
ABSTRACT

Existence and Uniqueness of Solutions of Boundary Value Problems by Matching
Solutions

Xueyan Liu, Ph.D.

Chairperson: Johnny Henderson, Ph.D.

In this dissertation, we investigate the existence and uniqueness of boundary

value problems for the third and nth order differential equations by matching solu-

tions. Essentially, we consider the interval [a, c] of a BVP as the union of the two

intervals [a, b] and [b, c], analyze the solutions of the BVP on each, and then match

the proper ones to be the unique solution on the whole domain.

In the process of matching solutions, boundary value problems with different

boundaries, especially at the matching point b, would be quite different for the re-

quirements of conditions on the nonlinear term. We denote the missing derivatives

in the boundary conditions at the matching point b by k1 and k2. We show how

y(k2)(b) varies with respect to y(k1)(b), where y is a solution of the BVP on [a, b] or

[b, c]. Under certain conditions on the nonlinear term, we can get a monotone rela-

tion between y(k2)(b) and y(k1)(b), on [a, b] and [b, c], respectively. If the monotone

relations are different on [a, b] and [b, c], then we can finally get a unique value for

y(k1)(b) where the k2nd derivative of two solutions on [a, b] and [b, c] are equal and

we can join the two solutions together to obtain the unique solution of our original

BVP. If the relations are the same, then we will arrive at the situation that the k2nd

order derivatives of two solutions at b on [a, b] and [b, c] are decreasing with respect



to the k1st derivatives at b at different rates, and by analyzing the relations more in

detail, we can finally get a unique value for the k1st derivative of solutions of BVP’s

on [a, b] and [b, c], which are matched to be a unique solution of the BVP on [a, c].

In our arguments, we use the Mean Value Theorem and the Rolle’s Theorem many

times.

As the simplest models, third order BVP’s are considered first. Then, in the

following chapters, nth order problems are studied. Lastly, we provide an example

and some ideas for our future work.
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CHAPTER ONE

History and Introduction

In this dissertation, we are primarily concerned with matching solutions of cer-

tain nonlocal boundary value problems for the nth order ordinary differential equation

y(n) = f(x, y, y′, · · · , y(n−1)), which will be of different forms in different boundary

value problems, for n ≥ 3, on [a, b] and on [b, c] to obtain the existence and uniqueness

of solutions of nonlocal boundary value problems for the same equation on [a, c].

Matching solutions of boundary value problems is intimately involved with in-

terface problems for which an intermediate boundary point corresponds to a point of

interface [1, 25, 31, 39]. For such problems, smooth as possible interfacing is desired.

Otherwise, leakage or impulses in transfer rates occur. Most matching results deal

with smoothing one possible break in some order derivative. In this dissertation,

we deal with smoothing by matching, when gaps in the derivatives at the interface

point involve several successive derivatives, in which cases, there is great difficulty in

transfer across the interface; and so the hypotheses for matching can be seemingly

strong.

The solution-matching technique was first used by Bailey et al. [2]. They

considered the solutions of two-point boundary value problems for the second order

differential equation y′′ = f(x, y, y′) by matching solutions of initial value problems.

They assumed the existence and uniqueness of solutions on each interval and con-

cluded the existence and uniqueness of solutions on the combined interval. Then,

in 1973, Barr and Sherman [3] assumed monotonicity conditions on f and applied

the solution-matching technique to third order equations and generalized to equa-

tions of arbitrary order. The boundedness of f was assumed. In 1978, Moorti [20]

applied the monotonicity condition on f and solution matching method to the nth
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order boundary value problems. He also gave several general conditions on f and

boundary conditions to get the existence and uniqueness of the third order boundary

value problems. In 1981, Murthy et al. [21] and Rao et al. [29], in a certain sense,

generalized the monotonicity of f of third order differential equations and introduced

an auxiliary monotone function g. In 1983, Henderson [9] generalized to nth order

BVP’s and considered more general boundary conditions. In 1993, Taunton et al.

[14] analyzed the properties of solutions of differential inequalities involved with the

auxiliary monotone function g of the third order boundary value problems. In 2001,

Henderson et al. [13] generated the solution method of nth order differential equa-

tions on time scales. Henderson et al. [15, 12, 11] used the solution matching method

to obtain the existence and uniqueness of several new kinds of nonlocal boundary

value problems of third order and nth order differential equations. Since then, a lot

of work has been done on existence and uniqueness of certain BVP’s for third order

or higher order differential equations, differential systems or differential equations on

time scales by matching solutions. We refer the readers to [4, 6, 17, 22, 27, 28, 29, 33],

etc.

This dissertation considers three-point and nonlocal multi-point boundary value

problems for third order and nth order differential equations. Several kinds of gaps in

boundary conditions at the matching point are considered, in particular. In Chapter

Two, a comprehensive analysis of the solution matching method applied to the third

order differential equations is obtained when the gap in the boundary conditions is

odd. In Chapter Three, we consider the case for the third order equations when the

gap is even. Chapter Four is about the nth order problems when gaps in boundary

conditions are odd. Chapter Five is for the case of nth order boundary value problems

with even gap. Chapter Six provides an example. In Chapter Seven, some ideas for

future research are discussed.

2



CHAPTER TWO

Nonlocal Boundary Value Problems with Odd Gaps in Boundary Conditions of
Third Order Differential Equations

2.1 Introduction

There has been a lot of work on three-point boundary value problems for third

order differential equations, see [7, 8, 10, 18, 19, 16, 23, 24, 26, 32, 34, 36, 38], etc.

Solution-matching is one of the methods to explore the existence and uniqueness of

solutions. As we stated in Chapter One, several papers [3, 4, 5, 11, 14, 21, 29] applied

the solution-matching method to obtain existence and uniqueness of solutions to

three-point boundary value problems associated with third order nonlinear differential

equations. Barr et al. [3] and Rao et al. [30] used a solution matching technique

and suitable ‘Liapunov-like’ function on third and nth order differential boundary

value problems. In 2005, Henderson et al. [15] considered five-point boundary value

problems of third order differential equations by using solution matching.

Here, we consider multi-point boundary value problems of third order differen-

tial equations. For different kinds of gaps in boundary conditions, we need different

thoughts and conditions on the nonlinear term.

The following is our differential equation

y′′′(x) = f(x, y(x), y′(x), y′′(x)), x ∈ [a, c], (2.1)

with one of the multi-point boundary conditions

y(a)−
s∑
i=1

aiy(ξi) = y1, y(b) = y2,
t∑

j=1

bjy(ηj)− y(c) = y3, (2.2)

y(a)−
s∑
i=1

aiy(ξi) = y1, y′(b) = y2,
t∑

j=1

bjy(ηj)− y(c) = y3, (2.3)

y(a)−
s∑
i=1

aiy(ξi) = y1, y′′(b) = y2,
t∑

j=1

bjy(ηj)− y(c) = y3, (2.4)
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where a < ξ1 < ξ2 < · · · < ξs < b < η1 < η2 < η · · · < ηt < c, s, t ∈ N, ai, bj > 0 for

i = 1, 2, . . . , s and j = 1, 2, . . . t,
s∑
i=1

ai =
t∑

j=1

bj = 1, and y1, y2, y3 ∈ R.

Among the boundary conditions at b, in the case of (2.2), the value of the first

derivative and the second derivative of solutions are missing; in the case of (2.4), the

function value and the value of the first derivative of solutions are missing. In both

cases, the difference of the missing derivatives is 1, which is odd.

In Sections 2.2 and 2.3, we study the existence and uniqueness of solutions of

(2.1), (2.2) and (2.1), (2.4), respectively, that is, the cases with odd gaps in boundary

conditions at b. The case of (2.1), (2.3) with even gaps in boundary conditions at b

will be studied in Chapter Three.

2.2 The Case of (2.1), (2.2)

In this section, we are concerned with the existence and uniqueness of solutions

of (2.1), (2.2), restated as follows, over the interval [a, c]:

y′′′(x) = f(x, y(x), y′(x), y′′(x)), x ∈ [a, c], (2.1)

y(a)−
s∑
i=1

aiy(ξi) = y1, y(b) = y2,
t∑

j=1

bjy(ηj)− y(c) = y3. (2.2)

Throughout this section, it is assumed that f : [a, c] × R3 → R is continuous

and that solutions of initial value problems (IVP’s) for (2.1) are unique and exist on

all of [a, c].

Based on the idea of solution-matching, we break our BVP (2.1), (2.2) into four

BVP’s. Now consider the following four sets of boundary conditions,

y(a)−
s∑
i=1

aiy(ξi) = y1, y(b) = y2, y′(b) = m, (2.5)

y(a)−
s∑
i=1

aiy(ξi) = y1, y(b) = y2, y′′(b) = m, (2.6)

y(b) = y2, y′(b) = m,

t∑
j=1

bjy(ηj)− y(c) = y3, (2.7)
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y(b) = y2, y′′(b) = m,

t∑
j=1

bjy(ηj)− y(c) = y3, (2.8)

where m ∈ R, and we are going to obtain that (2.1), (2.3) has a unique solution by

matching solutions of the BVP (2.1), (2.5) on [a, b] with solutions of (2.1), (2.7) on

[b, c], or solutions of (2.1), (2.6) on [a, b] with solutions of (2.1), (2.8) on [b, c].

Conditions on f for the case of (2.1), (2.2) are as follows:

(A1) For any v ∈ R, f(x, v0, v1, v)− f(x, u0, u1, v) > 0 when x ∈ (a, b], −v0 ≥ −u0,

and v1 > u1; or when x ∈ [b, c), v0 ≥ u0, and v1 > u1.

With condition (A1), following the similar idea to [11], we can get the following

two lemmas which are essentially important for the matching process.

The first lemma shows the relation between the change in the values of the first

derivative and that of the second derivative at the matching point b of solutions of

(2.1) on the interval [a, b] satisfying y(a)−
s∑
i=1

aiy(ξi) = y1 and y(b) = y2.

Lemma 2.1. Suppose p and q are solutions of (2.1) satisfying y(a) −
s∑
i=1

aiy(ξi) =

y1, y(b) = y2 on [a, b] and let w = p− q so that w satisfies

w′′′(x) = f(x, p(x), p′(x), p′′(x))− f(x, q(x), q′(x), q′′(x)), x ∈ [a, b],

w(a)−
s∑
i=1

aiw(ξi) = 0, w(b) = 0.

If the condition (A1) is satisfied, then w′(b) = 0 if and only if w′′(b) = 0, and

w′(b) > 0 if and only if w′′(b) > 0.

Proof. (⇒) The necessity of equalities.

Suppose w′(b) = 0 and w′′(b) 6= 0. Without loss of generality, we suppose

w′′(b) > 0. Since w(a) −
s∑
i=1

aiw(ξi) =
s∑
i=1

ai(w(a) − w(ξi)) = 0 and ai > 0, there is

some x0 ∈ (a, ξs) such that w′(x0) = 0. By w′(b) = 0, there is some x1 ∈ (x0, b) such

that w′′(x1) = 0. Without loss of generality, we assume w′′(x) > 0 for x ∈ (x1, b].
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Hence,

w′′′(x1) = lim
x→x+1

w′′(x)− w′′(x1)

x− x1

≥ 0.

Since w(b) = w′(b) = 0, we have that w(x) > 0 and w′(x) < 0 for x ∈ [x1, b).

Therefore by condition (A1), w′′′(x1) < 0, which is a contradiction.

(⇐) The sufficiency of equalities.

Suppose w′(b) 6= 0 and w′′(b) = 0. Without loss of generality, we assume

w′(b) < 0. By w(b) = w′′(b) = 0 and condition (A1), we have that w′′′(b) < 0. Then

in a left neighborhood of b, w′′(x) > 0. By w(a) −
s∑
i=1

aiw(ξi) = 0, there is some

x0 ∈ (a, ξs) such that w′(x0) = 0. Then from w′(x0) = 0 and w′(b) < 0, there is

some x1 ∈ (x0, b) such that w′′(x1) < 0. Then there is some x2 ∈ (x1, b) such that

w′′(x) > 0 for x ∈ (x2, b) and w′′(x2) = 0. By w′(b) < 0 and w(b) = 0, we have that

w′(x) < 0 and w(x) > 0 for x ∈ [x2, b). Then, from condition (A1), we have that

w′′′(x2) < 0. However,

w′′′(x2) = lim
x→x+2

w′′(x)− w′′(x2)

x− x2

≥ 0.

This is a contradiction.

(⇒) The necessity of inequalities.

Assume w′(b) > 0 and w′′(b) < 0. By w(a) −
s∑
i=1

aiw(ξi) = 0, there is some

x0 ∈ (a, ξs) such that w′(x0) = 0. Since w′(b) > 0, there is some x1 ∈ [x0, b) such

that w′(x1) = 0 and w′(x) > 0 for x ∈ (x1, b], and from w(b) = 0 we have w(x) < 0

for x ∈ [x1, b). Then by the Mean Value Theorem and w′′(b) < 0, there is some

x2 ∈ (x1, b) such that w′′(x2) = 0 and w′′(x) < 0 for x ∈ (x2, b]. Application of the

condition (A1) gives us that w′′′(x2) > 0. However,

w′′′(x2) = lim
x→x+2

w′′(x)− w′′(x2)

x− x2

≤ 0,

which is a contradiction.

(⇐) The sufficiency of inequalities.
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By simply switching the sign of w in the proof of the necessity of inequality, we

can get a contradiction too. Hence w′(b) > 0 if w′′(b) > 0.

The next lemma shows the relation between the change in values of the first

derivative and that of the second derivative at the matching point b of solutions of

(2.1) on the interval [b, c] satisfying y(b) = y2, and
t∑

j=1

bjy(ηj)− y(c) = y3.

Lemma 2.2. Suppose p and q are solutions of (2.1) satisfying y(b) = y2, and
t∑

j=1

bjy(ηj)

−y(c) = y3 on [b, c] and let w = p− q so that w satisfies

w′′′(x) = f(x, p(x), p′(x), p′′(x))− f(x, q(x), q′(x), q′′(x)), x ∈ [b, c],

w(b) = 0,
t∑

j=1

bjw(ηj)− w(c) = 0.

If the condition (A1) is satisfied, then w′(b) = 0 if and only if w′′(b) = 0, and

w′(b) > 0 if and only if w′′(b) < 0.

Proof. (⇒) The necessity of equalities.

Suppose w′(b) = 0 and w′′(b) 6= 0. Without loss of generality, we suppose

w′′(b) > 0. Since
t∑

j=1

bjw(ηj) − w(c) =
t∑

j=1

bj(w(ηj) − w(c)) = 0 and bj > 0 for

j = 1, 2, . . . , t, there is some x0 ∈ (η1, c) such that w′(x0) = 0. By w′(b) = 0, there

is some x1 ∈ (b, x0) such that w′′(x1) = 0. Without loss of generality, we assume

w′′(x) > 0 for x ∈ [b, x1). Hence,

w′′′(x1) = lim
x→x−1

w′′(x)− w′′(x1)

x− x1

≤ 0.

Since w(b) = w′(b) = 0 and w′′(x) > 0 for x ∈ [b, x1), we have that w(x) > 0

and w′(x) > 0 for x ∈ (b, x1]. Therefore by condition (A1), w′′′(x1) > 0, which yields

a contradiction. Hence, w′′(b) = 0 if w′(b) = 0.

(⇐) The sufficiency of equalities.

Suppose w′(b) 6= 0 and w′′(b) = 0. Without loss of generality, we assume

w′(b) > 0. By w(b) = w′′(b) = 0 and condition (A1), we have that w′′′(b) > 0. Then,

7



in a right neighborhood of b, w′′(x) > 0. By
t∑

j=1

bjw(ηj) − w(c) = 0, there is some

x0 ∈ (η1, c) such that w′(x0) = 0. Then from w′(b) > 0 and the Mean Value Theorem,

there is some x1 ∈ (b, x0) such that w′′(x1) < 0. Hence, there is some x2 ∈ (x1, b)

such that w′′(x) > 0 for x ∈ (b, x2) and w′′(x2) = 0. By w′(b) > 0 and w(b) = 0,

we have that w′(x) > 0 and w(x) > 0 for x ∈ (b, x2]. Then, from condition (A1), it

follows that w′′′(x2) > 0. However,

w′′′(x2) = lim
x→x−2

w′′(x)− w′′(x2)

x− x2

≤ 0.

This is a contradiction.

(⇒) The necessity of inequalities.

Assume w′(b) > 0 and w′′(b) > 0. By
t∑

j=1

bjw(ηj) − w(c) = 0, there is some

x0 ∈ (η1, c) such that w′(x0) = 0. Since w′(b) > 0, there is some x1 ∈ (b, x0] such

that w′(x1) = 0 and w′(x) > 0 for x ∈ [b, x1). Then by the Mean Value Theorem

and w′′(b) > 0, there is some x2 ∈ (b, x1) such that w′′(x2) = 0 and w′′(x) > 0 for

x ∈ [b, x2). We can see that w(x) > 0 and w′(x) > 0 for x ∈ (b, x2]. Application of

the condition (A1) gives us that w′′′(x2) > 0. However,

w′′′(x2) = lim
x→x−2

w′′(x)− w′′(x2)

x− x3

≤ 0,

which yields a contradiction.

(⇐) The sufficiency of inequalities.

We can simply switch the sign of w in the proof of the necessity of inequality

and then get a contradiction, too. Hence w′(b) > 0 if w′′(b) < 0.

Lemma 2.3. Let y1, y2, y3 ∈ R be given and assume condition (A1) is satisfied. Then,

given m ∈ R, each of the BVP’s for (2.1) satisfying any of conditions (2.5), (2.6),

(2.7), or (2.8) has at most one solution.

Proof. Here we prove the uniqueness of solutions of (2.1), (2.5) for any m ∈ R. The

other cases will be very similar based on Lemmas 2.1 or 2.2.
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Suppose there are two solutions p and q of (2.1) satisfying (2.5). Let w = p− q.

Then, we can see that w satisfies

w′′′(x) = f(x, p(x), p′(x), p′′(x))− f(x, q(x), q′(x), q′′(x)), x ∈ [a, b],

w(a)−
s∑
i=1

aiw(ξi) = 0, w(b) = 0, w′(b) = 0.

By Lemma 2.1, we have w′′(b) = 0. From the assumption that solutions of IVP’s for

(2.1) are unique and exist on all of [a, c], it follows that p ≡ q on [a, c].

Lemma 2.4. Let y1, y2, y3 ∈ R be given. Assume (A1) is satisfied. Then, the BVP

(2.1), (2.2) has at most one solution.

Proof. Suppose p and q are two solutions of the BVP (2.1), (2.2). Let w = p − q.

Then, w satisfies

w′′′(x) = f(x, p(x), p′(x), p′′(x))− f(x, q(x), q′(x), q′′(x)), x ∈ [a, c],

w(a)−
s∑
i=1

aiw(ξi) = 0, w(b) = 0,
t∑

j=1

bjw(ηj)− w(c) = 0.

