
 
 
 
 
 
 
 
 

ABSTRACT 
 

The Effects of Fiber Orientation on Stiffness and Thermal Expansion of Large Volume, 
Anisotropic, Short-Fiber, Composite Material Fabricated by Fused Filament Fabrication 

 
Timothy D. Russell, M.S.M.E. 

 
Mentor: David A. Jack, Ph.D. 

 
 

 Fused Filament Fabrication (FFF) is a rapidly improving 3D printing technology 

that can be used for manufacturing complex parts. The properties of these parts can be 

improved by adding short-fibers to the polymer feedstock. The fiber orientation state is 

critical to know in order to determine the final material properties though. This study 

investigates the reasonableness of several fiber orientation models based on their use in 

predicting the effective longitudinal Young’s modulus 𝐸𝐸22 and CTE 𝛼𝛼22 of a large 

volume, short-fiber composite, FFF printed bead. Comparisons are made between 

computational results from MATLAB (MathWorks, Inc., Natick, MA) and COMSOL 

Multiphysics (Stockholm, Sweden) to experimental results from samples collected from 

beads fabricated with an in-house, large scale bead deposition system. Based on 

comparisons of the computational and experimental results for 𝐸𝐸22 and 𝛼𝛼22, the Reduced 

Strain Closure (RSC) model [1] with 1
30
≤ 𝜅𝜅 ≤ 1

5
 seems to be the most reasonable. 
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CHAPTER ONE 
 

Introduction 
 
 

 For the past several decades, injection molding and compression molding 

have been used to effectively mass produce parts. More recently however, advances 

have been made in the development of additive manufacturing (AM) methods. 

Additive manufacturing, also called 3D printing, is defined by Wohlers Associates as 

“the process of joining materials to make objects from 3D model data, usually layer 

upon layer, as opposed to subtractive manufacturing methodologies” [2]. With these 

advances there is a desire to incorporate chopped fibers within the polymer extrudate 

to enhance the structural performance of the manufactured parts. Although AM has 

not caught up to the speed of injection and compression molding when it comes to 

mass production, there is considerable knowledge that can be transferred from the 

traditional, existing technologies to the newer 3D printing technology. One of the 

advantages of 3D printing of unique interest in the present context is the use of 3D 

printing to produce a new part independent of a mold. This gives additive 

manufacturing the potential advantage to be more efficient and less costly in the 

initial phase of manufacturing or in situations where small scale production numbers 

are desired. 

 3D printing is often times less wasteful of material than other manufacturing 

techniques. It is termed an additive manufacturing process as opposed to a 

subtractive manufacturing process, meaning that material is built up, often with a 
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layer-by-layer technique, as opposed to starting with a larger volume of material and 

removing/trimming away the excess as is done in milling. This additive 

manufacturing process with the absence of a mold has an advantage in that it allows 

for the making of complex three-dimensional parts that injection and compression 

molding methods could not. Because of its unique abilities, 3D printing has been 

exploited in the past as a method of rapid prototyping. 

 However, with the inclusion of fiber reinforcements, additively manufactured 

parts can move beyond that of prototypes and may have potential to be structural 

members, and thus could displace applications where injection and compression 

molding have dominated. Developers are now looking to be able to use 3D printing 

for producing functional parts approved for such items as aircraft and automobiles. It 

is also desirable that 3D printing, which has mainly been used for small scale parts 

on the order of inches or centimeters, to be able to be used for manufacturing large 

scale parts on the order of feet or meters. However, in order to do this more 

effectively and efficiently, the processing of 3D printed parts must be better 

understood, with specific interest given to the final part performance. Knowledge of 

the best parameters to use to make a certain part must be gained and improved in 

order to cut back on time and cost. 

 One issue to be addressed for large scale 3D printing is how to improve the 

material properties of a final part. Carbon fiber polymer composites have the 

potential to displace metallic structures in some applications, due to their high 

strength to low weight ratios, once the structural behavior of processed composite 

parts are understood. Mixing fibers within a polymer matrix and imposing a 
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preferential fiber orientation may give one the ability to produce a composite with 

superior mechanical ability. Jiang [3] showed that the addition of carbon fibers to 

several different polymers, including ABS, could increase the strength and modulus 

of small scale 3D printed parts. In addition, Jiang found that these properties, in 

general, increased the most in the print direction. 

The addition of carbon fibers to the ABS feedstock will also effect other 

properties of a 3D printed part, such as the thermal properties. Love et al. [4] 

demonstrated that for small scale 3D printing with ABS, the addition of carbon fibers 

into the ABS can significantly increase stiffness and strength properties, but also that 

the addition of the carbon fibers could increase thermal conductivity and decrease 

CTE, thereby helping reduce thermal gradients and strain in the 3D printed parts and, 

subsequently, the distortion and warpage [4]. It is important to understand how the 

processing of 3D printed parts affects material properties, such as stiffness and CTE, 

so that parts can be designed both effectively and efficiently. This is a complicated 

task since adding short-fibers to a polymer build material will give the resulting 

composite part anisotropic material properties if there is even a slight directional bias 

in the fiber orientation state. 

 
1.1 Problem Statement 

 The goal of this thesis is to predict the effective longitudinal Young’s 

modulus and CTE of an extrudate of carbon fiber reinforced ABS. The demonstration 

of the effectiveness of the predicted results is provided through a comparison of the 

experimentally characterized effective longitudinal Young’s modulus and effective 



4 
 

longitudinal CTE of a single, short-fiber composite bead fabricated with an in-house, 

large volume, bead deposition system.  

 To successfully predict the final part stiffness and CTE values, the final fiber 

orientation state within the part must be accurately predicted and multiple fiber 

interaction models are investigated along with variations of their empirical 

parameters. The fiber orientation states determined at the nozzle exit are assumed to 

be the fiber orientation states of the final, printed bead across its width. This 

assumption means that no die swell of the polymer coming out of the nozzle is taken 

into account. This assumption is not completely valid, but will be made in this study 

for the purposes of simplifying the computational methods. A future study could 

incorporate the die swell for more accurate results. For this study, this assumption 

that the die swell can be neglected leads to the fact that the predicted fiber 

orientation state does not vary along the length of the final bead, but only along the 

width. Once the spatially varying fiber orientation state within the bead is known, the 

spatially varying stiffness and CTE tensors, which are functions of the fiber 

orientation state, are computed. A simulation in COMSOL Multiphysics using the 

newly found stiffness and CTE property tensors, is then performed to find the 

effective longitudinal Young’s modulus and CTE of the printed bead. These 

calculated values are then compared with experimentally determined values to assess 

the accuracy of the mathematical methods used to make the predictions and the 

results are in reasonable agreement between the model predictions and the 

experimental characterization. 
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1.2 Thesis Overview 

 This thesis has five chapters. In Chapter Two a review of literature relevant to 

this study will be covered. Chapter Two will cover the background of 3D printing, 

the necessary information regarding fiber orientation modeling along with a 

discussion of multiple fiber interaction models, and the calculation of the stiffness 

and CTE tensors. Chapter Three discusses the implementation of some of the 

mathematical models described in Chapter Two. It covers the computational methods 

used to calculate the fiber orientation state, the stiffness and CTE tensors, and 

finally, the effective longitudinal Young’s modulus and effective longitudinal CTE 

of a short-fiber composite, large volume, 3D printed bead. Chapter Four explains the 

experimental methods used. An in-house large scale, bead deposition system was 

developed during this research effort and was used for the fabrication of the 3D 

printed beads. Chapter Four presents and discusses the tensile test results and the 

thermomechanical analyzer (TMA) machine results to obtain, respectively, the 

effective longitudinal Young’s modulus and CTE from samples cut from the beads. 

Chapter Four culminates with a comparison between the experimental and the 

modeling predictions for the longitudinal stiffness and CTE values and the results are 

within, respectively, 5.1% and 16.5% of each other for the best model. Chapter Five 

then concludes the thesis and discusses potential future work.  
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CHAPTER TWO 
 

Literature Review 
 
 

 Understanding the relationship between the internal fiber microstructure and the 

resulting processed 3D printed part requires coupling knowledge of the fast paced field of 

additive manufacturing and the foundational research in short-fiber reinforced 

composites. This chapter focuses on two main topics, the background information on 3D 

printing, sometimes called Additive Manufacturing (AM), and the foundations for the 

mathematical analysis of fiber orientation modeling during the polymer melt flow along 

with the resulting processed part performance. There are several categories of 3D printing 

and Fused Filament Fabrication (FFF) is the focus of the present efforts in this thesis. 

Specifically, this work focuses on Big Area Additive Manufacturing (BAAM) which is 

often considered as a FFF process on a size scale that makes fiber reinforcement 

practical. As the technology currently stands, the BAAM process is being considered for 

utilization in processed parts up to the size scale of a complete automobile. When it 

comes to modeling the fiber orientation state within a polymer flow in the BAAM printer 

nozzle, also referred to as the extruder tip, the foundational model is Jeffery’s equation. 

Jeffery’s equation is fundamental in understanding the motion of a single fiber suspended 

in a polymer flow, a dilute suspension. However, the Jeffery model needs to be expanded 

upon as the suspension transitions from dilute and non-interacting fibers to a concentrated 

suspension with fiber interaction. Once the fiber orientation state at a coordinate location 

within a sample is derived from an appropriate fiber orientation kinematics model, the 
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stiffness and thermal expansion tensors can be calculated as functions of the orientation 

state at the same locations as well. This will lead to spatially varying, and often 

monoclinic, stiffness and thermal expansion tensors. Thus to fully understand the impact 

of the fiber motion during the melt flow, an additional post processing step, such as a 

finite element thermal and/or structural analysis, is required to properly relate the final 

part behavior to that of the processing conditions. 

 
2.1 Background of 3D Printing 

 In the following section, the current trends in the 3D printing market will be 

covered, followed by applications, types of 3D printers, and structural property 

limitations of 3D printed parts. Particular attention will be paid to the Big Area Additive 

Manufacturing process and the associated extrudate swell problem as this plays an 

important role within the resulting fiber orientation state and thus the part performance. 

 
2.1.1 The Trends in the 3D printing Market 

 The 3D printing industry has grown significantly over the past several years. 

Patents on some of the early 3D printer parts and processes have expired, which has 

helped lead to a boom in many new companies [5]. According to the Wohlers Report of 

2017 as cited in [6,7], there were 49 AM system companies manufacturing and selling in 

2014, 62 in 2015, and 97 in 2016. Also according to the 2017 Wohlers Report as cited in 

[6,7], although the 3D printing industry’s worldwide revenue growth dipped from 25.9% 

in 2015, it still grew at a rate of 17.4% in 2016. The Wohlers Report is considered by 

many to be a very reputable source on 3D printing. This annual report is so respected that 

some have called it a “bible” on AM that virtually covers everything to do with the 
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industry: applications, history, market trends, underlying technology, advancements in 

the last year, etc. [6,7]. 

 
2.1.2 Applications of 3D Printing 

 There are a wide range of reasons for the increasing use of 3D printing, with the 

most significant being efficiency, cost, and the breadth of applications. The 3D printing 

process of polymers often does not require the use of a mold, whereas many traditional 

manufacturing methods such as injection and compression molding do. The design 

process can often be performed without the use of a dedicated fabricator by creating a 

design using a computer aided design (CAD) package and then directly uploading the 

digital file to the 3D printer. This not only cuts down on the time required to take an idea 

for a part from conception to fabrication, but also cuts down on cost due to reduced 

tooling and personnel. This is why for the past several decades, 3D printing has been a 

valuable method for “rapid prototyping.” However, industries are broadening their 

mindset to consider using 3D printing for more than prototyping purposes. The 

technology has advanced to a point where industries can produce functional parts via 3D 

printing. Some of the biggest industries that have transitioned part of their manufacturing 

process over to 3D printing are the automotive, aerospace, and medical industries [8]. 

 One of the reasons 3D printing is appealing to the automotive and aerospace 

industries is that making light weight parts while maintaining high mechanical ability is 

very important. 3D printing enables people to manufacture topology optimized structures 

much more easily than traditional manufacturing methods (see e. g., [3,9]). Topology 

optimization is a method of determining the optimal structure given a certain structural 

domain, knowledge of the loads, support conditions, and the volume of material to be 
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used as well as any other constraints that may be specific to the desired part [10]. Many 

topology optimized parts are so complex that they are extremely hard or virtually 

impossible to manufacture using traditional molding techniques. However, 3D printing is 

not stopped by this since it does not require a mold and can be used to print very intricate 

parts. In addition, topology optimization algorithms can be relatively simple to code as 

shown by O. Sigmund who wrote one in only 99 lines using MATLAB [11]. Hoglund [9] 

and Jiang [3] established, respectively, a 2D and 3D topology optimization procedure for 

parts formed using fiber reinforce 3D filament. Not only does 3D printing allow unique 

interior cavities within a structure, but Hoglund and Jiang demonstrated that the increased 

material anisotropy observed in fiber reinforced filament allows for additional design 

features to further reduce the structure’s load carrying capacity. A unique feature of 

Hoglund’s and Jiang’s subsequent work is the ability to incorporate the print path, and 

thus the direction of material anisotropy, within the topological optimization algorithms. 

 The ability to manufacture topology optimized parts and make them out of a 

material with high mechanical properties is helping the 3D printing industry transition 

from being used exclusively for prototyping to that of producing functional load-bearing 

parts. In the past few years, the 3D printing industry has developed to a point where the 

manufacturing of purposeful load-bearing parts has already become a reality. For 

example, recently, multiple flight-approved parts have been developed for a satellite 

using 3D printing and topology optimization in as little as 8 weeks [12]. 

 In the field of medicine, 3D printing has been used to make replicas of internal 

body parts based on imaging data for educational purposes or for surgical planning (see 

e.g., [9]). 3D printing has also been used to make prosthetics (see e.g., [4]) and even used 
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in tissue engineering where 3D printed implants that have cells in them allow the printed 

parts to combine with a human body over time (see e.g., [8,13]). Hearing aids and 

Invisalign, which are patient-specific, have also benefitted from the AM technique [8]. 

The field of dentistry is a prime candidate for dramatic growth in 3D printing since it 

requires the manufacturing of patient-specific parts [5]. 

 
2.1.3 Types of 3D Printers 

 When it comes to the types of 3D printers in existence, there are several. Most of 

these involve building a 3D structure using a layer by layer technique either by curing the 

build material with an ultra violet laser, fusing the build material with a CO2 laser, or by 

extruding a molten material that solidifies during cooling to ambient conditions. Some of 

the types include a stereolithography apparatus (SLA), digital light projection (DLP), 

continuous liquid interface production (CLIP), selective laser sintering (SLS), selective 

heat sintering (SHS), Fused Filament Fabrication (FFF), and laminated object 

manufacturing (LOM) (see e.g., [5]). SLA 3D printing is where 3D printing got its start 

commercially in 1986 with 3D Systems [5]. This type of 3D printing involves a liquid 

resin that is cured by a concentrated ultraviolet laser [5]. It was 3D Systems that invented 

the Standard Tessellation Language file (.STL file) that is so commonly required by other 

3D printers nowadays for storing a part’s design data [5]. In addition to SLA, DLP 

printers are able to cure a whole layer of liquid resin build material at once making them 

faster than SLA [5]. CLIP printers are also very fast and they use a continuous cure 

method as opposed to the common layer by layer technique [5]. SLS and SHS involve 

melting the build material and fusing it together layer by layer [5]. FFF, one of the most 

common types of 3D printing in industry and in the past few years for home use, involves 
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extruding molten polymer through a nozzle onto a build platform layer by layer. There is 

much that can be said about the different types of 3D printing and the advances in the 

technology that have been made. This thesis will focus on a variant of the FFF process 

known as Big Area Additive Manufacturing (BAAM). The BAAM process moves the 

commonly employed FFF process to the large scale, with typical deposited beads 

growing from the sub millimeter scale to length scales over 10 mm. This larger length 

scale allows for the incorporation of fiber reinforcements to enhance the structural and 

thermal properties, and allows for the production of large scale production products. 

 
2.1.4 Materials Used in 3D Printing 

 3D printing is a viable manufacturing process for many different types of 

materials including metals, composites, polymers, and even organic matter. It has been 

shown that 3D printing of metal parts is a viable option for many scenarios, such as for 

aerospace components [12]. Biocomposites have also been successfully printed and could 

be used in more aesthetic roles such as for car components [14], but they are not a good 

candidate for structural parts due to their limited ability to carry loads. Polymers without 

reinforcements have great impact and dampening abilities, but they are not viable 

candidates for load bearing applications due to the inherent inability of polymers to 

support large loads per unit mass. Although 3D printing provides good opportunities for 

prototyping, when it comes to manufacturing parts that are capable of carrying loads, the 

present day options relying on 3D printing as a primary production method are limited. 

 Materials that are capable of withstanding loads must be used in order for 3D 

printing to seriously be considered as a means for producing functional parts. In addition 

to metal parts, an exciting development in 3D printing is that of printing composite 
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materials. A composite material is a material that is made up of “two or more materials 

[that] are combined on a macroscopic scale to form a useful third material” [15]. 

Composite materials by themselves are a topic of intense research interest at the present 

for a wide range of industries due to their high strength to weight ratios. They come in 

different types including laminated, fibrous, particulate, and different combinations of 

these three (see e.g., [15]). As Robert M. Jones put it in his book on composite materials, 

“The advantage of composite materials is that, if well designed, they usually exhibit the 

best qualities of their components or constituents and often some qualities that neither 

constituent possesses” [15]. The design permutations with composites are seemingly 

endless, and the final produced product can be made according to the specific 

characteristics that are desired for the application. In many instances composite materials 

can be designed to outperform even metals in terms of strength to weight or stiffness to 

weight ratio (see e.g., [11]). Jones also stated, “composite materials can be made that 

have the same strength and stiffness as high-strength steel, yet are 70% lighter!  Other 

advanced composite materials are as much as three times as strong as aluminum, the 

common aircraft structural material, yet weigh only 60% as much! Moreover…composite 

materials can be tailored to efficiently meet design requirements of strength, stiffness, 

and other parameters, all in various directions” [15]. This ability to tailor a composite’s 

properties in a directional sense is important. In this way, a fibrous composite material, 

for example, could be designed so that it does not have to “waste” its strength in non-

loaded directions (as isotropic metals do) and have maximum strength in the direction of 

maximum load.  
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 With all of this being said, between metals and polymer composites there is 

potential for 3D printing to be used to manufacture useful parts that can actually stand 

loads. This thesis is focused on 3D printed short fiber composite materials and some of 

their directionally dependent properties. The directionally dependent properties of 

stiffness and coefficient of thermal expansion will be inspected closely in Chapter Three. 

 
2.1.5 Big Area Additive Manufacturing 

 Common Fused Filament Fabrication (FFF) printers have found many 

applications in industries that need the fabrication of small parts, but the effectiveness for 

large-scale parts or load bearing parts is prohibitive due to the time required for printing. 

This is where large volume FFF known as Big Area Additive Manufacturing (BAAM) 

comes into the industrial scene. 

 In the past, 3D printing has had size limitations for the parts that can be 

manufactured. Many small scale 3D printers are limited to the size of their build chamber 

which is usually on the order of inches or sometimes feet. The BAAM configuration, 

however, is not restricted to any build chamber and is not limited to only one extruder 

either [16]. BAAM is designed for allowing multiple extruders that are secured to robotic 

arms in the open air [16]. This allows the volume capability to be virtually “unbounded” 

since it is not dependent on a build chamber of prescribed dimensions or on a set number 

of extruders with limited movement capability [16]. Attaching a BAAM extruder to an 

enclosed, 𝑥𝑥-𝑦𝑦-𝑧𝑧 translation system is also feasible too though [16]. 

 Cincinnati Incorporated is the leading company in the BAAM industry and uses 

enclosed BAAM systems. A comparison of the size of small-scale printers to enclosed 

BAAM printers can be found by looking at 3dhubs.com and Cincinnati Inc.’s website. 
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The top 3D printers for professionals for 2017, as given by 3dhubs.com, were the 

Ultimaker 2+, Form 2, and Zortrax M200 (made by Ultimaker, Formlabs, and Zortrax, 

respectively) [17]. The biggest of these is the Ultimaker 2+ which has a build volume of 

223 x 223 x 205 mm (8.78 x 8.78 x 8.07 in) [17]. On the other hand, the largest BAAM 

printer produced by Cincinnati Inc. (Harrison, OH) in partnership with Oak Ridge 

National Laboratory (Oak Ridge, TN) has a build volume of 240 x 90 x 72 in [18]. This 

yields a build volume nearly 2500 times larger than that of the Ultimaker 2+. As another 

comparison, the amount of material deposited for an average small-scale 3D printer is 

about 0.01-0.081 kg/hr (0.0220-0.1786 lbs/hr), whereas BAAM systems created by Oak 

Ridge National Laboratory (ORNL) and Cincinnati Inc. can deposit material at a rate of 

5-50 kg/hr (11-110 lbs/hr) [19]. This means they can deposit about 600 times more 

material per hour than a typical small scale printer in terms of weight. 

 BAAM is also welcoming to composite materials and metals and does not require 

them to be processed into spools of filament [16]. Instead, raw material pellets and other 

additives can be fed directly into a BAAM extruder system [16]. The ability to print 

composite materials and metals is, of course, advantageous for building load-bearing 

parts. 

 The effectiveness of the BAAM process has been demonstrated through several 

automotive platforms. Of note are the full size Strati car, a Shelby Cobra, a kayak, a 

utility vehicle, an excavator cab, and replicas of an F-22 Raptor and Orion Spacecraft 

[5,19,20]. 

 The progress in the BAAM technology has been significant and fast-paced, 

however, just as is the case with small-scale 3D printing, there exist many challenges that 
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must be overcome. Spinnie has addressed the effects of processing parameters on large 

scale bead deposition [21,22], but the trial and error methodology to determine the 

optimal parameters for the manufacturing of a part is not as economical with BAAM 

printers (since they would waste a lot of material) as it is with small-scale printers. It is 

desirable that computational methods be developed to predict the thermal and mechanical 

properties of fiber reinforced BAAM parts [19], and it is this last point that formulates the 

primary objective of this thesis. The computational techniques used in this thesis for the 

large scale bead deposition system are a step towards computational techniques to be 

applied to actual BAAM systems in the future. 

 
2.1.6 Extrudate Swell in FFF 

 An issue that has not been fully addressed within the literature is that of the swell 

of the extrudate as it exits the nozzle of the printer. This will happen for small and large 

scale FFF, and will have a significant impact both on the deposited bead upon the 

platform and, in the present context, the internal fiber orientation state [23]. The extrudate 

swell must be considered if high accuracy is desired in the fiber orientation calculations. 

 According to Heller[23], although multiple people have considered extrudate 

swell problems in fields outside of the FFF process, the extrudate swell problem in FFF 

had not been addressed. Yet including the effects on the velocity field due to the swell 

does have a significant impact upon the fiber orientation state within the polymer flow 

[23]. This altered fiber orientation state will have an impact on the final structural and 

thermal properties of the printed bead. Heller et al., in a journal paper more recent than 

Heller’s thesis, extended his thesis work to include structural property predictions [24] 

and for the present work, both structural and thermal properties will be addressed. For his 
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thesis, Heller made an axisymmetric model of the nozzle/extrudate swell problem in 

COMSOL Multiphysics, where the boundaries of the flow domain were the inner 

dimensions of the nozzle and the surface of the extrudate swell was defined by a 

polynomial. The model was axisymmetric and cylindrical coordinates were used. Thus 

the surface of the die swell could be represented by a 2 dimensional curve. The nozzle 

was defined as a “no-slip” boundary whereas the surface of the extrudate swell, which in 

reality would be exposed to the open air, was defined as a no stress boundary. Heller’s 

work was for small scale FFF systems using Newtonian fluids and he did not provide 

experimental validation.  

 Heller desired to find the proper shape of the extrudate swell using an 

optimization technique. Although the shape of the extrudate swell looked like it could 

potentially be represented by an exponential function, Heller found that a 4th order 

polynomial gave better results. The correct shape of the extrudate swell should, in theory, 

allow both the normal and shear stresses on the surface of the extrudate swell to be zero 

since the extrudate swell is in open air. Thus an optimization algorithm was used to 

minimize the stress state on the surface of the extrudate swell by altering the shape of the 

polynomial. 

 The optimization algorithm chosen for the purpose of minimizing the extrudate 

swell surface stress was MATLAB’s fmincon function. This function takes as inputs an 

objective function to be minimized, design variables, which are the variables that are 

allowed to change (for this case these variables would define the shape of the extrudate 

swell), information regarding constraints on the design variables, and additional options a 

user may want to specify. Using an iterative process, this function can then output the 
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minimum (the optimized) objective function value and the design variables that produced 

it. Heller linked COMSOL and MATLAB via LiveLink. This way the optimized shape of 

the extrudate swell could be calculated in MATLAB and automatically accepted by 

COMSOL with no need for manually entering the updated geometry in COMSOL. Then 

COMSOL could use this newly found shape and do a finite element analysis on the flow 

domain and calculate the surface stress of the extrudate swell. This process was continued 

until the stress state was minimized across the extrudate swell surface. There were some 

small singularity issues that prevented Heller from obtaining a zero stress state, but these 

occurred at the corner elements at the interface between the wall, the fluid, and the zero-

stress domain. Heller’s method of modeling the extrudate swell produced reasonable 

dimensions that agreed with the dimensions observed in the literature for the die swell. 

