its intensity over k, the series of peaks seen in Fig. 8(b)
are caused by the nonuniform wave structure of the normal
modes, which are in turn induced by the finite nature of the
system. This conclusion is supported by comparison with
the dispersion relations obtained from the central section of
a simulated larger chain. Figure 9 shows the longitudinal
dispersion relation obtained by inspection of the middle 20
particles in a 50-particle chain. A sharper, more continuous
dispersion curve and reduced energy-density fluctuation can be
seen, thus verifying the observed discontinuity and fluctuation
to be directly related to the finite nature of the system.
Finally, the normal mode spectra for a 20-particle chain
were examined upon the crossing of the x and z mode branches
[Fig. 10(a)]. The dispersion relations for the longitudinal
[Fig. 10(b)] and out-of-plane transverse DLWs [Fig. 10(c)]
were obtained employing the transition matrix. They
clearly resemble those observed previously in large crystals
[18,23-25], with the hybrid mode indicated by the high-
energy-density region at the intersection between the DLWs.
It is important to note that there is a difference between the

30

25|

20

frequency (Hz)
o

e
o

10 20 30 40 50 60 1 2 3

mode number

PHYSICAL REVIEW E 91, 053101 (2015)

mode resonance for the 20-particle chain and chains having
fewer particles (Figs. 4 and 5). Since the frequency difference
between adjacent modes in a 20-particle chain is much
smaller, overlap between adjacent instabilities occurs at the
resonance point. For example, the high-energy-density region
in Fig. 10 spans the x(16)z(17) and x(17)z(16) resonances.
(The enhanced energy density at other mode numbers may be
due to additional overlapping resonances or nonlinear effects.)
Further increase in particle numbers above 20 results in
much more prominent overlap between individual instabilities.
Therefore, in large crystals, the k range where the hybrid
mode emerges upon mode coupling usually spans more than
several resonances and is roughly determined by the coupling
strength, or the effective dipole moment of the wake [25].
This resonance overlap leads to the conclusion that only one
unstable region should be observed for larger plasma crystals,
rather than the discrete instabilities observed in finite systems
[21,22,28].

IV. CONCLUSIONS

In summary, the normal modes for a finite, 1D horizontal
dust chain in complex plasma were investigated employing a
numerical simulation. Simulations were conducted for chains
comprised of three to 20 dust particles, taking into account ion
flow within the sheath using the point charge model. Mode
couplings were identified in the mode spectra with coupling
rules determined to be (1) ¥ modes are not coupled with
either the x or z modes, (2) between x and z modes, coupling
occurs only between modes having adjacent indices, and (3)
couplings are mutual except for cases where a sloshing mode is
involved.

Whenever two coupled modes have equal frequencies, res-
onance instabilities occur. Two types of resonance instabilities
were found for a 1D chain structure—a bidirectional instability
induced by resonance between two mutually coupled modes
and a unidirectional instability induced by resonance involving
a sloshing mode. Similar to the case for circular clusters,
a bidirectional instability can cause melting of the structure
provided the coupling is strong enough. For this case, melting

%N

FIG. 10. (Color online) (a) Normal mode spectra for a 20-particle chain and the dispersion relations obtained from the spectra corresponding
to the (b) x and (c) z modes upon the crossing of the x and z mode branches.
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proceeds via a two-step process and obeys the Lindemann
criterion.

Additionally, the relationship between the normal modes
and the wave dispersion relations was studied. The dispersion
relation was obtained through multiplication of the mode
spectra matrix by a transition matrix. The resulting dispersion
relations were not only found to resemble those observed in
large crystals, they also were shown to exhibit characteristics
unique to finite systems, such as the discontinuity in frequency
and a strong energy-density fluctuation. The hybrid mode upon
the crossing of the x and z mode branches was also found
to resemble results for large crystals and the wave number
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range it spans can be explained by overlapping between
resonances.

Finally, it is worth noting that these predictions should
be relatively easy to examine experimentally, considering
that typical experimental values were chosen for the particle
charge, mass, screening length, and confinement [28]. If true,
complex plasma dust chains may well prove an excellent
analog for the experimental examination on macroscopic
time and length scales of mode coupling in other chainlike
microscopic complex systems such as polyatomic molecules
and proteins. This research is underway and will be reported
in an upcoming publication.
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