Since p 6= q, by Lemmas 2.1 and 2.2, we have w′(b) 6= 0 and w′′(b) 6= 0. Without loss

of generality, we suppose w′(b) > 0. By Lemma 2.1, we have w′′(b) > 0, however,

Lemma 2.2 gives us w′′(b) < 0. A contradiction. Therefore, p ≡ q over [a, c].

Given any m ∈ R, let α1(x,m), u1(x,m), β1(x,m), v1(x,m) denote the solu-

tions, when they exist, of the boundary value problems of (2.1) satisfying (2.5), (2.6),

(2.7), or (2.8), respectively.

Lemma 2.5. Suppose that condition (A1) is satisfied and that for each m ∈ R, there

exist solutions of (2.1) satisfying each of the conditions (2.5), (2.6), (2.7) and (2.8),

respectively. Then, α′′1(b,m) and β′′1 (b,m) are, respectively, strictly increasing and

strictly decreasing functions of m with ranges all of R. Also, u′1(b,m) and v′1(b,m)

are, respectively, strictly increasing and strictly decreasing functions of m with ranges

all of R.
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Proof. By Lemmas 2.1 and 2.2, it is easy to see that α′′1(b,m) and u′1(b,m) are strictly

increasing functions of m, and β′′1 (b,m) and v′1(b,m) are strictly decreasing functions

of m.

We prove here that the range of α′′1(b,m), as a function of m, is all of R. The

proofs of other cases are very similar. To show {α′′1(b,m)|m ∈ R} = R, let l ∈ R.

Consider the solution u1(x, l) of (2.1) satisfying (2.6) and the solution α1(x, u′1(b, l))

of (2.1) satisfying (2.5). Then, both u1(x, l) and α1(x, u′1(b, l)) satisfy (2.1) and the

boundary conditions y(a)−
s∑
i=1

aiy(ξi) = y1, y(b) = y2 and α′1(b, u′1(b, l)) = u′1(b, l). By

Lemma (2.3), α1(x, u′1(b, l)) ≡ u1(x, l) for x ∈ [a, b]. Hence, α′′1(b, u′1(b, l)) = u′′1(b, l) =

l. Therefore, l ∈ {α′′1(b,m)|m ∈ R}, that is, {α′′1(b,m)|m ∈ R} = R.

Theorem 2.1. Assume f satisfies condition (A1) and that for each m ∈ R, there

exist solutions of (2.1) satisfying each of the conditions (2.5), (2.6), (2.7) and (2.8),

respectively. Then, (2.1), (2.2) has a unique solution.

Proof. We may prove the theorem by matching α1 with β1 or u1 with v1. Here we

take advantage of α1 and β1. For any m ∈ R, we have a solution α1(x,m) of (2.1),

(2.5) and a solution β1(x,m) of (2.1), (2.7). From Lemma 2.5, α′′1(b,m) and β′′1 (b,m)

are, respectively, strictly increasing and strictly decreasing functions of m with ranges

all of R. Then, there is a unique m0 ∈ R such that α′′1(b,m0) = β′′1 (b,m0). Therefore,

the following piecewise defined function

y(x) =

 α1(x,m0), x ∈ [a, b],

β1(x,m0), x ∈ [b, c]

is the unique solution of (2.1), (2.2).

2.3 The Case of (2.1), (2.4)

In this section, we are concerned with the existence and uniqueness of solutions

of (2.1), (2.4) on the interval [a, c], which is recalled as follows:

y′′′(x) = f(x, y(x), y′(x), y′′(x)), x ∈ [a, c], (2.1)
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y(a)−
s∑
i=1

aiy(ξi) = y1, y′′(b) = y2,

t∑
j=1

bjy(ηj)− y(c) = y3, (2.4)

In this case, our conditions on f need to be independent of the last two terms. Hence,

the differential equation we will consider here takes the form

y′′′(x) = f(x, y(x)), x ∈ [a, c].

However, to be consistent, we still use the equation labeled (2.1) for this equation.

Throughout this section, it is assumed that f : [a, c] × R → R is continuous

and that solutions of IVP’s for (2.1) are unique and exist on all of [a, c].

Consider the following list of four boundary conditions,

y(a)−
s∑
i=1

aiy(ξi) = y1, y′′(b) = y2, y(b) = m, (2.9)

y(a)−
s∑
i=1

aiy(ξi) = y1, y′′(b) = y2, y′(b) = m, (2.10)

y′′(b) = y2, y(b) = m,
t∑

j=1

bjy(ηj)− y(c) = y3, (2.11)

y′′(b) = y2, y′(b) = m,
t∑

j=1

bjy(ηj)− y(c) = y3, (2.12)

where m ∈ R, and we are going to obtain that (2.1), (2.4) has a unique solution by

matching solutions of the BVP (2.1), (2.9) on [a, b] with solutions of (2.1), (2.11) on

[b, c], or solutions of (2.1), (2.10) on [a, b] with solutions of (2.1), (2.12) on [b, c].

Conditions on f for the case of (2.1), (2.4) are stated as the following (A2):

(A2) The function f is of the form f(x, v) and f(x, v)−f(x, u) > 0, when x ∈ (a, b),

v < u; or when x ∈ (b, c), v > u.

Now with condition (A2) and similar ideas to Section 2.2, we present a whole

set of results for (2.1), (2.4). The first are our lemmas showing relations between the

change in function values and in values of the first order derivatives of solutions of (2.1)

at b satisfying y(a)−
s∑
i=1

aiy(ξi) = y1, y
′′(b) = y2, or y′′(b) = y2,

t∑
j=1

bjy(ηj)−y(c) = y3,

respectively.
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Lemma 2.6. Suppose p and q are solutions of (2.1) satisfying y(a) −
s∑
i=1

aiy(ξi) = y1

and y′′(b) = y2 on [a, b], and let w = p− q so that w satisfies

w′′′(x) = f(x, p(x))− f(x, q(x)), x ∈ [a, b],

w(a)−
s∑
i=1

aiw(ξi) = 0, w′′(b) = 0.

If the condition (A2) is satisfied, then w(b) = 0 if and only if w′(b) = 0, and w(b) > 0

if and only if w′(b) > 0.

Proof. (⇒) The necessity of equalities.

Suppose w(b) = 0 and w′(b) 6= 0. Without loss of generality, we suppose w′(b) >

0. By w(a) −
s∑
i=1

aiw(ξi) =
s∑
i=1

ai(w(a) − w(ξi)) = 0 and ai > 0 for i = 1, 2, . . . , s,

there is some x0 ∈ (a, ξs) such that w′(x0) = 0. Since w′(b) > 0, there is some

x1 ∈ [x0, b) such that w′(x) > 0 for x ∈ (x1, b] and w′(x1) = 0. From w(b) = 0, we

see that w(x) < 0 for x ∈ [x1, b). Since w′(x1) = 0 and w′(b) > 0 and the Mean

Value Theorem, we have some x2 ∈ (x1, b) such that w′′(x2) > 0. By w′′(b) = 0 and

the Mean Value Theorem, there is some x3 ∈ (x2, b) such that w′′′(x3) < 0. However,

from condition (A2), we have w′′′(x) > 0 for x ∈ [x1, b). This is a contradiction.

(⇐) The sufficiency of equalities.

Suppose w′(b) = 0 and w(b) 6= 0. Without loss of generality, we assume w(b) <

0. Since w is continuous on [a, b], so w is negative on a left neighborhood of b. By

condition (A2), we know that w′′′(x) > 0 on that deleted left neighborhood. From

w′(b) = 0, w(b) < 0, and w′′(b) = 0, we have that on that deleted left neighborhood

of b, w′′(x) < 0, w′(x) > 0, w(x) < 0.

By w(a) −
s∑
i=1

aiw(ξi) = 0, there is some x0 ∈ (a, ξs) such that w′(x0) = 0.

Hence, there is some x1 ∈ [x0, b) such that w′(x1) = 0 and w′(x) > 0 for x ∈ (x1, b].

So, w(x) < 0 for x ∈ [x1, b], which implies w′′′(x) > 0 for x ∈ [x1, b) and w′′(x) < 0

for x ∈ [x1, b). However, by w′(x1) = 0 and w′(b) = 0, there is some x2 ∈ (x1, b) such

that w′′(x2) = 0, which leads to a contradiction. Therefore, w(b) = 0.
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(⇒) The necessity of inequalities.

Assume w(b) > 0 and w′(b) < 0. Similarly, by w(a) −
s∑
i=1

aiw(ξi) = 0, there is

some x0 ∈ (a, ξs) such that w′(x0) = 0. Since w′(b) < 0, there is some x1 ∈ [x0, b)

such that w′(x1) = 0 and w′(x) < 0 for x ∈ (x1, b]. Hence w(x) > 0 for x ∈ [x1, b].

By condition (A2), w′′′(x) < 0 for x ∈ [x1, b). By w′′(b) = 0, we have that w′′(x) > 0

for x ∈ [x1, b). However, by w′(x1) = 0 and w′(b) < 0 and the Mean Value Theorem,

there is some x2 ∈ (x1, b) such that w′′(x2) < 0, which is a contradiction.

(⇐) The sufficiency of inequalities.

We assume that w(b) < 0 and w′(b) > 0. Then, we get the same situation as

the proof of necessity by replacing w with −w, which also implies a contradiction.

Hence w(b) > 0 if w′(b) > 0.

Lemma 2.7. Suppose p and q are solutions of (2.1) satisfying y′′(b) = y2 and
t∑

j=1

bjy(ηj)

−y(c) = y3 on [b, c] and let w = p− q so that w satisfies

w′′′(x) = f(x, p(x))− f(x, q(x)), x ∈ [b, c],

w′′(b) = 0,
t∑

j=1

bjw(ηj)− w(c) = 0.

If f satisfies the condition (A2), then w(b) = 0 if and only if w′(b) = 0, and w(b) > 0

if and only if w′(b) < 0.

Proof. (⇒) The necessity of equalities.

Suppose w(b) = 0 and w′(b) 6= 0. Without loss of generality, we suppose

w′(b) > 0. By w(b) = 0, we know on a deleted right neighborhood of b, w is positive.

By (A2), we know that w′′′ > 0 on that deleted right neighborhood of b, which from

w′′(b) = 0 implies that w stays positive and increasing on (b, c), which contradicts
t∑

j=1

bjw(ηj)− w(c) = 0. Therefore, w′(b) = 0.

(⇐) The sufficiency of equalities.

Suppose w′(b) = 0 and w(b) 6= 0. Without loss of generality, we suppose

w(b) > 0. Since w is continuous on [a, b], so w is positive on a right neighborhood of
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b. From condition (A2), we have that w′′′ > 0 on that deleted neighborhood. Since

w′′(b) = 0 and w′(b) = 0, we have that w is increasing and positive on (b, c), which is

contrary to
t∑

j=1

bjw(ηj)− w(c) = 0. Hence, w(b) = 0.

(⇒) The necessity of inequalities.

Assume w(b) > 0 and w′(b) > 0. By condition (A2), we will get a similar

contradiction to that in the proofs of equivalence of equalities. Hence w(b) > 0 and

w′(b) < 0.

(⇐) The sufficiency of inequalities.

We assume that w(b) < 0 and w′(b) < 0. Then, we get the same situation

as the proof of necessity with opposite signs of w(b) and w′(b), which also implies a

contradiction. Hence w(b) > 0 and w′(b) < 0.

With these two lemmas, we are ready to discuss the uniqueness and existence

of solutions of (2.1), (2.4). We first consider the uniqueness of solutions of each of

the BVP’s for (2.1) satisfying any of (2.9), (2.10), (2.11), or (2.12).

Lemma 2.8. Let y1, y2, y3 ∈ R be given and assume condition (A2) is satisfied. Then,

given m ∈ R, each of the BVP’s for (2.1) satisfying any of conditions (2.9), (2.10),

(2.11), or (2.12) has at most one solution.

Proof. By using Lemmas 2.6 and 2.7, the proofs are based on the same idea as that

of Lemma 2.3. We omit them here.

Lemma 2.9. Let y1, y2, y3 ∈ R be given. Assume the condition (A2) is satisfied. Then,

the BVP (2.1), (2.4) has at most one solution.

Proof. Suppose for some y1, y2, y3 ∈ R, there exist distinct solutions p and q of (2.1),

(2.4). Let w = p− q. Then, from Lemmas 2.6 and 2.7, we get w(b) 6= 0, w′(b) 6= 0.

Without loss of generality, we suppose w(b) > 0. Then, by Lemma 2.6, w′(b) >

0. But by Lemma 2.7, w′(b) < 0. This is a contradiction. Hence, p ≡ q on [a, c].
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Now we show that certain derivatives of solutions of (2.1) satisfying each of

(2.9), (2.10), (2.11), or (2.12), respectively, are monotone functions of m at b. For

notation purposes, given any m ∈ R, let α2(x,m), u2(x,m), β2(x,m), v2(x,m) denote

the solutions, when they exist, of the boundary value problems of (2.1) satisfying

(2.9), (2.10), (2.11), or (2.12), respectively.

Lemma 2.10. Suppose that the condition (A2) is satisfied and that for each m ∈ R,

there exist solutions of (2.1) satisfying each of the conditions (2.9), (2.10), (2.11), or

(2.12), respectively. Then, α′2(b,m) and β′2(b,m) are, respectively, strictly increasing

and strictly decreasing functions of m with ranges all of R. Also, u2(b,m) and v2(b,m)

are, respectively, strictly increasing and strictly decreasing functions of m with ranges

all of R.

Proof. By using Lemmas 2.6 and 2.7, the proof is very similar to that of Lemma

2.5.

Finally, we arrive at our existence result for (2.1), (2.2), which is obtained by

solution matching.

Theorem 2.2. Assume the condition (A2) is satisfied and that for each m ∈ R, there

exist solutions of (2.1) satisfying each of the conditions (2.9), (2.10), (2.11) and

(2.12), respectively. Then, (2.1), (2.4) has a unique solution.

Proof. By using Lemma 2.10, the proof is very similar to that of Theorem 2.1.
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CHAPTER THREE

Nonlocal Boundary Value Problems with Even Gaps in Boundary Conditions for
Third Order Differential Equations

3.1 Introduction

In this chapter, we again use solution matching to study the uniqueness and

existence of solutions for the nonlocal boundary value problem for third order differ-

ential equations (2.1), (2.3). For convenience, we recall

y′′′(x) = f(x, y(x), y′(x), y′′(x)), x ∈ [a, c], (2.1)

y(a)−
s∑
i=1

aiy(ξi) = y1, y′(b) = y2,
t∑

j=1

bjy(ηj)− y(c) = y3, (2.3)

where a < ξ1 < ξ2 < · · · < ξs < b < η1 < η2 < η · · · < ηt < c, s, t ∈ N, ai, bj > 0 for

i = 1, 2, . . . , s and j = 1, 2, . . . t,
s∑
i=1

ai =
t∑

j=1

bj = 1, and y1, y2, y3 ∈ R.

Examining the boundary conditions at b, we can see that the function value

and the value of the second order derivative of solutions are missing. The difference

of their order of derivatives (or gaps) is two, which is even. At the time of this work,

no previous work has been done on the existence and uniqueness of solutions of this

BVP with even gaps at b based on the techniques of solution-matching.

3.2 The Case of (2.1), (2.3)

In this case, our conditions require that f is independent of the last two terms.

Hence, the differential equation we will consider here for this case is

y′′′(x) = f(x, y(x)), x ∈ [a, c].

However, to be consistent, we still use the equation label (2.1) for this equation.

Consider the following list of four boundary conditions,

y(a)−
s∑
i=1

aiy(ξi) = y1, y′(b) = y2, y(b) = m, (3.1)
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y(a)−
s∑
i=1

aiy(ξi) = y1, y′(b) = y2, y′′(b) = m, (3.2)

y′(b) = y2, y(b) = m,
t∑

j=1

bjy(ηj)− y(c) = y3, (3.3)

y′(b) = y2, y′′(b) = m,

t∑
j=1

bjy(ηj)− y(c) = y3, (3.4)

where m ∈ R, and we are going to obtain that (2.1), (2.3) has a unique solution on

[a, c] by matching solutions of the BVP’s (2.1), (3.1) on [a, b] with solutions of (2.1),

(3.3) on [b, c], or matching solutions of (2.1), (3.2) on [a, b] with solutions of (2.1),

(3.4) on [b, c].

Throughout this section, it is assumed that f : [a, c] × R → R is continuous

and that solutions of IVP’s for (2.1) are unique and exist on all of [a, c]. A monotone

condition on f for the case of (2.1), (2.3) is the same as the condition (A2) and we

recall it as follows:

(A2) Function f is of the form f(x, v) and f(x, v) − f(x, u) > 0, when x ∈ (a, b),

v < u; or when x ∈ (b, c), v > u.

The next two lemmas are our elementary results for our main theorem, which

describe the monotonicity relations between the changes in the function values and

changes in the values of the second derivative of solutions of (2.1), (2.3) at b.

Lemma 3.1. Suppose p and q are solutions of (2.1) satisfying y(a)−
s∑
i=1

aiy(ξi) = y1,

y′(b) = y2 on [a, b], and let w = p− q so that w satisfies

w′′′(x) = f(x, p(x))− f(x, q(x)), x ∈ [a, b],

w(a)−
s∑
i=1

aiw(ξi) = 0, w′(b) = 0.

If the condition (A2) is satisfied, then w(b) = 0 if and only if w′′(b) = 0, and w(b) > 0

if and only if w′′(b) < 0.

Proof. (⇒) The necessity of equalities.
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Suppose w(b) = 0 and w′′(b) 6= 0. Without loss of generality, we assume

w′′(b) > 0. By w(a) −
s∑
i=1

aiw(ξi) =
s∑
i=1

ai(w(a) − w(ξi) = 0 and ai > 0 for i =

1, 2, . . . , s, there is some x0 ∈ (a, ξs) such that w′(x0) = 0. Since w′(b) = 0, there is

some x1 ∈ (x0, b) such that w′′(x1) = 0. From w′′(b) > 0, there is some x2 ∈ [x1, b)

such that w′′(x) > 0 for x ∈ (x2, b] and w′′(x2) = 0. By the Mean Value Theorem,

there is some x3 ∈ (x2, b) such that w′′′(x3) > 0. However, from w(b) = w′(b) = 0, we

have w(x) > 0 and w′(x) < 0 for x ∈ [x2, b), which together with the condition (A2)

imply w′′′(x) < 0 for x ∈ [x2, b). This is a contradiction.

(⇐) The sufficiency of equalities.

Suppose w′′(b) = 0 and w(b) 6= 0. Without loss of generality, we assume

w(b) > 0. With the same condition (A2), the proof is the same as that of the

sufficiency of equalities of Lemma 2.6.

(⇒) The necessity of inequalities.