 
2.2 Fiber Orientation Modeling 

 When it comes to fiber orientation modeling in a flow, Jeffery’s equation [25] is 

often taken as the basis for the analysis (see e.g., [26–32]). Jeffery’s equation describes 

the motion of a single fiber in a dilute suspension where the motion of the fiber is 

unaffected by the presence of any surrounding fiber. Unfortunately, his equation is 

ineffective for a semi-concentrated or concentrated suspension where there are many 

fibers in the flow and their presence impacts the motion and position of the surrounding 

fibers. Thus, Jeffery’s model is often extended to incorporate a rotary diffusion term to 

more accurately predict the fiber orientation state in polymer short fiber composite flows 

(see e.g., [1,29,33]). Predicting the fiber orientation state is a very complicated problem 

and the literature base on different aspects of it has been growing since the early part of 

the 19th century beginning with Jeffery’s model of 1922. 
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2.2.1 Jeffery’s Equation 

 To formulate the techniques for determining the fiber orientation state within a 

bead printed by FFF, the first item to be addressed is Jeffery’s equation [25]. Jeffery built 

on work done by Einstein [34][32] who provided an equation for the increase in viscosity 

of a fluid due to suspended spherical particles in the fluid ([34] as cited in [25]). In 1922, 

Jeffery published his work titled “The Motion of Ellipsoidal Particles Immersed in a 

Viscous Fluid” in which he derives the equation of motion for the direction of a single, 

rigid ellipsoidal fiber in a flowing viscous fluid. The direction of the fiber is described by 

the unit vector 𝐩𝐩, which is depicted in FIG. 2.1 as the blue vector from the origin directed 

along the major axis of the fiber. The unit vector 𝐩𝐩 is easily derived from the figure and is 

given by the equation 

 
𝐩𝐩 =  �

sin𝜃𝜃 cos𝜙𝜙
sin𝜃𝜃 sin𝜙𝜙

cos 𝜃𝜃
� (2.1) 

The angle 𝜙𝜙 in FIG. 2.1 and Equation (2.1) ranges from 0 to 2𝜋𝜋 radians and the 𝜃𝜃 ranges 

from 0 to 𝜋𝜋 radians. 

 

 
 

FIG. 2.1. Unit vector (in blue) from the origin along the major axis of the fiber 
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Jeffery’s equation is a set of three, first order, differential equations which describe the 

rate of change with respect to time of the three components of the unit vector 𝐩𝐩 and is 

cast as 

 𝐷𝐷𝑝𝑝𝑖𝑖
𝐷𝐷𝐷𝐷

= −
1
2
𝛺𝛺𝒊𝒊𝒊𝒊𝑝𝑝𝑗𝑗 +

1
2
𝜆𝜆�𝛤𝛤𝒊𝒊𝒊𝒊𝑝𝑝𝑗𝑗 − 𝛤𝛤𝒋𝒋𝒋𝒋𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑖𝑖� (2.2) 

In Equation (2.2), 𝑝𝑝𝑖𝑖 represents the 𝑖𝑖th component of the unit vector 𝐩𝐩, 𝜆𝜆 is a term that 

relates to the fiber aspect ratio, Ω𝒊𝒊𝒊𝒊 represents the (𝑖𝑖, 𝑗𝑗) component of the vorticity tensor 

and Γ𝒊𝒊𝒊𝒊 represents the (𝑖𝑖, 𝑗𝑗) component of the rate of deformation tensor. The 𝐷𝐷
𝐷𝐷𝐷𝐷

 in 

Jeffery’s equation is the material derivative, which means that the coordinate system 

follows the center of the fiber as it travels with the fluid. Throughout this text, all indices 

range from 1 to 3 and designate the respective component of the tensor to which they are 

appended. In addition, throughout this text repeated indices imply summation on the 

index, thus 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 = 𝑝𝑝1𝑝𝑝1 + 𝑝𝑝2𝑝𝑝2 + 𝑝𝑝3𝑝𝑝3. The vorticity and the rate of deformation tensors 

are functions of the velocity field v through the gradient as, respectively, 

 
Ω𝑖𝑖𝑖𝑖 =

𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

−
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 (2.3) 

 
Γ𝑖𝑖𝑖𝑖 =

𝜕𝜕𝑣𝑣𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

+
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 (2.4) 

Note that Γ𝑗𝑗𝑗𝑗 is equivalent to Γ𝑖𝑖𝑖𝑖 as the rate of deformation tensor is symmetric. 

Additionally, the vorticity tensor is skew symmetric such that Ω𝑖𝑖𝑖𝑖 = −Ω𝑗𝑗𝑗𝑗. The vorticity 

tensor takes into account the spin of the fluid and the rate of deformation tensor takes into 

account how the strain-rate of the fluid. 

 Jeffery’s equation, presented in Equation (2.2), contains the outer product of the 

unit vector 𝐩𝐩 with the resulting tensor from the outer product of 𝐩𝐩 with itself in the term 
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𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑖𝑖. We could write this as 𝐩𝐩𝐩𝐩𝐩𝐩 recognizing that it implies there are two outer 

products and is expressed as 𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑖𝑖 in index notation. However, index notation is 

perhaps clearer and will be used when possible in this thesis. The term 𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑖𝑖 yields a 

third order tensor with dimensions of 3x3x3. 

The operations in the terms Ω𝒊𝒊𝒊𝒊𝑝𝑝𝑗𝑗 and Γ𝒊𝒊𝒊𝒊𝑝𝑝𝑗𝑗 in Equation (2.1) are simply  linear 

transformations. If index notation had not been used and instead tensor notation is used, 

these terms could be expressed as 𝛀𝛀 ∙ 𝐩𝐩 and 𝚪𝚪 ∙ 𝐩𝐩 where “∙” denotes the dot product. In 

any case, these products are contracted along the 𝑗𝑗th dimension and produce vectors of 

length 3 along the 𝑖𝑖th dimension so that they are consistent with the left hand side of 

Equation (2.2). 

The next operation to note in Equation (2.2) is a double contraction between Γ𝒋𝒋𝒋𝒋 

and 𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑖𝑖 in the Γ𝒋𝒋𝒋𝒋𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑖𝑖 term. As was the case earlier, it is also perhaps clearer to 

write a double contraction in index notation, but one could alternatively write Γ𝒋𝒋𝒋𝒋𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑖𝑖 

as 𝚪𝚪:𝐩𝐩𝐩𝐩𝐩𝐩 where “:” denotes a double contraction. The double contraction operator can be 

thought of as a higher order version of the dot product. For example, a double contraction 

of two second-order tensors of equal dimensions is found by multiplying the 

corresponding components of the tensors together and then summing all of these 

products. For example, given two 3x3 tensors 𝐴𝐴 and 𝐵𝐵, 𝐴𝐴𝑖𝑖𝑖𝑖𝐵𝐵𝑗𝑗𝑗𝑗 = 𝐴𝐴:𝐵𝐵 = 𝐴𝐴11𝐵𝐵11 +

𝐴𝐴12𝐵𝐵21 + 𝐴𝐴13𝐵𝐵31 + ⋯+ 𝐴𝐴33𝐵𝐵33. The double contraction is not limited to second order 

tensors, however. To define a double contraction more formally, the last two dimensions 

of the tensor to the left of the “:” are contracted with the first two dimensions of the 

tensor to the right of the “:”, for example, a double contraction of two fourth order 

tensors 𝔸𝔸 and 𝔹𝔹 is equal to 
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 𝔸𝔸:𝔹𝔹 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (2.5) 

where there is a sum on 𝑘𝑘 and 𝑙𝑙 (see e.g., [26]). 

 The final effect on fiber orientation of Jeffery’s equation of motion, as provided in 

Equation (2.2), is that it takes into account the actual shape of the fiber through the term 

𝜆𝜆. As stated earlier, Jeffery derived the model for an ellipsoidal fiber, such as that 

depicted in FIG. 2.1, but in many industrial applications the fibers are better represented 

by cylinders as depicted in FIG. 2.2. Trevelyan and Mason experimentally validated 

Jeffery’s model for spheres and extended the form, with experimental validation, to 

include cylinders [27]. Trevelyan and Mason were able to measure the periods of short-

fibers in a fluid under a pure shear flow. They show that since 

 𝑇𝑇 =
2𝜋𝜋𝑟𝑟𝑒𝑒
𝐺𝐺

 (2.6) 

represents the equation of the period of a prolate spheroid with a moderately high aspect 

ratio, the measured period T and the shear rate 𝐺𝐺 of the flow can be inserted into this 

equation and an equivalent ellipsoidal aspect ratio 𝑟𝑟𝑒𝑒 can be calculated for the cylindrical 

fibers, where the aspect ratio of a cylindrical fiber is defined as 𝑟𝑟 = 𝐿𝐿/𝑑𝑑 where 𝐿𝐿 and 𝑑𝑑 

are, respectively, the length and diameter of the fiber. Thus, Equation (2.6) and, 

subsequently, Jeffery’s equation as provided in Equation (2.2), is valid for cylindrical 

fibers as long as the equivalent ellipsoidal aspect ratio 𝑟𝑟𝑒𝑒 for the cylindrical fiber is used. 

The equivalent ellipsoidal aspect ratio is then used to compute the geometric parameter 𝜆𝜆 

from Jeffery’s equation as 

 
𝜆𝜆 =

𝑟𝑟𝑒𝑒2 − 1
𝑟𝑟𝑒𝑒2 + 1

 (2.7) 
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Zhang, Smith, and Jack [35] extended the initial work of Trevelyan and Mason [27] to 

provide finite element validated analytic expressions for the relationship between the 

cylindrical aspect ratio 𝑟𝑟 and the equivalent ellipsoidal aspect ratio 𝑟𝑟𝑒𝑒. Zhang et al. [35] 

also extended the application to account for other axisymmetric geometries such as those 

from the Bead-rod models for flexible fibers (see e.g., [35]). 

 
 

FIG. 2.2. Unit vector (in blue) along the major axis of a cylindrical fiber 
 
 

2.2.2 Jeffery Orbits 

 Jeffery’s equation predicts that a fiber in a shearing flow will exhibit periodic 

motion. This periodic motion is commonly referred to as a Jeffery orbit and can be 

visualized by tracing the path of the tip of the unit vector directed along the fiber. To gain 

a better understanding of what Jeffery orbits may look like, two Jeffery orbits are shown 

in FIG. 2.3. The first for a fiber initially pointing along the direction 𝐩𝐩 = �0, √2
2

, √2
2
� is 

shown in FIG. 2.3(a) and the second fiber with an initial direction of 𝐩𝐩 =

�− 1
2

,−1
2

,−√2
2
� is shown in FIG. 2.3(b). Both fibers have an aspect ratio of 𝑟𝑟 = 𝐿𝐿

𝑑𝑑
≈

13.57 which yields an equivalent ellipsoidal aspect ratio of 𝑟𝑟𝑒𝑒 = 10 using the equation 

suggested by Zhang et al. [35]. Thus, the value of the geometric parameter 𝜆𝜆 in the 

Jeffery equation of Equation (2.2) is  
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𝜆𝜆 =

𝑟𝑟𝑒𝑒2 − 1
𝑟𝑟𝑒𝑒2 + 1

≈ 0.98 (2.8) 

The fibers are both subjected to the same pure shear flow in the 𝑥𝑥1 direction 𝐯𝐯 =

{𝐺𝐺𝑥𝑥3, 0, 0}, where 𝐺𝐺 is a constant and in this case is the same as the rate of deformation. 

The velocity field is depicted in FIG. 2.3 by the gray velocity field vectors and the tips of 

the fibers would follow the paths outlined in blue and red as viewed from the center of 

the fiber. To understand the fiber paths depicted in FIG. 2.3, it is important to remember 

that the coordinate system follows the center of the fiber. There are special cases for this 

particular flow such as if one of the fibers in FIG. 2.3 had been initially aligned in the 

𝑥𝑥1 − 𝑥𝑥3 plane (i.e., 𝜙𝜙 = 0), then its Jeffery orbit would have been the unit circle in the 

𝑥𝑥1 − 𝑥𝑥3 plane. Another special case is when one fiber is aligned along the 𝑥𝑥2 axis (𝜙𝜙 =

𝜋𝜋 2⁄  or 3𝜋𝜋 2⁄  and 𝜃𝜃 = 𝜋𝜋 2⁄ ). In this case, the fiber would essentially roll in the 𝑥𝑥1 − 𝑥𝑥3 

plane, but its Jeffery orbit of the end to end vector would simply be the point (0, 1, 0) or 

(0, -1, 0) along the 𝑥𝑥2 axis. It is important to note that any rolling effects are not included 

within the Jeffery model as the fibers are assumed to be axisymmetric. It is also important 

to note that FIG. 2.3 was made for visualization purposes only. Thus, the velocity field 

vectors shown were chosen based on their visual appearance and not in connection to 

how Jeffery’s equation was solved. The fibers themselves were also chosen to be twice 

the length of their unit vectors for visualization purposes. The unit vector itself does not 

have any actual units, and thus the values on the axes do not have meaning. Only the 

actual shape of the orbits has context. 
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FIG. 2.3. Jeffery orbits for two different initial orientations, (a) 𝐩𝐩 = �0, √2
2

, √2
2
� and 

(b) 𝐩𝐩 = �− 1
2

,−1
2

,−√2
2
� 

 
 

FIG. 2.4(a) shows how the components of the unit vector of the fiber given in 

FIG. 2.3(a) change over time. Likewise, FIG. 2.3(b) shows how the components of the 

unit vector for the fiber given in FIG. 2.3(b) change over time. An observer may notice 

that the 𝑝𝑝1 component of both unit vectors tends to spend most of its time close to ±1 for 

this particular velocity field. As the parameter 𝜆𝜆 approaches 1, the duration of time that 

𝑝𝑝1 spends near ±1 increases, but as the parameter 𝜆𝜆 decreases to 0, the fibers will spend 

less time over a single period in alignment. This means that under pure shear flow in the 

𝑥𝑥1 direction, a fiber will tend to align more with the 𝑥𝑥1 direction than with the 𝑥𝑥2 or 𝑥𝑥3 

directions, and, although this is not shown in the figures, higher aspect ratios correspond 

to longer amounts of time that 𝑝𝑝1 will spend near ±1. In other words, for this velocity 

field, when a fiber is not aligned closely to the 𝑥𝑥1 direction it will rotate very rapidly 

towards the 𝑥𝑥1 axis, slow down while it is near the 𝑥𝑥1 axis, and then as it gets farther 

away from the 𝑥𝑥1 axis, it will speed up again. The other components of the unit vectors  

do not do this. They will tend to spend most of their time near zero and when they come 
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close to their maximum magnitudes they will not stay there very long but quickly revert 

towards zero again. Only 𝑝𝑝1 and 𝑝𝑝2 were graphed in FIG. 2.4 for simplicity. 

 

 
 

FIG. 2.4. Change in the components of p over time given initial orientations, (a) 𝐩𝐩 =
�0, √2

2
, √2
2
� and (b) 𝐩𝐩 = �− 1

2
,−1

2
,−√2

2
� 

 
 

2.2.3 Orientation Tensors 

 Though Jeffery’s model can be solved with a computer very quickly for a single 

fiber, it is hardly a suitable model in industrial settings where polymer composite parts 

are made with a very large number of fibers. Therefore a statistical approach is often 

preferred to solve the fiber orientation problem. Suresh G. Advani and Charles L. Tucker 

III proposed the use of the computationally efficient orientation tensor approach [28]. 

 A general way to describe the fiber orientation state within a volume containing 

short, rigid fibers dispersed in a material matrix with a spatially constant fiber 
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concentration is to use a probability density function (PDF) called 𝜓𝜓 [28]. This 𝜓𝜓 is a 

continuous function within the short-fiber composite part and can describe the orientation 

state at any point. It is a function of both coordinate location within the part and a 

function of the unit vector 𝐩𝐩, which is itself a function of 𝜙𝜙 and 𝜃𝜃 as shown in Equation 

(2.1). Consequently 𝜓𝜓(𝐩𝐩) can also be written in terms of the spherical coordinates as 

𝜓𝜓(𝜙𝜙,𝜃𝜃). Since there are an infinite number of ways a fiber could be oriented in 3 

dimensional space, the probability that a fiber will be oriented exactly along 𝐩𝐩 is actually 

zero. Formally, we say the probability that a fiber will be directed between angles 𝜙𝜙 and 

𝑑𝑑𝜙𝜙 and 𝜃𝜃 and 𝑑𝑑𝜃𝜃 is 

 𝑃𝑃(𝜃𝜃 ≤ 𝜃𝜃′ ≤ 𝜃𝜃 + 𝑑𝑑𝑑𝑑,𝜙𝜙 ≤ 𝜙𝜙′ ≤ 𝜙𝜙 + 𝑑𝑑𝑑𝑑) =  𝜓𝜓(𝐩𝐩) sin𝜃𝜃 𝑑𝑑𝑑𝑑𝑑𝑑𝜙𝜙 (2.9) 

where sin𝜃𝜃 𝑑𝑑𝑑𝑑𝑑𝑑𝜙𝜙 is an infinitesimally small area on the unit sphere. The unit sphere 

represents all of the possible points where the tip of the unit vector could be located and 

thus, accounts for all of the directions that the fiber could be pointing. The expression 

sin𝜃𝜃 𝑑𝑑𝑑𝑑𝑑𝑑𝜙𝜙 is often expressed as 𝑑𝑑𝐩𝐩 and will be used interchangeably throughout the 

remainder of this text. 

 It would be convenient to be able to rewrite Jeffery’s equation for the motion of 

individual fibers, Equation (2.2), for a distribution of fibers 𝜓𝜓(𝐩𝐩). This can be done using 

Folgar and Tucker’s model (see e.g., [29,30,36,37]), with no fiber interaction terms, as 

 𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

= −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝜆𝜆 − 1
2

𝜿𝜿𝑇𝑇:𝐩𝐩𝛉𝛉� +
𝜆𝜆 + 1

2
𝜿𝜿:𝐩𝐩𝛉𝛉��

+
1

sin𝜃𝜃
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝜆𝜆 − 1
2

𝜿𝜿𝑇𝑇:𝐩𝐩𝛉𝛉� −
𝜆𝜆 + 1

2
𝜿𝜿:𝐩𝐩𝛉𝛉��

+ 𝜓𝜓(3𝜆𝜆𝜿𝜿:𝐩𝐩𝐩𝐩) 

(2.10) 
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where 𝜿𝜿 is the second-order, velocity gradient tensor 𝜅𝜅𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

, and 𝛉𝛉� is a spherical 

coordinate unit vector. (Technically 𝐩𝐩 is equivalent to the spherical coordinate unit vector 

𝐫𝐫� as well.) Notice that Equation (2.10) contains the velocity gradients to incorporate the 

flow field effects and also the geometric parameter 𝜆𝜆 as in the Jeffery equation, Equation 

(2.2). However, no longer is the equation of motion just for an individual fiber but for a 

distribution of fibers. Unfortunately, solving the evolution of Equation (2.10) for the PDF 

is unreasonable for 3 dimensional cases in the real world as even the simplest of flows 

require many hours to days to solve (see e.g., [36,38]). 

 To address the overwhelming computational burden of solving Equation (2.10) 

for even the most simple of flows, the orientation tensors were introduced by Advani and 

Tucker [28].  Orientation tensors are the moments of the orientation distribution function 

𝜓𝜓(𝐩𝐩) and are defined as 

 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖… = �𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑙𝑙 …𝜓𝜓(𝐩𝐩)𝑑𝑑𝐩𝐩 (2.11) 

where 𝐩𝐩 is the unit vector directed along the major axis of the fiber. The indices take on 

values from 1 to 3 and designate the respective component of the tensor they are 

appended to, and the integral is over the entire surface of the unit sphere (which includes 

all of the possible directions the unit vector could be pointing). Thus the second-order 

orientation tensor is 

 𝐴𝐴𝑖𝑖𝑖𝑖 = �𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝜓𝜓(𝐩𝐩)𝑑𝑑𝐩𝐩 (2.12) 

and the fourth-order is 

 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑙𝑙𝜓𝜓(𝐩𝐩)𝑑𝑑𝐩𝐩 (2.13) 
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and so on. The orientation tensors are said to be orientation averaged because they 

involve multiplication by the probability density function and integration over all space. 

Orientation averaging will be used later in defining the stiffness tensor and coefficient of 

thermal expansion tensor for an anisotropic composite material. It is also important to 

note that the orientation tensor notation does not introduce any new physics to the 

problem but is intended to represent the orientation state of many fibers concisely [28]. 

For example, the second order orientation tensor is fully described through the use of 9 

terms, and, as will be discussed below, this can be reduced to only five terms by 

accounting for symmetry and normalization. 

 It turns out that the orientation tensors defined in Equation (2.11) are actually 

connected to the coefficients in a multiple dimensional series representation of 𝜓𝜓 using 

the complex spherical harmonics (see e.g., [28,39]). Just as the complex spherical 

harmonic series is infinite, there are an infinite number of orientation tensors also. In 

addition, as opposed to extracting the orientation tensors from the coefficients of the 

series representation of 𝜓𝜓, 𝜓𝜓 may be reconstructed if given the orientation tensors first. If 

only a finite number of orientation tensors were given, then the reconstruction of 𝜓𝜓 

would only be an approximation, however, and the more orientation tensors there are, the 

more accurate the approximation [37]. The number of orientation tensors needed depends 

on what they are being calculated for. It turns out that a given, 𝑛𝑛th order orientation 

tensor, where 𝑛𝑛 is even, provides all of the even ordered orientation tensors up to the 𝑛𝑛th 

order, and provides all of the information needed to calculate any 𝑛𝑛th order, orientation 

averaged, material property (see e.g., [28]). This is very helpful to know so that valuable 

computation time will not be lost on achieving unnecessarily high accuracy. For this 
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thesis, the fourth-order stiffness tensor is needed along with the second-order CTE tensor 

which is a function of the fourth-order stiffness tensor. Since fourth-order tensor 

properties are needed, we only need to calculate up to the fourth-order orientation tensor 

and nothing higher because no higher order orientation tensors will help with our 

accuracy. Actually, when it comes to calculating the fourth-order orientation tensor, we 

will not even calculate it directly. Instead we use a closure method to approximate the 

fourth-order orientation tensor in terms of the second-order orientation tensor. This will 

be discussed in Section 2.2.4. 

 The probability distribution function 𝜓𝜓 is an even function [28], i.e., the 

probability of finding a fiber pointing along the direction 𝐩𝐩 is the same as finding a fiber 

pointing along –𝐩𝐩. Thus, 𝜓𝜓(𝐩𝐩) = 𝜓𝜓(−𝐩𝐩) must be true and this fact indicates that 𝜓𝜓 is an 

even function. Thus, the only orientation tensors of importance are the even-ordered ones  

as all odd ordered expressions of Equation (2.11) will integrate to zero [28]. 

 Due to normalization of the unit vector 𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 =1, it is easily shown that a higher 

ordered orientation tensor contains all information regarding the lower orders as  

 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑘𝑘𝜓𝜓(𝐩𝐩)𝑑𝑑𝐩𝐩 = �𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝜓𝜓(𝐩𝐩)𝑑𝑑𝐩𝐩 = 𝐴𝐴𝑖𝑖𝑖𝑖 (2.14) 

Similarly, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, etc. Other important properties of 

orientation tensors include the facts that they are entirely symmetric by the construction 

of Equation (2.11), meaning 

 𝐴𝐴𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑗𝑗𝑗𝑗 (2.15) 

 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐴𝐴𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 = 𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 = 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘  

In addition, the trace of the second-order orientation tensor is always equal to one as can 

be observed from 
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 𝐴𝐴𝑖𝑖𝑖𝑖 = �𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝜓𝜓(𝐩𝐩)𝑑𝑑𝐩𝐩 = �𝜓𝜓(𝐩𝐩)𝑑𝑑𝐩𝐩 = 1 (2.16) 

as the integral of the probability distribution function over all space is equal to one. 

 The components 𝐴𝐴11, 𝐴𝐴22, and 𝐴𝐴33 along the main diagonal of the second order 

orientation tensor can be physically interpreted as how much of the fibers are oriented in 

the 𝑥𝑥1, 𝑥𝑥2, and 𝑥𝑥3 directions, respectively. Therefore, one of these components being 

higher than the others can be interpreted as meaning that the fibers are more biased in that 

one direction than in the other two directions. For example, if 𝐴𝐴11 = 1, then 𝐴𝐴22 = 𝐴𝐴33 =

0 (because 𝐴𝐴11 + 𝐴𝐴22 + 𝐴𝐴33 = 1 must hold true according to Equation (2.13)). In this 

case, there would be perfect alignment in the 𝑥𝑥1 direction and no fiber alignment in the 𝑥𝑥2 

and 𝑥𝑥3 directions. This scenario is shown in FIG. 2.5(a). FIG. 2.5(b) shows the case 

where 𝐴𝐴22 = 1 and 𝐴𝐴11 = 𝐴𝐴33 = 0. The graph for the distribution where 𝐴𝐴33 = 1 would 

contain only vertical fibers. The graph for a perfectly random orientation distribution, i.e., 

𝜓𝜓 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, will yield 𝐴𝐴11 = 𝐴𝐴22 = 𝐴𝐴33 = 1
3
 (since the orientation is not biased in any 

particular direction). This random orientation state for a discrete number of fibers is 

depicted in FIG. 2.5(d). If one of the diagonal components of 𝐴𝐴𝑖𝑖𝑖𝑖 is zero, this implies that 

the orientation distribution is planar in the plane normal to the coordinate direction 

associated with the zero diagonal component. FIG. 2.5(c) portrays a random planar 

distribution where 𝐴𝐴11 = 𝐴𝐴22 = 1
2
 and 𝐴𝐴33 = 0. In a thin cavity, where the cavity 

thickness is much less than the fiber length, it is possible to have a fiber orientation state 

that is planar with no out of plane orientation. However, for this thesis the more general, 

three-dimensional definitions for the probability density function and orientation tensors 

will be used as the fiber length is smaller than the cavity thickness of the extruder nozzle 
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in the 3D printed bead. If one were to try to visualize the probability density function, it 

may look something like a shaded unit sphere that is shaded darker in the regions where 

the orientation distribution is biased. For example, for a distribution that is nearly aligned 

along the 𝑥𝑥1 axis, the sphere would be shaded darker near the points (±1,0,0) and lighter 

between these points, which would be the area around the circular cross section in the 𝑥𝑥2-

𝑥𝑥3 plane. 

 

 
 

FIG. 2.5. Fiber orientation distributions; (a) uniaxial alignment in 𝑥𝑥1 direction, (b) 
uniaxial alignment in 𝑥𝑥2 direction, (c) random distribution in 𝑥𝑥1 − 𝑥𝑥2 plane, (d) 
completely random distribution 

 
 

Like the unit vector and the probability density function, the orientation tensors 

can also be written into evolution equations and were presented in [40] and derived in 

[36] for the fully anisotropic rotary diffusion form. These are slightly different for the 

case of planar fiber orientation distribution, but, again, we will stick to the more general, 
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three-dimensional case for this thesis. The evolution equation for the second order 

orientation tensor for a three-dimensional distribution is 

 𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖
𝐷𝐷𝐷𝐷

= −
1
2
�𝛺𝛺𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 − 𝐴𝐴𝑖𝑖𝑖𝑖𝛺𝛺𝑘𝑘𝑘𝑘� +

1
2
𝜆𝜆�𝛤𝛤𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛤𝛤𝑘𝑘𝑘𝑘 − 2𝛤𝛤𝑘𝑘𝑘𝑘𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

+ �∇p(𝐷𝐷𝑟𝑟𝜓𝜓) ∙ ∇p�𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗�𝑑𝑑𝐩𝐩 

(2.17) 

The 𝛺𝛺𝑖𝑖𝑖𝑖, 𝛤𝛤𝑖𝑖𝑖𝑖, and 𝜆𝜆 terms are defined as they were before for Jeffery’s equation, and the 

𝛿𝛿𝑖𝑖𝑖𝑖 term is the unit tensor. The 𝐷𝐷𝑟𝑟 term in Equation (2.5) is a rotary diffusivity term and 

can be used to account for fiber-to-fiber interactions. For the case when the rotary 

diffusivity is independent of the coordinate directions, the integral term can be simplified 

to the classical expression from Folgar and Tucker [29] of 2𝐷𝐷𝑟𝑟�𝛿𝛿𝑖𝑖𝑖𝑖 − 3𝐴𝐴𝑖𝑖𝑖𝑖�, giving 

 𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖
𝐷𝐷𝐷𝐷

= −
1
2
�𝛺𝛺𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 − 𝐴𝐴𝑖𝑖𝑖𝑖𝛺𝛺𝑘𝑘𝑘𝑘� +

1
2
𝜆𝜆�𝛤𝛤𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛤𝛤𝑘𝑘𝑘𝑘 − 2𝛤𝛤𝑘𝑘𝑘𝑘𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

+ 2𝐷𝐷𝑟𝑟�𝛿𝛿𝑖𝑖𝑖𝑖 − 3𝐴𝐴𝑖𝑖𝑖𝑖� 

(2.18) 

Fiber interactions significantly affect the fiber orientation in a concentrated fiber-polymer 

mixture but are not accounted for in Jeffery’s original equation. (This topic will be 

returned to in Section 2.2.5 on fiber interaction models.) 

 It is important to notice that the fourth-order orientation tensor 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 appears in 

Equation (2.5), which is the evolution equation for 𝐴𝐴𝑖𝑖𝑖𝑖. In a similar way, the sixth-order 

orientation tensor 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 appears in the evolution equation for the fourth-order 

orientation tensor 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (see e.g., [28,37]): 
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 𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐷𝐷𝐷𝐷

= −�𝛺𝛺𝑖𝑖𝑖𝑖𝐴𝐴𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗 − 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛺𝛺𝑚𝑚𝑚𝑚�

+ 𝜆𝜆�𝛤𝛤𝑖𝑖𝑖𝑖𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛤𝛤𝑚𝑚𝑚𝑚 − 2𝛤𝛤𝑚𝑚𝑚𝑚𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

+ 𝐷𝐷𝑟𝑟�−20𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ 2�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖

+ 𝐴𝐴𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖�� 

(2.19) 

This pattern is repeated: the evolution equation for any even ordered orientation tensor 

requires the knowledge of the following higher, even-ordered, orientation tensor (see e.g., 

[40]). This problem may be resolved by approximating the higher order orientation 

tensor, and this is usually done in terms of the lower order orientation tensor thereby 

“closing” the series. 

 
2.2.4 Closure Methods 

 There exist many closure methods for approximating 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 in terms of 𝐴𝐴𝑖𝑖𝑖𝑖 in order 

to solve for 𝐴𝐴𝑖𝑖𝑖𝑖 in the second-order evolution equation. Mathematically one could say the 

closure method we need is 𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 ≈ 𝑓𝑓𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝐴𝐴𝑖𝑖𝑖𝑖) where 𝑓𝑓 is some function that produces a 

fourth order tensor from the components of the second order orientation tensor [30]. Once 

the fourth order orientation tensor (𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘) at a given instant has been found, it can be 

inserted into Equation (2.17) to solve for the time evolution of 𝐴𝐴𝑖𝑖𝑖𝑖. The fourth order 

tensor will also be needed later on when solving for the stiffness and coefficient of 

thermal expansion tensors. 

 Perhaps the simplest of the closures is the quadratic closure. This closure simply 

approximates 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 with the outer product of the second order tensor with itself, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≈

𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 [41]. The quadratic closure is exact for distributions of perfectly aligned fibers, 
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but is not very accurate for highly random distributions compared to other models (see 

e.g., [28]). Another closure is the linear closure of Hand [42]. This closure has the 

opposite characteristic of the quadratic closure in that it is exact for perfectly random 

distributions of fibers, but performs more poorly for highly aligned states than other 

models (see e.g., [28]). This closure approximates 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 using all of the possible products 

of the second order orientation tensor 𝐴𝐴𝑖𝑖𝑖𝑖 and the second order unit tensor 𝛿𝛿𝑖𝑖𝑖𝑖, 

 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −
1

35
�𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗�

+
1
7
�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖

+ 𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖� 

(2.20) 

The hybrid closure combines the strengths of the quadratic closure and linear closure. 

The hybrid closure is equivalent to the quadratic closure for perfectly aligned orientation 

states and equivalent to the linear closure for the perfectly random orientation state, and 

linearly interpolates between the two for orientation states between the two extremes. 

This can be accomplished mathematically using a function 𝑓𝑓 that is equal to one for 

completely aligned states and zero for the completely random state [28]. This results in 

the following closure approximation 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (1 − 𝑓𝑓)𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑓𝑓𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞, where the 

form of the parameter 𝑓𝑓 as suggested by Advani and Tucker is 𝑓𝑓 = 3
2
𝐴𝐴𝑖𝑖𝑖𝑖𝐴𝐴𝑗𝑗𝑗𝑗 −

1
2
. When 

using the hybrid closure to predict mechanical properties, it is, understandably, most 

inaccurate partway in between the highly aligned and very random orientation states 

(since neither the linear or quadratic closures are very accurate at this point) [28]. Any of 

these three closures, the quadratic, the linear, or the hybrid, could be used for calculating 

the higher order tensor 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 in Equation (2.17) and if given the choice between any of 
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these three closures, the hybrid closure is definitely the best for general orientation cases 

as it performs reasonably well over the whole range of possible orientation states.  

 One of the most accurate closure methods available is the orthotropic closure 

method. This closure method will be used for this thesis. There is actually a whole family 

of orthotropic closures, as opposed to just one. In the present context, an orthotropic 

closure is one in which the fourth-order orientation tensor is related in some fashion to 

the eigenvalues or invariants of the second-order orientation tensor and the principal 

directions of the fourth-order orientation tensor as assumed to coincide with those of the 

second-order orientation tensor. Most orthotropic closures involve fitting functions to 

known data. This allows for variability since multiple functions could be fit to the same 

data points. Cintra and Tucker developed the first orthotropic closure method based on 

the idea that all closure methods for approximating 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 must be orthotropic and the 

principal axes of 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 must be the same as the principal axes of 𝐴𝐴𝑖𝑖𝑖𝑖 [30]. This 

assumption comes at a small loss as short-fiber composites may have monoclinic 

properties (see e.g., [43]). Monoclinic materials only have a single axis of symmetry, 

whereas orthotropic materials have three mutually orthogonal axes of symmetry. Since 

short-fiber composites may experience a material state with fewer symmetries than 

orthotropic, the orthotropic closures cannot be exact for these materials. Nevertheless, 

when it comes to fourth order closure methods, the orthotropic closure method can 

produce approximations that are quite exceptional (see e.g., [44]). 

 The orthotropic closure method begins with finding the eigenvalues and 

eigenvectors of the second-order orientation tensor 𝐴𝐴𝑖𝑖𝑖𝑖. The eigenvectors denote the 

principal axes of 𝐴𝐴𝑖𝑖𝑖𝑖 and the eigenvalue corresponding to the largest eigenvector denotes 
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the direction of highest fiber alignment. We will call the eigenvalues of the second-order 

tensor 𝑎𝑎(1), 𝑎𝑎(2), and 𝑎𝑎(3) and designate 𝑎𝑎(1) ≥ 𝑎𝑎(2) ≥ 𝑎𝑎(3). Writing 𝐴𝐴𝑖𝑖𝑖𝑖 in its principle 

reference frame will produce a diagonal matrix with these eigenvalues on the diagonal. 

Because the trace of a second-order orientation tensor is always one, only two of them are 

independent, say 𝑎𝑎(1) and 𝑎𝑎(2). The second-order tensor rotated into the principal 

reference frame can be written as 

 
𝐀𝐀� = �

𝑎𝑎(1) 0 0
0 𝑎𝑎(2) 0
0 0 𝑎𝑎(3)

� (2.21) 

where the bar accent indicates a principal reference frame value. In order to write the 

fourth-order orientation tensor, it is convenient to use a contracted notation which is 

allowable due to Equation (2.15). The fourth-order orientation tensor written in 

contracted notation and in the principal reference frame can be written in the following 

way (see e.g., [30]) 

A�𝑚𝑚𝑚𝑚= 

𝐴̅𝐴11 𝐴̅𝐴12 𝐴̅𝐴13 0 0 0 

(2.22) 
𝐴̅𝐴21 𝐴̅𝐴22 𝐴̅𝐴23 0 0 0 
𝐴̅𝐴31 𝐴̅𝐴32 𝐴̅𝐴33 0 0 0 
0 0 0 𝐴̅𝐴44 0 0 
0 0 0 0 𝐴̅𝐴55 0 

 0 0 0 0 0 𝐴̅𝐴66  
 
In essence, an orthotropic closure calculates the components of A�𝑚𝑚𝑚𝑚 as functions of the 

principal values 𝑎𝑎(1) and 𝑎𝑎(2) [30]. This means that the form and the coefficients of the 

functions must be chosen well in order for the orthotropic closure to be accurate. In order 

to ensure that these functions are chosen well, the probability density function is 

numerically evaluated for discrete flows using either a control volume or finite element 

approach, and select points along each of the flows are selected for the fitting. As noted 



37 
 

before, calculating 𝜓𝜓 for many points can be computationally prohibitive. The data from 

the true 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 obtained from 𝜓𝜓 at different points in time can be used to fit the closure 

approximation using a least-squares regression technique (see e.g., [30]). Wetzel [45] and 

VerWeyst et al. [46] improved upon the original work of Cintra and Tucker and 

formulated a new orthotropic closure that behaved well over all possible orientation 

states. In this thesis we will use the closure used by Wetzel and VerWeyst et al. termed 

the ORT closure. 

 The natural closures of Verleye and Dupret [47] are similar to the orthotropic 

closure method (as noted in [30]), along with the invariant based closure of Chung and 

Kwon [32] (based on the form of the natural closures) and they each yield results 

comparable to the orthotropic closure results. The natural closures are based on the 

invariants of the orientation tensor, however, instead of the eigenvalues and eigenvectors 

like the orthotropic closures. The invariant closures avoid the costly rotations of the 

tensors, but at the expense of computing a series of higher-order expressions of all 

possible permutations of the orientation tensor with itself. 

 Another closure worth noting is the Fast Exact Closure by Montgomery-Smith et 

al. [48] that is able to calculate the orientation state exactly as long as fiber interaction is 

not taken into account. This model is able to bypass any approximations of 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 in terms 

of 𝐴𝐴𝑖𝑖𝑖𝑖 by simultaneously solving a set of coupled differential equations [48]. This closure 

is also computationally efficient and, when accounting for fiber interactions, yields 

results more accurate than those of the best orthotropic closures for nearly all orientation 

states (see e.g., [48]). 
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2.2.5 Fiber Interaction Models 
 
 In the industrial world, short fiber composites are often concentrated rather than 

dilute and it is clear that the fibers will and do interact with each other in the flow of the 

composite as it is being processed, whether in injection or compression molding or 3D 

printing. In order to accurately model the changes in fiber orientation, we must account 

for these fiber interactions. It can be experimentally observed that interaction between 

fibers not only effects the trajectory of the motion of the fibers, but it also leads to a 

“steady state” where the bulk average of the fibers maintain an overall constant 

orientation state.  That is not to say the there is no motion by individual fibers, but when 

observing the overall average orientation state there is no net change. Since Jeffery’s 

equation predicts that a single fiber will not interact with any other fibers and that it will 

rotate periodically in “Jeffery orbits” forever, Jeffery’s model is insufficient for industrial 

use and an additional expression must be used that incorporates fiber interaction so that 

orientation states can be more accurately predicted. 

Folgar and Tucker presented a fiber interaction model which we will refer to as 

the Isotropic Rotary Diffusion model or IRD model [29]. Fiber interactions would be 

extremely complicated and hard to model if all of the forces and torques on each fiber 

were taken into account. Folgar and Tucker came up with a relatively simple model that 

intentionally does not go that route, but instead looks at the overall net effect on the 

orientation state. They added a rotary diffusivity term 𝐷𝐷𝑟𝑟 to the end of Jeffery’s equation, 

represented in Equation (2.2) to account for fiber interactions. They further defined this 

term as 𝐷𝐷𝑟𝑟 = 𝐶𝐶𝐼𝐼𝛾̇𝛾, where 𝐶𝐶𝐼𝐼 is an empirical parameter based on the fluid and the fibers 

and 𝛾̇𝛾 is the scalar magnitude of the rate of deformation defined as 𝛾̇𝛾 = �1
2
𝛾𝛾𝑖𝑖𝑖𝑖𝛾𝛾𝑗𝑗𝑗𝑗 . The 
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interaction term behaves like a diffusion term and randomizes the fiber motion. Folgar 

and Tucker made the following assumptions for their model, taken verbatim, as: 

1. The fibers are rigid cylinders, uniform in length and diameter. 
2. The fibers are sufficiently large that Brownian motion is negligible. 
3. The suspension is incompressible. 
4. The matrix fluid is sufficiently viscous that particle inertia and particle 

buoyancy are negligible. 
5. The centers of mass of the particles are randomly distributed. 
6. There are no external forces or torques acting on the suspension. [29] 

 
Folgar and Tucker construct their distribution function evolution equation by combining 

Jeffery’s equation, with the added fiber interaction term and a continuity condition. In 

their original work, they define their interaction coefficient as 𝐶𝐶𝐼𝐼 = 1
2

(∆𝜙𝜙)2��������(𝑙𝑙/𝑑𝑑)2𝑐𝑐 

where (∆𝜙𝜙)2�������� is the mean of the squares of the angle changes caused by the fiber 

interactions, 𝑙𝑙 and 𝑑𝑑 are the fiber length and diameter, respectively, and 𝑐𝑐 is the volume 

fraction of fibers. But there have been other authors who have come up with different 

expressions for the relationship between the interaction coefficient and the fiber and melt 

behavior (see e.g., [49,50]). The evolution equation for the second-order tensor according 

to the IRD model is  

 𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖
𝐷𝐷𝐷𝐷

= −
1
2
�𝛺𝛺𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 − 𝐴𝐴𝑖𝑖𝑖𝑖𝛺𝛺𝑘𝑘𝑘𝑘� +

1
2
𝜆𝜆�𝛤𝛤𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛤𝛤𝑘𝑘𝑘𝑘 − 2𝛤𝛤𝑘𝑘𝑘𝑘𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�

+ 2𝐶𝐶𝐼𝐼𝛾̇𝛾�𝛿𝛿𝑖𝑖𝑖𝑖 − 3𝐴𝐴𝑖𝑖𝑖𝑖� 

(2.23) 

Equation (2.23) is the same as Equation (2.18) mentioned earlier, where 𝐷𝐷𝑟𝑟 = 𝐶𝐶𝐼𝐼𝛾̇𝛾 [28]. 

Typical values for 𝐶𝐶𝐼𝐼 range from 10−4 − 10−2 (see e.g., [30,51]). 

One aspect of the IRD model that is accurate is the irreversibility of the fiber 

orientation. According to Jeffery’s model, when an initial orientation state 𝐴𝐴 evolves into 

orientation state 𝐵𝐵 during a flow, then the original state 𝐴𝐴 can be returned to if the flow is 
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reversed. Thus, any orientation state that once existed along a streamline in the polymer 

flow can be recalculated if the flow were said to go in the opposite direction. Folgar and 

Tucker’s IRD model is not reversible. If an initial orientation state 𝐴𝐴 at a coordinate point 

1 evolved into an orientation state 𝐵𝐵 at coordinate point 2 and then the flow was reversed, 

the IRD model for any non-zero 𝐶𝐶𝐼𝐼 will not necessarily yield orientation state 𝐴𝐴 when the 

flow returns to point 1. 

In addition, there is another point where the IRD model outperforms Jeffery’s. As 

mentioned before, Jeffery’s model predicts perpetual periodic motion which is not 

accurate in the real world. The IRD model, on the other hand, allows for the overall 

orientation to achieve a steady state value and does not require that the steady orientation 

state be perfectly aligned [1]. The IRD model will also achieve the same steady state for a 

particular flow regardless of the initial orientation state [29]. 

The IRD model is not perfect, however. The major issue is that it predicts that the 

fibers will achieve a steady orientation state faster than they actually do. In addition, their 

model requires experimentation for the determination of 𝐶𝐶𝐼𝐼 for new blends of fibers 

within a polymer matrix. 

In 2008, Wang et al. [1] proposed a new fiber interaction model that predicted a 

slower fiber alignment than the IRD model. Their method, termed as the Reduced Strain 

Closure (RSC) model, takes an intriguing approach to the problem. Instead of addressing 

just the interaction term of the IRD model, Wang et al. decided to break down the second 

order orientation tensor in Equation (2.18) into its eigenvalues and eigenvectors and write 

the evolution equations for these. The eigenvalues are what define how much alignment 

is in the direction of the eigenvectors. Thus, they wanted to change the rate of change of 
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the eigenvalues but leave the rate of change of the eigenvectors alone. Wang et al. then 

include an empirical term in the eigenvalue equation, which is 𝜅𝜅 < 1. This 𝜅𝜅 value 

reduces the strain effects on the fiber orientation, which is how the model got its name 

[1], and in turn will reduce the rate of alignment. This fiber interaction model does indeed 

slow down the approach to steady state and still yields close to the same steady state 

values as the IRD would have [1]. The second-order orientation tensor evolution equation 

for the RSC model can be written as 

 𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖
𝐷𝐷𝐷𝐷

= −
1
2
�𝛺𝛺𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 − 𝐴𝐴𝑖𝑖𝑖𝑖𝛺𝛺𝑘𝑘𝑘𝑘�

+
1
2
𝜆𝜆�𝛤𝛤𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛤𝛤𝑘𝑘𝑘𝑘

− 2𝛤𝛤𝑘𝑘𝑘𝑘�𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + (1 − 𝜅𝜅)�𝕃𝕃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝕄𝕄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚���

+ 2𝜅𝜅𝜅𝜅𝐼𝐼𝛾̇𝛾�𝛿𝛿𝑖𝑖𝑖𝑖 − 3𝐴𝐴𝑖𝑖𝑖𝑖� 

(2.24) 

where 𝕃𝕃 = ∑ 𝜆𝜆𝑚𝑚𝐞𝐞𝑚𝑚𝐞𝐞𝑚𝑚𝐞𝐞𝑚𝑚𝐞𝐞𝑚𝑚3
𝑚𝑚=1  and 𝕄𝕄 = ∑ 𝐞𝐞𝑚𝑚𝐞𝐞𝑚𝑚𝐞𝐞𝑚𝑚𝐞𝐞𝑚𝑚3

𝑚𝑚=1  are fourth-order tensors 

formed by the outer products of the eigenvectors. Here, 𝜆𝜆𝑚𝑚 is the 𝑚𝑚th eigenvalue of 𝐴𝐴𝑖𝑖𝑖𝑖 

and 𝐞𝐞𝑚𝑚 is the associated eigenvector. Note for the 𝕃𝕃 and the 𝕄𝕄 expressions we do not use 

index notation since 𝑚𝑚 is used to express which eigenvector of 𝐴𝐴𝑖𝑖𝑖𝑖 we are using. 

Equation (2.24) is very similar to the IRD Equation (2.18) except that 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 has been 

replaced with �𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + (1 − 𝜅𝜅)�𝕃𝕃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝕄𝕄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�� and the interaction term is 

multiplied by the factor 𝜅𝜅. Wang and Jin use a 𝜅𝜅 value of 1/30 [52], and when 𝜅𝜅 = 1 the 

RSC model is equivalent to the IRD model. 
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2.2.6 Micromechanics Models 

 To calculate the stiffness of the composite given the final fiber orientation state, 

one can first start with a micromechanical model for the stiffness of a part composed 

exclusively of a unidirectional fiber orientation state. Once the transversely isotropic 

properties have been found, they can be averaged, also termed homogenized, over a fiber 

orientation state that is not unidirectional. This last step will be addressed in Section 

2.2.7. 

 When it comes to calculating the stiffness of a short-fiber composite with a 

unidirectional fiber orientation state, Tucker and Liang [53] present a review of the 

available models. Before reviewing a model, they limited their investigation to those 

models that met the following conditions, taken verbatim, as: 

• The fibers and the matrix are linearly elastic, the matrix is isotropic, and the 
fibers are either isotropic or transversely isotropic. 

• The fibers are axisymmetric, identical in shape and size, and can be 
characterized by an aspect ratio l/d. 

• The fibers and matrix are well bonded at their interface, and remain that way 
during deformation. Thus, we do not consider interfacial slip, fiber/matrix 
debonding or matrix micro-cracking. [53] 
 

Tucker and Liang investigate Eshelby’s dilute model based on an equivalent inclusion 

[54], the Mori-Tanaka [55,56] model, the bounding model [57], the shear lag model (see 

e.g., [58]), the self-consistent model [59,60], and the Halpin-Tsai equations (see e.g., 

[61]). 

 To describe the micromechanics models, Tucker and Liang [53] define the strain-

concentration and the stress-concentration tensors, respectively, 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, as 

according to Hill [62]. These tensors are used to relate bulk, or average fields, to those of 

the individual fibers as  
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 𝜀𝜀𝑖̅𝑖𝑖𝑖
𝑓𝑓 = 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘̅𝑘𝑘𝑘 (2.25) 

and 

 𝜎𝜎�𝑖𝑖𝑖𝑖
𝑓𝑓 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜎𝜎�𝑘𝑘𝑘𝑘 (2.26) 

In these equations, the tensors with the bar accents are average quantities and the 

superscript 𝑓𝑓 denotes a property of the fiber. Tucker and Liang also define a tensor 𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

to relate the matrix average strain to that of the fiber average strain as 

 𝜀𝜀𝑖̅𝑖𝑖𝑖𝑓𝑓 = 𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘̅𝑘𝑘𝑘𝑚𝑚 (2.27) 

Here, the superscript 𝑚𝑚 refers to a property of the material matrix and 𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 can be related 

to the strain-concentration through the equation 

 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖[�1 − 𝑣𝑣𝑓𝑓�𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑓𝑓𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]−1 (2.28) 

In this equation, 𝑣𝑣𝑓𝑓 is the volume fraction of fibers in the composite. At this point, Tucker 

and Liang reach the main equation we desire derived by Hill [62], where the stiffness of 

the bulk material is expressed in terms of the stiffness of the fibers and the matrix as 

 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑣𝑣𝑓𝑓(𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 )𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (2.29) 

Equation (2.29) gives us the average stiffness tensor of a short-fiber composite with a 

unidirectional fiber orientation state. There is a similar equation which expresses the 

fourth order compliance tensor in terms of the stress concentration factor 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 [62], 

 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑣𝑣𝑓𝑓(𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓 − 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 )𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (2.30) 

 Now that we have Equation (2.29) we can look at some of the theories leading up 

to this equation. The first to be considered is Eshelby’s dilute model. Eshelby came up 

with a model to predict the stiffness of a composite of a lone fiber engulfed in an 
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infinitely extended matrix. This model can therefore be applied to dilute systems. The 

strain-concentration tensor according to this model can be expressed as 

 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐸𝐸𝐸𝐸ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �𝛿𝛿𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑓𝑓 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 ��
−1

 (2.31) 

In this equation, 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is Eshelby’s tensor. Once 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐸𝐸𝐸𝐸ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 has been calculated with 

Equation (2.30) it can be inserted into Equation (2.29) for 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 to get the transversely 

isotropic stiffness. 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐸𝐸𝐸𝐸ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 in this model does not depend on 𝑣𝑣𝑓𝑓 so the stiffness solution 

is predicted to grow linearly with 𝑣𝑣𝑓𝑓 and should not be trusted for fiber volume fractions 

over 1% [26]. In the present study we focus on composites with higher volume fractions, 

and this model is not applicable in the present context.   