Assume w(b) > 0 and w′′(b) > 0. Similarly, by w(a)−
s∑
i=1

aiw(ξi) = 0, there is

some x0 ∈ (a, ξs) such that w′(x0) = 0. Since w′(b) = 0, there is some x1 ∈ (x0, b)

such that w′′(x1) = 0. Since w′′(b) > 0, there is x2 ∈ [x1, b) such that w′′(x) > 0 for

x ∈ (x2, b] and w′′(x2) = 0. From w(b) > 0 and w′(b) = 0, it follows that w(x) > 0

and w′(b) < 0 for x ∈ [x2, b). By the condition (A2), w′′′(x) < 0 for x ∈ [x2, b).

However, from w′′(x2) = 0 and w′′(b) > 0 and the Mean Value Theorem, there is

some x3 ∈ (x2, b) such that w′′′(x3) > 0. This is a contradiction. Hence if w(b) > 0,

then w′′(b) < 0.

(⇐) The sufficiency of inequalities.

We assume that w(b) < 0 and w′′(b) < 0. By replacing w by −w, we are in the

same situation as in the proof of the necessity of inequalities and we will arrive at a

contradiction. Hence w(b) < 0, if w′(b) < 0.

Lemma 3.2. Suppose p and q are solutions of (2.1) satisfying y′(b) = y2 and
t∑

j=1

bjy(ηj)
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−y(c) = y3 on [b, c] and let w = p− q so that w satisfies

w′′′(x) = f(x, p(x))− f(x, q(x)), x ∈ [b, c],

w′(b) = 0,
t∑

j=1

bjw(ηj)− w(c) = 0.

If the condition (A2) is satisfied, then w(b) = 0 if and only if w′′(b) = 0, and w(b) > 0

if and only if w′′(b) < 0.

Proof. (⇒) The necessity of equalities.

Suppose w(b) = 0 and w′′(b) 6= 0. Without loss of generality, we suppose

w′′(b) > 0. From
t∑

j=1

bjw(ηj) − w(c) =
t∑

j=1

bj(w(ηj) − w(c)) = 0 and bj > 0 for

j = 1, 2, . . . , t, we have that there is some x0 ∈ (η1, c) such that w′(x0) = 0. The

Mean Value Theorem and w′(b) = w′(x0) = 0 imply that there is some x1 ∈ (b, x0)

such that w′′(x1) = 0. By w′′(b) > 0, there is some x2 ∈ (b, x1] such that w′′(x2) = 0

and w′′(x) > 0 for x ∈ [b, x2). w(b) = 0 gives us that w(x) > 0 for x ∈ (b, x2],

which together with condition (A2) implies that w′′′(x) > 0 for x ∈ (b, x2]. However,

w′′(b) > 0 and w′′(x2) = 0 and the Mean Value Theorem, there is some x3 ∈ (b, x2)

such that w′′′(x3) < 0, which is again a contradiction.

(⇐) The sufficiency of equalities.

Suppose w′′(b) = 0 and w(b) 6= 0. Without loss of generality, we suppose

w(b) > 0. Under the condition (A2), the proof will be the same as that of the

sufficiency of equalities of Lemma 2.7.

(⇒) The necessity of inequalities.

Assume w(b) > 0 and w′′(b) > 0. By condition (A2), the proof is similar to

that of the necessity of equalities. A contradiction yields that w′′(b) < 0, if w(b) > 0.

(⇐) The sufficiency of inequalities.

We assume that w(b) < 0 and w′′(b) < 0. Then, we have the same situation as

the proof of necessity with opposite sign of w, which leads to a contradiction. Hence

w(b) > 0, if w′′(b) < 0.
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With the above two fundamental lemmas, we are in a position to show some

more lemmas leading to our matching ideas.

Lemma 3.3. Let y1, y2, y3 ∈ R be given and assume condition (A2) is satisfied. Then,

given m ∈ R, each of the BVP’s for (2.1) satisfying any of conditions (3.1), (3.2),

(3.3), or (3.4) has at most one solution.

Proof. By using Lemmas 3.1 and 3.2, the proofs are based on the same idea as that

of Lemma 2.3.

Now we show that solutions of (2.1) satisfying each of (3.1), (3.2), (3.3), or

(3.4), respectively, are monotone functions of m at b. For notation purposes, given

any m ∈ R, let α3(x,m), u3(x,m), β3(x,m), v3(x,m) denote the solutions, when they

exist, of the boundary value problems of (2.1) satisfying (3.1), (3.2), (3.3), or (3.4),

respectively.

Lemma 3.4. Suppose that condition (A2) is satisfied and that for each m ∈ R, there

exist solutions of (2.1) satisfying each of the conditions (3.1), (3.2), (3.3), (3.4),

respectively. Then, all of α′′3(b,m), β′′3 (b,m), u3(b,m) and v3(b,m) are strictly de-

creasing functions of m with ranges all of R.

Proof. First, by using Lemmas 3.1 and 3.2, α′′3(b,m), β′′3 (b,m), u3(b,m) and v3(b,m)

are all strictly decreasing functions of m.

Then, we prove the range of α′′3(b,m) as a function of m is all of R. The proofs

of other cases are very similar. It suffices to show {α′′3(b,m)|m ∈ R} = R. Let l ∈ R.

Consider the solution u3(x, l) of (2.1) satisfying (3.2) and the solution α3(x, u′′3(b, l))

of (2.1) satisfying (3.1). Then, both u3(x, l) and α3(x, u3(b, l)) satisfy (2.1) and the

boundary conditions y(a)−
s∑
i=1

aiy(ξi) = y1, y′(b) = y2 and α3(b, u3(b, l)) = u3(b, l). By

Lemma 3.1, α3(x, u3(b, l)) ≡ u3(x, l) for x ∈ [a, b]. Hence, α′′3(b, u3(b, l)) = u′′3(b, l) = l.

Therefore, l ∈ {α′′3(b,m)|m ∈ R}, that is, {α′′3(b,m)|m ∈ R} = R.
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When applying the solution-matching technique to get our main results in this

chapter, we consider matching solutions of BVP (2.1), (3.1) with solutions of BVP

(2.1), (3.3). Next, under certain Lipschitz conditions of f , we obtain some bounds to

the rate of change of the second order derivative of solutions of (2.1) at b with respect

of m ∈ R.

Lemma 3.5. Suppose f satisfies the condition (A2), and suppose there is some M1 > 0,

such that

f(x, v)− f(x, u) ≥ −M1(v − u), ∀x ∈ (a, b), ∀ v ≥ u ∈ R. (3.5)

Assume for each m ∈ R, there exists a solution α3(x,m) of (2.1) satisfying (3.1). Let

m1,m2 ∈ R with m1 < m2. Then,

α′′3(b,m2)− α′′3(b,m1) > −M1(b− a)(m2 −m1). (3.6)

Proof. Let m1,m2 ∈ R with m1 < m2 be fixed. We denote Φ(x) = α3(x,m2)−α3(x,m1)
m2−m1

.

Then, Φ(x) satisfies

Φ′′′(x) =
f(x, α3(x,m2))− f(x, α3(x,m1))

m2 −m1

, x ∈ [a, b],

Φ(b) = 1, Φ′(b) = 0, Φ(a)−
s∑
i=1

aiΦ(ξi) = 0,

and by Lemma 3.4, Φ′′(b) < 0. It suffices to show that Φ′′(b) > −M1(b− a).

Since Φ(a)−
s∑
i=1

aiΦ(ξi) =
s∑
i=1

ai(Φ(a)−Φ(ξi)) = 0 and ai > 0, for i = 1, 2, . . . , s,

there is some x0 ∈ (a, ξs) such that Φ′(x0) = 0. By Φ′(b) = 0, there is some x1 ∈ (x0, b)

such that Φ′′(x1) = 0. Since Φ′′(b) < 0, there is some x2 ∈ [x1, b) such that Φ′′(x2) = 0

and Φ′′(x) < 0 for x ∈ (x2, b]. From Φ′(b) = 0, we can see that Φ′(x) > 0 for

x ∈ [x2, b). Since Φ′(x0) = 0, there is some x3 ∈ [x0, x2) such that Φ′(x3) = 0 and

Φ′(x) > 0 for x ∈ (x3, b).

Next, we show Φ(x) > 0 for x ∈ [x2, b]. Suppose this is not true. Then, from

Φ′(x3) = 0 and Φ′(x) > 0 for x ∈ (x3, b) and x3 ∈ [x0, x2), we have that Φ(x2) ≤ 0
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and Φ(x) < 0 for x ∈ [x3, x2). From condition (A2), Φ′′′(x) > 0 for x ∈ [x3, x2).

However, from Φ′(x3) = 0 and Φ′(x2) > 0, there is some x4 ∈ (x3, x2) such that

Φ′′(x4) > 0. Also from Φ′′(x2) = 0, there is some x5 ∈ (x4, x2) ⊂ (x3, x2) such

that Φ′′′(x5) < 0. This is a contradiction to Φ′′′(x) > 0 for x ∈ [x3, x2). Therefore,

Φ(x) > 0 for x ∈ [x2, b].

Now from Φ(x) > 0 for x ∈ [x2, b] and Φ′(x) > 0 for x ∈ [x2, b), it is easy to see

that 0 < Φ(x) < 1 for x ∈ [x2, b). Then, by (3.5), for x ∈ [x2, b)

Φ′′′(x) =
f(x, α3(x,m2))− f(x, α3(x,m1))

m2 −m1

≥ −M1(α3(x,m2)− α3(x,m1))

m2 −m1

= −M1Φ(x)

> −M1.

Next we show that Φ′′(b) > −M1(b − a). Suppose this is not true. Then,

Φ′′(b) ≤ −M1(b− a). By Φ′′(x2) = 0, there is some x5 ∈ (x2, b) such that

Φ′′′(x5) =
Φ′′(b)− Φ′′(x2)

b− x2

≤ −M1(b− a)

b− x2

= −M1
(b− a)

b− x2

< −M1,

which is a contradiction to Φ′′′(x) > −M1 for x ∈ [x2, b). Therefore, Φ′′(b) > −M1(b−

a).

Lemma 3.6. Suppose f satisfies the condition (A2) and there is a continuous function

M1(x) for x ∈ [a, b], such that

f(x, v)− f(x, u) ≤ −M1(x)(v − u), ∀x ∈ (a, b), ∀ v ≥ u ∈ R, (3.7)

where M1(x) > 0, for x ∈ [a, b), and

s∑
i=1

ai
∫ ξi
a

∫ b
l

∫ b
r
M1(e)dedrdl

s∑
i=1

ai
∫ ξi
a

∫ b
l

(
1 +

∫ b
r
M1(e) (b−e)2

2
de
)
drdl

≥ 2

(b− a)2
. (3.8)
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Assume for each m ∈ R, there exists a solution α3(x,m) of (2.1) satisfying (3.1). Let

m1 < m2 ∈ R. Then,

α′′3(b,m2)− α′′3(b,m1) < −2(m2 −m1)

(b− a)2
. (3.9)

Proof. Let m1 < m2 ∈ R be fixed. We denote

Φ(x) =
α3(x,m2)− α3(x,m1)

m2 −m1

.

Then Φ(x) satisfies

Φ′′′(x) =
f(x, α3(x,m2))− f(x, α3(x,m1))

m2 −m1

, x ∈ [a, b],

Φ(b) = 1, Φ′(b) = 0, Φ(a)−
s∑
i=1

aiΦ(ξi) = 0,

and by Lemma 3.4, Φ′′(b) < 0. It suffices to show that Φ′′(b) < − 2
(b−a)2

. Suppose this

is not true. Then, Φ′′(b) ≥ − 2
(b−a)2

.

By Φ(b) = 1, Φ′(b) = 0, and Φ′′(b) ≥ − 2
(b−a)2

, we have that

Φ(x) = Φ(b)−
∫ b

x

Φ′(l)dl = Φ(b) +

∫ b

x

∫ b

l

Φ′′(r)drdl

= Φ(b) +

∫ b

x

∫ b

l

(
Φ′′(b)−

∫ b

r

Φ′′′(e)de

)
drdl

= 1 + Φ′′(b) · (b− x)2

2
−
∫ b

x

∫ b

l

∫ b

r

Φ′′′(e)dedrdl.

Next, we show Φ(x) > 0 for x ∈ [a, b]. Assume this is not true. Let x0 ∈ [a, b)

such that Φ(x0) = 0 and Φ(x) > 0 for x ∈ (x0, b]. Then, by (3.7),

Φ′′′(x) =
f(x, α3(x,m2))− f(x, α3(x,m1))

m2 −m1

≤ −M1(x)Φ(x), ∀x ∈ (x0, b].

Hence, by Φ′′(b) ≥ − 2
(b−a)2

,

Φ(x0) = 1 + Φ′′(b) · (b− x0)2

2
−
∫ b

x0

∫ b

l

∫ b

r

Φ′′′(e)dedrdl

≥ 1 + Φ′′(b) · (b− x0)2

2
+

∫ b

x0

∫ b

l

∫ b

r

M1(e)Φ(e)dedrdl
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> 1 + Φ′′(b) · (b− x0)2

2

≥ 1− (b− x0)2

(b− a)2

≥ 0,

which is a contradiction to Φ(x0) = 0.

From Φ(x) > 0 for x ∈ [a, b], we have that Φ′′′(x) ≤ 0 for x ∈ [a, b]. Hence, by

(3.7), Φ′′′(x) ≤ −M1(x)Φ(x) for x ∈ [a, b]. Therefore,

Φ(x) = 1 + Φ′′(b) · (b− x)2

2
−
∫ b

x

∫ b

l

∫ b

r

Φ′′′(e)dedrdl

≥ 1 + Φ′′(b) · (b− x)2

2
+

∫ b

x

∫ b

l

∫ b

r

M1(e)Φ(e)dedrdl

> 1 + Φ′′(b) · (b− x)2

2
.

Now, we use the expression

Φ(x) = 1 + Φ′′(b) · (b− x)2

2
−
∫ b

x

∫ b

l

∫ b

e

Φ′′′(e)dedrdl.

From Φ(a)−
s∑
i=1

aiΦ(ξi) = 0, we have that

Φ′′(b) · (b− a)2

2
−
∫ b

a

∫ b

l

∫ b

r

Φ′′′(e)dedrdl

=
s∑
i=1

ai

(
Φ′′(b) · (b− ξi)2

2
−
∫ b

ξi

∫ b

l

∫ b

r

Φ′′′(e)dedrdl

)
,

that is,

Φ′′(b) ·
s∑
i=1

ai

(
(b− ξi)2 − (b− a)2

2

)
= −

s∑
i=1

ai

∫ ξi

a

∫ b

l

∫ b

r

Φ′′′(e)dedrdl.

By
s∑
i=1

ai

(
(b− ξi)2 − (b− a)2

2

)
= −

s∑
i=1

ai

∫ ξi

a

∫ b

l

drdl,

Φ′′′(x) ≤ −M1(x)Φ(x) for x ∈ [a, b], and Φ(x) > 1 + Φ′′(b) · (b−x)2

2
, we have that

−Φ′′(b)
s∑
i=1

ai

∫ ξi

a

∫ b

l

drdl

24



= −
s∑
i=1

ai

∫ ξi

a

∫ b

l

∫ b

r

Φ′′′(e)dedrdl

≥
s∑
i=1

ai

∫ ξi

a

∫ b

l

∫ b

r

M1(e)Φ(e)dedrdl

>
s∑
i=1

ai

∫ ξi

a

∫ b

l

∫ b

r

M1(e)

(
1 + Φ′′(b) · (b− e)2

2

)
dedrdl

=
s∑
i=1

ai

∫ ξi

a

∫ b

l

∫ b

r

M1(e)dedrdl + Φ′′(b)
s∑
i=1

ai

∫ ξi

a

∫ b

l

∫ b

r

M1(e)
(b− e)2

2
dedrdl,

which give that

−Φ′′(b)
s∑
i=1

ai

∫ ξi

a

∫ b

l

(
1 +

∫ b

r

M1(e)
(b− e)2

2
de

)
drdl

>
s∑
i=1

ai

∫ ξi

a

∫ b

l

∫ b

r

M1(e)dedrdl,

that is,

−Φ′′(b) >

s∑
i=1

ai
∫ ξi
a

∫ b
l

∫ b
r
M1(e)dedrdl

s∑
i=1

ai
∫ ξi
a

∫ b
l

(
1 +

∫ b
r
M1(e) (b−e)2

2
de
)
drdl

By (3.8), we have

−Φ′′(b) >
2

(b− a)2
,

which is a contradiction to the assumption −Φ′′(b) ≤ 2
(b−a)2

. Therefore, Φ′′(b) <

− 2
(b−a)2

.

Lemma 3.7. Suppose f satisfies the condition (A2) and there is some M2 > 0, such

that

f(x, v)− f(x, u) ≤M2(v − u), ∀x ∈ (b, c), ∀ v ≥ u ∈ R. (3.10)

Assume for each m ∈ R, there exists a solution β3(x,m) of (2.1) satisfying (3.3). Let

m1 < m2 ∈ R. Then,

β′′3 (b,m2)− β′′3 (b,m1) > −M2(c− b)(m2 −m1). (3.11)
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Proof. Let m1 < m2 ∈ R be fixed. We denote Ψ(x) = β3(x,m2)−β3(x,m1)
m2−m1

. Then Ψ(x)

satisfies

Ψ′′′(x) =
f(x, β3(x,m2))− f(x, β3(x,m1))

m2 −m1

, x ∈ [b, c],

Ψ(b) = 1, Ψ′(b) = 0,
t∑

j=1

bjΨ(ηj)−Ψ(c) = 0,

and by Lemma 3.4, Ψ′′(b) < 0. We need to show that Ψ′′(b) > −M2(c− b).

By
t∑

j=1

bjΨ(ηj)−Ψ(c) =
t∑

j=1

bj(Ψ(ηj)−Ψ(c)) = 0 and bj > 0 for j = 1, 2, . . . , t,

there is some x0 ∈ (η1, c) such that Ψ′(x0) = 0. By Ψ′(b) = 0, there is some x1 ∈

(b, x0) such that Ψ′′(x1) = 0 and Ψ′′(x) < 0 for x ∈ [b, x1). It follows that Ψ′(x) < 0

for x ∈ (b, x1]. Then there is some x2 ∈ (x1, x0] such that Ψ′(x) < 0 for x ∈ (b, x2)

and Ψ′(x2) = 0.

Now we want to show Ψ(x) > 0 for x ∈ [b, x1]. Otherwise, by Ψ′(x) < 0

for x ∈ (b, x1) ⊂ (b, x2) we suppose Ψ(x1) ≤ 0. Then for x ∈ (x1, x2], Ψ(x) < 0.

By condition (A2), Ψ′′′(x) ≤ 0 for x ∈ (x1, x2]. Since Ψ′′(x1) = 0, Ψ′′(x) ≤ 0 for

x ∈ (x1, x2]. However, Ψ′(x1) < 0 and Ψ′(x2) = 0 and the Mean Value Theorem

yield that there is some x3 ∈ (x1, x2) such that Ψ′′(x3) > 0. This is a contradiction.