 The Mori-Tanaka strain-concentration tensor can be written in terms of the 

Eshelby strain-concentration tensor as, 

 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑀𝑀 = 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝐸𝐸𝐸𝐸ℎ𝑒𝑒𝑙𝑙𝑏𝑏𝑏𝑏[�1 − 𝑣𝑣𝑓𝑓�𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑓𝑓𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝐸𝐸𝐸𝐸ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒]−1 (2.32) 

Tandon and Weng [63] were able to come up with equations for all of the elastic 

constants (𝐸𝐸11, 𝐸𝐸22, 𝜇𝜇12, 𝜇𝜇23, 𝑘𝑘23) for a short-fiber composite using a variant of the Mori-

Tanaka model [53]. Although Tandon and Weng state that 𝑘𝑘23 can be calculated 

iteratively [63], there is also a closed form method of calculating 𝑘𝑘23 that Tucker and 

Liang suggest [53]. It is the closed form version of Tandon and Weng’s Mori-Tanaka 

approach as expressed in Zhang [64] that is used in the computation of the transversely 

isotropic stiffness tensor in this thesis. Tucker and Liang recommend the Mori-Tanaka 

approach as the best of all for predicting the stiffness tensor of a short-fiber composite 

with an aligned fiber orientation state [53]. 
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 Bounding models are different in concept. The point of these models is to provide 

lower and upper bounds on the stiffness [53]. For example, if the fiber within a short-

fiber composite is stiffer than the matrix material, one could say 

 𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = [𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 �]−1 (2.33) 

Equation (2.33) could then be inserted into Equations (2.28) and (2.29) to get the lower 

bound on the stiffness. The upper bound would be 

 𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = [𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑓𝑓 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓 �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑓𝑓 �] (2.34) 

If the matrix material was stiffer than the fiber, Equation (2.33) would provide the upper 

bound and Equation (2.34) would provide the lower bound instead [53]. Lielens et al. 

[65] developed a model for interpolating between lower and upper bounds in such a way 

that the stiffness is biased towards the lower bound for small volume fractions and 

towards the upper bound for large volume fractions [53,65]. The strain-concentrator 𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

given by Lielens et al. [65] and cited in Tucker and Liang [53] is 

 𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �(1 − 𝑓𝑓)�𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�−1 + 𝑓𝑓�𝑄𝑄�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢�−1�

−1
 (2.35) 

where 𝑓𝑓 =
𝑣𝑣𝑓𝑓+𝑣𝑣𝑓𝑓

2

2
. 

 Shear lag theories do not predict all of the elastic constants, just 𝐸𝐸11. Tucker and 

Liang address them since they have been used a lot though and they usually predict 

 𝐸𝐸11 = 𝜂𝜂𝑙𝑙𝑣𝑣𝑓𝑓𝐸𝐸𝑓𝑓 + �1 − 𝑣𝑣𝑓𝑓�𝐸𝐸𝑚𝑚 (2.36) 

but Tucker and Liang mention that this is actually not consistent with average strain and 

stress theories [53]. Thus, the following equation (which is consistent with these 

concepts) is better 
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 𝐸𝐸11 = 𝐸𝐸𝑚𝑚 + 𝑣𝑣𝑓𝑓�𝐸𝐸𝑓𝑓 − 𝐸𝐸𝑚𝑚�𝜂𝜂𝑙𝑙 (2.37) 

In Equations (2.36) and (2.37), 𝜂𝜂𝑙𝑙 represents an efficiency term that depends on the fiber 

length. 

 Self-consistent theories use the concept of a particle (or a “fiber” in our case) in 

an infinitely extended matrix where the matrix has the averaged properties of the whole 

composite [53]. The strain-concentrator is given by 

 𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆𝑆𝑆 = �𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑓𝑓 − 𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗��

−1
 (2.38) 

where the 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 tensors without the 𝑓𝑓 or 𝑚𝑚 superscripts refer to the properties of 

the whole composite. 

 The Halpin-Tsai equations (see e.g., [53]) can be written in a general form, 

 𝑃𝑃
𝑃𝑃𝑚𝑚

=
1 + 𝜁𝜁𝜁𝜁𝑣𝑣𝑓𝑓
1 − 𝜂𝜂𝑣𝑣𝑓𝑓

 (2.39) 

 
𝜂𝜂 =

(𝑃𝑃𝑓𝑓 𝑃𝑃𝑚𝑚) − 1⁄
(𝑃𝑃𝑓𝑓 𝑃𝑃𝑚𝑚) + 1⁄  (2.40) 

In Equation (2.22) the 𝑃𝑃 can be any of five moduli, 𝑘𝑘23, 𝐺𝐺23, 𝐺𝐺12, 𝐾𝐾, or 𝐺𝐺. These are, 

respectively, the plane strain bulk modulus, the transverse shear modulus, the 

longitudinal shear modulus, the bulk modulus, and the shear modulus [53]. The 𝑃𝑃’s with 

the subscripts 𝑚𝑚 and 𝑓𝑓 are the same moduli for the matrix and fiber, respectively. 𝜁𝜁 is a 

term that varies depending on which modulus is being calculated. Nielsen and Lewis [66] 

modified Halpin and Tsai’s equations to be the following 

 𝑃𝑃
𝑃𝑃𝑚𝑚

=
1 + 𝜁𝜁𝜁𝜁𝑣𝑣𝑓𝑓

1 − 𝜓𝜓�𝑣𝑣𝑓𝑓�𝜂𝜂𝑣𝑣𝑓𝑓
 (2.41) 

where 𝜓𝜓 is a function of the volume fraction and contains the maximum volume fraction 

as a parameter [53,67]. 𝜓𝜓 is constructed so that it gives accurate values near the lower 
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and upper limits of the volume fraction [53]. The form of Equation (2.41) was actually 

found by Ingber and Papathanasiou [68] to better represent the effective longitudinal 

modulus for short-fiber composites with aligned fiber orientation states than Equation 

(2.39) (as noted in [53]). 

 The transversely isotropic stiffness tensor 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 for a short-fiber composite with 

the fibers aligned along 𝑥𝑥1 can be related to the five material constants in contracted 

notation as (see e.g., [15,36]) 

 𝐂𝐂 = 

1
𝐸𝐸11

 
−𝜈𝜈12
𝐸𝐸11

 
−𝜈𝜈12
𝐸𝐸11

 0 0 0 -1 

(2.42) 

−𝜈𝜈12
𝐸𝐸11

 1
𝐸𝐸22

 
−𝜈𝜈23
𝐸𝐸22

 0 0 0  

−𝜈𝜈12
𝐸𝐸11

 
−𝜈𝜈23
𝐸𝐸22

 1
𝐸𝐸22

 0 0 0  

0 0 0 
1
𝐺𝐺23

 0 0  

0 0 0 0 
1
𝐺𝐺12

 0  

0 0 0 0 0 
1
𝐺𝐺12

  

 
with 𝜈𝜈23 = 𝐸𝐸22

2𝐺𝐺23
− 1. 

 
2.2.7 Stiffness and Thermal Expansion Tensors 

 Although most short-fiber composite material being extruded with FFF is fairly 

well aligned in the direction of the print path after extrusion, the fibers will not be 

perfectly aligned. However, once the transversely isotropic stiffness of a particular 

composite is known, we can do an orientation averaging procedure, also termed 

orientation homogenization, to find the stiffness of that composite for an arbitrary 

orientation state. Thus, if we know the theoretical transversely isotropic stiffness of a 

short-fiber composite and the anisotropic fiber orientation state at an arbitrary point 
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within the actual composite part, we can calculate the anisotropic fourth-order stiffness 

tensor at that point. This statement could be made even more general: the orientation 

average of a tensor property of arbitrary order 𝑛𝑛 is completely found by the 𝑛𝑛th-order 

orientation tensor and the unidirectional form of that property tensor (see e.g., [28,40]). If 

𝐓𝐓 is a property tensor of arbitrary order then its orientation average is 

 〈𝐓𝐓〉 = �𝐓𝐓(𝐩𝐩)𝜓𝜓(𝐩𝐩)𝑑𝑑𝐩𝐩 (2.43) 

In this equation, 𝐩𝐩 is the unit vector describing the orientation direction. When it is 

calculated, a fourth-order, transversely isotropic tensor property can be written in the 

form 

 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝐩𝐩) = 𝐵𝐵1�𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝑝𝑝𝑙𝑙� + 𝐵𝐵2�𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗𝛿𝛿𝑘𝑘𝑘𝑘 + 𝑝𝑝𝑘𝑘𝑝𝑝𝑙𝑙𝛿𝛿𝑖𝑖𝑖𝑖�

+ 𝐵𝐵3�𝑝𝑝𝑖𝑖𝑝𝑝𝑘𝑘𝛿𝛿𝑗𝑗𝑗𝑗 + 𝑝𝑝𝑖𝑖𝑝𝑝𝑙𝑙𝛿𝛿𝑗𝑗𝑗𝑗 + 𝑝𝑝𝑗𝑗𝑝𝑝𝑙𝑙𝛿𝛿𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑗𝑗𝑝𝑝𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖�

+ 𝐵𝐵4�𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘� + 𝐵𝐵5�𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗� 

(2.44) 

But Jack and Smith showed in [39] that Equation (2.44) was not a prerequisite for the 

analytic evaluation of Equation (2.43). Through the use of spherical harmonics, Jack and 

Smith [39] demonstrated that the material stiffness tensor expectation can be cast exactly 

as a function of the fourth-order and lower order orientation tensors. The homogenized 

stiffness in terms of these orientation tensors is (see, e.g. [36]) 

 〈𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖〉 = 𝐵𝐵1�𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� + 𝐵𝐵2�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝐴𝐴𝑘𝑘𝑙𝑙𝛿𝛿𝑖𝑖𝑖𝑖�

+ 𝐵𝐵3�𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖 + 𝐴𝐴𝑗𝑗𝑗𝑗𝛿𝛿𝑖𝑖𝑖𝑖� + 𝐵𝐵4�𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘�

+ 𝐵𝐵5�𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗� 

(2.45) 

where the brackets indicate the orientation average of the term inside the brackets. In 

Equation (2.45) for the underlying transversely isotropic stiffness tensor, the coefficients 
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𝐵𝐵𝑖𝑖 from Jack and Smith [39] are the same as those originally presented in Advani and 

Tucker [28] as 

 

⎩
⎪
⎨

⎪
⎧
𝐵𝐵1
𝐵𝐵2
𝐵𝐵3
𝐵𝐵4
𝐵𝐵5⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
𝐶𝐶11 + 𝐶𝐶22 − 2𝐶𝐶12 − 4𝐶𝐶66

𝐶𝐶12 − 𝐶𝐶23
𝐶𝐶66 + 0.5(𝐶𝐶23 − 𝐶𝐶22)

𝐶𝐶23
0.5(𝐶𝐶22 − 𝐶𝐶23) ⎭

⎪
⎬

⎪
⎫

 (2.46) 

The 𝐶𝐶𝑖𝑖𝑖𝑖’s correspond to the components of the contracted version of the transversely 

isotropic stiffness tensor in Equation (2.42). 

 Once the fourth-order homogenized stiffness tensor 〈𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖〉 has been determined, 

the second-order homogenized coefficient of thermal expansion tensor can also be 

determined [69]. With the effects of thermal stress included, 

 〈𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼𝑘𝑘𝑘𝑘〉 =  𝐷𝐷1𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐷𝐷2𝛿𝛿𝑖𝑖𝑖𝑖 (2.47) 

where 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼𝑘𝑘𝑘𝑘 is a double contraction of the transversely isotropic stiffness and the 

transversely isotropic CTE tensors and the coefficients 𝐷𝐷1 and 𝐷𝐷2 are given as 

 𝐷𝐷1 = 𝐴𝐴1(𝐵𝐵1 + 𝐵𝐵2 + 4𝐵𝐵3 + 𝐵𝐵5) + 𝐴𝐴2(𝐵𝐵1 + 3𝐵𝐵2 + 4𝐵𝐵3) (2.48) 

 𝐷𝐷2 = 𝐴𝐴1(𝐵𝐵2 + 𝐵𝐵4) + 𝐴𝐴2(𝐵𝐵2 + 3𝐵𝐵4 + 𝐵𝐵5) (2.49) 

where 

 𝐴𝐴1 = 𝛼𝛼11 − 𝛼𝛼22 (2.50) 

 𝐴𝐴2 = 𝛼𝛼22 (2.51) 

The 𝛼𝛼11 and 𝛼𝛼22 correspond to the CTE tensor of the unidirectional composite along, 

respectively, the 𝑥𝑥1 and 𝑥𝑥2 direction. These transversely isotropic CTE coefficients can 

be found using micromechanical theories. In the present study we use the method 

introduced by Schapery [70] and refined by Halpin [71] as expressed in Stair and Jack 
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[72]. To find the homogenized CTE tensor by itself, Equation (2.30) is right-multiplied 

by 〈𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖〉−1 to yield 

 〈𝛼𝛼𝑖𝑖𝑖𝑖〉 = 〈𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼𝑘𝑘𝑘𝑘〉〈𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖〉−1 (2.52) 

where 〈𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖〉−1 is the inverse of the fourth order orientation averaged stiffness tensor. 

This is not a trivial calculation as 〈𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖〉 must be written in contracted form, then inverted 

in the 6x6 contracted form, and then recast back to fourth-order. 
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CHAPTER THREE 
 

Computational Methods 
 
 

 The following chapter presents the solution methodology for predicting the final 

bead stiffness and coefficient of thermal expansion tensors for dilute and concentrated 

short-fiber suspensions. The chapter begins with an overview of the solution 

methodology with emphasis given to the analysis of the orientation state. The 

methodology is demonstrated through an example of planar flow without including the 

die swell effects on the extrudate. The focus on the planar flow without the die swell is 

given to highlight the differences in the orientation state and the final part performance 

between the dilute suspension model of Jeffery, and then the concentrated suspension 

models of Folgar and Tucker [29] and Wang et al. [1]. 

 
3.1 Computational Methodology Overview 

 In order to predict the effective longitudinal stiffness and coefficient of thermal 

expansion of a 3D printed, short-fiber reinforced composite bead, both COMSOL and 

MATLAB were used according to the flow chart in FIG. 3.1. First, the flow geometry, 

boundary conditions, and initial conditions are defined in COMSOL to be roughly based 

on the dimensions of a large scale 3D printer nozzle. COMSOL is then used to calculate 

the velocities and velocity gradients along several streamlines during the melt flow. The 

velocity profile as a function of spatial location is calculated at many points along each 

streamline and then the data is exported to files that are loaded in MATLAB. In 

MATLAB, in-house programs have been written to calculate the orientation tensors 
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following Equation (2.2) for individual fiber motion in a dilute suspension and Equations 

(2.23) and (2.24) for the motion of the fibers in a concentrated suspension. After the 

orientation tensors are found along each streamline, they are input into in-house 

MATLAB codes that calculate the spatially varying stiffness tensor, 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, using 

Equations (2.45)-(2.46) and the coefficient of thermal expansion tensor, 𝛼𝛼𝑖𝑖𝑖𝑖, using 

Equations (2.45)-(2.52) along the streamlines. As the final step, MATLAB and 

COMSOL are linked via LiveLinkTM, so that the stiffness and thermal expansion tensors 

calculated at the end of each streamline, corresponding to the end of the flow within the 

3D printer nozzle, are used to define the stiffness and thermal expansion properties of 

two samples in COMSOL. One of these samples is used to simulate a tensile test of a 3D 

printed bead and the other is to simulate a test for the coefficient of thermal expansion. 

After these tests have been simulated in COMSOL, the effective longitudinal Young’s 

modulus and effective longitudinal coefficient of thermal expansion can be derived from 

the numerical results in COMSOL. These latter results will be compared to the tensile 

testing and the thermo-mechanical test results of physical specimens in Chapter Four. 

 The model assumptions made in this chapter include the following. 

1. The fibers are short, rigid cylinders and they all have the same aspect ratio and are 

uniformly distributed throughout the composite. 

2. The upstream section of the nozzle is sufficiently long enough such that the 

orientation state from the screw can be neglected when defining the flow 

geometry.  

3. The polymer melt flow is decoupled from the fiber inclusions, is isothermal, and 

is represented by a Newtonian fluid. 
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4. The change in the velocity gradient is sufficiently small such that it can be 

assumed constant over the length scale of an individual fiber. 

5. The fiber and matrix are assumed to be linearly elastic, their material properties 

are isotropic, and the fiber and matrix are well bonded after processing. 

 

 
 

FIG. 3.1. Flow chart of the computational process 
 
 

3.2 Flow Geometry, Boundary Conditions, and Initial Conditions 

 In order to predict the effective longitudinal modulus and CTE in a short-fiber 

composite printed with a BAAM system, the first step is to model the flow geometry (i.e., 
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the inner dimensions of the BAAM nozzle) in COMSOL. Rough dimensions for the 

nozzle geometry came from measuring the actual large scale, FFF extruder, a 

Strangpresse Extruder Model 19, which was used in the experimental phase of this study. 

This extruder is the same brand and model extruder, with a slightly reduced flow rate, 

used by Oak Ridge National Laboratory as part of the broader work in commercializing 

the BAAM process. The actual interior geometry of the nozzle is very complicated up-

stream near the screw, so it was decided that for modeling purposes the up-stream flow 

features would be neglected and a simpler geometry would be used with roughly the 

same diameters for the nozzle exit and before the nozzle exit. As will be shown by the 

results later in this chapter, the dominating features dictating the orientation state are the 

contraction zone and the tip length after the contraction zone where shear flow 

dominates. The 3 mm and 12 mm diameters depicted in FIG. 3.2 are approximations 

taken directly from the Strangpresse nozzle. 

 In addition to the inner geometry of the nozzle, the proper boundary conditions 

and initial conditions need to be defined. It should be noted for this first example that 

although this problem could be modeled as axisymmetric, it is instead modeled in 

COMSOL in two dimensions and can thus be viewed as an infinite channel, extending 

infinitely in the positive and negative 𝑥𝑥3-directions. The top of the geometry is defined as 

an inlet condition in COMSOL as Laminar Inflow with an average velocity of 7.66 mm/s. 

The outlet condition is prescribed to have a pressure of zero and the flow direction 

constrained to the direction normal to the surface. The other boundaries are walls with no 

slip with a velocity vector 𝒗𝒗 = 𝟎𝟎. 
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FIG. 3.2. COMSOL flow geometry roughly based on a Strangpresse Extruder Model 19 
 
 

 As for initial conditions, the average inlet velocity is approximately 7.66 mm/s. 

This is determined by first manually measuring the throughput of the physical extruder. 

This was done with a hand held stopwatch on an iPhone 4s. The throughput for 13% 

carbon fiber filled ABS was determined to be approximately 60 grams/min. At first 

glance, this value might seem too low when compared to the advertised output for the 

Strangpresse Extruder Model 19, which is said to be 20 lbs/hr (about 151 grams/min), but 

this advertised value is for neat ABS [73]. Thus, it is important to remember that these 

measurements were taken from two different materials. After the throughput value was 

found, the density of the material was approximated using the following equation 
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 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) ∗ (% 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) + (𝐴𝐴𝐴𝐴𝐴𝐴 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) ∗ (% 𝐴𝐴𝐴𝐴𝐴𝐴) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

�1.85 
𝑔𝑔
𝑐𝑐𝑐𝑐3� ∗ (13%) + �1.05 

𝑔𝑔
𝑐𝑐𝑐𝑐3� ∗ (87%) = 1.154 ∗ 10−3  

𝑔𝑔
𝑚𝑚𝑚𝑚3 (3.1) 

The inlet flow speed could then finally be determined using the following equation 

 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

(𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)⁄
(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐~𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

=
(60 𝑔𝑔/𝑚𝑚𝑚𝑚𝑚𝑚) (1.154 ∗ 10−3 𝑔𝑔 𝑚𝑚𝑚𝑚3)⁄⁄

𝜋𝜋 ∗ (0.5 ∗ 12 𝑚𝑚𝑚𝑚)2 ≈ 7.66
𝑚𝑚𝑚𝑚
𝑠𝑠

 

(3.2) 

 
3.3 Calculation of the Velocity Gradients 

 Once the geometry, boundary conditions, and initial conditions have been defined 

in COMSOL, COMSOL is used to do a finite element analysis (FEA) to obtain the 

velocity profile during the melt process along individual streamlines. In Section 3.2 up to 

Section 3.6.2, 20 streamlines are used for the calculation as well as an extra fine mesh 

with 332,805 degrees of freedom. The computation takes about 25 seconds to obtain the 

velocity profile and the solution along the various streamlines is shown in FIG. 3.3. In 

this plot, 20 colored streamlines can be seen where the blue side of the color spectrum 

indicates smaller velocity magnitudes and the red side of the color spectrum indicates 

larger velocity magnitudes. Thus, as shown in the figure, the velocity of the fluid tends to 

speed up as the nozzle diameter gets smaller. The velocity is also faster towards the 

center of the nozzle as opposed to the walls which have a no slip boundary condition, 

with the greatest speed near the nozzle exit. Streamlines 0 and 8 have been pointed out 

since they will be used later in the analysis done in this chapter. They are specifically 

chosen since they represent the polymer melt flow near the wall of the nozzle as well as 

near the center of the nozzle. 
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FIG. 3.3. Streamlines; the color scheme depicts velocity magnitude 
 
 

 Once the finite element analysis is done, the velocity gradient data is exported 

from COMSOL into a text file in columnar format. The first two columns give 𝑥𝑥1 and 𝑥𝑥2 

coordinate locations, respectively, the third column gives the streamline number, and the 

fourth column gives the value of the specified velocity gradient. In the case of 20 

streamlines, COMSOL would number them by default as 0-19 and increasing from left to 

right. The velocities in the 𝑥𝑥1 and 𝑥𝑥2 directions can also be exported in this exact same 
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format and they are useful in converting the spatial location over to units of time for use 

in the time solution of the fiber orientation equations of motion. 

 Once the velocity gradient data has been exported from COMSOL it is loaded 

into a MATLAB file which makes plots of the velocity gradients for a user-selected 

streamline. The results for streamline 0, which is the leftmost streamline, and streamline 

8 which is slightly left of the center of the nozzle, are shown in FIG. 3.4 and FIG. 3.5, 

respectively. 

In FIG. 3.4 and FIG. 3.5 the left side of the plot is the inlet, at about 𝑥𝑥2 =

0.012 𝑚𝑚 the flow moves to the contraction region, and at about 𝑥𝑥2 = 0.010 𝑚𝑚 the flow 

enters the straight region of the extruder immediately before the exit. As can be seen in 

Figure 3.4, the velocity gradients start out as constant and the only component that is not 

zero is 𝑑𝑑𝑣𝑣2
𝑑𝑑𝑥𝑥1

. This means that in this initial region of the nozzle, the velocity in the 𝑥𝑥1-

direction, 𝑣𝑣1, is not changing across streamline 0 with respect to the positive 𝑥𝑥1 or 𝑥𝑥2 

directions. (This should be obvious since there is no horizontal movement.) The velocity 

in the 𝑥𝑥2-direction, 𝑣𝑣2, also does not change with respect to the positive 𝑥𝑥2-direction in 

this region. However, the velocity in the 𝑥𝑥2-direction does change with respect to the 𝑥𝑥1-

direction in this region because the flow is going slightly faster downward in the center of 

the nozzle than it is along the no slip walls. It is harder to notice this detail if we only 

look at FIG. 3.3 instead of FIG. 3.4, but with careful examination of FIG. 3.3 one can see 

that the blue streamlines are, indeed, a slightly lighter shade of blue in the center of the 

nozzle than they are closer to the edges. This means that the flow is slightly quicker in the 

center of the nozzle than it is on the edges. 
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At an 𝑥𝑥2-coordinate of about 0.012 𝑚𝑚, the nozzle starts to taper and large changes 

in the velocity gradients can be observed in FIG. 3.4. 𝑑𝑑𝑣𝑣1
𝑑𝑑𝑥𝑥1

 quickly increases because the 

velocity in the positive 𝑥𝑥1-direction increases with respect to the positive 𝑥𝑥1-direction 

across streamline 0 as the flow moves inward toward the middle of the nozzle and not 

just vertically downward. It then levels out at 0 after 𝑥𝑥2 ≈ 0.01 𝑚𝑚 because the flow 

enters the narrow part of the nozzle and the flow is again directed only in the vertical 

direction. For this geometry, 𝑑𝑑𝑣𝑣1
𝑑𝑑𝑥𝑥2

 also increases along streamline 0 because the 𝑥𝑥1-velocity 

increases positively with respect to the positive 𝑥𝑥2-direction. The most dynamic velocity 

gradient is 𝑑𝑑𝑣𝑣2
𝑑𝑑𝑥𝑥1

, which rises slightly and then dips dramatically, meaning that from left to 

right across streamline 0, the 𝑥𝑥2-velocity decreases in magnitude just before the nozzle 

starts to taper and then increases in magnitude dramatically at the beginning of the 

tapered section. Thus, the flow is much faster in the center of the tapered part of the 

nozzle than it is near the walls. 𝑑𝑑𝑣𝑣2
𝑑𝑑𝑥𝑥1

 then rises slightly again and flat lines in the straight 

region at the end of the nozzle, meaning that after the tapered part of the nozzle, in the 

straight, end section, the change in the 𝑥𝑥2-velocity from left to right is not as dramatic as 

it was at the end of the tapered part of the nozzle. In addition, after sometime, the change 

in the 𝑥𝑥2-velocity from left to right will stay constant across streamline 0 in the straight, 

end section of the nozzle, but will still be more dramatic than it was to begin with in the 

larger, straight section of the nozzle. This, in essence, means that there are larger shear 

rates in the small, end section than there are in the large, beginning section of the nozzle. 