Therefore, Ψ(x) > 0 for x ∈ [b, x1] and so 0 ≤ Ψ(x) < 1 for x ∈ (b, x1).

Then, by (3.10), for x ∈ (b, x1),

Ψ′′′(x) =
f(x, β3(x,m2))− f(x, β3(x,m1))

m2 −m1

≤M2Ψ(x) < M2.

Since Ψ′′(x1) = 0, we claim that Ψ′′(b) > −M2(c − b). Suppose this is not true, i.e.,

Ψ′′(b) ≤ −M2(c− b). Then there is some x4 ∈ (b, x1) such that

Ψ′′′(x4) =
Φ′′(x1)− Φ′′(b)

x1 − b
≥M2

c− b
x1 − b

> M2.

This is a contradiction. Therefore |Ψ′′(b)| < M2(c− b) or Ψ′′(b) > −M2(c− b).

Lemma 3.8. Suppose f satisfies the condition (A2) and there is a continuous function

M2(x) for x ∈ [b, c], such that

f(x, v)− f(x, u) ≥M2(x)(v − u), ∀x ∈ (b, c), ∀ v ≥ u ∈ R, (3.12)
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where M2(x) > 0, for x ∈ (b, c], and

t∑
j=1

bj
∫ c
ηj

∫ l
b

∫ r
b
M2(e)dedrdl

t∑
j=1

bj
∫ c
ηj

∫ l
b

(
1 +

∫ r
b
M2(e) (e−b)2

2
de
)
drdl

≥ 2

(c− b)2
. (3.13)

Assume for each m ∈ R, there exist solutions β3(x,m) of (2.1) satisfying (3.3). Let

m1 < m2 ∈ R. Then,

β′′3 (b,m2)− β′′3 (b,m1) < −2(m2 −m1)

(c− b)2
. (3.14)

Proof. Let m1 < m2 ∈ R be fixed. We denote Ψ(x) = β3(x,m2)−β3(x,m1)
m2−m1

. Then Ψ(x)

satisfies

Ψ′′′(x) =
f(x, β3(x,m2))− f(x, β3(x,m1))

m2 −m1

, x ∈ [b, c],

Ψ(b) = 1, Ψ′(b) = 0,
t∑

j=1

bjΨ(ηj)−Ψ(c) = 0,

and by Lemma 3.4, Ψ′′(b) < 0. Then, we only need to show that Ψ′′(b) < − 2
(c−b)2 .

Suppose this is not true. Then, Ψ′′(b) ≥ − 2
(c−b)2 .

Similarly as in the proof of Lemma 3.6, by Ψ(b) = 1, Ψ′(b) = 0, and Ψ′′(b) ≥

− 2
(c−b)2 , we have that

Ψ(x) = Ψ(b) +

∫ x

b

∫ l

b

(
Ψ′′(b) +

∫ r

b

Ψ′′′(e)de

)
drdl

= 1 + Ψ′′(b) ·
∫ x

b

∫ l

b

drdl +

∫ x

b

∫ l

b

∫ r

b

Ψ′′′(e)dedrdl.

Next, we show Ψ(x) > 0 for x ∈ [b, c]. Assume it is not true. Let x0 ∈ (b, c] such

that Ψ(x0) = 0 and Ψ(x) > 0 for x ∈ [b, x0). Then, by (3.12) and Ψ′′(b) ≥ − 2
(c−b)2 ,

Ψ(x0) = 1 + Ψ′′(b) · (x0 − b)2

2
+

∫ x0

b

∫ l

b

∫ r

b

Ψ′′′(e)dedrdl

≥ 1 + Ψ′′(b) · (x0 − b)2

2
+

∫ x0

b

∫ l

b

∫ r

b

M2(e)Ψ(e)dedrdl

> 1 + Ψ′′(b) · (x0 − b)2

2
≥ 1− (x0 − b)2

(c− b)2
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≥ 0,

which is a contradiction to Ψ(x0) = 0. Hence, Ψ(x) > 0 for x ∈ [b, c], and so for

x ∈ (b, c],

Ψ(x) > 1 + Ψ′′(b) ·
∫ x

b

∫ l

b

drdl.

Notice

Ψ(x) = 1 + Ψ′′(b) ·
∫ x

b

∫ l

b

drdl +

∫ x

b

∫ l

b

∫ r

b

Ψ′′′(e)dedrdl

and
t∑

j=1

bjΨ(ηj) = Ψ(c), so we have that

−Ψ′′(b) ·
t∑

j=1

bj

∫ c

ηj

∫ l

b

drdl

=
t∑

j=1

bj

∫ c

ηj

∫ l

b

∫ r

b

Ψ′′′(e)dedrdl

≥
t∑

j=1

bj

∫ c

ηj

∫ l

b

∫ r

b

M2(e)Ψ(e)dedrdl

>
t∑

j=1

bj

∫ c

ηj

∫ l

b

∫ r

b

M2(e)

(
1 + Ψ′′(b) ·

∫ e

b

∫ u

b

dvdu

)
dedrdl,

that is, by (3.13),

−Ψ′′(b) >

t∑
j=1

bj
∫ c
ηj

∫ l
b

∫ r
b
M2(e)dedrdl

t∑
j=1

bj
∫ c
ηj

∫ l
b

(
1 +

∫ r
b
M2(e) (e−b)2

2
de
)
drdl

≥ 2

(c− b)2
.

This is a contradiction to the assumption Ψ′′(b) ≥ − 2
(c−b)2 . Therefore, Ψ′′(b) <

− 2
(c−b)2 .

The next lemma is about the existence and uniqueness of an intersection point

of two continuous and strictly decreasing functions with ranges all of R. The proof

is based on some calculus analysis.
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Lemma 3.9. Assume µ(x), ω(x) ∈ C(R) and both are strictly decreasing functions and

range all of R. Suppose ∃σ1 < σ2 < 0 such that

µ(x2)− µ(x1) ≤ σ1(x2 − x1), ω(x2)− ω(x1) ≥ σ2(x2 − x1), ∀x1 < x2.

Then, there exist a unique x0 ∈ R such that µ(x0) = ω(x0).

Proof. First, we prove the existence. Suppose µ(x) 6= ω(x) for any x ∈ R. Then,

either µ(x) < ω(x) or µ(x) > ω(x), ∀ x ∈ R.

Case 1: ω(x) < µ(x), ∀ x ∈ R.

Let some x̄ ∈ R be fixed. We consider two lines l1(x) = µ(x̄) + σ1(x − x̄) and

l2(x) = ω(x̄) + σ2(x− x̄) for x ∈ R.

Since l1(x̄) = µ(x̄) and µ(x) − µ(x̄) ≤ σ1(x − x̄) for x > x̄, we have that

µ(x) ≤ l1(x) for x > x̄. From l2(x̄) = ω(x̄) and ω(x)− ω(x̄) ≥ σ2(x− x̄) for x > x̄, it

follows that ω(x) ≥ l2(x) for x > x̄.

Notice l(x̃) = l2(x̃) for x̃ = µ(x̄)−ω(x̄)
σ2−σ1 + x̄ > x̄. Hence, µ(x̃) ≤ l1(x̃) = l2(x̃) ≤

ω(x̃), which is a contradiction to ω(x) < µ(x), ∀ x ∈ R.

Case 2: ω(x) > µ(x), ∀ x ∈ R.

Let some x̄ ∈ R be fixed. We still consider the two lines l1(x) = µ(x̄)+σ1(x− x̄)

and l2(x) = ω(x̄) + σ2(x− x̄) for x ∈ R.

By l1(x̄) = µ(x̄) and µ(x̄)−µ(x) ≤ σ1(x̄−x) for x < x̄, we have that µ(x) ≥ l1(x)

for x < x̄. From l2(x̄) = ω(x̄) and ω(x̄)− ω(x) ≥ σ2(x̄− x) for x < x̄, it follows that

ω(x) ≤ l2(x) for x < x̄.

At x̃ = ω(x̄)−µ(x̄)
σ1−σ2 + x̄ < x̄, l(x̃) = l2(x̃). Then, ω(x̃) ≤ l2(x̃) = l1(x̃) ≤ µ(x̃),

which is a contradiction to ω(x) > µ(x), ∀ x ∈ R.

Next, we show the uniqueness. Suppose there two distinct numbers x1, x2 ∈ R

such that µ(xi) = ω(xi) for i = 1, 2. Without loss of generality, suppose x1 < x2.

Then,

σ2(x2 − x1) ≤ ω(x2)− ω(x1) = µ(x2)− µ(x1) ≤ σ(x2 − x1),
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which is a contradiction to σ1 < σ2. Therefore, there is a unique x0 such that

µ(x0) = ω(x0).

Now, we are in the position to show our main result.

Theorem 3.1. Suppose that f satisfies condition (A2) and that for each m ∈ R,

there exist solutions α3(x,m), u3(x,m), β3(x,m), v3(x,m) of (2.1) satisfying each of

the conditions (3.1), (3.2), (3.3), (3.4), respectively. Suppose f satisfies one of the

following:

(H1): there is some M1 > 0 and a continuous function M2(x) for x ∈ [b, c] with

M2(x) > 0 for x ∈ (b, c], such that

0 > f(x, v)− f(x, u) ≥ −M1(v − u), ∀x ∈ (a, b), ∀ v > u ∈ R,

f(x, v)− f(x, u) ≥M2(x)(v − u), ∀x ∈ (b, c), ∀ v > u ∈ R,

where

M1(b− a) <
2

(c− b)2
,

and
t∑

j=1

bj
∫ c
ηj

∫ l
b

∫ r
b
M2(e)dedrdl

t∑
j=1

bj
∫ c
ηj

∫ l
b

(
1 +

∫ r
b
M2(e) (e−b)2

2
de
)
drdl

≥ 2

(c− b)2
;

or

(H2): there is some M2 > 0 and a continuous function M1(x) for x ∈ [a, b] with

M1(x) > 0 for x ∈ [a, b), such that

f(x, v)− f(x, u) ≤ −M1(x)(v − u), ∀x ∈ (a, b), ∀ v > u ∈ R,

0 < f(x, v)− f(x, u) ≤M2(v − u), ∀x ∈ (b, c), ∀ v > u ∈ R,

where
s∑
i=1

ai
∫ ξi
a

∫ b
l

∫ b
r
M1(e)dedrdl

s∑
i=1

ai
∫ ξi
a

∫ b
l

(
1 +

∫ b
r
M1(e) (b−e)2

2
de
)
drdl

≥ 2

(b− a)2
,
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and

2

(b− a)2
> M2(c− b).

Then the BVP (2.1), (2.3) has a unique solution.

Proof. We show the proof for the case that f satisfies (H1). The proof for the other

case is very similar and omitted here.

First, we prove the existence of solutions of the BVP (2.1), (2.3). Since for any

m ∈ R, there exist solutions α3(x,m), u3(x,m), β3(x,m), v3(x,m) of (2.1) satisfying

each of the conditions (3.1), we consider α′′3(b,m), u3(b,m), β′′3 (b,m), v3(b,m) as

functions of m. By Lemma 3.4, they are all strictly decreasing continuous functions.

For any m1 < m2 ∈ R, from Lemma 3.5, we have α′′3(b,m2) − α′′3(b,m1) >

−M1(b − a)(m2 − m1); and from Lemma 3.8, we have β′′3 (b,m2) − β′′3 (b,m1) <

−2(m2−m1)
(c−b)2 . Notice, −M1(b− a) > − 2

(c−b)2 . By Lemma 3.9, there is a unique m0 ∈ R

such that α′′3(b,m0) = β′′3 (b,m0). Then the piecewise defined function

y(x) =

 α3(x,m0), x ∈ [a, b],

β3(x,m0), x ∈ [b, c],

is a solution of (2.1), (2.3).

Second, we prove the uniqueness. Suppose there are two solutions y1(x) and

y2(x) of (2.1), (2.3). Then, we have some m1 = y1(b) and m2 = y2(b) such that

α3(x,m1) = y1(x) for x ∈ [a, b], β3(x,m1) = y1(x) for x ∈ [b, c], α3(x,m2) = y2(x)

for x ∈ [a, b], and β3(x,m2) = y2(x) for x ∈ [b, c]. By Lemma 3.3, m1 6= m2.

Without loss of generality, we suppose m2 > m1. Then by (H1) and Lemmas 3.5 and

3.8, we have that β′′3 (b,m2) − β′′3 (b,m1) < −2(m2−m1)
(c−b)2 , and α′′3(b,m2) − α′′3(b,m1) >

−M1(b− a)(m2 −m1), that is,

−M1(b−a)(m2−m1)<α′′3(b,m2)−α′′3(b,m1)=β′′3 (b,m2)−β′′3 (b,m1)<−2(m2 −m1)

(c− b)2
,

which is a contradiction to −M1(b− a) > − 2
(c−b)2 .
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Therefore, y(x) above is the unique solution of (2.1), (2.3).
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CHAPTER FOUR

Nonlocal Boundary Value Problems of nth Order Differential Equations with
k2 − k1 Being Odd

4.1 Introduction

In this chapter, we extend our results in Chapter Two for third order problems

to more general conclusions for nth order BVP’s based on the solution-matching

technique. Basically, we are concerned with the existence and uniqueness of solutions

of BVP’s on an interval [a, c] for the nth order ordinary differential equation,

y(n)(x) = f(x, y(x), y′(x), . . . , y(n−1)(x)), n ≥ 3, x ∈ [a, c], (4.1)

satisfying the boundary conditions,

y(a)−
s∑
i=1

aiy(ξi) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ k1 − 1,

y(i)(b) = yi+1, k1 + 1 ≤ i ≤ k2 − 1,

y(i)(b) = yi, k2 + 1 ≤ i ≤ n− 1,
t∑

j=1

bjy(ηj)− y(c) = yn,

(4.2)

where a < ξ1 < ξ2 < · · · < ξs < b < η1 < η2 < · · · < ηt < c, and y1, y2, . . . , yn ∈ R,

k1, k2 ∈ Z such that 0 ≤ k1 < k2 ≤ n− 1 and k2 − k1 is odd.

It is assumed throughout this chapter that f : [a, c] × Rn → R is continuous

and that solutions of IVP’s for (4.1) are unique and exist on the entire interval [a, c].

Moreover, k1 and k2 are fixed.

Given the following set of boundary conditions,

y(a)−
s∑
i=1

aiy(ξi) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ k1 − 1, y(k1)(b) = m,

y(i)(b) = yi+1, k1 + 1 ≤ i ≤ k2 − 1, y(i)(b) = yi, k2 + 1 ≤ i ≤ n− 1,

(4.3)

y(a)−
s∑
i=1

aiy(ξi) = y1, y(i)(b) = yi+2, 0 ≤ i ≤ k1 − 1, y(k2)(b) = m,

y(i)(b) = yi+1, k1 + 1 ≤ i ≤ k2 − 1, y(i)(b) = yi, k2 + 1 ≤ i ≤ n− 1,

(4.4)
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y(i)(b) = yi+2, 0 ≤ i ≤ k1 − 1, y(i)(b) = yi+1, k1 + 1 ≤ i ≤ k2 − 1,

y(k1)(b) = m, y(i)(b) = yi, k2 + 1 ≤ i ≤ n− 1,
t∑

j=1

bjy(ηj)− y(c) = yn,
(4.5)

y(i)(b) = yi+2, 0 ≤ i ≤ k1 − 1, y(i)(b) = yi+1, k1 + 1 ≤ i ≤ k2 − 1,

y(k2)(b) = m, y(i)(b) = yi, k2 + 1 ≤ i ≤ n− 1,
t∑

j=1

bjy(ηj)− y(c) = yn,
(4.6)

where m ∈ R, we will match solutions of the BVP’s (4.1), (4.3) on [a, b] with solutions

of (4.1), (4.5) on [b, c], or solutions of (4.1), (4.4) on [a, b] with solutions of (4.1), (4.6)

on [b, c], to obtain a desired unique solution of (4.1), (4.2). The condition that k2−k1

is odd is key here.

Concerning three-point BVP’s for nth order differential equations (4.1), the

special cases of k2 = n− 1 and k1 = n− 2 were discussed in [20, 9]. Here, we explore

more general cases, that is, we consider nonlocal multi-point BVP’s and k2 − k1 is

only required to be odd.

Monotonicity conditions on f will guarantee that the postulation of the value of

the k1st or k2nd order derivative of a solution of (4.1) at b presupposes a knowledge

of the values of all derivatives at b. The parity of the order n of the differential

equation also plays a role since the odd or even property of n−k1 will evoke different

monotonicity conditions on f . In Section 4.2 and Section 4.3, we will separately

consider the case of n− k1 being even and the case of n− k1 being odd, to give some

basic lemmas on the relation between the change in values of the k1st order derivative

and the change in values of the k2nd order derivative of two solutions of (4.1) at b

that satisfy the boundary conditions (4.2), respectively, on the interval [a, b] and the

interval [b, c]. Different monotonicity conditions will be imposed on f with respect

to [a, b] and [b, c] for distinct cases that arise. In Section 4.4, based on our results

in Sections 4.2 and 4.3, the existence and uniqueness of solutions of (4.1), (4.2) are

obtained.
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4.2 Preliminaries for the Case That n− k1 Is Even

In this section, we impose some monotonicity conditions of f , which depend

on whether k2 = n − 1 or where k2 lies between 1 and n − 1. We choose from the

following list of conditions.

(B1): If k2 = n− 1, then for any vn−1 = un−1,

f(x, v0, v1, . . . , vn−1)− f(x, u0, u1, . . . , un−1) > 0

when x ∈ (a, b] for (−1)n−ivi ≥ (−1)n−iui, 0 ≤ i ≤ k2 − 1, i 6= k1, vk1 > uk1; when

x ∈ [b, c) for vi ≥ ui, 0 ≤ i ≤ k2 − 1, i 6= k1, vk1 > uk1;

(B2): The function f is of the form f(x, u0, u1, u2, . . . , uk2), and

f(x, v0, v1, . . . , vk2)− f(x, u0, u1, . . . , uk2) > 0

when x ∈ (a, b] for (−1)n−ivi ≥ (−1)n−iui, 0 ≤ i ≤ k2, i 6= k1, vk1 > uk1; when

x ∈ [b, c) for vi ≥ ui, 0 ≤ i ≤ k2, i 6= k1, vk1 > uk1.

When k2 = n − 1, our next two lemmas are true under each of Conditions

(B1) and (B2). Condition (B1) is the same as the Condition in [9]. With (B1),

f(x, u0, u1, . . . , un−1) is strictly monotone in uk1 and f does not have to be monotone

with respect to the last variable. Condition (B2) is stronger than (B1) since f is

required to be monotone in all ui, for 0 ≤ i ≤ k2 = n − 1 including un−1, but

Condition (B2) contains cases when k2 < n− 1.

In the following two lemmas, we show the relations between the change in values

of the k1st order derivative and the change in values of the k2nd order derivative of

two solutions of (4.1) at b that satisfy the boundary conditions (4.2), respectively,

on the interval [a, b] and on the interval [b, c]. These two lemmas are important for

producing our main results in Section 4.3. All conclusions in the two lemmas are

proved by contradiction.