Finally, the fact that 𝑑𝑑𝑣𝑣2
𝑑𝑑𝑥𝑥2

 goes negative in FIG. 3.4 in the tapered-nozzle region means that 

the velocity is accelerating downward along streamline 0 in this region. It then settles to a 
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constant value. Of note, these velocity gradients will affect the orientation state, but as 

will be shown below, the elongational gradient terms (𝑑𝑑𝑣𝑣1
𝑑𝑑𝑥𝑥1

 and 𝑑𝑑𝑣𝑣2
𝑑𝑑𝑥𝑥2

) will dominate the flow 

when they are present. 

 Similar types of explanations that were made regarding FIG. 3.4 can also be made 

for FIG. 3.5. Again, the large changes in the velocity gradients in FIG. 3.5 are in the 

tapered part of the nozzle. The biggest difference between the two is the relative values of 

the shearing gradients, 𝑑𝑑𝑣𝑣1
𝑑𝑑𝑥𝑥2

 and 𝑑𝑑𝑣𝑣2
𝑑𝑑𝑥𝑥1

, versus the elongational gradients, 𝑑𝑑𝑣𝑣1
𝑑𝑑𝑥𝑥1

 and 𝑑𝑑𝑣𝑣2
𝑑𝑑𝑥𝑥2

. The 

impact of this will become more obvious when looking at the orientation state whereby 

the fibers become highly aligned in the center channel of the flow due to the relatively 

high elongational effects within the tapered part of the nozzle. 

 
 

FIG. 3.4. Velocity gradients along streamline 0 
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FIG. 3.5. Velocity gradients along streamline 8 
 
 

3.4 Evolution of the Unit Vector 

 Once the velocity gradients have been calculated for a streamline, it is possible to 

calculate the vorticity and rate of deformation tensors also from Equations (2.3) and (2.4). 

More importantly, it is also possible to solve Jeffery’s Equation, from Equation (2.2), 

directly, which depends on the vorticity and rate of deformation tensors. In this way, the 

change in orientation of a single fiber moving along a single streamline can be studied. 

 To solve Jeffery’s Equation, it is programmed as a function file in MATLAB. 

This function file is solved in a script file by using a built-in ordinary differential 

equation (ODE) solver in MATLAB called ode45. An ODE solver is needed because 

Jeffery’s Equation is actually a coupled system of three ODEs. However, before solving 

Jeffery’s Equation with the ODE solver, one of the first steps to be done in the script file 
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is to load the velocity and velocity gradient data from the COMSOL simulation. It is also 

necessary to find at what moments in time the velocity and velocity gradient data is given 

by COMSOL, since this information is needed later but is not exported by COMSOL. 

Since COMSOL exports the velocity data such that the 𝑥𝑥1 and 𝑥𝑥2 velocities are given at 

the same coordinate points, one can obtain not only the velocity magnitudes between 

points, but also the distance between points. From these values, the formula 

 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 (3.3) 

can be used to find at what moments in time the velocities and velocity gradients are 

known.  

When everything has been properly defined and Jeffery’s Equation is ready to be 

solved with ode45 within the script file, ode45 will accept several inputs. The first 

input defines the time span and at which points in time the solution will be returned by 

the solver. The number of points does not state the time stepping scheme used by 

MATLAB’s solver as ode45 is an adaptive step size solver, but only determines the 

points at which the solution is returned for later use. For this case, 500 time steps were 

chosen to provide sufficient smoothness in later plotting. The next input is the initial unit 

vector of the individual fiber being analyzed. The initial orientation is defined by the unit 

vector given in Equation (2.1) where 𝜃𝜃 = 𝜋𝜋 4⁄  radians and 𝜙𝜙 = 𝜋𝜋 4⁄  radians. The third 

input contains various solver options that can be specified for the ODE solver. For this 

case, the only option that is chosen is that the relative error tolerance be 10-8. The next 

input into the ode45 function is 𝜆𝜆, where 𝜆𝜆 is defined by Equation (2.7) and in the 

present studies the parameter 𝑟𝑟𝑒𝑒, the equivalent ellipsoidal aspect ratio, to define 𝜆𝜆 is 
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chosen to be 10. The last two inputs are the times calculated from the COMSOL data 

along with the velocity gradient data. 

After all the necessary information has been accounted for, Jeffery’s Equation can 

be solved in MATLAB with ode45 for a single, user-selected streamline. To produce 

FIG. 3.6 and FIG. 3.7, streamline 0 was chosen and streamline 8 was chosen when 

producing FIG. 3.8. These plots show two components of the unit vector 𝐩𝐩 as they 

change with 𝑥𝑥2-location and time. It is worth noting that although the flow is modeled as 

planar, Jeffery’s model does not constrain the fiber to rotate in this plane – that is, 𝑝𝑝3 is 

not always 0 and could be shown to vary if it was graphed in FIG. 3.6 and FIG. 3.7. 

However, for simplicity, only 𝑝𝑝1 and 𝑝𝑝2 are graphed. 

 

 
 

FIG. 3.6. Components of 𝐩𝐩 as a function of 𝑥𝑥2 – streamline 0 
 
 



64 
 

 
 

FIG. 3.7. Components of 𝐩𝐩 as a function of time – streamline 0 
 
 

 It can be observed in FIG. 3.6, for 𝐩𝐩 as a function of position within the extruder, 

and FIG. 3.7 for 𝐩𝐩 as a function of time within the extruder, that the components of 𝐩𝐩 

tend to oscillate in the initial phase of the flow due to the periodic motion predicted by 

Jeffery’s Equation (the Jeffery orbits) for a fiber in a shearing flow. Then around 𝑥𝑥2 =

0.012 𝑚𝑚, which corresponds to 20 seconds into the flow, where the nozzle begins to taper 

and the flow transitions to elongational, the alignment state rapidly changes. After the 

taper is ended and the flow transitions back to shear dominated, the flow acclimates to the 

final straight portion of the nozzle. The periods of the curves near the exit, for values of 

𝑥𝑥2 < 0.01 𝑚𝑚, or equivalently for 𝑡𝑡 > 20 𝑠𝑠, are shorter than they are before 𝑥𝑥2 >

0.012 𝑚𝑚, or equivalently for 𝑡𝑡 < 20 𝑠𝑠, due to the larger magnitude of the shear in the end 

of the nozzle, where the diameter is smaller. The shear is not as large at the beginning of 
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the nozzle, where the diameter of the nozzle is larger. The primary difference between 

FIG. 3.6 and FIG. 3.7 is that in time the oscillations are very closely packed for the later 

flow within the narrow portion of the nozzle. 

The oscillations in FIG. 3.6 and FIG. 3.7 are relatively frequent for streamline 0 

because the shear rates are relatively high near the wall of the nozzle. We do not see this 

behavior for all streamlines, however. For example, FIG. 3.8 for the flow along 

streamline 8 occurring near the center of the channel does not show any periodic 

oscillations at all. 

 
 

FIG. 3.8. Components of 𝐩𝐩 as a function of 𝑥𝑥2 – streamline 8 
 
 

Close to the center of the nozzle the shear forces are not as strong and because of this, the 

orientation of the fiber does not change rapidly enough for the periodic motion to even be 

detectable in FIG. 3.8. There is a slow increase in the orientation alignment during the 
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initial phase of the flow prior to the nozzle contraction zone at 𝑥𝑥2 = 0.012 𝑚𝑚 and 𝑡𝑡 =

1.6 𝑠𝑠, but the elongational effects within the contraction zone completely negate any 

alignment and dominate the final orientation state even though the elongation region 

occupies a very small duration of the entire flow history. Another figure showing the plot 

of the components of 𝐩𝐩 as a function of time along streamline 8 could also be shown, but 

it would not offer much additional insight to this analysis and will thus not be included. 

 
3.5 Orientation Tensors – Jeffery Approach 

 Calculating the change in orientation of one fiber is a good place to start building 

up one’s understanding of fiber orientation modeling. However, in most industrial 

settings it would be much more helpful to have an understanding of the orientation state 

from a group of many fibers. Even though Jeffery’s Equation was made for a single fiber, 

it can be solved many times for many different fibers and then an approximation of the 

second- and fourth-order orientation tensors can be made. In order to approximate these 

second- and fourth-order orientation tensors, the integral definitions of the orientation 

tensors from Equations (2.12) and (2.13) are replaced by summations: 

 
𝐴𝐴𝑖𝑖𝑖𝑖 ≈

1
𝑁𝑁𝑓𝑓

�𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝𝑗𝑗𝑛𝑛
𝑁𝑁𝑓𝑓

𝑛𝑛=1

 (3.4) 

for the second-order tensor and 

 
𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≈

1
𝑁𝑁𝑓𝑓

�𝑝𝑝𝑖𝑖𝑛𝑛𝑝𝑝𝑗𝑗𝑛𝑛𝑝𝑝𝑘𝑘𝑛𝑛𝑝𝑝𝑙𝑙𝑛𝑛
𝑁𝑁𝑓𝑓

𝑛𝑛=1

 (3.5) 

for the fourth-order tensor. In these approximations, 𝑁𝑁𝑓𝑓 is the total number of fibers for 

which the Jeffery simulation is performed and 𝑛𝑛 denotes the 𝑛𝑛th fiber. The procedure for 

solving Jeffery’s Equation for many fibers is done by solving Jeffery’s Equation, as 
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discussed in Section 3.4, and repeating it for many different fibers sampled from an initial 

isotropic orientation distribution function using the ARGA method (see e.g., [36]). 

 In order to solve Jeffery’s Equation in MATLAB with ode45, the initial 

orientations of the fibers must be input into the function. In order to produce random 

initial orientations for the many different fibers, the Accept-Reject Generation Algorithm 

is used (see e.g., [36]). The ARGA algorithm will randomly sample discrete samples 

from any properly defined probability distribution function using a uniform random 

number generator. In this way a probability distribution that is defined in spherical 

coordinates may be objectively sampled from using another random number generator. 

For all cases in the following section, the initial orientation state was considered to be 

pure random. 

 Once Jeffery’s Equation is solved for a particular streamline selected by the user 

for each of the many different fibers, the second- and fourth-order orientation tensors at 

each point along that streamline can be approximated with Equations (3.4) and (3.5). The 

change in a few of the components of the second- and fourth-order orientation tensors 

along streamline 0 can be seen, respectively, in FIG. 3.9 and FIG. 3.10. For the rest of 

this thesis, we choose to graph only a few of the components of 𝐴𝐴𝑖𝑖𝑖𝑖 and 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 for 

simplicity and again, for the rest of this thesis, although the flow in the nozzle is defined 

for the 𝑥𝑥1-𝑥𝑥2 plane, the orientation state is not constrained to the 𝑥𝑥1-𝑥𝑥2 plane. We choose 

streamline 0 to produce these plots since there are dramatic changes in the fiber 

orientation due to the high shear and low flow rate along this streamline. It is important to 

observe that periodic motion can be seen occurring in FIG. 3.9 and FIG. 3.10 for both the  

 



68 
 

 
 

FIG. 3.9. Components of 𝐴𝐴𝑖𝑖𝑖𝑖 along streamline 0 – Jeffery’s model, 𝑁𝑁𝑓𝑓 = 503 
 
 

 
 

FIG. 3.10. Components of 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 along streamline 0 – Jeffery’s model, 𝑁𝑁𝑓𝑓 = 503 
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second- and fourth-order orientation tensors over the same 𝑥𝑥2-intervals as it did in FIG. 

3.6. 

 In addition, by carefully observing the two initial humps in the 𝐴𝐴22 component in 

FIG. 3.9 and 𝐴𝐴2222 component in FIG. 3.10, one can notice that they are not perfectly 

smooth across their tops. This is an artifact of the approximations made in Equations 

(3.4) and (3.5). Equations (3.4) and (3.5) will approach the smooth value expected from 

the integral definitions as 𝑁𝑁𝑓𝑓 → ∞. This is impossible to program, but using a larger 

value for 𝑁𝑁𝑓𝑓 in the orientation tensor approximations would lead to smoother results. We 

illustrate this by using a larger value of 𝑁𝑁𝑓𝑓 to create FIG. 3.11 and FIG. 3.12. 𝑁𝑁𝑓𝑓 is 503 

for generating FIG. 3.9 and FIG. 3.10 and 1124 for generating FIG. 3.11 and FIG. 3.12. 

Other than the different values of 𝑁𝑁𝑓𝑓, FIG. 3.11 and FIG. 3.12 are made with the exact 

same MATLAB code as FIG. 3.9 and FIG. 3.10. The plots in FIG. 3.11 and FIG. 3.12 

are, indeed, slightly smoother than the ones in FIG. 3.9 and FIG. 3.10, but not by much. 

Furthermore, generating FIG. 3.11 and FIG. 3.12 requires almost twice the amount of 

time as it does to generate FIG. 3.9 and FIG. 3.10 (about 215 seconds using a standard 

Intel i7-Generation 4 desktop as opposed to about 123 seconds). 

 In addition to streamline 0, it will also be of some value to look at a streamline 

closer to the center of the nozzle. Components of the second- and fourth-order orientation 

tensors along streamline 8 have also been graphed in FIG. 3.13 and FIG. 3.14, 

respectively. When considering streamline 8 in FIG. 3.13 and FIG. 3.14, we notice that 

periodic motion is, again, imperceptible, just as it was in FIG. 3.8 for a single fiber 

traversing streamline 8. Once again, this is due to the smaller shear rates closer to the 

center of the nozzle. Again the fibers align along the direction of the flow as observed by  
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FIG. 3.11. Components of 𝐴𝐴𝑖𝑖𝑖𝑖 along streamline 0 – Jeffery’s model, 𝑁𝑁𝑓𝑓 = 1,160 
 
 

 
 

FIG. 3.12. Components of 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 along streamline 0 – Jeffery’s model, 𝑁𝑁𝑓𝑓 = 1,160 
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FIG. 3.13. Components of 𝐴𝐴𝑖𝑖𝑖𝑖 along streamline 8 – Jeffery’s model, 𝑁𝑁𝑓𝑓 = 472 
 
 

 
 

FIG. 3.14. Components of 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 along streamline 8 – Jeffery’s model, 𝑁𝑁𝑓𝑓 = 472 
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𝐴𝐴22 and 𝐴𝐴2222 both increasing, and the rate of alignment is greatest in the contraction 

region. 

 It is worth explaining why streamlines 0 and 8 were chosen for the graphs in this 

section of the thesis. For one, streamline 0 was chosen so that it could be clearly shown 

that periodic motion was occurring, as Jeffery’s model predicts in a shearing flow. 

Secondly, streamline 8 was chosen since it was closer to the center of the nozzle and 

shows that not all of the streamlines predict severely oscillating changes in orientation 

since they are not all under the influence of high shear rates. 

 Another observation to make in FIG. 3.9, FIG. 3.11, and FIG. 3.13 is that the 𝐴𝐴𝑖𝑖𝑖𝑖 

component that tends to be the largest is 𝐴𝐴22. Even for streamline 0 where 𝐴𝐴22 

periodically decreases, it is evident that 𝐴𝐴22 tends to stay near its maximum value longer 

than it does near its minimum. This means that Jeffery’s model predicts that the fibers 

will tend to align towards the 𝑥𝑥2-direction (the vertical direction) for the specific flow 

field defined in Section 3.2. In other words, the fiber orientation state will no longer be 

isotropic due to the preferential alignment nor will it be homogeneous spatially as the 

orientation state along the outer walls is drastically different than those near the center-

line. This will have a significant impact upon the material properties as will be 

demonstrated in later sections. 

 
3.6 Orientation Tensors – IRD and RSC Approaches 

 Two significant issues arise by using Jeffery’s Equation for the solution of many 

fibers and then approximating the resulting orientation tensors afterwards: (1) the fiber 

interactions are not accounted for and, (2) the fiber orientation state never reaches a 

steady state – it just keeps exhibiting periodic motion forever. The latter of these two 
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issues is effectively a byproduct of the first as the lack of interactions will result in 

periodic motion, and with all fibers having the same aspect ratio their periods of motion 

will be identical. In this section, we will look at Folgar and Tucker’s Isotropic Rotary 

Diffusion (IRD) model [29] and the Reduced Strain Closure (RSC) [1] model which both 

include fiber interaction terms and can therefore lead to steady state values for the 

orientation state. It turns out that the IRD and RSC models can be adapted to model both 

dilute (no fiber interactions) and concentrated (with fiber interactions) fiber suspensions, 

based on the values for their associated empirical parameters. Equations (2.23) and 

Equation (2.24) are the second-order orientation tensor evolution equations for the IRD 

and RSC models, respectively, both of which will be investigated throughout the 

remainder of this chapter. 

 
3.6.1 Dilute Suspensions 

When a model based on Jeffery’s model does not account for fiber interactions, 

that model can, at most, only be valid for dilute suspensions where fiber interactions do 

not have any effect on the change in orientation state. In this section, we will examine 

how both the IRD model and the RSC model can be reduced down to Jeffery’s model. In 

doing so, the IRD model and RSC model are still valid for dilute suspensions. 

 
 3.6.1.1 Comparison of IRD without Fiber Interactions and Discrete Jeffery Model 

Solutions. In order to model a dilute suspension using Folgar and Tucker’s IRD model, 

we could simplify Equation (2.23) by simply canceling out the last term in the equation. 

Equivalently, we could choose 𝐶𝐶𝐼𝐼 = 0. This yields, 
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 𝐷𝐷𝐴𝐴𝑖𝑖𝑖𝑖
𝐷𝐷𝐷𝐷

= −
1
2
�𝛺𝛺𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 − 𝐴𝐴𝑖𝑖𝑖𝑖𝛺𝛺𝑘𝑘𝑘𝑘� +

1
2
𝜆𝜆�𝛤𝛤𝑖𝑖𝑖𝑖𝐴𝐴𝑘𝑘𝑘𝑘 + 𝐴𝐴𝑖𝑖𝑖𝑖𝛤𝛤𝑘𝑘𝑘𝑘 − 2𝛤𝛤𝑘𝑘𝑘𝑘𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖� (3.6) 

which is exactly the same as the integral form of Jeffery’s Equation, Equation (2.2), 

except that it is in terms of the orientation tensors instead of 𝑝𝑝𝑖𝑖 (see e.g., [36]). It is 

important to connect this idea back to Section 3.5, where it was discussed how the 

orientation tensors could be found using Jeffery’s Equation. The approach of Section 3.5 

first solved Jeffery’s Equation for many fibers and then the orientation tensors were 

approximated using the approximations of the integral forms given in Equations (3.4) and 

(3.5). Now, Equation (3.6) gives one the opportunity to calculate the second-order 

orientation tensor explicitly with Jeffery’s model and there is therefore no need to 

approximate it using an equation like Equation (3.4). Although this is true, there should 

be a warning here though. 𝐴𝐴𝑖𝑖𝑖𝑖 can be explicitly calculated with Equation (3.6), but we 

must recognize the crucial detail that the fourth-order orientation tensor 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 appears in 

the expression for 𝐴𝐴𝑖𝑖𝑖𝑖 and thus must be approximated using a closure method. Thus, 𝐴𝐴𝑖𝑖𝑖𝑖 

is calculated explicitly but is only as accurate as the approximation of 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 allows it to 

be. For this thesis, the fourth-order orientation tensor is approximated using a form of the 

ORT closure of VerWeyst [74]. In addition, in spite of the fact that the orientation states 

are still technically being approximated, the form of Equation (3.6) allows us to define an 

initial orientation state for ode45 that is truly, perfectly random. That is 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1
3
𝛿𝛿𝑖𝑖𝑖𝑖 

exactly and not just approximately as was the case when we were using Jeffery’s model 

and a finite number of fibers. 

 We next move on to a comparison test to confirm that solutions from Equation 

(3.6) with the ORT approximation of the fourth-order orientation tensor 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 yield the 
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same results as Jeffery’s model. For the sake of comparing the solutions of the IRD 

model without fiber interactions with solutions of Jeffery’s model from discrete 

individual fibers, it has been decided to compare the plots of the components of the 

orientation tensors along streamline 0 from FIG. 3.3. The solutions from solving Jeffery’s 

equation for many discrete fibers has been shown in FIG. 3.9 and FIG. 3.10. For the IRD 

plots, the full IRD model, Equation (2.23), is written as a function file in MATLAB. In 

order to solve this function in MATLAB, ode45 is used again with almost the same 

inputs as those used in Sections 3.4 and 3.5. These include the time span with 500 steps 

in time, a relative error tolerance of 10-8, a 𝜆𝜆 ≈ 0.98 (where 𝑟𝑟𝑒𝑒 = 10), time data exported 

from COMSOL, and velocity gradient data exported from COMSOL. The only two 

inputs that differ from the inputs of Jeffery’s function in MATLAB are the initial 

orientation state, which is defined as a 1x5 vector containing the independent components 

of the initial second-order orientation tensor 𝐴𝐴𝑖𝑖𝑖𝑖 as opposed to the initial orientation of a 

3x1 unit vector 𝐩𝐩 directed along a single fiber, and an interaction coefficient, 𝐶𝐶𝐼𝐼. Recall, 

the full IRD model of Equation (2.23) allows for fiber interactions through the interaction 

coefficient 𝐶𝐶𝐼𝐼, but in this present example we set 𝐶𝐶𝐼𝐼 = 0 such that there are no fiber 

interactions. 

In solving the IRD model with no fiber interaction in MATLAB, FIG. 3.15 and 

FIG. 3.16 are produced for streamline 0. It is important to note the similarity between 

FIG. 3.9 and FIG. 3.15 and also FIG. 3.10 and FIG. 3.16. FIG. 3.9 and FIG. 3.10 were 

produced by solving Jeffery’s equation for a discrete sample of fibers beginning from the 

individual unit vector 𝐩𝐩 and then approximating the solution of the orientation tensors. A 

difference can be seen in the two smooth humps occurring in the initial stages of the  
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FIG. 3.15. Components of 𝐴𝐴𝑖𝑖𝑖𝑖 along streamline 0 – IRD model, no fiber interaction 
 
 

 
 

FIG. 3.16. Components of 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 along streamline 0 – IRD model, no fiber interaction 
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nozzle for 0.03 𝑚𝑚 > 𝑥𝑥2 > 0.012 𝑚𝑚 in 𝐴𝐴22 and 𝐴𝐴2222 in FIG. 3.15 and FIG. 3.16, 

respectively, which appear smoother than they do in FIG. 3.9 and FIG. 3.10. In addition, 

the code to run the IRD model is much more efficient than the code for running Jeffery’s 

model. In the present implementation, the IRD code takes about 4 seconds to complete 

whereas Jeffery’s model for 1100 discrete fibers takes about 3 minutes. 

 
 3.6.1.2 Comparison of RSC without Fiber Interactions and Discrete Jeffery Model 

Solutions. The RSC model can also be adapted to match Jeffery’s model exactly. This 

model is programmed as a function in MATLAB identically to the way the IRD model in 

Section 3.6.1.1 was programmed, with the only difference being one extra input 𝜅𝜅, which 

appears in Equation (2.24) in order to slow down the fiber alignment rate. When selecting 

𝐶𝐶𝐼𝐼 = 0 and 𝜅𝜅 = 1, the terms −2𝛤𝛤𝑘𝑘𝑘𝑘(1 − 𝜅𝜅)�𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚� and 2𝜅𝜅𝜅𝜅𝐼𝐼𝛾̇𝛾�𝛿𝛿𝑖𝑖𝑖𝑖 − 3𝐴𝐴𝑖𝑖𝑗𝑗� 

disappear from Equation (2.24) and one is again left with Jeffery’s Equation, in terms of 

the orientation tensors [i.e. Equation (3.6)]. Thus, if we set 𝐶𝐶𝐼𝐼 = 0 and 𝜅𝜅 = 1 and solve 

the RSC model with the exact same conditions as the IRD model in Section 3.6.1.1, we 

will yet again obtain a figure identical to FIG. 3.15 for the components of 𝐴𝐴𝑖𝑖𝑖𝑖 along 

streamline 0. The figure produced with the RSC model with 𝐶𝐶𝐼𝐼 = 0 and 𝜅𝜅 = 1 is given in 

FIG. 3.17 to demonstrate that in the limit of no fiber interactions and the slowness 

parameter 𝜅𝜅 set to 1 yields identical solutions to those shown in FIG. 3.15 and extremely 

similar solutions to those shown in FIG. 3.9, the latter of which were produced from a 

finite number of fibers. The RSC code runs in a similar amount of time as does the IRD 

model and in the present instance took 4 seconds. A figure identical to FIG. 3.16 (and 

extremely similar to FIG. 3.10) could also be generated, but at this point we will maintain 

our focus on the results from the second-order orientation tensor as those results lend 
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themselves to a broader discussion of the alignment state. The use of the fourth-order 

orientation tensor will be discussed when the material stiffness and coefficient of thermal 

expansion tensors are reintroduced in Section 3.7. 

 
 

FIG. 3.17. Components of 𝐴𝐴𝑖𝑖𝑖𝑖 along streamline 0 – RSC model, no fiber interaction 
 
 

3.6.2 Concentrated Suspensions 

 The fact that FIG. 3.15, FIG. 3.16, and FIG. 3.17 all match the previous plots 

made by the Jeffery model in FIG. 3.9 and FIG. 3.10 demonstrates the in-house programs 

written in MATLAB are being executed properly up to this point. These consistencies 

also help to demonstrate that the IRD and RSC models are extensions of the Jeffery 

model. In this section the IRD and RSC models will be utilized for concentrated 

suspensions to highlight the impact the internal fibers have on the macroscopic 

orientation state. 
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 3.6.2.1. IRD with Fiber Interactions. To demonstrate the behavior of the IRD 

model with fiber interactions, we first illustrate the model with a value for the interaction 

coefficient of 𝐶𝐶𝐼𝐼 = 10−2 for streamlines 0 and 8 from FIG. 3.3. For the follow-on studies 

the results from several different values of 𝐶𝐶𝐼𝐼 will be presented to demonstrate how the 

model changes as 𝐶𝐶𝐼𝐼 increases. Other than the different values for 𝐶𝐶𝐼𝐼, the same MATLAB 

functions and conditions are used in this section as those used in Section 3.6.1 on dilute 

suspensions. 