Lemma 4.1. Assume f satisfies one of conditions (B1) and (B2) if k2 = n − 1 and

f satisfies conditions (B2) if k2 < n − 1. Suppose p and q are solutions of (4.1) on
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[a, b] so that w = p− q satisfies the following boundary conditions:

w(a)−
s∑
i=1

aiw(ξi) = 0, w(i)(b) = 0, 0 ≤ i ≤ n− 1, i 6= k1, k2.

Then, w(k1)(b) = 0 if and only if w(k2)(b) = 0. Also, w(k1)(b) > 0 if and only if

w(k2)(b) > 0.

Proof. The proof for the case that f satisfies (B1) is omitted here, see [9] for reference.

(⇒) The necessity of the equalities.

Suppose w(k1)(b) = 0 and w(k2)(b) 6= 0. Without loss of generality, we assume

w(k2)(b) > 0.

Since w(a) −
∑s

i=1 aiw(ξi) =
∑s

i=1 ai(w(a) − w(ξi)) = 0 and ai > 0 for i =

1, 2, . . . , s, w(i)(b) = 0, 0 ≤ i ≤ k2 − 1 (note 1 ≤ k2 ≤ n − 1), and w(k2)(b) > 0, by

repeated applications of Rolle’s Theorem, there exists x1 ∈ (a, b) such that w(k2)(x1) =

0, w(k2)(x) > 0, for x ∈ (x1, b], and (−1)k2−iw(i)(x) > 0, i.e., (−1)n−iw(i)(x) < 0, for

0 ≤ i ≤ k2 − 1 and x ∈ [x1, b). In particular, w(k1)(x) < 0, for x ∈ [x1, b).

If f satisfies Condition (B2) on [x1, b), then we have that

w(n)(x) = f(x, p, p′, . . . , p(n−1))− f(x, q, q′, . . . , q(n−1)) < 0, for x ∈ [x1, b).

By w(k2)(x1) = 0, w(k2)(b) > 0, w(i)(b) = 0 for k2 + 1 ≤ i ≤ n− 1, the face that n− k2

is odd and repeated applications of Rolle’s Theorem, there is some x2 ∈ (x1, b) such

that w(n)(x2) > 0, which is a contradiction to w(n) < 0 for x ∈ [x1, b).

Therefore, w(k2)(b) = 0, if w(k1)(b) = 0.

(⇐) The sufficiency of equalities.

Suppose w(k2)(b) = 0 and w(k1)(b) 6= 0. Without loss of generality, we assume

w(k1)(b) > 0. By (B2), w(n)(b) > 0. Hence by w(i)(b) = 0, for k2 + 1 ≤ i ≤ n− 1 and

odd n− k2, in a left neighborhood of b, w(k2)(x) < 0.

Case 1: k1 = 0.
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By w(a) −
∑s

i=1 aiw(ξi) =
∑s

i=1 ai(w(a) − w(ξi)) = 0 and ai > 0 for i =

1, 2, . . . , s, w(i)(b) = 0, for k1 + 1 ≤ i ≤ k2 − 1, and repeated applications of Rolle’s

Theorem, there is some x1 ∈ (a, b) such that w(k2)(x1) = 0 and w(k2)(x) < 0 for

x ∈ (x1, b). Then by w(i)(b) = 0, for k1 +1 ≤ i ≤ k2−1, we have (−1)(k2−i)w(i)(x) < 0

for x ∈ [x1, b) and k1 + 1 ≤ i ≤ k2 − 1. Hence, w(k1+1)(x) < 0 for x ∈ [x1, b) and

w(k1)(b) = w(b) > 0 imply w(k1)(x) = w(x) > 0 for x ∈ [x1, b].

Case 2: k1 > 0.

By w(a) −
∑s

i=1 aiw(ξi) =
∑s

i=1 ai(w(a) − w(ξi)) = 0 and ai > 0 for i =

1, 2, . . . , s, w(i)(b) = 0, for k1 + 1 ≤ i ≤ k2 − 1, k1 ≥ 0, and repeated applications

of Rolle’s Theorem, there is some x0 ∈ (a, b) such that w(k1)(x0) = 0, w(k1)(x) > 0

for x ∈ (x0, b]. By w(i)(b) = 0 for 0 ≤ i ≤ k1 − 1, we have (−1)k1−iw(i)(x) > 0 for

x ∈ [x0, b) and 0 ≤ i ≤ k1 − 1.

From w(k1)(x0) = 0, w(k1)(x) > 0 for x ∈ (x0, b], w
(i)(b) = 0 for 0 ≤ i ≤ k1 − 1,

the odd k2 − k1, and repeated applications of Rolle’s Theorem, there is some x′0 ∈

(x0, b) such that w(k2)(x′0) > 0. Since in a left neighborhood of b, w(k2)(x) < 0. Hence,

there is some x1 ∈ [x′0, b) such that w(k2)(x1) = 0 and w(k2)(x) < 0 for x ∈ (x1, b). By

w(i)(b) = 0 for k1 + 1 ≤ i ≤ k2 − 1 and x ∈ [x1, b), we have (−1)n−iw(i)(x) > 0 for

x ∈ [x1, b) and 0 ≤ i ≤ k2 − 1.

In either case, we can find some x1 ∈ (a, b) such that w(k2)(x1) = 0 and

w(k2)(x) < 0 for x ∈ (x1, b), and (−1)n−iw(i)(x) > 0 for x ∈ [x1, b) and 0 ≤ i ≤ k2− 1.

Suppose f satisfies (B2). Then, w(n)(x) > 0 for x ∈ [x1, b]. By w(k2)(x1) = 0,

w(k2)(b) = 0, w(i)(b) = 0, for k2 + 1 ≤ i ≤ n − 1, the odd n − k2, and repeated

applications of Rolle’s Theorem, there exist some x2 ∈ (x1, b) such that w(n)(x2) < 0.

This is a contradiction.

In summary, w(k1)(b) = 0, when w(k2)(b) = 0.

(⇒) The necessity of inequalities.
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Suppose w(k1)(b) > 0 and w(k2)(b) < 0. The proof is pretty similar to that of

the sufficiency of equalities, since we have both w(k1)(b) > 0 and w(k2)(x) < 0 in a

left neighborhood of b. Hence, we can also get a contradiction and so w(k2)(b) > 0, if

w(k1)(b) > 0.

(⇐) The sufficiency of inequalities.

We assume that w(k2)(b) > 0 and w(k1)(b) < 0. Then, we are in the same

situation as in the proof of necessity of inequalities by replacing w with −w, which

also yields a contradiction. Hence, the sufficiency is true.

Lemma 4.2. Assume f satisfies one of conditions (B1) and (B2) if k2 = n − 1 and

f satisfies conditions (B2) if k2 < n − 1. Suppose p and q are solutions of (4.1) on

[b, c] so that w = p− q satisfies the following boundary conditions:

w(i)(b) = 0, 0 ≤ i ≤ n− 1, i 6= k1, k2,
t∑

j=1

bjw(ηj)− w(c) = 0.

Then, w(k1)(b) = 0 if and only if w(k2)(b) = 0. Also, w(k1)(b) > 0 if and only if

w(k2)(b) < 0.

Proof. The proof for the case that f satisfies (B1) is referred to [9] for reference.

(⇒) The necessity of equalities.

Assume w(k1)(b) = 0 and w(k2)(b) 6= 0. Without loss of generality, we suppose

w(k2)(b) > 0. By w(i)(b) = 0, for 0 ≤ i ≤ k2 − 1 (note 1 ≤ k2 ≤ n − 1), and∑t
j=1 bjw(ηj) − w(c) =

∑t
j=1 bj(w(ηj) − w(c)) = 0 and bj > 0 for 1 ≤ j ≤ t, and

repeated applications of Rolle’s Theorem, we have an x1 ∈ (b, c) such that w(k2)(x) > 0

on [b, x1), and w(k2)(x1) = 0. It follows from w(i)(b) = 0, for 0 ≤ i ≤ k2 − 1, that

w(i)(x) > 0 on (b, x1], for 0 ≤ i ≤ k2 − 1. In particular, w(k1)(x) > 0 on (b, x1].

Suppose f satisfies (B2). Then, w(n)(x) > 0 for x ∈ [x1, b). By w(k2)(b) > 0,

w(k2)(x1) = 0, w(i)(b) = 0, for k2 + 1 ≤ i ≤ n − 1, and repeated applications of
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Rolle’s Theorem, we have some x2 ∈ (b, x1) such that w(n)(x2) < 0. A contradiction.

Therefore, if w(k1)(b) = 0, then w(k2)(b) = 0.

(⇐) The sufficiency of equalities.

Suppose w(k1)(b) 6= 0 and w(k2)(b) = 0. Without loss of generality, w(k1)(b) > 0.

By (B2), we have w(n)(b) > 0. So, in a right neighborhood of b, w(k2)(x) > 0.

Case 1: k1 = 0.

By w(i)(b) = 0,
∑t

j=1 bjw(ηj)−w(c) = 0, for k1 + 1 ≤ i ≤ k2 − 1, and repeated

applications of Rolle’s Theorem, there is some x1 ∈ (b, c) such that w(k2)(x1) = 0

and w(k2)(x) > 0 for x ∈ (b, x1). Then by w(i)(b) = 0, for k1 + 1 ≤ i ≤ k2 − 1, we

have w(i)(x) > 0 for x ∈ (b, x1] and k1 + 1 ≤ i ≤ k2 − 1. Hence, w(k1+1)(x) > 0 for

x ∈ (b, x1] and w(k1)(b) = w(b) > 0 imply w(k1)(x) = w(x) > 0 for x ∈ [b, x1].

Case 2: k1 > 0.

By
∑t

j=1 bjw(ηj)−w(c) = 0, w(i)(b) = 0, for 0 ≤ i ≤ k1−1, k1 ≥ 0, and repeated

applications of Rolle’s Theorem, there is some x0 ∈ (b, c) such that w(k1)(x0) = 0,

w(k1)(x) > 0 for x ∈ [b, x0). By w(i)(b) = 0 for 0 ≤ i ≤ k1− 1, we have w(i)(x) > 0 for

x ∈ (b, x0] and 0 ≤ i ≤ k1 − 1.

From w(k1)(x0) = 0, w(k1)(x) > 0 for x ∈ (x0, b], w
(i)(b) = 0 for k1 + 1 ≤

i ≤ k2 − 1, and repeated applications of the Mean Value Theorem, there is some

x′0 ∈ (x0, b) such that w(k2)(x′0) < 0. Since in a right neighborhood of b, w(k2)(x) > 0.

Hence, there is some x1 ∈ (b, x′0) such that w(k2)(x1) = 0 and w(k2)(x) > 0 for

x ∈ (b, x1). By w(i)(b) = 0 for k1 + 1 ≤ i ≤ k2− 1, we have w(i)(x) > 0 for x ∈ (b, x1)

and k1 + 1 ≤ i ≤ k2 − 1.

In either case, we can find some x1 ∈ (b, c) such that w(k2)(x1) = 0 and

w(k2)(x) > 0 for x ∈ (b, x1), and w(i)(x) > 0 for x ∈ (b, x1] and 0 ≤ i ≤ k2 − 1.
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Suppose f satisfies (B2). Then, w(n)(x) > 0 for x ∈ [b, x1]. By w(k2)(x1) = 0,

w(k2)(b) = 0, w(i)(b) = 0, for k2 + 1 ≤ i ≤ n − 1, the odd n − k2, and repeated

applications of the Mean Value Theorem, we have that there exist some x2 ∈ (b, x1)

such that w(n)(x2) < 0. This is a contradiction.

In summary, w(k1)(b) = 0, when w(k2)(b) = 0.

(⇒) The necessity of inequalities.

Suppose w(k1)(b) > 0 and w(k2)(b) > 0. Then by a similar proof to that of the

necessity of equalities of this lemma since w(k1)(x) > 0 and w(k2)(x) > 0 in a right

neighborhood of b, we can arrive at a contradiction, too. Therefore, if w(k1)(b) > 0,

then w(k2)(b) < 0.

(⇐) The sufficiency of inequalities.

Suppose w(k2)(b) < 0. To prove w(k1)(b) > 0, we suppose w(k1)(b) < 0. By

replacing w with −w and using the results from the necessity of inequalities of this

lemma, we also get a contradiction. Hence, the sufficiency is true.

4.3 Preliminaries for the Case That n− k1 Is Odd

In this section, we use the monotonicity condition (B3) on f for our next two

lemmas which are similar to Lemmas 2.1 and 2.2 but under the situation that n− k1

is odd.

(B3): The function f is of the form f(x, u0, u1, u2, . . . , uk1), and

f(x, v0, v1, . . . , vk1)− f(x, u0, u1, . . . , uk1) ≥ 0

when x ∈ (a, b] for (−1)n−ivi ≥ (−1)n−iui, 0 ≤ i ≤ k1; when x ∈ [b, c) for vi ≥

ui, 0 ≤ i ≤ k1. Also, if k1 = 0, f(x, v)− f(x, u) > 0 when x ∈ (a, b) for v < u; when

x ∈ (b, c) for v > u.

Lemma 4.3. Assume f satisfies condition (B3). Suppose p and q are solutions of
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(4.1) on [a, b] so that w = p− q satisfies the following boundary conditions:

w(a)−
s∑
i=1

aiw(ξi) = w(i)(b) = 0, 0 ≤ i ≤ n− 1, i 6= k1, k2.

Then, w(k1)(b) = 0 if and only if w(k2)(b) = 0. Also, w(k1)(b) > 0 if and only if

w(k2)(b) > 0.

Proof. (⇒) The necessity of inequalities.

Suppose w(k1)(b) = 0 and w(k2)(b) 6= 0. Without loss of generality, we assume

w(k2)(b) > 0.

Since w(a) −
s∑
i=1

aiw(ξi) = 0, w(i)(b) = 0, 0 ≤ i ≤ k2 − 1 (note 1 ≤ k2 ≤

n − 1), and w(k2)(b) > 0, by repeated applications of Rolle’s Theorem, there exists

x1 ∈ (a, b) such that w(k2)(x1) = 0, w(k2)(x) > 0, for x ∈ (x1, b], and (−1)n−iw(i)(x) =

(−1)k2−iw(i)(x) > 0, for 0 ≤ i ≤ k2 − 1, on [x1, b). By (B3) regardless of k1 = 0 or

k1 ≥ 1, we have w(n)(x) ≥ 0 for x ∈ [x1, b). However, from w(k2)(x1) = 0, w(k2)(b) > 0,

w(i)(b) = 0, k2 + 1 ≤ i ≤ n − 1, the even n − k2, and repeated applications of the

Mean Value Theorem, there is some x2 ∈ (x1, b) such that w(n)(x2) < 0, which is a

contradiction.

So, if w(k1)(b) = 0, then w(k2)(b) = 0.

(⇐) The sufficiency of equalities.

Suppose w(k2)(b) = 0 and w(k1)(b) 6= 0. Without loss of generality, we suppose

w(k1)(b) > 0.

Case 1: k1 ≥ 1.

From w(a) −
s∑
i=1

aiw(ξi) = 0, w(i)(b) = 0, 0 ≤ i ≤ k1 − 1, w(k1)(b) > 0,

and repeated applications of Rolle’s Theorem, there is some x1 ∈ (a, b) such that

w(k1)(x1) = 0, w(k1)(x) > 0 and (−1)k1−iw(i)(x) < 0, for x ∈ [x1, b) and 0 ≤ i ≤

k1 − 1. By (B3), we have that w(n)(x) ≤ 0 for x ∈ [x1, b]. However, w(k1)(x1) = 0,

w(k1)(b) > 0, w(i)(b) = 0, k1 +1 ≤ i ≤ n−1, the odd n−k1, and repeated applications
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of the Mean Value Theorem, there is some x2 ∈ (x1, b) such that w(n)(x2) > 0, which

is a contradiction.

Case 2: k1 = 0.

When k1 = 0, we have either there is some x1 ∈ (a, b) such that w(k1)(x1) = 0,

w(k1)(x) > 0 for x ∈ [x1, b), or w(k1)(x) > 0 for x ∈ [a, b]. The proof of the former

situation is the same as Case 1. We omit it here. Now we prove for the second

situation, i.e., w(k1)(x) > 0 for x ∈ [a, b]. By (B3), we have w(n)(x) < 0 for x ∈ [a, b).

However, from w(a) −
s∑
i=1

aiw(ξi) = 0, w(i)(b) = 0, 1 ≤ i ≤ n − 1, the odd n − k1,

and repeated application of Rolle’s Theorem, there is some x2 ∈ (a, b) such that

w(n)(x2) = 0. This is a contradiction.

(⇒) The necessity of inequalities.

Suppose w(k2)(b) > 0 and w(k1)(b) < 0.

Case 1: k1 ≥ 1.

From w(a) −
s∑
i=1

aiw(ξi) = 0, w(i)(b) = 0, 0 ≤ i ≤ k1 − 1, w(k1)(b) > 0,

and repeated applications of Rolle’s Theorem, there is some x1 ∈ (a, b) such that

w(k1)(x1) = 0, w(k1)(x) > 0 and (−1)k1−iw(i)(x) < 0, for x ∈ [x1, b) and 0 ≤ i ≤

k1 − 1. By (B3), we have that w(n)(x) ≤ 0 for x ∈ [x1, b]. However, w(k1)(x1) = 0,

w(k1)(b) > 0, w(i)(b) = 0, k1+1 ≤ i ≤ k2−1, the odd k2−k1, and repeated applications

of the Mean Value Theorem, there is some x2 ∈ (s1, b) such that w(k2)(x2) > 0. By

w(k2)(x2) > 0, w(k2)(b) < 0, w(i)(b) = 0, k2 − 1 ≤ i ≤ n − 1, the even n − k2, and

repeated application of the Mean Value Theorem, there is some x3 ∈ (x2, b) such that

w(n)(x3) > 0, which is a contradiction.

Case 2: k1 = 0.

When k1 = 0, we have either there is some x1 ∈ (a, b) such that w(k1)(x1) = 0,

w(k1)(x) > 0 for x ∈ [x1, b), or w(k1)(x) > 0 for x ∈ [a, b]. Similarly, the proof of
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the former situation is the same as Case 1. We omit it here. Now we prove for the

second situation, i.e., w(k1)(x) > 0 for x ∈ [a, b]. By (B3), we have w(n)(x) < 0 for

x ∈ (a, b). However, from w(a)−
s∑
i=1

aiw(ξi) = 0, w(i)(b) = 0, 1 ≤ i ≤ k2− 1, the even

n − k2, and repeated application of Rolle’s Theorem, there is some x2 ∈ (a, b) such

that w(n)(x2) > 0. This is a contradiction.

(⇐) The sufficiency of inequalities.

Negate the sign of w. Then, from the proof for necessity of inequalities above

in this lemma, we can conclude the sufficiency is also true.