When 𝐶𝐶𝐼𝐼 = 10−2, the IRD model can be used to produce FIG. 3.18 using the in-

house MATLAB program described earlier in Section 3.6.1.1. FIG. 3.18 shows 

components of 𝐴𝐴𝑖𝑖𝑖𝑖 along streamline 0. The initial orientation state used was completely 

random, i.e. 𝐴𝐴𝑖𝑖𝑖𝑖 = 1
3
𝛿𝛿𝑖𝑖𝑖𝑖. It is important to notice that with the addition of a fiber 

interaction term, the periodic motion observed by Jeffery’s equation is now gone. It is 

also noticeable that the fibers are predicted to align mostly in the 𝑥𝑥2-direction in the 

straight parts of the nozzle, but in the tapered, or “funneled,” part of the nozzle the fibers 

tend to rapidly align more in the 𝑥𝑥1-direction due to the highly elongational flow 

experienced within the contraction region of the nozzle. After the contraction region is 

completed, the fibers again align in the direction of the flow due to the high shear flow in 

the latter regions of the nozzle. Although and initial orientation state is specified to be 

completely random for producing FIG. 3.18, the IRD model will predict the fiber 

orientation state will reach the same steady state values no matter what the initial 

orientation is. Thus, as long as the nozzle geometry is long enough for the orientation 

state to reach steady state, the initial orientation state condition does not matter. 
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FIG. 3.18. Components of 𝐴𝐴𝑖𝑖𝑖𝑖 along streamline 0 – IRD model, 𝐶𝐶𝐼𝐼 = 0.01 
 
 

For streamline 8 the results for the second-order orientation tensor are provided in 

FIG. 3.19. Again, it can be noticed that there is no oscillating of the orientation state and 

that the highest component of 𝐴𝐴𝑖𝑖𝑖𝑖 is 𝐴𝐴22, which means that the fibers are predicted to 

mostly align in the vertical direction close to the center of the nozzle. There is not a 

severe dip in 𝐴𝐴22 in the tapered part of the nozzle for streamline 8 like there is for 

streamline 0. A primary reason for this is that streamline 8 is near the center of the nozzle 

and the extension/compression effects on the velocity gradient near the centerline are 

very small. Another way to visualize this is to say that particles that initiate near the 

center-line in the 𝑥𝑥2 direction exhibit very little motion in the 𝑥𝑥1 direction. 

 We will now inspect what happens to the IRD model predictions as the fiber 

interactions are changed. For this study we let 𝐶𝐶𝐼𝐼 = 0, 10−4, 10−3, and 10−2. In addition, 
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FIG. 3.19. Components of 𝐴𝐴𝑖𝑖𝑖𝑖 along streamline 8 – IRD model 
 
 

for the sake of simplicity, we will only choose one component of 𝐴𝐴𝑖𝑖𝑖𝑖 to examine. Since 

we have seen that the direction of highest fiber alignment is the 𝑥𝑥2-direction, we choose 

𝐴𝐴22 to compare IRD models with different values of 𝐶𝐶𝐼𝐼. A plot of 𝐴𝐴22 with the different 

values of 𝐶𝐶𝐼𝐼 can be seen in FIG. 3.20. The inputs and code used to generate FIG. 3.20 are 

identical to those used to generate the previous two figures, except for changes in some 

plotting commands and the addition of a for loop over the different interaction 

coefficients. It can be seen that increasing the value of 𝐶𝐶𝐼𝐼 tends to dampen the periodic 

motion more and more. Thus a higher value of 𝐶𝐶𝐼𝐼 allows the fiber orientation state to 

reach steady state more quickly. The increasing interaction coefficient also has the effect 

of reducing the overall alignment state, thus with increasing fiber interaction the overall 

alignment at steady state is lowered. 
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FIG. 3.20. 𝐴𝐴22 along streamline 0 – IRD model with varying 𝐶𝐶𝐼𝐼 
 
 

 3.6.2.2 RSC with Fiber Interactions. In this section, we illustrate the use of the 

RSC model over a range of typical values of 𝐶𝐶𝐼𝐼 and 𝜅𝜅. This first study is for 𝐶𝐶𝐼𝐼 = 10−2 

and 𝜅𝜅 = 1
30

. After this, while holding 𝐶𝐶𝐼𝐼 constant, different values of 𝜅𝜅 will be used to 

examine the change in the RSC model as 𝜅𝜅 decreases. The rest of the conditions to be 

input into the MATLAB functions are the same as those used in the previous section on 

the IRD model. Thus, the initial orientation state is, once again, completely random, i.e. 

𝐴𝐴𝑖𝑖𝑖𝑖 = 1
3
𝛿𝛿𝑖𝑖𝑖𝑖. 

When solving the RSC model [i.e. Equation (2.24)] with 𝐶𝐶𝐼𝐼 = 10−2 and 𝜅𝜅 = 1
30

 

for streamline 0, FIG. 3.21 can be produced. This figure expresses the change in some of 
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the components of 𝐴𝐴𝑖𝑖𝑖𝑖 with respect to 𝑥𝑥2-position in the 3D printer nozzle. Clearly, FIG. 

3.21 is different from FIG. 3.18 for the IRD model with the same interaction coefficient 

𝐶𝐶𝐼𝐼, because the RSC model includes the additional parameter 𝜅𝜅 that can drastically slow 

down the rate of alignment. In FIG. 3.18, the components of 𝐴𝐴𝑖𝑖𝑖𝑖 quickly change and seem 

to have already arrived at a steady state value before the flow even reaches the tapered 

part of the nozzle. In contrast, the components of 𝐴𝐴𝑖𝑖𝑖𝑖 appear to be nowhere near steady 

state values in the RSC results shown in FIG. 3.21 prior to 𝑥𝑥2 = 0.012 m (where the 

tapered part of the nozzle begins). In fact, it appears that the RSC model predicts that the 

fiber orientation will never even reach steady state prior to the end of the nozzle. Because 

the fiber orientation state never reaches steady state for the nozzle used in this study, the 

RSC predictions of the final orientation state could be more sensitive to the initial 

orientation state than the IRD predictions. Again, the results presented below are for a 

completely random initial orientation state, 𝐴𝐴𝑖𝑖𝑖𝑖 = 1
3
𝛿𝛿𝑖𝑖𝑖𝑖. 

 A similar type of plot to FIG. 3.21 can also be made for the evolution of 𝐴𝐴𝑖𝑖𝑖𝑖 

closer to the center of the nozzle, along streamline 8. This plot can be seen in FIG. 3.22. 

There is very little change in any of the components of 𝐴𝐴𝑖𝑖𝑖𝑖 along this streamline. It is 

worth noting that 𝐴𝐴22 is much lower for this streamline than it is for streamline 0. In fact, 

at the end of the nozzle, the orientation state remains near to the initial orientation state of 

perfectly random (𝐴𝐴11 = 𝐴𝐴22 = 𝐴𝐴33 = 1/3) for streamline 8. Since the orientation state 

is different from streamline to streamline at the end of the nozzle according to the RSC 

model, we will find that when the RSC model is used, the material properties of the final 

3D printed bead will also vary from streamline to streamline at the end of the nozzle. 

This will be discussed in Section 3.7. 
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FIG. 3.21. Components of 𝐴𝐴𝑖𝑖𝑖𝑖 along streamline 0 – RSC model, 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1
30

 
 
 

 
 

FIG. 3.22. Components of 𝐴𝐴𝑖𝑖𝑖𝑖 along streamline 8 – RSC model, 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1
30
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 This next study investigates the effects of varying the 𝜅𝜅 term. For this study we 

will let 𝐶𝐶𝐼𝐼 = 10−2 and 𝜅𝜅 = 1, 1
10

, and 1
30

. Again we will just look at the effects of 𝜅𝜅 on the 

RSC predictions of 𝐴𝐴22. These can be seen in FIG. 3.23. From this plot, it can be seen 

that increasing 𝜅𝜅 tends to decrease the steepness of the slope of the curves, or in other 

words, decrease the rate at which the fibers reach their steady state. The red curve with no 

strain reduction (i.e. 𝜅𝜅 = 1) in FIG. 3.23 is exactly the same as the IRD curve for 𝐴𝐴22 in 

FIG. 3.18 since both have the same interaction coefficient and neither have strain 

reduction. Observe how the final orientation state at the exit of the nozzle (𝑥𝑥2 = 0 𝑚𝑚) 

varies as a function of the slowness parameter 𝜅𝜅. For a long enough nozzle, the RSC 

model would predict a steady state value of the fiber orientation state. 

 

 
 

FIG. 3.23. 𝐴𝐴22 along streamline 0 – RSC model with 𝐶𝐶𝐼𝐼 = 0.01 and varying 𝜅𝜅 
 



86 
 

 3.6.2.3 Fiber Interaction Model Conclusions. Both the IRD and RSC models have 

been illustrated. Both of these models incorporate fiber interaction and can predict steady 

state values for the fiber orientation. The RSC model was created to slow down the rate 

of fiber alignment which was too fast in models such as the IRD. In comparing plots 

generated with the IRD and RSC models, we have seen that the RSC does, indeed, do 

this. We have also seen that the IRD and RSC models are truly extensions of Jeffery’s 

model and will give the same results as long as the correct values are chosen for the 

constant terms 𝐶𝐶𝐼𝐼 and 𝜅𝜅. 

 
3.7 Stiffness and Coefficient of Thermal Expansion Tensors along a Streamline 

 In Section 3.7, the stiffness and CTE properties of a 3D printed, short-fiber 

composite bead will be examined. Since these properties depend on the fiber orientation 

state within the composite through Equations (2.45)-(2.52), these properties will change 

along the flow of the composite just as the orientation state also changes. This section has 

three main subsections. The first of these, 3.6.1, is concerned with calculating the 

stiffness and CTE tensor properties as they change along a single streamline. The next 

subsection, 3.6.2, is concerned with calculating the stiffness and CTE tensor properties at 

the exit of the 3D printer nozzle. In the third and final subsection we link MATLAB and 

COMSOL, defining the stiffness tensor properties for a part in COMSOL as those that 

were calculated at the nozzle exit in MATLAB for subsection 3.6.2. Thus the properties 

at the nozzle exit will be the properties across the whole, newly created part in 

COMSOL. Then a tensile test simulation is done on this part in COMSOL and the 

effective longitudinal Young’s modulus is derived. In addition, the stiffness and CTE 
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tensor properties for another part in COMSOL are defined as those at the nozzle exit and 

a test for the effective longitudinal CTE is simulated. 

 
3.7.1 Stiffness and CTE along a Single Streamline 

 In order to get the stiffness and CTE tensors along a single streamline, we use the 

results from the previous sections for Jeffery’s model, the IRD model, and the RSC 

model for finding the orientation tensors along the streamline. Once the orientation state 

is identified, the stiffness and CTE tensors can be found along the streamline as well. In 

essence, this section will show that the material properties along a streamline depend on 

both the fiber orientation state and, consequently, on the model used to calculate the fiber 

orientation state. 

 
 3.7.1.1 Stiffness and CTE along a single streamline – Jeffery’s model. In order to 

get the stiffness and CTE tensors along a single streamline, we will need to define the 

material properties of the fiber and polymer matrix, calculate the orientation tensors, 

calculate the transversely isotropic stiffness tensor using a valid micromechanics model, 

and finally calculate the orientation averaged stiffness and CTE tensors. 

 One of the first pieces of information that will be needed in MATLAB is the 

material properties of the ABS matrix and carbon fiber. The following properties were 

used for this thesis: 

1. Young’s modulus of ABS = 2.25 𝐺𝐺𝐺𝐺𝐺𝐺 (this is the average of the lower and upper 

bounds given by [75]) 

2. CTE of ABS = 90 × 10−6 (𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚)/𝑜𝑜𝐶𝐶 (this is the average of the lower and 

upper bounds given by [76]) 
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3. Poisson’s ratio of ABS =  0.35 (given by [77]) 

4. Young’s modulus of carbon fiber =  230 𝐺𝐺𝐺𝐺𝐺𝐺 (given by [72]) 

5. CTE of carbon fiber = −2.6 × 10−6 (𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚)/𝑜𝑜𝐶𝐶 (given by [72]) 

6. Poisson’s ratio of carbon fiber =  0.2 (given by [72]) 

Two more material characteristics are also needed: the equivalent ellipsoidal aspect ratio, 

which is chosen to be 10, and the fiber volume fraction. The fiber volume fraction can be 

calculated since the particular choice of carbon fiber filled ABS used in the experimental 

phase of this study, which was manufactured by PolyOne, is 13% carbon fiber by weight 

according to its technical data sheet [78]. In order to convert the weight fraction 𝑤𝑤𝑓𝑓 to a 

volume fraction 𝑣𝑣𝑓𝑓, the densities of carbon fiber and ABS are needed. The density of 

carbon 𝜌𝜌𝑓𝑓 is 1.75-1.95 g/cm3 according to [79] and the density of ABS 𝜌𝜌𝑚𝑚 is 1.03-1.07 

g/cm3 according to [80]. After choosing values for the carbon fiber density and ABS 

density within these ranges, the fiber volume fraction can be calculated using the 

following formula (see e.g., [81]) 

 𝑣𝑣𝑓𝑓 =
𝑤𝑤𝑓𝑓

𝑤𝑤𝑓𝑓 + (1 − 𝑤𝑤𝑓𝑓)
𝜌𝜌𝑓𝑓
𝜌𝜌𝑚𝑚

 (3.7) 

The minimum value of 𝑣𝑣𝑓𝑓, given the ranges for 𝜌𝜌𝑓𝑓 and 𝜌𝜌𝑚𝑚, is 0.0732 and the maximum 

value is 0.0837. Averaging these values we get a fiber volume fraction of 0.0784 and will 

use this value for the remainder of this thesis. 

 The transversely isotropic stiffness tensor needs to be found using an appropriate 

micromechanics model, as discussed in the literature review, and in this thesis the 

Tandon-Weng micromechanics model [63] is used. It is programed as a function M-file 

and accepts inputs of the fiber and matrix elastic moduli, the fiber and matrix Poisson’s 
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ratios, the fiber volume fraction, and the fiber aspect ratio. From these inputs, the 

function evaluates the Tandon-Weng micromechanics model and returns the transversely 

isotropic, fourth-order stiffness tensor in contracted notation. Once this transversely 

isotropic stiffness tensor is found, it can be input along with the orientation tensors along 

the streamline and the number of moments in time for which these orientation tensors 

have been calculated, into another MATLAB function. This function contains Equations 

(2.45) and (2.46) and can calculate the fourth-order, orientation averaged, stiffness tensor 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 along the streamline for any spatial location for which the orientation tensors are 

known. Once the fourth-order, orientation averaged, stiffness tensor is found along the 

streamline, it, along with the second-order orientation tensor along the streamline and 

several other material properties, can be input into a MATLAB function which solves 

Equations (2.46)-(2.52) for the second-order, orientation averaged, coefficient of thermal 

expansion tensor 𝛼𝛼𝑖𝑖𝑖𝑖. 

  Select components of the fourth-order stiffness tensor and second-order 

coefficient of thermal expansion tensor along streamline 0 are plotted in FIG. 3.24 and 

FIG. 3.25 as functions of 𝑥𝑥2. These results from the Jeffery model are obtained using the 

program written for the IRD model with the ORT closure for 𝐶𝐶𝐼𝐼 = 0 as discussed in 

Section 3.6. It is readily seen that the components of the stiffness tensor in FIG. 3.24 

follow the trends of the components of the fourth-order orientation tensor as shown in 

FIG. 3.10, FIG. 3.12, and FIG. 3.16. This is evidence of the fact that the stiffness is 

directly related to the fiber orientation state and that higher fiber alignment in a certain 

direction corresponds to higher stiffness in that direction. This explains why the 

longitudinal stiffness 𝐶𝐶2222 is generally much higher than the transverse stiffness 𝐶𝐶1111, 
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FIG. 3.24. Components of 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 along streamline 0 – Jeffery model 
 
 

 
 

FIG. 3.25. Components of 𝛼𝛼𝑖𝑖𝑖𝑖 along streamline 0 – Jeffery model 
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because the fiber alignment in the longitudinal direction is generally much higher than 

the transverse fiber alignment. 

 In FIG. 3.25 the plots of the transverse and longitudinal components of the CTE 

tensor appear similar in shape, respectively, to the plots of the transverse and longitudinal 

components of the fourth-order orientation tensor reflected over the horizontal axis. This 

is likely a result of the CTE of the carbon fibers being less than the CTE of the ABS 

matrix which serves to counteract the thermal expansion of the ABS, especially in the 

direction the fibers are most highly aligned. 

 
 3.7.1.2 Stiffness and CTE along a single streamline – IRD model. The exact same 

procedure and material properties used in section 3.7.1.1 can also be used with the IRD 

model, with a nonzero fiber interaction coefficient, to obtain the fourth-order stiffness 

and second-order thermal expansion tensors. This is done in this section with 𝐶𝐶I = 0.001, 

and 0.01. A comparison of the effects of these different interaction coefficients on 

components of 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝛼𝛼𝑖𝑖𝑖𝑖 along streamline 0 are shown in FIG. 3.26 and FIG. 3.27, 

respectively. In these figures, the effect of increasing the fiber interaction term can 

clearly be seen to increase dampening on the periodic oscillations, allowing the values to 

reach steady state, or “flat line.” The steady state value of the longitudinal stiffness can 

also be seen to be decreasing as the interaction coefficient increases. In FIG. 3.24, the 

longitudinal stiffness was often near 7 GPa, whereas in FIG. 3.26, the steady state value 

for the IRD model with 𝐶𝐶𝐼𝐼 = 0.01 is closer to 6 GPa – approximately a full GPa in 

difference. The CTE results in FIG. 3.27 show that the increasing interaction coefficient 

increases the longitudinal CTE steady state values, though there does not appear to be as 

dramatic a difference in steady state values as there was for the longitudinal stiffness. For  
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FIG. 3.26. Components of 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 along streamline 0 – IRD model, 𝐶𝐶𝐼𝐼 = 0.001 (dotted) and 
𝐶𝐶𝐼𝐼 = 0.01 (solid) 

 
 

 
 

FIG. 3.27. Components of 𝛼𝛼𝑖𝑖𝑖𝑖 along streamline 0 – IRD model, 𝐶𝐶𝐼𝐼 = 0.001 (dotted) and 
𝐶𝐶𝐼𝐼 = 0.01 (solid) 
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both the stiffness and CTE tensors, the transverse components are not as affected by 

changing 𝐶𝐶𝐼𝐼 as the longitudinal components are. 

 
 3.7.1.3 Stiffness and CTE along a single streamline – RSC model. Once again, the 

same procedure and material properties used in the last two sections can be used again 

except with the RSC model, as opposed to the IRD model. Here we will let 𝐶𝐶I = 0.01 

and 𝜅𝜅 = 1
5
 and 1

30
 when plotting the stiffness and CTE components so that the effects of 

different 𝜅𝜅 values can be observed. Decreasing the value of 𝜅𝜅 can be seen to reduce the 

rate at which the stiffness and CTE approach their steady state values. Again, the 

longitudinal component of the stiffness tensor can be seen following a similar trend as the 

corresponding longitudinal component of the orientation tensor as depicted in FIG. 3.23.  

 

 
 

FIG. 3.28. Components of 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 along streamline 0 – RSC model, 𝐶𝐶𝐼𝐼 = 0.01 and 𝜅𝜅 = 1
5
 

(dotted) and 𝜅𝜅 = 1
30

 (solid) 
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FIG. 3.29. Components of 𝛼𝛼𝑖𝑖𝑖𝑖 along streamline 0 – RSC model, 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1
5
 

(dotted) and 𝜅𝜅 = 1
30

 (solid) 
 
 

 There is a large difference in the transverse and longitudinal stiffness values as 𝜅𝜅 

is decreased, especially in the initial straight portion of the nozzle leading down to the 

tapered part of the nozzle around 𝑥𝑥2 = 0.012 𝑚𝑚. This can also be said of the transverse 

and longitudinal CTE values, which appear similar in shape to the corresponding stiffness 

values reflected over the horizontal axis. At the nozzle exit, however, the disparities 

between the final values of the stiffness components are not as great as they were for the 

IRD model and it appears likely that they would decrease even more were the nozzle to 

be lengthier since the RSC model with 𝜅𝜅 = 1
30

 does not reach steady state for the nozzle 

geometry defined in this study. The same goes for the CTE tensor components, although 

these appear close to steady state values by the end of the nozzle. 



95 
 

3.7.2 Stiffness and CTE at the Nozzle Exit 

 In order to calculate the stiffness and CTE tensors horizontally across the nozzle 

exit, we first solve for the stiffness and CTE tensors along each streamline and collect the 

values at the end of each streamline. These collected values at the end of each streamline 

would correspond to the stiffness and CTE tensors of the deposited extrudate if the die 

swell were neglected (see e.g., [23] for methods to address the die swell issue). Again, 

this is done with Jeffery’s model, the IRD model, and the RSC model. In the previous 

sections of this thesis, the velocities and velocity gradients were calculated along 20 

streamlines. However, 20 points across the nozzle exit did not produce smooth plots, thus 

in the following three subsections, the velocities and velocity gradients are calculated in 

COMSOL along 70 streamlines and exported to MATLAB for calculating the fiber 

orientation state and, subsequently, the stiffness and CTE tensors. The nozzle geometry 

was not changed and neither were the initial conditions, boundary conditions, or the finite 

element mesh. 

 
 3.7.2.1 Stiffness and CTE at the nozzle exit – Jeffery’s model. When solving 

Jeffery’s model for all 70 streamlines, we compute the solution using the IRD model with 

the ORT closure and with no fiber interactions accounted for (i.e., 𝐶𝐶𝐼𝐼 = 0). The 

orientation state at the end of the flow along each streamline, corresponding to the nozzle 

exit, is then used to compute the stiffness and coefficient of thermal expansion tensors 

using the previously discussed micromechanics methods. Select components of the 

stiffness and the CTE tensors are plotted at the nozzle exit in FIG. 3.30 and FIG. 3.31 as a 

function of 𝑥𝑥1. 
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FIG. 3.30. Components of 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 at the nozzle exit – Jeffery’s model 
 
 

 
 

FIG. 3.31. Components of 𝛼𝛼𝑖𝑖𝑖𝑖 at the nozzle exit – Jeffery’s model 
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 The plots in FIG. 3.30 and FIG. 3.31 contain sharp discontinuities and these can 

be explained by the periodic motion predicted by Jeffery’s model. For most of the length 

of each streamline, the fiber orientation state is biased in the 𝑥𝑥2-direction. However, since 

Jeffery’s model predicts that an orientation state along a streamline will change 

periodically, there is a chance that at the moment in time that the polymer flow reaches 

the nozzle exit, the fiber orientation state along individual streamlines will not be in the 

flow direction. There is a much greater possibility of seemingly chaotic behavior along 

the streamlines that are near the wall of the nozzle since there is more shearing force near 

the wall and the frequency of tumbling out of alignment as a function of vertical position 

increases with increasing shear. Near the center of the nozzle, the shear rate is quite small 

relative to the nozzle length and thus the fibers do not tumble out of alignment (recall 

FIG. 3.13 and FIG. 3.14). This is why the center of the plots in FIG. 3.30 and FIG. 3.31 

are smooth and the sharp discontinuities only appear closer to the nozzle walls. 

 The origin of this seemingly unusual behavior is emphasized in FIG. 3.32 which 

contains a plot of select fourth-order orientation tensor components. It can be seen that 

the stiffness tensor tends to follow the same trend as the orientation tensor. That is, the 

direction of highest fiber alignment tends to have the highest stiffness and the direction of 

least fiber alignment tends to have the lowest value for stiffness, as should be expected 

after seeing the results in Section 3.7.1. Again, as was seen in Section 3.7.1, the 

transverse and longitudinal CTE tensor components also appear to follow the trends in 

the corresponding components of the fourth-order orientation tensor, reflected over the 

horizontal axis. That is, the direction of highest fiber alignment seems to be the direction 

in which the CTE tends to be the smallest and the direction of least fiber alignment seems 
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to be the direction where the CTE tends to be the largest, due to the CTE value of carbon 

fiber being less than the CTE of the ABS matrix. 

 
 

FIG. 3.32. Components of 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 at the nozzle exit – Jeffery’s model 
 
 

 3.7.2.2 Stiffness and CTE at the nozzle exit – IRD model. The sharp 

discontinuities in FIG. 3.30 – FIG. 3.32 are non-physical for semi-dilute and concentrated 

suspensions. The following study of the stiffness and CTE tensors is of the IRD model as 

a function of increasing fiber interaction, with 𝐶𝐶𝐼𝐼 = 0.001 and 𝐶𝐶𝐼𝐼 = 0.01. The results of 

the orientation state at the nozzle exit from Section 3.7.2.2 serve as inputs for the 

micromechanical modeling, and the results for select components of the stiffness tensor 

and CTE tensor are provided, respectively, in FIG. 3.33 and FIG. 3.34. Observe in FIG. 

3.33 and FIG. 3.34 that as the interaction coefficient increases the oscillations in the 

properties diminish. In addition, upon visual inspection, it appears an increasing  
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FIG. 3.33. Components of 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 at the nozzle exit – IRD model, 𝐶𝐶𝐼𝐼 = 0.001 (dotted) and 
𝐶𝐶𝐼𝐼 = 0.01 (solid) 

 
 

 
 

FIG. 3.34. Components of 𝛼𝛼𝑖𝑖𝑖𝑖 at the nozzle exit – IRD model, IRD model, 𝐶𝐶𝐼𝐼 = 0.001 
(dotted) and 𝐶𝐶𝐼𝐼 = 0.01 (solid) 
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interaction coefficient decreases the overall mean value for the longitudinal stiffness in 

the 𝑥𝑥2 direction. It is interesting to note the degree of anisotropy predicted in the final 

processed bead. The stiffness properties in the print direction are predicted to be 

significantly higher than that of the transverse direction, with the opposite being true for 

the thermal expansion behavior. 

 
 3.7.2.3 Stiffness and CTE at the nozzle exit – RSC model. We next turn to the RSC 

model which will have the effect of slowing down the orientation kinetics and for the 

present study we set 𝐶𝐶𝐼𝐼 = 0.01 and vary the slowness parameter from 𝜅𝜅 = 1
5
 to 𝜅𝜅 = 1

30
. 

The resulting stiffness and coefficient of thermal expansion tensors at the nozzle exit are 

provided in FIG. 3.35 and FIG. 3.36, respectively. 

 
 

FIG. 3.35. Components of 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 at the nozzle exit – RSC model, 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1
5
 and 

𝜅𝜅 = 1
30
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FIG. 3.36. Components of 𝛼𝛼𝑖𝑖𝑖𝑖 at the nozzle exit – RSC model, 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1
5
 and 𝜅𝜅 =

1
30

 
 
 

 Notice the significant variation of the various stiffness and CTE tensor 

components as a function of 𝑥𝑥1 as compared to that of the IRD results in FIG. 3.33 and 

FIG. 3.34. The RSC model predicts a significant change in the stiffness and CTE when 

the strain reduction factor is reduced. In addition, the RSC model predicts more of a U-

shaped longitudinal stiffness and transverse CTE than the IRD model does, with greater 

values near the nozzle walls, and more of an inverted U-shape for the transverse stiffness 

and longitudinal CTE than the IRD model. 

 Since, intuitively, the stiffness should be greatest in the direction of highest fiber 

alignment, this is in agreement with FIG. 3.21 and FIG. 3.22 which show that the fibers 
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exhibit more vertical alignment at the nozzle exit closer to the edge of the bead, like 

along streamline 0, than they do closer to the center of the bead, like along streamline 8. 

As has been the case, the CTE exhibits almost the opposite behavior as the stiffness in 

that the longitudinal CTE is lowest near the edges of the bead and highest near the center. 

Observe that as κ → 0 the alignment rate is so small that at the center of the channel there 

is essentially no change in orientation. In the present study the initial alignment was set to 

uniformly random, and this is essentially unchanged in the center of the channel for κ =

1
30

 and thus the stiffness and CTE tensors remain isotropic in the center of the flow 

channel. 

 
3.7.3 Effective Bulk Longitudinal Stiffness and Coefficient of Thermal Expansion 

 The final contribution of the modeling effort is to form the connection between 

the spatially varying stiffness and CTE tensors to that of the bulk response. The purpose 

being to relate the model predictions that provide a spatial response to that of a fabricated 

test specimen subjected to a macroscopic tensile or CTE test. A key part of this last task 

involves linking MATLAB and COMSOL so that the stiffness and CTE tensor 

components can be uploaded into COMSOL for defining the material properties of a part. 

 
 3.7.3.1 Effective longitudinal stiffness. First, in order to find the effective 

longitudinal stiffness 𝐸𝐸22 of the extrudate itself, a simple tensile bar is made in COMSOL 

with the same cross sectional dimensions to that of the nozzle exit from the flow 

modeling. This assumption that the width of the sample is the same as that of the nozzle 

diameter is not quite true due to the extrudate swell discussed in section 2.1.6 (see e.g., 

[23,24]) but the die-swell is left to the related study done by [24]. Thus, a simple 2-
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dimensional rectangle with width 3 mm and height 30 mm is defined in COMSOL for the 

tensile sample as shown in FIG. 3.37. In order to simulate a tensile test on this specimen, 

a boundary condition analogous to that of a tensile test stage must be defined for the FEA 

computations. These include prescribed displacements and a prescribed load. The entire 

bottom of the tensile bar is given a prescribed displacement of 0 in the 𝑥𝑥2-direction (𝑢𝑢2 =

0). In addition, the center point of the bottom of the bar has a prescribed displacement of 

0 in the 𝑥𝑥1-direction (𝑢𝑢1 = 0), which prevents translational movement. The load applied 

to the bar is 6 MPa across the whole top side of the bar in the positive 𝑥𝑥2-direction. 

 

 
 

FIG. 3.37. Tensile bar geometry in COMSOL 
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 The finite element analysis within COMSOL is constructed to accept as an input 

the spatially varying stiffness as defined in a MATLAB M-File with the material 

properties for the fiber and the matrix defined in Section 3.7.1.1. The tensile sample is 

modeled as a linearly elastic material with a fourth order anisotropic stiffness tensor. The 

created M-File accepts as inputs the transverse spatial location corresponding to the 

transverse position from the nozzle exit. The file then searches for the corresponding 

second-order orientation tensor at the COMSOL requested spatial position using an 

interpolating spline to allow for stiffness to be a smooth and continuous function even 

though there are a finite number of streamlines passing through discrete points. Since 

there are 70 streamlines for this flow, 𝐴𝐴𝑖𝑖𝑖𝑖 is found at 70 points in the flow at the nozzle 

exit, and in this section results from both the IRD and RSC are used. Once the second-

order orientation tensors along the nozzle exit have been found, they are stored along 

with their 𝑥𝑥-coordinates in a .mat file. When the contracted, fourth-order, anisotropic 

stiffness tensor is defined in COMSOL for the tensile bar, it is defined in terms of an in-

house MATLAB function that uses this 𝐴𝐴𝑖𝑖𝑖𝑖 data stored in the .mat file. This MATLAB 

function takes as inputs an 𝑥𝑥1-coordinate and the indices for a particular component of 

the stiffness tensor. Whenever COMSOL needs the stiffness at a particular coordinate 

location within the bar it will call this MATLAB function and give it an 𝑥𝑥1-coordinate 

and the indices (𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙) for the particular component of the stiffness tensor that it needs. 

The MATLAB function loads the 𝐴𝐴𝑖𝑖𝑖𝑖 data stored in the .mat file and linearly 

interpolates between the data. This enables COMSOL to obtain any component of the 

stiffness tensor at any point within the tensile bar as needed, which means that COMSOL 

essentially has the full anisotropic stiffness tensor at any point within the part. 
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 After the anisotropic stiffness tensor has been defined as a property of the tensile 

bar in COMSOL, COMSOL can be used to run a Finite Element Analysis of the tensile 

test simulation. After the Finite Element Analysis has been done, the effective 

longitudinal modulus is derived using the following equation 

 𝐸𝐸22 =
𝜎𝜎22
𝜀𝜀22

 
(3.8) 

where 𝜎𝜎22 is the stress in the 𝑥𝑥2-direction (6 MPa), and 𝜀𝜀22 is the strain in the 𝑥𝑥2-

direction, where 𝜀𝜀22 = (𝑥𝑥2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)/(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡). The effective 

longitudinal modulus of the entire extrudate is dependent on the spatially varying 

stiffness tensor, which is itself dependent on the fiber orientation state. 

 Multiple effective moduli for the entire part have been calculated for both the IRD 

and RSC models with varying fiber interaction levels and slowness parameters which are 

labeled in Table 3.1. 

 
Table 3.1. Effective longitudinal Youngs modulus, 𝐸𝐸22 

 
Model Used 𝐸𝐸22 (GPa) 

IRD – 𝐶𝐶𝐼𝐼 = 0.001 4.84 
IRD – 𝐶𝐶𝐼𝐼 = 0.01 4.43 

RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/5 3.90 
RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/10 3.68 
RSC - 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/30 3.37 

 
 

Prior to simulating the COMSOL tensile tests, the IRD and RSC models were calculated 

for 500 time steps, relative error tolerances of 10-8, initial orientation states of 𝐴𝐴𝑖𝑖𝑖𝑖 = 1
3
𝛿𝛿𝑖𝑖𝑖𝑖, 

𝜆𝜆 ≈ 0.98 (with 𝑟𝑟𝑒𝑒 = 10), and for the same nozzle geometry, initial conditions, and 

boundary conditions that were articulated in Section 3.2. As before the IRD and RSC 

models also took inputs of the time and velocity gradient data exported from the 
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COMSOL polymer melt flow simulation. The results for 𝐸𝐸22 from the tensile test 

simulations were generated from a finite element mesh of 10 elements along the height of 

the tensile bar and 70 elements along the width of the tensile bar. Rectangular elements 

were chosen since the shape of the sample is rectangular. 

 Since we are now able to calculate the effective longitudinal Young’s Modulus 

for a sample of a 3D printed bead, we can also look at how certain parameters may affect 

the modulus. After all, the point of this research is to be able to understand the effects of 

processing on the material properties well enough to determine how the part may be 

optimized for its intended application. One parameter that effects the modulus is the 

equivalent ellipsoidal aspect ratio 𝑟𝑟𝑒𝑒 of the fibers. This parameter was chosen partly 

because the aspect ratio of the fibers was not provided by PolyOne and thus was not 

known precisely for this study. FIG. 3.38 shows the elastic modulus as a function of 

equivalent ellipsoidal aspect ratio for a range typical of short fibers. The modulus was 

calculated with results from the RSC model with 𝐶𝐶𝐼𝐼 = 0.01 and 𝜅𝜅 = 1
30

. It can be seen 

that the modulus tends to increase with increasing 𝑟𝑟𝑒𝑒, but not by much. Over the range of 

short-fiber lengths shown, the maximum percent difference, given in Equation (3.9), is 

very low: 

 
% 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  �

(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸22) − (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐸𝐸22)
[(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸22) + (𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝐸𝐸22)]/2

� ∙ 100% 

(3.9) 
 

=  �
(3.3687 × 109 𝐺𝐺𝐺𝐺𝐺𝐺) − (3.3741 × 109 𝐺𝐺𝐺𝐺𝐺𝐺)

[(3.3687 × 109 𝐺𝐺𝐺𝐺𝐺𝐺) + (3.3741 × 109 𝐺𝐺𝐺𝐺𝐺𝐺)]/2
� ∙ 100% 

 ≈ 0.1602 % 
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FIG. 3.38. Young's Modulus as a function of Equivalent Ellipsoidal Aspect Ratio 
 
 

 3.7.3.2 Effective longitudinal CTE. A test for the effective longitudinal coefficient 

of thermal expansion can also be simulated in COMSOL. For this test, the sample 

geometry is as shown in FIG. 3.39. The prescribed displacements are the same for this 

section as they were in Section 3.7.3.1 with the entire bottom of the sample being 

prescribed as zero displacement in the 𝑥𝑥2-direction (𝑢𝑢2 = 0) and the point on the bottom 

center of the sample being prescribed to a zero displacement in the 𝑥𝑥1-direction (𝑢𝑢1 = 0). 

However, this time there is no applied load. Instead, there is an applied temperature 

increase of 1oC to the top of the sample, which is initially set to 0oC throughout its 

entirety, and the other three sides are insulated. When defining the material properties, 

the anisotropic stiffness tensor is defined exactly as it was in Section 3.7.3.1. In addition 

to this, an anisotropic second-order coefficient of thermal expansion tensor is also 
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defined. This is defined by using a similar method that was used for the stiffness tensor: 

an in-house MATLAB function loads 𝐴𝐴𝑖𝑖𝑖𝑖 data at the nozzle exit and, by the help of linear 

interpolation, can calculate the CTE tensor at any point within the sample. 

 

 
 

FIG. 3.39. CTE test sample in COMSOL 
 
 

 After the Finite Element Analysis is done on the sample, which expands due to 

the increase in heat, the effective longitudinal CTE can be derived using the following 

formula 

 
𝛼𝛼22 =

1
ℎ
𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

 (3.10) 

where ℎ is the original height, 𝑑𝑑ℎ is the change in height, and 𝑑𝑑𝑑𝑑 is the change in 

temperature. Since we know that the change in temperature is just 1oC, we can simplify 

Equation (3.10) to 

 𝛼𝛼22 = 𝑑𝑑ℎ ℎ ⁄ (1/oC) (3.11) 

For both the IRD and the RSC, the same sets of fiber interaction and slowness parameters 

were investigated for the effective longitudinal CTE and the results for 𝛼𝛼22 are presented 

in Table 3.2. The FEA solution was found using a rectangular element mesh with 70 

elements in the 𝑥𝑥1-direction and 10 elements in the 𝑥𝑥2-direction. 
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Table 3.2. Effective longitudinal CTE, 𝛼𝛼22 
 

Model Used 𝛼𝛼22 (1/oC) 
IRD - 𝐶𝐶𝐼𝐼 = 0.001 9.61 x 10-6 
IRD - 𝐶𝐶𝐼𝐼 = 0.01 2.00 x 10-5 

RSC - 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/5 3.79 x 10-5 
RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/10 4.69 x 10-5 
RSC - 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/30 5.93 x 10-5 
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CHAPTER FOUR 
 

Experimental Methods 
 
 

 The experimental phase of this study involved completing an in-house large scale 

bead deposition system. This was done by designing and fabricating a new translational 

platform for fabricating beads of carbon fiber filled ABS from which test samples were 

cut for tensile testing and for testing in a thermomechanical analyzer (TMA) machine. 

After the large scale bead deposition system had been completed, a comprehensive 

parameter study was performed to identify appropriate ranges of manufacturing 

conditions prior to fabricating the samples used within this chapter. From the final 

fabricated samples, structural testing was performed to obtain the effective bulk 

longitudinal modulus and thermomechanical testing was performed to obtain the effective 

bulk longitudinal coefficient of thermal expansion. Both sets of results are compared to 

those from the modeling efforts from the previous chapter, and closest resemble those of 

the RSC model with an interaction coefficient of 𝐶𝐶𝐼𝐼 = 0.01 and slowness parameter of 

𝜅𝜅 = 1/30. 

 
4.1 Building the 3D Printer Bed 

 The construction of the large scale bead deposition system at Baylor University 

was begun by Nathan Spinnie during his master’s studies [22]. Spinnie used an Exon8 

Single Screw Extruder from HapCO Inc. and constructed the supporting frame, onto 

which this extruder was mounted. He then built a small 18 in. x 18 in. translation 

platform that could move in both the 𝑥𝑥1 and 𝑥𝑥2 directions [22]. At the beginning of the 
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present thesis efforts, a Strangpresse Extruder Model 19 was obtained and mounted onto 

the support structure replacing the Exon8 originally used by Spinnie. As part of the 

current research efforts, the author worked with Daniel Pulipati, a Baylor doctoral 

candidate, and Dr. Douglas Smith to setup the extruder, shown in FIG. 4.1, and make it 

operational. 

 
 

FIG. 4.1. Large scale bead deposition system at Baylor University  
 
 

 Another update to the large scale bead deposition system as part of this research 

effort was the design, construction, and implementation of a new high-speed print bed 

system. The fabricated print bed can only move in the 𝑥𝑥1 direction, but is much longer 
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than Spinnie’s (36 in. as opposed to 18 in.). This enabled longer beads for tensile test 

samples and also decreased any spatial inhomogeneity inherent to the start-up and 

termination regions of a print path. The addition of a second and potentially a third axis is 

left for a future study, and the focus of the present scope of work was on the tensile and 

thermal properties of an individual print path. The entire Baylor University large scale 

bead deposition system that was used for this study is shown in FIG. 4.1. 

 In order to build the translating print bed system, there were several items that 

needed to be addressed. The system needed a print bed, a large and flat heater to heat the 

print bed, a supporting structure for the print bed, and a method of controlling the 

movement of the print bed. The print bed itself is 6 in. wide and 36 in. long, and is 

composed of several layers. The print bed base layer is a piece of carbon fiber composite 

that is 21 ½ in. long to provide rigidity as well as insulation. The laminated plate was 

screwed to linear bearings that slide back and forth on the polished steel, linear rails of 

the translation system, allowing the print bed to slide back and forth securely on the rails. 

The rough dimensions of the print bed base layer are shown in FIG. 4.2. 

 

 
 

FIG. 4.2. Dimensions of the print bed base layer (not to scale) 
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The small peninsular areas of the carbon fiber sheet indicate the mounts where the carbon 

fiber sheet was screwed to the linear bearings. 

 A rubber timing belt was attached to the underside of this composite piece with 

3D printed, plastic clips that were screwed to the composite (see FIG. 4.3). On either end 

of the supporting structure are a set of matched stepper motors that rotate the timing belt 

in tandem. These matched motors provide twice the torque of a single motor, and allow 

the print bed to translate back and forth along the linear rails during processing. 

 

 
 

FIG. 4.3. 3D printed timing belt clips 
 
 

 The second layer of the print bed from the bottom is a piece of 6061 aluminum 6 

in. wide and 36 in. long ordered from mcmaster.com. This piece is identical to that of the 

top layer of the print bed which serves as the printing surface. This aluminum piece on 

the underside, which added weight to the print bed, was used to increase the bending 

stiffness and aid in mitigating leveling issues with the print bed. 

 On top of the lower aluminum plate was placed two layers of 1/16 in. thick cork 

board, followed by a thermal heating blanket, and finally the top aluminum plate. The 

cork board was cut to 6 in. x 36 in. and insulated the heat bed from the underside, forcing 

the heat from the thermal blanket to dissipate through the upper aluminum plate. The 
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electrically resistive thermal blanket is a flexible silicone-rubber heat sheet from 

mcmaster.com that was 6 in. x 36 in. The temperature of this heat bed was controlled by a 

Versatile Control & Technologies JLD612 temperature controller coupled with in-house 

welded thermocouples. This controller allowed one to set the temperature of the heat bed 

and displayed this temperature along with the actual temperature of the heat bed, 

determined by a thermocouple that was placed between the heat bed and the top 

aluminum plate. The top aluminum plate had the same specifications as the one near the 

bottom. To keep all of the layers of the print bed sandwiched together, metal clips were 

used. An image of the complete stack of the print bed can be seen in FIG. 4.4. 

 

 
 

FIG. 4.4. Print bed layers 
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 One of the problems encountered when building the translation system was that 

the linear rails, on which the print bed traveled, were slightly bowed upon delivery. In 

order to combat this issue, the rails were tightly fastened to straight pieces of 80/20 

aluminum and the bowing was somewhat mitigated. 

 The supporting structure for the print bed was also made of 80/20 aluminum. It 

has four supporting legs, is a total of 60 in. in length, just under 10 in. wide, and nearly 

15 in. tall, to the top of the rails on which the bed travels (including the extra height 

added by the feet). The height of the whole translation system, from the floor to the top of 

the print bed is just over 15 in. tall. The feet of the translation system are vibration-

damping leveling mounts from mcmaster.com. These mounts provided fine controls to 

level the bed relative to the extruder. The addition of the vibration-damping mounts also 

conveniently softened internal vibrations from translation stage and the stepper motors. A 

closer view of the print bed support structure is shown in FIG. 4.5. 

 The motion of the print bed was controlled by two Nema 17 Bipolar stepper 

motors fastened on either end of the support structure, underneath the print bed, on a 

piece of 80/20 aluminum that spanned the length of the structure. These stepper motors 

were controlled by an Arduino UNO R3 board through a custom in-house program 

written in C on a PC. A variable voltage power supply capable of providing 60 Watts is 

used to power the stepper motors, and a second power supply capable of providing over 

90 Watts of power was needed for the thermal blanket. The temperature control and the 

stepper motor control were two separate systems, with the Arduino controlling the 

positioning of the table and the Versatile Control & Technologies temperature controller 

managing the temperature of the printing bed. The Arduino program enabled the stepper  
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FIG. 4.5. Print bed and print bed supporting structure 
 
 

motors to run up to 70 mm/s although, for the presented results all samples were 

fabricated at just 50 mm/s (≈ 2 in/s) so as not to exceed the extruder’s capacity to 

extrude the carbon fiber reinforced ABS polymer. 

 
4.2 Flatness of the Table 

 The height difference across the top of the print bed was measured using a dial 

gauge by magnetically attaching the dial gauge to the extruder assembly with the point on 

the top of the print bed at one end. Then the print bed was translated and a video 

recording made of the dial gauge as it read the change in height of the moving print bed 
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from end to end. After many adjustments had been made to the bed, mounting frame, and 

clamping system, a maximum height difference of 0.33 mm across the middle 16 in. of 

the bed was found. The extra 10 in. on both ends of the bed added even more to the 

height discrepancy, so when collecting samples, the ends of the beads were trimmed 

away and only 16 in. of each bead, from the middle 16 in. of the print bed, were used 

when collecting samples. This ensured that the test samples were collected from the most 

uniform and pristine section of the beads. It should also be noted that the minimum and 

maximum bead thickness measurements were 2.16 mm and 2.40 mm, respectively, which 

gives a difference of only 0.24 mm (as opposed to 0.33 mm). In addition, the maximum 

thickness difference for any one bead in particular was only 0.1 mm. 

 
4.3 Material and Parameters 

 The material that was used was in this study is a composite of acrylonitrile 

butadiene styrene (ABS) and carbon fiber compounded by PolyOne. The carbon fiber 

weight percentage provided in the specification sheet is 13%. According to the technical 

data sheet for this material, the tensile modulus and strength are 7720 MPa and 78.6 MPa, 

respectively. The material was received in pellet form and dried at 60oC for 11 hours in a 

Blue M Laboratory Oven, Model LO-225-P. 

 Beads of the material were printed using the in-house Strangpresse Extruder 

Model 19 in conjunction with the custom translating print bed. The pellets were fed into 

the container at the top of the extruder assembly (see FIG. 4.1) and the extruder was run 

at the full 2250 revolutions per minute (RPM). The parameters used for the extruder 

included temperatures of 198°C, 204°C, and 210°C along the three sections of the 

extruder (which were not seen to vary by more than a few degrees). The screen where the 
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settings for the extruder could be set is shown in FIG. 4.6. The software used by the 

extruder is Allen Bradley FactoryTalk [82]. 

 

 
 

FIG. 4.6. Strangpresse Extruder Model 19 settings 
 
 

 The heated print bed was set to 65°C and was not observed to deviate by more 

than 2-3°C during the course of making the samples used for the analysis presented in 

this thesis. Since the thermocouple controller was next to the translation system, it was 

easy to watch any changes in temperature as the print bed moved and the extruder printed 

a bead. As for the nozzle height (the distance of the gap between the tip of the nozzle and 

the print bed), this was measured using a feeler gauge to be roughly 1.5 mm. All beads 

were fabricated at the same nozzle height after the frame was set in place. The nozzle 

height of 1.5 mm was chosen based on the results from a preliminary study. In that study 

it was observed that the beads fabricated with a nozzle height of 1.5 mm at 2250 RPM 

produced a relatively smooth bead with a relatively constant cross-sectional area. The 

table speed was set to 50 mm/s (≈1.97 in/s). Once the extruder was turned on, the 
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Arduino controller to move the translation bed was run. Pictures of the fabrication 

process partway through a printing can be seen in FIG. 4.7(a) and FIG. 4.7(b). The blue 

painter’s tape is placed on top of the print bed to allow the polymer melt to better adhere 

to the surface. 

 

 
 

FIG. 4.7. Fabrication process; (a) back view and (b) side view 
 
 

4.4 Sample Preparation 

 The next step in the experimentation process was to cut smaller samples out of the 

acceptable 16 in. region of the printed beads for tensile and CTE testing. After printing, 

the beads look like those shown in FIG. 4.8. Since the print bed was 36 in. long, most of 

the beads were near 36 in. long as well, although oftentimes a bead would not adhere to 

the bed at the start of a print job and result in a bead shorter than 36 in. 

 The top of the beads oftentimes had small ripples caused by the extruder dragging 

through the deposited material. This can be seen in the bead on the left in FIG. 4.8(a). If 
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the extruder had been extruding at a slower rate or if the print bed had been moving 

faster, the ripples would be less prominent. The drawback of the slower rate is the risk of 

insufficient material to deposit on the print bed and the polymer being pulled along the 

table by the extruder, causing the cross sectional width to vary as a function of position. 

The bottom of the beads were smooth since they were laid on the smooth print bed as can 

be seen in the bead on the right in FIG. 4.8(a). 

 
 

FIG. 4.8. Sample preparation; (a) fabricated beads, (b) tensile samples, and (c) TMA 
samples 

 
 

 After the beads were fabricated, they were cut into test samples according to the 

layout in FIG. 4.9. Typical tensile samples are shown in FIG. 4.8(b) cut to a length of 

approximately 5 in., and the smaller TMA samples cut approximately 3 mm in length are 

shown in FIG. 4.8(c). It was important to cut the TMA samples with very clean, parallel 



121 
 

cuts so as not to distort the testing results for the effective longitudinal CTE 𝛼𝛼22. The low 

speed saw for the sectioning of the CTE samples is a Buehler IsoMetTM Low Speed saw 

as pictured in FIG. 4.10. A speed setting of 7- 8 on the saw’s dial gage was used to cut all 

of the samples. Wire cutters were used to cut the ends of the 16 in. bead section since 

extreme precision and clean cuts are not required for the tensile test specimens as the 

ends of the sample are placed within the grips of the tensile stage during testing. 

 

 
 

FIG. 4.9. Layout of how samples were cut from a bead (not to scale) 
 
 

 
 

FIG. 4.10. Low speed saw used to cut samples 
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 A typical bead, and therefore a typical tensile sample too, was 10-11 mm wide 

and 2.2-2.4 mm thick. The tensile samples were cut to 5 inches. A typical TMA sample 

was 2-3 mm long in the longitudinal direction (i.e., the direction the bead was printed). 

For keeping track of the tensile samples, a silver Sharpie was used to label the beads and 

tensile samples (this can be seen in FIG. 4.8). The TMA samples were too small to label 

with a marker, but were placed within a labeled bag. 