Lemma 4.4. Assume f satisfies Condition (B3). Suppose p and q are solutions of

(4.1) on [b, c] and w = p− q satisfies the following boundary conditions:

w(i)(b) = 0, 0 ≤ i ≤ n− 1, i 6= k1, k2,
t∑

j=1

bjw(ηj)− w(c) = 0.

Then, w(k1)(b) = 0 if and only if w(k2)(b) = 0. Also, w(k1)(b) > 0 if and only if

w(k2)(b) < 0.

Proof. The proof of each direction can be established by similar ideas to that of the

corresponding direction of Lemma 4.3. We omit them here.

4.4 Existence and Uniqueness of Solutions of (4.1), (4.2)

In this section, we mainly discuss the uniqueness and existence of solutions of

(4.1), (4.2) by using Lemmas 4.1–4.4. We first consider the uniqueness of solutions of

each of the BVP’s for (4.1) satisfying any of (4.3), (4.4), (4.5), or (4.6), respectively.

(H): We assume f satisfies one of conditions (B1) and (B2) if n − k1 is even and

k2 = n − 1; f satisfies condition (B2) if n − k1 is even and k2 < n − 1; f satisfies

condition (B3) if n− k1 is odd.
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Lemma 4.5. Let y1, y2, . . . , yn ∈ R be given and assume (H) is satisfied. Then, given

m ∈ R, each of the BVP’s for (4.1) satisfying any of conditions (4.3), (4.4), (4.5),

or (4.6) has at most one solution.

Proof. By Lemma 4.1, Lemma 4.2 or Lemma 4.3, Lemma 4.4, we use similar ideas

to the proof of Lemma 2.3 and get the uniqueness of solutions of (4.1) satisfying any

of conditions (4.3), (4.4), (4.5), or (4.6).

Lemma 4.6. Let y1, y2, . . . , yn ∈ R be given and assume (H) is satisfied. Then, the

BVP (4.1), (4.2) has at most one solution.

Proof. Base on Lemma 4.1, Lemma 4.2 or Lemma 4.3, Lemma 4.4, the proof is similar

to that of Lemma 2.4.

For notation purposes, given any m ∈ R, let α4(x,m), u4(x,m), β4(x,m),

v4(x,m) denote the solutions, when they exist, of the BVP’s of (4.1) satisfying

(4.3), (4.4), (4.5), or (4.6), respectively. Next, we show that α
(k2)
4 (b,m), u

(k1)
4 (b,m),

β
(k2)
4 (b,m), v

(k1)
4 (b,m), respectively, are strictly monotone functions of m.

Lemma 4.7. Assume (H) is satisfied and that for each m ∈ R, there exist solutions of

(4.1) satisfying each of the conditions (4.3), (4.4), (4.5), (4.6), respectively. Then,

α
(k2)
4 (b,m) and u

(k1)
4 (b,m) are strictly decreasing functions of m with ranges all of R;

β
(k2)
4 (b,m) and v

(k1)
4 (b,m) are strictly increasing functions of m with ranges all of R.

Proof. With Lemma 4.1, Lemma 4.2 or Lemma 4.3, Lemma 4.4, the proofs are very

similar to those of Lemma 2.5.

Now, we are in the position to show our existence result for (4.1), (4.2) by

matching solutions.

Theorem 4.1. Assume (H) is satisfied and that for each m ∈ R, there exist solutions

of (4.1) satisfying each of the conditions (4.3), (4.4), (4.5), (4.6), respectively. Then,

(4.1), (4.2) has a unique solution.
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Proof. We prove the existence from Lemma 4.7. We could match α4 with β4 or u4

with v4. Here we use α4 and β4. Since α
(k2)
4 (b,m) and β

(k2)
4 (b,m) are, respectively,

strictly decreasing and strictly increasing functions of m with ranges all of R, there

exists a unique m0 ∈ R such that α
(k2)
4 (b,m0) = β

(k2)
4 (b,m0). Then,

y(x) =

 α4(x,m0), a ≤ x ≤ b,

β4(x,m0), b ≤ x ≤ c,

is a solution of (4.1), (4.2) and by Lemma 4.6, y(x) is the unique solution.
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CHAPTER FIVE

Nonlocal Boundary Value Problems of nth Order Differential Equations with
k2 − k1 Being Even, k1 = 0 And k2 = n− 1

5.1 Introduction

In this chapter, we are going to study the situation that the difference of k1

and k2 is even by applying the solution-matching technique to nonlocal multi-point

nth order BVP’s for y(n)(x) = f(x, y(k1)) with k1 = 0 and k2 = n− 1, that is,

y(n)(x) = f(x, y(x)), n ≥ 3, x ∈ [a, c], (5.1)

satisfying the boundary conditions,

y(a)−
s∑
i=1

aiy(ξi) = y1, y(i)(b) = yi+1, 1 ≤ i ≤ n− 2,

t∑
j=1

bjy(ηj)− y(c) = yn,

(5.2)

where a < ξ1 < ξ2 < · · · < ξs < b < η1 < η2 < · · · < ηt < c, y1, y2, . . . , yn ∈ R and

k2 − k1 = (n− 1)− 0 = n− 1 is even.

Our ideas here are based on the same as those in Chapter Three for third order

problems and the results in this chapter are generalizations for nth order problems

of those in Chpater 3. More details for the nth order problems need to be taken care

of.

Throughout this chapter we assume the following assumptions: f : [a, c]×R→

R is continuous and that solutions of IVP’s for (5.1) are unique and exist on the

entire interval [a, c].

Given the following set of boundary conditions,

y(a)−
s∑
i=1

aiy(ξi) = y1, y(i)(b) = yi+1, 1 ≤ i ≤ n− 2, y(b) = m, (5.3)
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y(a)−
s∑
i=1

aiy(ξi) = y1, y(i)(b) = yi+1, 1 ≤ i ≤ n− 2, y(n−1)(b) = m, (5.4)

y(i)(b) = yi+1, 1 ≤ i ≤ n− 2,
t∑

j=1

bjy(ηj)− y(c) = yn, y(b) = m, (5.5)

y(i)(b) = yi+1, 1 ≤ i ≤ n− 2,
t∑

j=1

bjy(ηj)− y(c) = yn, y(n−1)(b) = m, (5.6)

where m ∈ R, we will match solutions of the BVP’s (5.1), (5.3) on [a, b] with solutions

of the BVP’s (5.1) ,(5.5) on [b, c], or solutions of (5.1), (5.4) on [a, b] with solutions

of (5.1), (5.6) on [b, c], to obtain a desired unique solution of (5.1), (5.2).

The monotonicity conditions on f that lead to our results of this chapter are

as follows:

(C): f(x, v) − f(x, u) > 0 when x ∈ (a, b) and v − u < 0; when x ∈ (b, c) and

v − u > 0.

5.2 Preliminary Lemmas

In our following preliminary lemmas, we present some monotonicity relations

between the change in the function values and the change in the values of the k2nd,

i.e. n− 1st, order derivative of solutions at b of (5.1), (5.2).

Lemma 5.1. Assume f satisfies the condition (C). Suppose p and q are solutions of

(5.1) on [a, b] so that w = p− q satisfies the following boundary conditions:

w(a)−
s∑
i=1

aiw(ξi) = 0, w(i)(b) = 0, 1 ≤ i ≤ n− 2,

Then, w(b) = 0 if and only if w(n−1)(b) = 0; w(b) > 0 if and only if w(n−1)(b) < 0.

Proof. (⇒) The necessity of the equalities.

Suppose w(b) = 0 and w(n−1)(b) 6= 0. Without loss of generality, we assume

that w(n−1)(b) > 0.

By w(a) −
∑s

i=1 aiw(ξi) = 0, we know there is some x0 ∈ (a, ξs) such that

w′(x0) = 0. Then, from w(i)(b) = 0 for 1 ≤ i ≤ n − 2 and Rolle’s Theorem, it
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follows that there is some x1 ∈ (x0, b) such that w(k2)(x1) = 0 and w(k2)(x) > 0 for

x ∈ (x1, b], which implies that w(x) > 0 for x ∈ [x1, b) since k2 − k1 is even and

w(i)(b) = 0 for 0 ≤ i ≤ k2 − 1. By the condition (C), w(n)(x) < 0 for x ∈ [x1, b).

However, since w(k2)(x1) = 0, w(k2)(x) > 0 for x ∈ (x1, b] and k2 = n−1, by the Mean

Value Theorem, we have there is some x2 ∈ (x1, b) such that w(n)(x2) < 0, which is a

contradiction.

(⇐) The sufficiency of the equalities.

Suppose w(b) > 0, w(n−1)(b) = 0. Then, w(x) > 0 in a left neighborhood of b.

By condition (C), we have w(n)(x) < 0 in a deleted left neighborhood of b.

By w(a) −
∑s

i=1 aiw(ξi) =
∑s

i=1 ai(w(a) − w(ξi)) = 0, w(i)(b) = 0 for 1 ≤ i ≤

n−1, and repeated applications of the Rolle’s Theorem, there is some x1 ∈ (a, b) such

that w(n)(x1) = 0 and w(n)(x) < 0 for x ∈ (x1, b), which implies that w(x) > 0 for

x ∈ [x1, b] since n is odd and w(b) > 0. By condition (C), w(n)(x) < 0 for x ∈ [x1, b).

A contradiction to w(n)(x1) = 0.

(⇒) The necessity of the inequalities.

Suppose w(b) > 0 and w(n−1)(b) > 0. By condition (C), w(n)(x) < 0 in a deleted

left neighborhood of b.

Similarly as before, by w(a) −
∑s

i=1 aiw(ξi) =
∑s

i=1 ai(w(a) − w(ξi)) = 0,

w(i)(b) = 0 for 1 ≤ i ≤ n−2 and Rolle’s Theorem, we have some x1 ∈ (a, b) such that

w(n−1)(x1) = 0. Since w(k2)(b) > 0, there is some x2 ∈ [x1, b) such that w(n−1)(x2) = 0

and w(n−1)(x) > 0 for x ∈ (x2, b]. From w(b) > 0 and w(i)(b) = 0 for 1 ≤ i ≤ n − 2

and the fact that n is odd, it follows that w(x) > 0 for x ∈ [x2, b], which implies

by condition (C) that w(n)(x) < 0 for x ∈ [x2, b). However, by w(n−1)(x2) = 0,

w(n−1)(b) > 0 and the Mean Value Theorem, we have that there is some x3 ∈ (x2, b)

such that w(n)(x3) > 0, which is a contradiction.
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(⇐) The sufficiency of the inequalities.

Suppose w(b) < 0 and w(n−1)(b) < 0. By assigning the opposite sign to w, we

can also get a contradiction by the necessity of the inequalities. Hence, w(b) > 0, if

w(n−1)(b) < 0.

Lemma 5.2. Assume f satisfies the condition (C). Suppose p and q are solutions of

(5.1) on [b, c] and w = p− q satisfies the following boundary conditions:

w(i)(b) = 0, 1 ≤ i ≤ n− 1,
t∑

j=1

bjw(ηj)− w(c) = 0.

Then, w(b) = 0 if and only if w(n−1)(b) = 0; w(b) > 0 if and only if w(n−1)(b) < 0.

Proof. (⇒) The necessity of the equalities.

Suppose w(b) = 0 and w(n−1)(b) 6= 0. Without loss of generality, we assume

that w(n−1)(b) > 0.

By
∑t

j=1 bjw(ηj) − w(c) = 0, we know there is some x0 ∈ (η1, c) such that

w′(x0) = 0. Then, from w(i)(b) = 0 for 1 ≤ i ≤ n − 2 and Rolle’s Theorem, it

follows that there is an x1 ∈ (b, x0) such that w(n−1)(x1) = 0 and w(n−1)(x) > 0

for x ∈ [b, x1), which implies by w(i)(b) = 0 for 0 ≤ i ≤ n − 2 that w(x) > 0

for x ∈ (b, x1]. By the condition (C), w(n)(x) > 0 for x ∈ (b, x1]. However, since

w(n−1)(x1) = 0, w(n−1)(b) > 0 and the Mean Value Theorem, we have there is some

x2 ∈ (b, x1) such that w(n)(x2) < 0, which is a contradiction.

(⇐) The sufficiency of the equalities.

Without loss of generality, we suppose w(b) > 0 and w(n−1)(b) = 0. By condition

(C), we have w(n)(x) > 0 in a deleted right neighborhood of b.

By
∑t

j=1 bjw(ηj) − w(c) = 0, w(i)(b) = 0 for 1 ≤ i ≤ n − 1, and repeated

applications of Rolle’s Theorem, there is some x1 ∈ (b, c) such that w(n)(x1) = 0 and

w(n)(x) > 0 for x ∈ (b, x1), which implies that w(x) > 0 for x ∈ [b, x1] by w(b) > 0

and w(i)(b) = 0 for 1 ≤ i ≤ n−1. By condition (C), w(n)(x) > 0 for x ∈ (b, x1], which

is a contradiction to w(x1) > 0.
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(⇒) The necessity of the inequalities.

Suppose w(b) > 0 and w(n−1)(b) > 0. By condition (C), w(n)(x) > 0 in a deleted

right neighborhood of b.

Similarly as before, by
∑t

j=1 bjw(ηj)− w(c) = 0, w(i)(b) = 0 for 1 ≤ i ≤ n− 2

and Rolle’s Theorem, we have some x0 ∈ (b, c) such that w(n−1)(x0) = 0. Since

w(n−1)(b) > 0, there is some x1 ∈ (b, x0] such that w(n−1)(x1) = 0 and w(n−1)(x) > 0

for x ∈ [b, x1). By Mean Value Theorem, there is some x2 ∈ (b, x1) such that

w(n)(x2) < 0 and x3 ∈ (b, x2) such that w(n)(x3) = 0 and w(n)(x) > 0 for x ∈ (b, x3).

From w(b) > 0 and wn−1)(b) > 0, w(i)(b) = 0 for 1 ≤ i ≤ n− 2, and w(n)(x) > 0

for x ∈ (b, x3), it follows that w(x) > 0 for x ∈ [b, x3], which by condition (C) implies

that w(n)(x) > 0 for x ∈ (b, x3]. This is a contradiction.

(⇐) The sufficiency of the inequalities.

Suppose w(b) < 0 and w(n−1)(b) < 0. By assigning the opposite sign to w, we

can also get a contradiction by the necessity of the inequalities. Hence, w(b) > 0 if

w(n−1)(b) < 0.

5.3 Existence and Uniqueness of Solutions of (5.1), (5.2)

Before we show our main results, we need to establish some more lemmas.

Lemma 5.3. Let y1, y2, . . . , yn ∈ R be given and assume condition (C) is satisfied.

Then, given m ∈ R, each of the BVP’s for (5.1) satisfying any of conditions (5.3),

(5.4), (5.5), or (5.6) has at most one solution.

Proof. By using Lemmas 5.1 and 5.2, the proofs are based on the same idea as that

of Lemma 2.3.

For notation purposes, given any m ∈ R, let α5(x,m), u5(x,m), β5(x,m),

v5(x,m) denote the solutions, when they exist, of the boundary value problems of

(5.1) satisfying (5.3), (5.4), (5.5) or (5.6), respectively. Next we show that they are

monotone functions of m at b.
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Lemma 5.4. Suppose that condition (C) is satisfied and that for each m ∈ R, there

exist solutions of (5.1) satisfying each of the conditions (5.3), (5.4), (5.5) and (5.6),

respectively. Then, all of α
(n−1)
5 (b,m), β

(n−1)
5 (b,m), u5(b,m) and v5(b,m) are strictly

decreasing functions of m with ranges all of R.

Proof. By using Lemmas 5.1 and 5.2, the proof is very similar to that of Lemma

2.5.

The following four lemmas provide some bounds to the rate of change of the

k2nd order derivative of solutions of (5.1) at b, α
(n−1)
5 (b,m) and β

(n−1)
5 (b,m), with

respect of m ∈ R. These lemmas extend Lemmas 3.5, 3.6, 3.7 and 3.8 from the

third order problems to the nth order problems. The proofs are based on the similar

reasoning and our results in this chapter are more general.

Lemma 5.5. Suppose f satisfies the condition (C) and there is some M1 > 0, such

that

f(x, v)− f(x, u) ≥ −M1(v − u), ∀x ∈ (a, b), ∀ v ≥ u ∈ R. (5.7)

Assume for each m ∈ R, there exist solutions α5(x,m) of (5.1) satisfying (5.3). Let

m1,m2 ∈ R with m1 < m2. Then,

α
(n−1)
5 (b,m2)− α(n−1)

5 (b,m1) > −M1(b− a)(m2 −m1), (5.8)

Proof. Let m1,m2 ∈ R with m1 < m2 be fixed. We denote Φ(x) = α5(x,m2)−α5(x,m1)
m2−m1

.

Then, Φ(x) satisfies

Φ(n)(x) =
f(x, α5(x,m2))− f(x, α5(x,m1))

m2 −m1

, x ∈ [a, b],

Φ(b) = 1, Φ(i)(b) = 0, 1 ≤ i ≤ n− 2, Φ(a)−
s∑
i=1

aiΦ(ξi) = 0,

and by Lemma 5.1, Φ(n−1)(b) < 0. It suffices to show that Φ(n−1)(b) > −M1(b− a).

Since Φ(a)−
s∑
i=1

aiΦ(ξi) =
s∑
i=1

ai(Φ(a)−Φ(ξi)) = 0 and ai > 0 for i = 1, 2, . . . , s,

there is some x0 ∈ (a, ξs) such that Φ′(x0) = 0. By Φ(i)(b) = 0 for 1 ≤ i ≤ n − 2
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and repeated applications of Rolle’s Theorem, there is some x1 ∈ (x0, b) such that

Φ(n−1)(x1) = 0 and Φ(n−1)(x) < 0 for x ∈ (x1, b].

By Φ′(x0) = 0, Φ(n−1)(x) < 0 for x ∈ (x1, b], Φ(i)(b) = 0 for 1 ≤ i ≤ n − 2 and

n is odd, there is some x2 ∈ (x0, x1) such that Φ′(x2) = 0, Φ′(x) > 0 for x ∈ (x2, b).

Next, we show Φ(x) > 0 for x ∈ (x1, b]. Suppose it is not true, then from

Φ′(x2) = 0, Φ′(x) > 0 for x ∈ (x2, b) and x1 ∈ (x2, b), we have that Φ(x1) < 0,

Φ(x3) = 0 for some x3 ∈ (x1, b), Φ(x) < 0 for x ∈ (x1, x3) and Φ(x) > 0 for x ∈ (x3, b).

From condition (C), Φ(n)(x) < 0 for x ∈ [x1, x3). However, Φ(n−1)(x1) = 0 and

Φ(n−1)(x) < 0 for x ∈ (x1, b] imply that Φ(n)(x) > 0 for x ∈ (x1, x3). A contradiction.

Now from Φ(x) > 0 for x ∈ (x1, b] and Φ′(x) > 0 for x ∈ [x1, b), it is easy to see

that 0 < Φ(x) < 1 for x ∈ (x1, b). Then, by (5.7), for x ∈ (x1, b)

Φ(n)(x) =
f(x, α5(x,m2))− f(x, α5(x,m1))

m2 −m1

≥ −M1(α5(x,m2)− α5(x,m1))

m2 −m1

= −M1Φ(x)

> −M1.

Next we want to show that Φ(n−1)(b) > −M1(b − a). Suppose it is not true.

Then, Φ(n−1)(b) ≤ −M1(b − a). By Φ(n−1)(x1) = 0, there is some x4 ∈ (x1, b) such

that

Φ(n)(x4) =
Φ(n−1)(b)− Φ(n−1)(x1)

b− x1

≤ −M1(b− a)

b− x1

= −M1
(b− a)

b− x1

< −M1,

which is a contradiction to Φ(n)(x) > −M1 for x ∈ [x1, b). Therefore, Φ(n−1)(b) >

−M1(b− a).

Lemma 5.6. Suppose f satisfies the condition (C) and there is a continuous function

M1(x) on [a, b], such that

f(x, v)− f(x, u) ≤ −M1(x)(v − u), ∀x ∈ (a, b), ∀ v ≥ u ∈ R, (5.9)
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where M1(x) > 0, for x ∈ [a, b), and

s∑
i=1

ai

n︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−1

M1(rn)

n︷ ︸︸ ︷
drn · · · dr1

s∑
i=1

ai

n−1︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−2

(
1 +

∫ b
rn−1

M1(rn) (b−rn)n−1

(n−1)!
drn

) n−1︷ ︸︸ ︷
drn−1 · · · dr1

≥ (n− 1)!

(b− a)n−1
(5.10)

Assume for each m ∈ R, there exist solutions α5(x,m) of (5.1) satisfying (5.3). Let

m1 < m2 ∈ R. Then,

α
(n−1)
5 (b,m2)− α(n−1)

5 (b,m1) < −(n− 1)!(m2 −m1)

(b− a)n−1
. (5.11)

Proof. Let m1 < m2 ∈ R be fixed. We denote Φ(x) = α5(x,m2)−α5(x,m1)
m2−m1

. Then Φ(x)

satisfies

Φ(n)(x) =
f(x, α5(x,m2))− f(x, α5(x,m1))

m2 −m1

, x ∈ [a, b],

Φ(b) = 1, Φ(i)(b) = 0, 1 ≤ i ≤ n− 2, Φ(a)−
s∑
i=1

aiΦ(ξi) = 0,

and by Lemma 5.1, Φ(n−1)(b) < 0. Then, it suffices to show that Φ(n−1)(b) <

− (n−1)!
(b−a)n−1 . Suppose this is not true. Then, Φ(n−1)(b) ≥ − (n−1)!

(b−a)n−1 .

By Φ(b) = 1, Φ(i)(b) = 0 for 1 ≤ i ≤ n− 2 and Φ(n−1)(b) ≥ − (n−1)!
(b−a)n−1 , we have

that

Φ(x) = Φ(b) +

n−1︷ ︸︸ ︷∫ b

x

∫ b

r1

· · ·
∫ b

rn−2

Φ(n−1)(rn−1)

n−1︷ ︸︸ ︷
drn−1 · · · dr1

= 1 +

n−1︷ ︸︸ ︷∫ b

x

∫ b

r1

· · ·
∫ b

rn−2

(
Φ(n−1)(b)−

∫ b

rn−1

Φ(n)(rn)drn

) n−1︷ ︸︸ ︷
drn−1 · · · dr1

= 1 + Φ(n−1)(b) · (b− x)n−1

(n− 1)!
−

n︷ ︸︸ ︷∫ b

x

∫ b

r1

· · ·
∫ b

rn−1

Φ(n)(rn)

n︷ ︸︸ ︷
drn · · · dr1 .
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Next, we show Φ(x) > 0 for x ∈ [a, b]. Assume this is not true. Let x0 ∈ [a, b)

such that Φ(x0) = 0 and Φ(x) > 0 for x ∈ (x0, b]. Then, by (5.9),

Φ(n)(x) =
f(x, α5(x,m2))− f(x, α5(x,m1))

m2 −m1

≤ −M1(x)Φ(x), ∀x ∈ (x0, b].

Hence, by Φ(n−1)(b) ≥ − (n−1)!
(b−a)n−1 ,

Φ(x0) = 1 + Φ(n−1)(b) · (b− x0)n−1

(n− 1)!
−

n︷ ︸︸ ︷∫ b

x0

∫ b

r1

· · ·
∫ b

rn−1

Φ(n)(rn)

n︷ ︸︸ ︷
drn · · · dr1

≥ 1 + Φ(n−1)(b) · (b− x0)n−1

(n− 1)!
+

n︷ ︸︸ ︷∫ b

x0

∫ b

r1

· · ·
∫ b

rn−1

M1(rn)Φ(rn)

n︷ ︸︸ ︷
drn · · · dr1

> 1 + Φ(n−1)(b) · (b− x0)n−1

(n− 1)!

≥ 1− (b− x0)n−1

(b− a)n−1
≥ 0,

which is a contradiction to Φ(x0) = 0.

From Φ(x) > 0 for x ∈ [a, b], we have that Φ(n)(x) ≤ 0 for x ∈ [a, b] by condition

(C). Hence, from (5.9), we have Φ(n)(x) ≤ −M1(x)Φ(x) for x ∈ [a, b]. Therefore, for

x ∈ [a, b],

Φ(x) = 1 + Φ(n−1)(b) · (b− x)n−1

(n− 1)!
−

n︷ ︸︸ ︷∫ b

x

∫ b

r1

· · ·
∫ b

rn−1

Φ(n)(rn)

n︷ ︸︸ ︷
drn · · · dr1

≥ 1 + Φ(n−1)(b) · (b− x)n−1

(n− 1)!
+

n︷ ︸︸ ︷∫ b

x

∫ b

r1

· · ·
∫ b

rn−1

M1(rn)Φ(rn)

n︷ ︸︸ ︷
drn · · · dr1

> 1 + Φ(n−1)(b) · (b− x)n−1

(n− 1)!
.

From the boundary conditions Φ(a)−
s∑
i=1

aiΦ(ξi) = 0, we have that

Φ(n−1)(b) · (b− a)n−1

(n− 1)!
−

n︷ ︸︸ ︷∫ b

a

∫ b

r1

· · ·
∫ b

rn−1

Φ(n)(rn)

n︷ ︸︸ ︷
drn · · · dr1

=
s∑
i=1

ai

Φ(n−1)(b) · (b− ξi)n−1

(n− 1)!
−

n︷ ︸︸ ︷∫ b

ξi

∫ b

r1

· · ·
∫ b

rn−1

Φ(n)(rn)

n︷ ︸︸ ︷
drn · · · dr1

 ,
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that is,

−Φ(n−1)(b)
s∑
i=1

ai

(
(b− ξi)n−1 − (b− a)n−1

(n− 1)!

)

= −
s∑
i=1

ai

n︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−1

Φ(n)(rn)

n︷ ︸︸ ︷
drn · · · dr1 .

By (b−ξi)n−1−(b−a)n−1

(n−1)!
= −

n−1︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−2

1

n−1︷ ︸︸ ︷
drn−1 · · · dr1, Φ(n)(x) ≤ −M1(x)Φ(x) for

x ∈ [a, b], and Φ(x) > 1 + Φ(n−1)(b) · (b−x)n−1

(n−1)!
, we have that

−Φ(n−1)(b)
s∑
i=1

ai

n−1︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−2

1

n−1︷ ︸︸ ︷
drn−1 · · · dr1

= −
s∑
i=1

ai

n︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−1

Φ(n)(rn)

n︷ ︸︸ ︷
drn · · · dr1

≥
s∑
i=1

ai

n︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−1

M1(rn)Φ(rn)

n︷ ︸︸ ︷
drn · · · dr1

>
s∑
i=1

ai

n︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−1

M1(rn)

(
1 + Φ(n−1)(b) · (b− rn)n−1

(n− 1)!

) n︷ ︸︸ ︷
drn · · · dr1

=
s∑
i=1

ai

n︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−1

M1(rn)

n︷ ︸︸ ︷
drn · · · dr1

+Φ(n−1)(b)
s∑
i=1

ai

n︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−1

M1(rn)
(b− rn)n−1

(n− 1)!

n︷ ︸︸ ︷
drn · · · dr1,

which give that

−Φ(n−1)(b)
s∑
i=1

ai

n−1︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−2

(
1 +

∫ b

rn−1

M1(rn)
(b− rn)n−1

(n− 1)!
drn

) n−1︷ ︸︸ ︷
drn−1 · · · dr1

>
s∑
i=1

ai

n︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−1

M1(rn)

n︷ ︸︸ ︷
drn · · · dr1,
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that is, by (5.10),

−Φ(n−1)(b) >

s∑
i=1

ai

n︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−1

M1(rn)

n︷ ︸︸ ︷
drn · · · dr1

s∑
i=1

ai

n−1︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−2

(
1 +

∫ b
rn−1

M1(rn) (b−rn)n−1

(n−1)!
drn

) n−1︷ ︸︸ ︷
drn−1 · · · dr1

≥ (n− 1)!

(b− a)n−1
,

which is a contradiction to the assumption −Φ(n−1)(b) ≤ (n−1)!
(b−a)n−1 . Therefore, our

assumption is not true. Hence Φ(n−1)(b) < − (n−1)!
(b−a)n−1 .

Lemma 5.7. Suppose f satisfies the condition (C) and there is some M2 > 0, such

that

f(x, v)− f(x, u) ≤M2(v − u), ∀x ∈ (b, c), ∀ v ≥ u ∈ R, (5.12)

Assume for each m ∈ R, there exist solutions β5(x,m) of (2.1) satisfying (3.3). Let

m1 < m2 ∈ R. Then,

β
(n−1)
5 (b,m2)− β(n−1)

5 (b,m1) > −M2(c− b)(m2 −m1). (5.13)

Proof. Let m1 < m2 ∈ R be fixed. We denote Ψ(x) = β5(x,m2)−β5(x,m1)
m2−m1

. Then Ψ(x)

satisfies

Ψ(n)(x) =
f(x, β5(x,m2))− f(x, β5(x,m1))

m2 −m1

, x ∈ [b, c],

Ψ(b) = 1, Ψ(i)(b) = 0, 1 ≤ i ≤ n− 1,
t∑

j=1

bjΨ(ηj)−Ψ(c) = 0,

and by Lemma 5.2, Ψ(n−1)(b) < 0. We need to show Ψ(n−1)(b) > −M2(c− b).

By
t∑

j=1

bjΨ(ηj)−Ψ(c) =
t∑

j=1

bj(Ψ(ηj)−Ψ(c)) = 0 and bj > 0 for j = 1, 2, . . . , t,

there is some x0 ∈ (η1, c) such that Ψ′(x0) = 0. By Ψ(i)(b) = 0 for 1 ≤ i ≤ n − 2

and repeated applications of Rolle’s Theorem, there is some x1 ∈ (b, x0) such that

Ψ(n−1)(x1) = 0 and Ψ(n−1)(x) < 0 for x ∈ [b, x1). It follows that Ψ′(x) < 0 for
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x ∈ (b, x1]. Then there is some x2 ∈ (x1, x0] such that Ψ′(x) < 0 for x ∈ (b, x2) and

Ψ′(x2) = 0.

Similarly as in the proof of Lemma 5.5, we want to show Ψ(x) > 0 for x ∈

[b, x1)]. Otherwise, by Ψ′(x) < 0 for x ∈ (b, x2) and Ψ′(x2) = 0 we suppose there is

some x3 ∈ (b, x1) such that Ψ(x3) = 0, Ψ(x) > 0 for x ∈ [b, x3) and Ψ(x) < 0 for

x ∈ (x3, x1). Then by condition (C), Ψ(n)(x) > 0 for x ∈ (b, x3) and Ψ(n)(x) < 0

for x ∈ (x3, x1). However, since Ψ(n−1)(x1) = 0 and Ψ(n−1)(x) < 0 for x ∈ [b, x1),

by the Mean Value Theorem, there is some x4 ∈ (x3, x1) such that Ψ(n)(x4) < 0. A

contradiction. Therefore, Ψ(x) > 0 for x ∈ [b, x1) and so 0 < Ψ(x) < 1 for x ∈ (b, x1).

Then, by (5.12), for x ∈ (b, x1),

Ψ(n)(x) =
f(x, β5(x,m2))− f(x, β5(x,m1))

m2 −m1

≤M2Ψ(x) < M2.

Suppose Ψ(n−1)(b) > −M2(c− b) is not true, i.e., Ψ(n−1)(b) ≤ −M2(c− b). Then there

is some x5 ∈ (b, x1) such that

Ψ(n)(x5) =
Φ(n−1)(x1)− Φ(n−1)(b)

x1 − b
≥M2

c− b
x1 − b

> M2.

A contradiction. Therefore Ψ(n−1)(b) > −M2(c− b).

Lemma 5.8. Suppose f satisfies the condition (C) and there is a continuous function

M2(x) on [b, c], such that

f(x, v)− f(x, u) ≥M2(x)(v − u), ∀x ∈ (b, c), ∀ v ≥ u ∈ R, (5.14)

where M2(x) > 0, for x ∈ (b, c], and

t∑
j=1

bj

n︷ ︸︸ ︷∫ c

ηj

∫ r1

b

· · ·
∫ rn−1

b

M2(rn)

n︷ ︸︸ ︷
drn · · · dr1

t∑
j=1

bj

n−1︷ ︸︸ ︷∫ c

ηj

∫ r1

b

· · ·
∫ rn−2

b

(
1 +

∫ rn−1

b
M2(rn) · (rn−b)n−1

(n−1)!
drn

) n−1︷ ︸︸ ︷
drn−1 · · · dr1

≥ (n− 1)!

(c− b)n−1
. (5.15)
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Assume for each m ∈ R, there exist solutions β5(x,m) of (5.1) satisfying (5.3). Let

m1 < m2 ∈ R. Then,

β
(n−1)
5 (b,m2)− β(n−1)

5 (b,m1) < −(n− 1)!(m2 −m1)

(c− b)n−1
. (5.16)

Proof. Let m1 < m2 ∈ R be fixed. We denote Ψ(x) = β5(x,m2)−β5(x,m1)
m2−m1

. Then Ψ(x)

satisfies

Ψ(n)(x) =
f(x, β5(x,m2))− f(x, β5(x,m1))

m2 −m1

, x ∈ [b, c],

Ψ(b) = 1, Ψ(i)(b) = 0, 1 ≤ i ≤ n− 1,
t∑

j=1

bjΨ(ηj)−Ψ(c) = 0.

By Lemma 5.2, Ψ(n−1)(b) < 0. Then, it suffices to show that Ψ(n−1)(b) < − (n−1)!
(c−b)n−1 .

Suppose this is not true. Then, Ψ(n−1)(b) ≥ − (n−1)!
(c−b)n−1 .

Similarly as the proof of Lemma 5.6, by Ψ(b) = 1 and Ψ(i)(b) = 0 for 1 ≤ i ≤

n− 1, we have that

Ψ(x) = Ψ(b) +

n−1︷ ︸︸ ︷∫ x

b

∫ r1

b

· · ·
∫ rn−2

b

(
Ψ(n−1)(b) +

∫ rn−1

b

Ψ(n)(rn)drn

) n−1︷ ︸︸ ︷
drn−1 · · · dr1

= 1 + Ψ(n−1)(b) · (x− b)n−1

(n− 1)!
+

n︷ ︸︸ ︷∫ x

b

∫ r1

b

· · ·
∫ rn−1

b

Ψ(n)(rn)

n︷ ︸︸ ︷
drn · · · dr1 .

Next, we show Ψ(x) > 0 for x ∈ [b, c]. Assume it is not true. Let x0 ∈ (b, c]

such that Ψ(x0) = 0 and Ψ(x) > 0 for x ∈ [b, x0). Then, by (5.14) and Ψ(n−1)(b) ≥

− (n−1)!
(c−b)n−1 ,

Ψ(x0) = 1 + Ψ(n−1)(b) · (x− b)n−1

(n− 1)!
+

n︷ ︸︸ ︷∫ x

b

∫ r1

b

· · ·
∫ rn−1

b

Ψ(n)(rn)

n︷ ︸︸ ︷
drn · · · dr1

≥ 1 + Ψ(n−1)(b) · (x− b)n−1

(n− 1)!
+

n︷ ︸︸ ︷∫ x

b

∫ r1

b

· · ·
∫ rn−1

b

M2(rn)Ψ(rn)

n︷ ︸︸ ︷
drn · · · dr1

> 1 + Ψ(n−1)(b) · (x− b)n−1

(n− 1)!

58



≥ 1− (x0 − b)n−1

(c− b)n−1

≥ 0,

which is a contradiction to Ψ(x0) = 0. Hence, Ψ(x) > 0 for x ∈ [b, c], and so

Ψ(x) > 1 + Ψ(n−1)(b) · (x−b)n−1

(n−1)!
for x ∈ (b, c].

By
t∑

j=1

bjΨ(ηj) = Ψ(c), we have that

−Ψ(n−1)(b) ·
t∑

j=1

bj
(c− b)n−1 − (ηj − b)n−1

(n− 1)!

=
t∑

j=1

bj

n︷ ︸︸ ︷∫ c

ηj

∫ r1

b

· · ·
∫ rn−1

b

Ψ(n)(rn)

n︷ ︸︸ ︷
drn · · · dr1

≥
t∑

j=1

bj

n︷ ︸︸ ︷∫ c

ηj

∫ r1

b

· · ·
∫ rn−1

b

M2(rn)Ψ(rn)

n︷ ︸︸ ︷
drn · · · dr1

>
t∑

j=1

bj

n︷ ︸︸ ︷∫ c

ηj

∫ r1

b

· · ·
∫ rn−1

b

M2(rn)

(
1 + Ψ(n−1)(b) · (rn − b)n−1

(n− 1)!

) n︷ ︸︸ ︷
drn · · · dr1,

which gives, by (5.15),

−Ψ(n−1)(b)

>

t∑
j=1

bj

n︷ ︸︸ ︷∫ c

ηj

∫ r1

b

· · ·
∫ rn−1

b

M2(rn)

n︷ ︸︸ ︷
drn · · · dr1

t∑
j=1

bj

n−1︷ ︸︸ ︷∫ c

ηj

∫ r1

b

· · ·
∫ rn−2

b

(
1 +

∫ rn−1

b
M2(rn) · (rn−b)n−1

(n−1)!
drn

) n−1︷ ︸︸ ︷
drn−1 · · · dr1

≥ (n− 1)!

(c− b)n−1
.

This is a contradiction to the assumption Ψ(n−1)(b) ≥ − (n−1)!
(c−b)n−1 . Therefore, Ψ(n−1)(b) <

− (n−1)!
(c−b)n−1 .

Now, we are in the position to show our main results.