 
4.5 Tensile Testing 

 After preparing the samples, 33 tensile test were done using a Test Resources 100 

Series Electromechanical Universal Test Machine with a 1 kip (1000 lbf) load frame as 

shown in FIG. 4.11. Notice a tensile sample is currently mounted between the grips and 

the extensometer is mounted in the region between the grips. 

 
 

FIG. 4.11. Test resources tensile tester 
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 To test a sample, the following general procedure is followed. The geometry of 

the sample is measured carefully using micrometers and the dimensions are entered into 

the control software. Two measurements of the width are taken on either end of a sample 

as shown in FIG. 4.12 and the average entered into the computer. Although the width 

measurement on one end of a sample was never actually the same as the width 

measurement on the other end of the sample, the largest discrepancy in width 

measurements for a single sample was only 0.58 mm, the smallest discrepancy was only 

0.02 mm, and the mean discrepancy was 0.21 mm.  

 

 
 

FIG. 4.12. Typical width measurement of tensile sample 
 
 

 In a similar way, the thickness of each tensile sample was measured on either end 

as shown in FIG. 4.13 and the average taken. The maximum discrepancy in thickness 

measurements on either end of a sample was only 0.10 mm, the minimum discrepancy 

was 0 mm, and the average discrepancy was 0.04 mm. 
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FIG. 4.13. Typical thickness measurement of tensile sample 
 
 

 After the geometrical measurements are entered into the software, the tensile 

sample is inserted vertically within the grips and the grips are tightened. Then an Epsilon 

Axial Extensometer, Model 3542-025M-025-ST is mounted to the tensile sample and the 

pin ensuring a zero strain is removed from it. At this point the strain and the load are 

zeroed out. The complete setup with the sample, grips, and extensometer is shown in 

FIG. 4.14. 

 
 

FIG. 4.14. Epsilon extensometer attached to tensile sample 
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 After the strain gauge is attached to the sample, the user enters “Start” on the Test 

Resources machine to initiate the test. Each test was run with a control rate of 5 mm/min. 

The first tensile sample broke during the test under a maximum load of 767.3 N. Thus, 

the remaining tests were manually stopped when the load reached around 600-625 N so 

that the samples would not break and would be available for further testing. After the test 

was stopped, the extensometer was detached, the Test Resources machine was manually 

jogged to unload the force on the sample, and the sample was removed. In all, 33 tensile 

samples were tested. The data from each test included many data points for the value of 

the longitudinal load (N) and the corresponding longitudinal strain (mm/mm) at those 

loads, where the term “longitudinal” refers to the 𝑥𝑥2, or “vertical,” direction. A typical 

response curve of the force as a function of the strain is provided in FIG. 4.15 for sample 

33. 

 
 

FIG. 4.15. Typical response curve of load as function of strain (sample 33) 
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 From load data for the above representative tensile test, the longitudinal stress is 

calculated at the same data points with the equation 

 𝜎𝜎22 =
𝐹𝐹2
𝐴𝐴

 (4.1) 

where 𝜎𝜎22 and 𝐹𝐹2 are the stress and load (or “force”) in the longitudinal direction, 

respectively, and 𝐴𝐴 is the initial cross-sectional area of the tensile sample calculated using 

the average width and thickness measurements of the sample. Once the stress is obtained 

from the force, stress-strain graphs of the data can be made. The stress-strain data is 

shown in FIG. 4.16, which was produced by an in-house MATLAB code that reads in the 

data produced by the Test Resources software. Since it appears that the linear elastic 

region of this curve ends around 10 to 15 MPa, an in-house MATLAB code is used to cut 

out the data points above 10 MPa and fit a line to the remaining data points using linear 

regression. In this way, the slope of this line, which is graphed in FIG. 4.16 can be found 

and it gives the effective longitudinal Young’s Modulus 𝐸𝐸22 of the tensile sample 

according to Equation (3.8). 𝐸𝐸22 for this particular sample was found to be 3.80 GPa and 

the coefficient of determination for the linear fit was 𝑟𝑟2 = 0.9991. Since a linear fit is 

more accurate as 𝑟𝑟2 gets closer to 1, this shows that the line fits and represents the actual 

data extremely well. 

 The stress-strain data from all 33 tensile tests, collected from 11 beads, are 

graphed in FIG. 4.17. The elastic regions for most of the stress-strain curves in FIG. 4.17 

appear to end when the stress is around 10 to 15 MPa. Thus, the in-house MATLAB code 

is used to cut out the data points above 10 MPa and to fit lines through the remaining data 

points using linear regression for each curve. The lines fit to the elastic regions of each 

stress-strain curve are shown in FIG. 4.17 overlaying the original stress-strain data. When  
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FIG. 4.16. Stress-strain curve from a typical tensile test (sample 33): original data (blue 
dots) and linear fit (black line) 

 
 

 
 

FIG. 4.17. Stress-strain data (colored dots) and linear fits (black lines) for 33 tensile tests 
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rounded to 4 decimal places, the coefficient of determination (𝑟𝑟2) is at least 0.9990 for 

each of these linearly fit lines. 

 To reiterate, the slope from each of the line segments in FIG. 4.17 gives the 

effective longitudinal Young’s Modulus for each tensile sample according to Equation 

(3.8). After calculating the slope of each of these lines using the in-house MATLAB 

code, the values were averaged to give a mean effective longitudinal Young’s Modulus 

𝐸𝐸22����� of a 3D printed, 13% carbon fiber filled ABS composite bead, fabricated by FFF, of 

3.55 GPa. Other statistics for these tests include the maximum and minimum values of 

the effective longitudinal Young’s modulus 𝐸𝐸22 which were 4.09 GPa and 3.01 GPa, 

respectively, and the standard deviation 𝜎𝜎 which was 0.27 GPa. The coefficient of 

variation of 𝐸𝐸22, was found to be 

 𝐶𝐶𝐶𝐶 =
𝜎𝜎
𝐸𝐸22����� ∙ 100% ≈

0.27 𝐺𝐺𝐺𝐺𝐺𝐺
3.55 𝐺𝐺𝐺𝐺𝐺𝐺

∙ 100% ≈ 7.47% (4.2) 

 These results compare well with the values given in Table 3.1 from the modeling aspect 

of this thesis, but a discussion of the comparison between the experimental 

characterization and the model predictions will be deferred to Section 4.7. It is also worth 

noting that the theoretical maximum value of 𝐸𝐸22, which will occur for perfect fiber 

alignment in the 𝑥𝑥2 direction, is 5.69 GPa. 

 
4.6 TMA Testing 

 In order to measure the longitudinal, linear CTE 𝛼𝛼22 of a 13% carbon fiber filled, 

3D printed, bead made by FFF, thermomechanical analyzer (TMA) tests were also done. 

These tests were done with a TA Instruments TMA Q400, pictured in FIG. 4.18 on 

samples prepared following the procedure discussed in Section 4.4. 
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FIG. 4.18. TA Instruments TMA Q400 
 
 

 In order to perform the test for the CTE, a TMA sample would be carefully 

inserted into the TMA with tweezers between a quartz probe and a quartz plate. The 

sample set up is depicted in FIG. 4.19. 

 The sample would be placed so that the longitudinal dimension of the bead was 

upright. After this the length of the longitudinal dimension of the sample would be 

measured by the quartz probe through a linear encoder within the TMA and recorded in 

the computer linked to the TMA prior to the experiment. With the known length and the 

fact that the CTE of quartz is known, the TMA is able to measure the change in length in 

the longitudinal direction of the TMA sample during the course of the experiment while  
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FIG. 4.19. TMA sample setup 
 
 

the temperature inside the TMA changed. The displacement resolution for the TA 

Instruments Q400 TMA is under 0.5 nm. Following the recommendations from TA 

Instruments, a force of 0.20 N is placed on the sample by the quartz probe throughout 

testing. The sample is cooled to -40 oC and held for 2 minutes, at which point the length 

of the sample is measured and then the temperature is slowly ramped at a rate of 3oC/min 

up to 110oC. Each temperature ramp test required about an hour and although there was 

more variability in the results compared to the Young’s modulus results given in the 

section 4.5, an example is provided in FIG. 4.21 for sample 2. The curve initially has a 

roughly linear-like profile, but drifts negative shortly afterward. It would be tempting to 
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think that the CTE above 50oC was negative, but this is due to the softening of the 

polymer at the higher temperatures. For calculating 𝛼𝛼22, all data above 25 oC is neglected 

in the present study so that we are only dealing with the linearly elastic region. 

 

 
 

FIG. 4.20. Typical TMA test data (sample 2) 
 
 

 In order to get 𝛼𝛼22 prior to the softening point,the results for temperatures up to 

25oC are used in the subsequent analysis. By dividing the dimension change data shown 

in FIG. 4.20 by the original length of the sample, which in this case was sample 2, the 

longitudinal strain 𝜀𝜀22 could be calculated and plotted with MATLAB as a function of 

temperature as in FIG. 4.21. A custom MATLAB code was used to fit a line through the 

data using linear regression and plot the data overlaid with the linear fit. Doing this 

yielded the line segment shown in FIG. 4.21 superimposed on the original data in blue. 
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The 𝑟𝑟2 value of the linear fit to this particular set of data is 0.9949. The CTE can be 

calculated using Equation (3.10) as the slope of the line segment in FIG. 4.21. For the 

representative sample whose data is shown in FIG. 4.21, the effective longitudinal CTE 

𝛼𝛼22 was found to be approximately 4.74 x 10-5 (1/oC). 

 

 
 

FIG. 4.21. TMA test; original data (blue dots) and linear fit to data (black line) 
 
 

 The test results of six TMA samples, that were prepared for CTE testing as in the 

above procedure, are given in this thesis. The strain-temperature data for each of these is 

shown in FIG. 4.22 along with linear fits to the data points up to a temperature of 25oC. 

The minimum 𝑟𝑟2 value for the linear fits shown in FIG. 4.22 is 0.9859. The maximum 

and minimum values for 𝛼𝛼22 are 7.01 x 10-5 (1/oC) and 4.46 x 10-5 (1/oC), respectively, 

and the mean and standard deviation of 𝛼𝛼22 are approximately 5.43 x 10-5 (1/oC) and 1.12 
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x 10-5 (1/oC), respectively. Dividing the standard deviation by the mean and multiplying 

by 100% gives a coefficient of variation of 20.65 % for 𝛼𝛼22. The results of only six TMA 

tests are reported in this thesis due to the hour long wait for each test. 

 

 
 

FIG. 4.22. CTE data (colored dots) with linear fits (black lines) 
 
 

 Several factors could have affected the seemingly wide variability in CTE values. 

One of the major factors could potentially involve human error in preparing the samples. 

In addition, another source of error could potentially be the fact that the TMA samples 

were collected from different parts of a bead as shown in FIG. 4.9, since the fiber 

orientation state could have been slightly different in the samples taken from the sides of 

a bead as opposed to the center of a bead. 
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4.7 Comparison of Test and Model Results 

 The last point addressed in this chapter is the validity of the computational 

methods used in Chapter Three to predict the experimental results of this chapter. In 

Chapter Three, four values of the effective longitudinal Young’s Modulus were 

calculated using two different fiber orientation kinematics models with varying levels of 

fiber interaction and orientation kinematics slowness. Recall, in the above study the 

Young’s modulus was found to be 3.55 GPa (the mean) with a standard deviation of 0.27 

GPa from the 33 different test specimens. To quantify the computational results of 

Chapter Three, an absolute percent relative error is computed as 

 
𝜀𝜀 = �

(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸22) − (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸22)
(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸22)

� ∙ 100% (4.3) 

where 𝜀𝜀 is the absolute percent relative error, (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸22) is the value of the effective 

bulk longitudinal modulus calculated by a given model (from Equation (3.8)), and 

(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸22) is the average value of the effective longitudinal modulus that was 

measured in this chapter, 3.55 GPa. 

 
Table 4.1. Effective longitudinal Young's modulus, 𝐸𝐸22 – Error 

 
Model Used 𝐸𝐸22 (GPa) 𝜀𝜀 

IRD - 𝐶𝐶𝐼𝐼 = 0.001 4.84 36.46 % 
IRD - 𝐶𝐶𝐼𝐼 = 0.01 4.43 24.82 % 

RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/5 3.90 9.90 % 
RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/10 3.68 3.62 % 
RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/30 3.37 5.10 % 

 
 

 Table 4.1 shows that for obtaining the effective longitudinal Young’s Modulus, 

the most unreasonable of the fiber interaction models, according to the experimental 

results of this study, appears to be the IRD model with an interaction coefficient of 0.001. 
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Actually, neither of the IRD models produce results for 𝐸𝐸22 between the minimum and 

maximum experimental results which are 3.01 GPa and 4.09 GPa, respectively. On the 

other hand, the RSC models shown in Table 4.1 produce results within this experimental 

range and the RSC models with 𝐶𝐶𝐼𝐼 = 0.01 and 𝜅𝜅 = 1
10

, 1
30

 even produce results for 𝐸𝐸22 

within one standard deviation of the mean, that is, within the range 3.28 – 3.81 GPa. The 

RSC model with 𝐶𝐶𝐼𝐼 = 0.01 and 𝜅𝜅 = 1
5
 lies just outside this range. Thus, one can see that 

the model that appears to be the most reasonable is the RSC model with an interaction 

coefficient of 0.01 and a strain reduction factor of 1/10. 

 A similar table as Table 4.1 can be made to show the absolute percent relative 

error in the calculated CTE. This is shown in Table 4.2, where the absolute percent 

relative error is calculated according to the equation 

 
𝜀𝜀 = �

(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝛼𝛼22) − (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝛼𝛼22)
(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝛼𝛼22)

� ∙ 100% (4.4) 

where 𝜀𝜀 is the absolute percent relative error, (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝛼𝛼22) is the value of the effective 

longitudinal CTE calculated by a given model (from Equation (3.10)), and 

(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝛼𝛼22) is the mean value of the effective bulk longitudinal CTE that was 

measured in this chapter, 5.43 x 10-5 (1/oC). 

 
Table 4.2 Effective longitudinal CTE, 𝛼𝛼22 – Error 

 
Model Used 𝛼𝛼22 (1/oC) 𝜀𝜀 

IRD - 𝐶𝐶𝐼𝐼 = 0.001 9.61 x 10-6 82.31 % 
IRD - 𝐶𝐶𝐼𝐼 = 0.01 2.00 x 10-5 63.11 % 

RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/5 3.79 x 10-5 31.85 % 
RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/10 4.69 x 10-5 13.64 % 
RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/30 5.93 x 10-5 8.70 % 
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 It can be seen in Table 4.2 that the CTE predictions are not as good as the 

Young’s Moduli predictions in Table 4.1. Nevertheless, the absolute percent relative error 

dramatically decreases going down Table 4.2. In addition to being the apparent most 

unreasonable predictor of 𝐸𝐸22, the IRD with an interaction coefficient of 0.001 also 

appears to be the most unreasonable of the models for predicting 𝛼𝛼22. As was the case for 

the stiffness predictions, neither of the IRD models predict values within the minimum to 

maximum experimental range, which was 4.46 x 10-5 – 7.01 x 10-5 (1/oC) for 𝛼𝛼22. The 

RSC model with 𝐶𝐶𝐼𝐼 = 0.01 and 𝜅𝜅 = 1
5
 is also, once again, outside one standard deviation 

from the mean, which is the range 4.31 x 10-5 – 6.56 x 10-5 (1/oC). Once again, the RSC 

models with interaction coefficients of 0.01 and strain reduction factors of 1/10 and 1/30 

seem to perform the best for predicting the effective longitudinal CTE, and both produce 

results within one standard deviation from the mean. However, unlike the results for 𝐸𝐸22, 

the RSC model with 𝐶𝐶𝐼𝐼 = 0.01 and 𝜅𝜅 = 1/30 seems to produce slightly more reasonable 

results than the RSC model with 𝐶𝐶𝐼𝐼 = 0.01 and 𝜅𝜅 = 1/10. 

 
4.8 Another Method of Computing 𝐸𝐸22 

 In Chapter Three, a computational method for calculating 𝐸𝐸22 and 𝛼𝛼22 was 

presented in which 3 major steps were taken: (1) COMSOL was used to solve for the 

flow of the polymer build material decoupled from the fiber inclusions, then (2) 

MATLAB was used to solve for the fiber orientation state and the resulting stiffness and 

CTE, and then, finally, (3) COMSOL was used again with the newly found stiffness and 

CTE properties to obtain 𝐸𝐸22 and 𝛼𝛼22. In Section 4.8 for calculating 𝐸𝐸22, we present a 

new computational method in which step 3 is eliminated completely and, instead, 𝐸𝐸22 is 

calculated with MATLAB in step 2. This is found by integrating the stiffness tensor 
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across the nozzle exit, dividing by the diameter of the nozzle, and then extracting the 

desired value 𝐸𝐸22 from the resulting stiffness tensor. In other words, the equation used to 

find the integrated stiffness across the nozzle exit is given by 

 
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =

1
𝐷𝐷
� 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐷𝐷/2

−𝐷𝐷/2
 (4.5) 

where 𝐷𝐷 is the nozzle diameter at the nozzle exit and 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the fourth-order stiffness 

tensor at the nozzle exit, which is a function of 𝑥𝑥. Once 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 has been found in 

MATLAB using the trapezoidal rule, it is converted to contracted notation and inverted to 

get the contracted compliance tensor 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 𝐸𝐸22 is then found as the (2,2) component of 

the contracted 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 tensor raised to the -1 power. Using Equation (4.5), the following 

results presented in Table 4.3 were found for several different fiber orientation models. 

The error in this table was calculated using Equations (4.3). 

 
Table 4.3 Integration Method – 𝐸𝐸22 with Error 

 
Model Used 𝐸𝐸22 (GPa) 𝜀𝜀 

IRD - 𝐶𝐶𝐼𝐼 = 0.001 4.86 36.97 % 
IRD - 𝐶𝐶𝐼𝐼 = 0.01 4.44 25.19 % 

RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/5 3.92 10.48 % 
RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/10 3.67 3.51 % 
RSC – 𝐶𝐶𝐼𝐼 = 0.01, 𝜅𝜅 = 1/30 3.37 5.07 % 

 
 

The results in Table 4.3 closely match those given in Table 4.1. Discrepancies 

between these results could largely be due to the different numerical methods used in 

their computations. 
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4.9 Remarks 

It is important to take careful note of all of the assumptions that have been made 

up to this point in Chapter Three and Four and bear them in mind while assessing the 

reasonableness of the computational models used in this thesis: 

1) The nozzle geometry is modeled as a 2D, planar flow, with no lateral out-of-plane 

swell accounted for as well as no in-plane die swell accounted for. The upstream 

section of the nozzle and the turning of the extrudate as it comes into contact with 

the print bed are neglected and only a simplified geometry of the nozzle at its end 

is used. The nozzle height and bed speed are neglected. 

2) The polymer melt flow is modeled as an isothermal, Newtonian fluid, decoupled 

from the fibers. 

3) The fibers are short, rigid cylinders uniformly dispersed throughout the polymer 

matrix and are well bonded to the polymer matrix. They all have the same aspect 

ratio and are small compared to the size of the nozzle and die swell. 

4) The fibers and polymer matrix are linearly elastic and their material properties are 

isotropic. 

5) The velocity gradient change over a fiber’s length is small. 

6) The short-fiber composite at the inlet of the nozzle is isotropic, meaning that the 

initial fiber orientation state is completely random. 

7) When calculating the stress in a tensile bar in order to subsequently calculate an 

experimental value of 𝐸𝐸22, the cross-sectional area of the tensile bar is considered 

to be rectangular. 
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In this chapter, experimental work was discussed in which the large volume, bead 

deposition system was described. From this system, carbon fiber filled beads were 

produced from which tensile bars and TMA samples were taken for testing. The testing 

results for 33 tensile tests and 6 TMA tests gave average values of 𝐸𝐸22 and 𝛼𝛼22 of 3.55 

GPa and 5.43 x 10-5 (1/oC), respectively. These values compared well with those found 

by computational methods in Chapter Three. The RSC model with 𝐶𝐶𝐼𝐼 = 0.01 and 1
30
≤

𝜅𝜅 ≤ 1/5 is considered to be the most reasonable predictor of the fiber orientation state 

within a short carbon fiber ABS composite bead fabricated with a large volume extruder 

(such as those used in BAAM systems) for the simplified nozzle geometry and the 

underlying assumptions used in this thesis. 
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CHAPTER FIVE 
 

Conclusions and Future Work 
 
 

 The first major contribution of this thesis was the completion of a working large 

scale bead system for fabricating large scale one dimensional beads of carbon fiber filled 

ABS. This system included a Strangpresse Extruder Model 19 and a translating print bed. 

The main contribution to complete this system for this study was design, fabrication, and 

installation of a translating, heated print bed large enough to fabricate 3 foot beads. 

Repeated processing of beads was done in order to determine acceptable parameters for 

consistent bead fabrication of the investigated 13% carbon fiber filled ABS pellets. The 

best quality beads were generated when the extruder was set to 2250 RPM with a range 

of temperatures from 198°C to 210°C. Beads were fabricated with a nozzle height of 1.5 

mm and a print bed speed of 50 mm/s with a print bed temperature of 65oC (although 

85oC was seen to produce results that were perhaps even better and more consistent than 

65 oC). 

 The second major contribution of this thesis was the development of structural 

and thermal testing procedures for characterizing the performance of the fabricated beads. 

This work included tensile tests and TMA tests to determine, respectively, the effective 

longitudinal Young’s modulus (𝐸𝐸22) and CTE (𝛼𝛼22) of a 3D printed, anisotropic, short-

fiber composite bead. The tests revealed results for 𝐸𝐸22 of 3.01 – 4.09 GPa from 33 

samples and results for 𝛼𝛼22 of 2.72x10-5 – 7.01x10-5 (1/oC) from 9 samples. A typical 

effective longitudinal Young’s modulus for a sample cut from a bead was 3.55 GPa with 
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a standard deviation of 0.27 GPa and a typical value for the effective longitudinal CTE 

was 5.09x10-5 (1/oC) with a standard deviation of 1.27x10-5 (1/oC). 

 The third major contribution of this thesis was the implementation of three 

mathematical models for predicting the spatially varying fiber orientation. These included 

Jeffery’s model [25] for suspensions without fiber interactions, and the Folgar and 

Tucker Isotropic Rotary Diffusion model [29] and the Reduced Strain Closure model of 

Wang et al. [1] for concentrated suspensions. Jeffery’s model was shown to predict 

periodic oscillations of the fiber orientation state and thus could not predict steady state 

values of the fiber orientation state expected for the fiber filled ABS system investigated. 

The IRD model, based on Jeffery’s model, accounts for fiber interactions and was shown 

to dampen the predicted periodic motion so that the fiber orientation state would reach a 

constant, steady state. The IRD model predicts a very fast approach to steady state which 

is addressed by the RSC model. The RSC model expands on the IRD model by including 

a strain-reduction factor to reduce the strain effects on the fiber orientation. The RSC 

model was seen to effectively slow down the rate at which the fibers achieve a steady 

orientation state. 

 The fourth major contribution of this study was the computational method of 

predicting the material properties of an anisotropic, short-fiber polymer composite bead 

printed with a large scale bead deposition system. This involved the following steps: (1) a 

simulation of the polymer melt flow through the large scale FFF nozzle in COMSOL, (2) 

the computation of the spatially varying fiber orientation state within the flow domain via 

MATLAB, (3) the calculation of the spatially varying stiffness and CTE tensors via 

MATLAB, and (4) the prediction of the effective longitudinal Young’s modulus and CTE 
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in COMSOL given the spatially varying stiffness and CTE. To calculate the stiffness and 

CTE in step (3), the fiber orientation states from step (2) were needed as well as an 

appropriate micromechanics model. For this study, the micromechanics model chosen 

was that of Tandon and Weng [63] to determine the transversely isotropic stiffness and 

CTE. Once the transversely isotropic stiffness tensor was obtained an orientation 

averaging calculation (also called homogenization) was performed to predict the 

anisotropic stiffness and CTE tensors. These anisotropic stiffness and CTE tensors were 

then provided as inputs to a COMSOL models mimicking the physical tensile test and 

thermomechanical test to obtain, respectively, 𝐸𝐸22 and 𝛼𝛼22. 

 The fifth and final contribution of this work is the assessment of the validity of 

the fiber orientation models. This study suggests the RSC model is the best of the three 

models that were implemented in this study based on the fact that the material property 

predictions using the RSC model results for orientation gave stiffness and CTE results 

within the bandwidth of the experimental results, whereas the IRD model did not. Since 

the Jeffery model is known to be less accurate than the IRD based on the fact that it 

discounts fiber interaction, it too lacks sufficient accuracy. It must be noted that the 

accuracy of the material property predictions also depend on the micromechanics model 

used. Thus, the accuracy of the predictions cannot be wholly attributed to (or blamed on) 

the fiber orientation model implemented. 

 In the future, there are several ways in which the accuracy of the computational 

methods used in this study could be improved upon. One is the coupling of the viscous 

polymer flow with the internal fiber orientation state as this study assumed that these 

were decoupled. In addition, the geometry of the polymer melt flow needs to be better 
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defined before high accuracy in the fiber orientation state predictions can be obtained. 

Including the die swell after the melt leaves the extruder and is deposited on the moving 

platen will modify the actual orientation state. This would be a rather significant two step 

process, the first would be performing the analysis on a simplified 2D domain, and the 

second would be to extend the work to three dimensions. A third future piece of work 

involves directly measuring the fiber orientation state of actual beads. This could be done 

with the help of an etcher and an SEM microscope. With the ability to measure the fiber 

orientation state directly, one could assess the validity of the fiber orientation models 

directly as opposed to observing the material property predictions which are also 

dependent on the micromechanics model used and are thus an indirect method. 
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