Theorem 5.1. Suppose that f satisfies condition (C) and that for each m ∈ R, there

exist solutions α5(x,m), u5(x,m), β5(x,m), v5(x,m) of (5.1) satisfying each of the
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conditions (5.3), (5.4), (5.5), (5.6), respectively. Suppose f satisfies one of the fol-

lowing (K1) or (K2):

(K1): there are some M1 > 0 and a continuous function M2(x) on [b, c], such

that

0 > f(x, v)− f(x, u) ≥ −M1(v − u), ∀x ∈ (a, b), ∀ v > u ∈ R,

f(x, v)− f(x, u) ≥M2(x)(v − u), ∀x ∈ (b, c), ∀ v > u ∈ R,

where M1(b− a) < (n−1)!
(c−b)n−1 , M2(x) > 0 for x ∈ (b, c], and

t∑
j=1

bj

n︷ ︸︸ ︷∫ c

ηj

∫ r1

b

· · ·
∫ rn−1

b

M2(rn)

n︷ ︸︸ ︷
drn · · · dr1

t∑
j=1

bj

n−1︷ ︸︸ ︷∫ c

ηj

∫ r1

b

· · ·
∫ rn−2

b

(
1 +

∫ rn−1

b
M2(rn) · (rn−b)n−1

(n−1)!
drn

) n−1︷ ︸︸ ︷
drn−1 · · · dr1

≥ (n− 1)!

(c− b)n−1
.

or

(K2): there are some M2 > 0 and a continuous function M1(x) on [a, b], such

that

f(x, v)− f(x, u) ≤ −M1(x)(v − u), ∀x ∈ (a, b), ∀ v > u ∈ R,

0 < f(x, v)− f(x, u) ≤M2(v − u), ∀x ∈ (b, c), ∀ v > u ∈ R,

where (n−1)!
(b−a)n−1 > M2(c− b), M1(x) > 0 for x ∈ [a, b), and

s∑
i=1

ai

n︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−1

M1(rn)

n︷ ︸︸ ︷
drn · · · dr1

s∑
i=1

ai

n−1︷ ︸︸ ︷∫ ξi

a

∫ b

r1

· · ·
∫ b

rn−2

(
1 +

∫ b
rn−1

M1(rn) (b−rn)n−1

(n−1)!
drn

) n−1︷ ︸︸ ︷
drn−1 · · · dr1

≥ (n− 1)!

(b− a)n−1
.

Then the BVP (5.1), (5.2) has a unique solution.
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Proof. By using Lemmas 5.1–5.8 and Lemma 3.9, the proof is based on the same idea

as that of Theorem 3.1.

61



CHAPTER SIX

An Example for the Case That k2 − k1 Is Odd

In this chapter, we consider a special example of the BVP’s (2.1), (2.2):

y′′′(x) = f(x, y(x), y′(x), y′′(x)), x ∈ [a, c], (6.1)

y(a)− y(ξ) = y1, y(b) = y2, y(η)− y(c) = y3, (6.2)

that is, it is the case with s = t = 1 in the boundary conditions (2.2). Using the idea

of matching solutions, we consider the following sets of four boundary conditions,

which are the special cases of (2.5), (2.6), (2.7), (2.8), respectively:

y(a)− y(ξ) = y1, y(b) = y2, y′(b) = m, (6.3)

y(a)− y(ξ) = y1, y(b) = y2, y′′(b) = m, (6.4)

y(b) = y2, y′(b) = m, y(η)− y(c) = y3, (6.5)

y(b) = y2, y′′(b) = m, y(η)− y(c) = y3, (6.6)

The homogeneous BVP’s corresponding to the above four boundary value prob-

lems are as follows:

y(3)(x) = 0 (6.7)

satisfying each of

y(a)− y(ξ) = 0, y(b) = 0, y′(b) = 0, (6.8)

y(a)− y(ξ) = 0, y(b) = 0, y′′(b) = 0, (6.9)

y(b) = 0, y′(b) = 0, y(η)− y(c) = 0, (6.10)

y(b) = 0, y′′(b) = 0, y(η)− y(c) = 0. (6.11)

62



First, in Section 6.1, we are concerned about Green’s functions and their prop-

erties. Then, in Section 6.2, we use the Contraction Mapping Principle to finally get

the existence and uniqueness of solutions of (6.1), (6.2).

6.1 Green’s Functions

The next four lemmas give us the Green’s functions and some properties we

need later in the following section.

Lemma 6.1. (i) The Green’s function of the homogeneous BVP (6.7), (6.8) is given

by

G1(x, s) =



(b−x)2(s−a)2

2(ξ−a)(2b−a−ξ) −
1
2
(s− x)2, a ≤ x ≤ s ≤ b, s < ξ,

(b−x)2(s−a)2

2(ξ−a)(2b−a−ξ) , a ≤ s ≤ x ≤ b, s < ξ,

(b−x)2(2s−a−ξ)
2(2b−a−ξ) − 1

2
(s− x)2, a ≤ x ≤ s ≤ b, s ≥ ξ,

(b−x)2(2s−a−ξ)
2(2b−a−ξ) , a ≤ s ≤ x ≤ b, s ≥ ξ.

(ii) Then, solutions of (6.1), (6.3) can be expressed as

y(x) = y2 +m(x− b) +
(y1 +m(ξ − a))(x− b)2

(ξ − a)(2b− a− ξ)

+

∫ b

a

G1(x, s)f(s, y(s), y′(s), y′′(s))ds. (6.12)

(iii)

A1 := max
x∈[a,b]

∫ b

a

|G1(x, s)|ds < 1

12
(b− a)3,

B1 := max
x∈[a,b]

∫ b

a

∣∣∣∣∂G1(x, s)

∂x

∣∣∣∣ ds < 1

6
(b− a)2,

C1 := max
x∈[a,b]

∫ b

a

∣∣∣∣∂2G1(x, s)

∂x2

∣∣∣∣ ds < 2

3
(b− a).

Proof. It is easy to check (i) and (ii). We here mainly prove (iii).

Notice for any a ≤ x ≤ b,∫ b

a

|G1(x, s)|ds =
(b− x)2(ξ − a)2

6(2b− a− ξ)
+

(b− x)2(b− a)(b− ξ)
2(2b− a− ξ)

− (b− x)3

6
.
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Take the first derivative of the above expression with respect to x, and we have

d
(∫ b

a
|G1(x, s)|ds

)
dx

=
(x− b)

6(2b− a− ξ)
[
2(ξ − a)2 + 3(x− b)(2b− a− ξ) + 6(b− a)(b− ξ)

]
.

Hence, when b− x = 2(ξ−a)2+6(b−a)(b−ξ)
3(2b−a−ξ) ,

∫ b
a
|G1(x, s)|ds attains its maximum value:

A1 : = max
x∈[a,b]

∫ b

a

|G1(x, s)|ds =
2 [(ξ − a)2 + 3(b− a)(b− ξ)]3

81(2b− a− ξ)3

=
2(b− a)3

81
·
[

(ξ − a)2 − 3(ξ − a) + 3

2− (ξ − a)

]3

<
(b− a)3

12
,

where the supremum is at ξ = a.

Now we show B1 <
1
6
(b− a)2. Note

∂G1(x, s)

∂x
=



− (b−x)(s−a)2

(ξ−a)(2b−a−ξ) − x+ s, a ≤ x ≤ s ≤ b, s < ξ,

− (b−x)(s−a)2

(ξ−a)(2b−a−ξ) , a ≤ s ≤ x ≤ b, s < ξ,

− (b−x)(2s−a−ξ)
(2b−a−ξ) − x+ s, a ≤ x ≤ s ≤ b, s ≥ ξ,

− (b−x)(2s−a−ξ)
(2b−a−ξ) , a ≤ s ≤ x ≤ b, s ≥ ξ.

Hence, for any ξ+a
2
≤ x ≤ b,∫ b

a

∣∣∣∣∂G1(x, s)

∂x

∣∣∣∣ ds
=

b− x
6(2b− a− ξ)

·
[
2(ξ − a)2 + 6(b− a)(b− ξ)− 3(b− x)(2b− a− ξ)

]
.

Take the first derivative of the above expression with respect to x, and we have

d
(∫ b

a

∣∣∣∂G1(x,s)
∂x

∣∣∣ ds)
dx

=
1

6(2b− a− ξ)
[
−2(ξ − a)2 − 6(b− a)(b− ξ) + 6(b− x)(2b− a− ξ)

]
,

which implies when b− x = (ξ−a)2+3(b−a)(b−ξ)
3(2b−a−ξ) ,

∫ b
a

∣∣∣∂G1(x,s)
∂x

∣∣∣ ds gets its maximum value

over the interval [ ξ+a
2
, b]:

max
x∈[ ξ+a

2
,b]

∫ b

a

∣∣∣∣∂G1(x, s)

∂x

∣∣∣∣ ds =
[(ξ − a)2 + 3(b− a)(b− ξ)]2

18(2b− a− ξ)2
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=
(b− a)2

18
·
[

(ξ − a)2 − 3(ξ − a) + 3

2− (ξ − a)

]2

<
(b− a)2

8
,

where the supremum is at ξ = a.

For a ≤ x ≤ ξ+a
2

, it is easy to show that
∣∣∣∂G1(x,s)

∂x

∣∣∣ ≤ ∣∣∣∂G1(a,s)
∂x

∣∣∣ for all a ≤ s ≤ b.

Therefore,

max
x∈[a, ξ+a

2
]

∫ b

a

∣∣∣∣∂G1(x, s)

∂x

∣∣∣∣ ds ≤ ∫ b

a

∣∣∣∣∂G1(a, s)

∂x

∣∣∣∣ ds
=

(ξ − a)(b− a)(3b− 2a− ξ)
6(2b− a− ξ)

=
(b− a)2

6
· (ξ − a)(3− 2(ξ − a))

2− (ξ − a)

<
(b− a)2

6
,

where the supremum is at ξ = b. Hence,

B1 := max
x∈[a,b]

∫ b

a

∣∣∣∣∂G1(x, s)

∂x

∣∣∣∣ ds < 1

6
(b− a)2.

Last, we show C1 <
2
3
(b− a). Note

∂2G1(x, s)

∂x2
=



(s−a)2

(ξ−a)(2b−a−ξ) − 1, a ≤ x ≤ s ≤ b, s < ξ,

(s−a)2

(ξ−a)(2b−a−ξ) , a ≤ s ≤ x ≤ b, s < ξ,

(2s−a−ξ)
(2b−a−ξ) − 1, a ≤ x ≤ s ≤ b, s ≥ ξ,

(2s−a−ξ)
(2b−a−ξ) , a ≤ s ≤ x ≤ b, s ≥ ξ,

and

∂2G1(x, s)

∂x2
≤ 0 for x ≤ s and

∂2G1(x, s)

∂x2
≥ 0 for s ≤ x.

For a ≤ ξ,∫ b

a

∣∣∣∣∂2G1(x, s)

∂x2

∣∣∣∣ ds
=

2(x− a)3 − (ξ − a)3 + 3(b− x)(ξ − a)(2b− a− ξ)− 3(ξ − a)(b− a)(b− ξ)
3(ξ − a)(2b− a− ξ)

,
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whose maximum value is either at x = a or x = ξ. Comparing the two values, we

can see

max
x∈[a,ξ]

∫ b

a

∣∣∣∣∂2G1(x, s)

∂x2

∣∣∣∣ ds =

∫ b

a

∣∣∣∣∂2G1(a, s)

∂x2

∣∣∣∣ ds =
3(b− a)3 − (ξ − a)2

3(2b− a− ξ)
<

2

3
(b− a),

where the supremum is at ξ = b.

For a ≤ ξ,∫ b

a

∣∣∣∣∂2G1(x, s)

∂x2

∣∣∣∣ ds =
(ξ − a)2 + 3(2b− a− ξ)x− 3b2 + 3aξ

3(2b− a− ξ)

which abtains its maximum value (ξ−a)2+3(b−a)(b−ξ)
3(2b−a−ξ) at x = b. Therefore,

max
x∈[ξ,b]

∫ b

a

∣∣∣∣∂2G1(x, s)

∂x2

∣∣∣∣ ds =
(ξ − a)2 + 3(b− a)(b− ξ)

3(2b− a− ξ)
<

1

2
(b− a),

where the supremum is at ξ = a.

To sum up, we have

C1 := max
x∈[a,b]

∫ b

a

∣∣∣∣∂2G1(x, s)

∂x2

∣∣∣∣ ds < 2

3
(b− a).

Lemma 6.2. (i) The Green’s function for the homogeneous BVP (6.7), (6.9) is as

follows

G2(x, s) =



(b−x)(s−a)2

2(ξ−a)
− 1

2
(s− x)2, a ≤ x ≤ s ≤ b, s < ξ,

(b−x)(s−a)2

2(ξ−a)
, a ≤ s ≤ x ≤ b, s < ξ,

(b−x)(2s−a−ξ)
2

− 1
2
(s− x)2, a ≤ x ≤ s ≤ b, s ≥ ξ,

(b−x)(2s−a−ξ)
2

, a ≤ s ≤ x ≤ b, s ≥ ξ.

(ii) Then, the solution of (6.1), (6.4) can be expressed as

y(x) = y2 +
m(ξ − a)(2b− a− ξ)− 2y1

2(ξ − a)
(x− b) +

m

2
(x− b)2

+

∫ b

a

G2(x, s)f(s, y(s), y′(s), y′′(s))ds. (6.13)
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(iii)

A2 := max
x∈[a,b]

∫ b

a

|G2(x, s)|ds < 1

3
(b− a)3,

B2 := max
x∈[a,b]

∫ b

a

∣∣∣∣∂G2(x, s)

∂x

∣∣∣∣ ds < 1

2
(b− a)2,

C2 := max
x∈[a,b]

∫ b

a

∣∣∣∣∂2G2(x, s)

∂x2

∣∣∣∣ ds < b− a.

Proof. Parts (i) and (ii) are easy to check and are omitted. We next prove (iii).

Notice that by doing some calulus, for any a ≤ x ≤ b,∫ b

a

|G2(x, s)|ds = −1

6
(b− x)

[
(b− x)2 − (ξ − a)2 − 3(b− ξ)(b− a)

]
.

Take the first derivative of the above expression with respect to x, and we have

d
(∫ b

a
|G2(x, s)|ds

)
dx

=
1

2

[
(b− x)2 − 1

3
(ξ − a)2 − (b− a)(b− ξ)

]
.

Since (b − ξ)2 ≤ 1
3
(ξ − a)2 + (b − a)(b − ξ) ≤ (b − a)2, when (b − x)2 = 1

3
(ξ − a)2 +

(b− a)(b− ξ),
∫ b
a
|G2(x, s)|ds attains its maximum value:

A2 : = max
x∈[a,b]

∫ b

a

|G2(x, s)|ds =
1

3

[
1

3
(ξ − a)2 + (b− a)(b− ξ)

] 3
2

<
(b− a)3

3
,

where the supremum is at ξ = a.

Now we consider B2. Note

∂G2(x, s)

∂x
=



− (s−a)2

2(ξ−a)
− x+ s, a ≤ x ≤ s ≤ b, s < ξ,

− (s−a)2

2(ξ−a)
, a ≤ s ≤ x ≤ b, s < ξ,

− (2s−a−ξ)
2

− x+ s, a ≤ x ≤ s ≤ b, s ≥ ξ,

− (2s−a−ξ)
2

, a ≤ s ≤ x ≤ b, s ≥ ξ.

Hence, for any ξ+a
2
≤ x ≤ b, every expression of ∂G2(x,s)

∂x
is negative and so∫ b

a

∣∣∣∣∂G2(x, s)

∂x

∣∣∣∣ ds =
1

6
(ξ − a)2 − 1

2
(b− x)2 +

1

2
(b− a)(b− ξ),
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which attains its maximum at x = b:

max
x∈[ ξ+a

2
,b]

∫ b

a

∣∣∣∣∂G2(x, s)

∂x

∣∣∣∣ ds =
1

6
(ξ − a)2 +

1

2
(b− a)(b− ξ) < 1

2
(b− a)2, ∀ξ ∈ (a, b).

For a ≤ x ≤ ξ+a
2

, it is easy to check that
∣∣∣∂G2(x,s)

∂x

∣∣∣ ≤ ∣∣∣∂G2(a,s)
∂x

∣∣∣ for any a ≤ s ≤ b.

Therefore

max
x∈[a, ξ+a

2
]

∫ b

a

∣∣∣∣∂G2(x, s)

∂x

∣∣∣∣ ds
≤

∫ b

a

∣∣∣∣∂G2(a, s)

∂x

∣∣∣∣ ds =

∫ b

a

∂G2(a, s)

∂x
ds

=
1

3
(ξ − a)2 +

1

2
(ξ − a)(b− ξ)

<
1

3
(b− a)2,

where the supremum is at ξ = b. Hence,

B2 := max
x∈[a,b]

∫ b

a

∣∣∣∣∂G2(x, s)

∂x

∣∣∣∣ ds < 1

2
(b− a)2.

From

∂2G2(x, s)

∂x2
=



−1, a ≤ x ≤ s ≤ b, s < ξ,

0, a ≤ s ≤ x ≤ b, s < ξ,

−1, a ≤ x ≤ s ≤ b, s ≥ ξ,

0, a ≤ s ≤ x ≤ b, s ≥ ξ,

it follows that

C2 := max
x∈[a,b]

∫ b

a

∣∣∣∣∂2G2(x, s)

∂x2

∣∣∣∣ ds < b− a.

Based on the symmetry and similar reasoning to the proof of Lemmas 6.1 and

6.2, we can get the following two lemmas on [b, c].
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Lemma 6.3. (i) The Green’s function of the homogeneous BVP (6.7), (6.10) is as

follows

G3(x, s) =



− (b−x)2(2s−c−η)
2(2b−c−η)

, b ≤ x ≤ s ≤ c, s < η,

− (b−x)2(2s−c−η)
2(2b−c−η)

+ 1
2
(s− x)2, b ≤ s ≤ x ≤ c, s < η,

(b−x)2(s−c)2
2(c−η)(2b−η−c) , b ≤ x ≤ s ≤ c, s ≥ η,

(b−x)2(s−c)2
2(c−η)(2b−η−c) + 1

2
(s− x)2, b ≤ s ≤ x ≤ c, s ≥ η.

(ii) Then, the solution of (6.1), (6.5) can be expressed as

y(x) = y2 +m(x− b) +
y3 +m(c− η)

(c− η)(2b− η − c)
(x− b)2

+

∫ c

b

G3(x, s)f(s, y(s), y′(s), y′′(s))ds. (6.14)

(iii)

A3 := max
x∈[b,c]

∫ c

b

|G3(x, s)|ds < 1

12
(c− b)3,

B3 := max
x∈[b,c]

∫ c

b

∣∣∣∣∂G3(x, s)

∂x

∣∣∣∣ ds < 1

6
(c− b)2,

C3 := max
x∈[b,c]

∫ c

b

∣∣∣∣∂2G3(x, s)

∂x2

∣∣∣∣ ds < 2

3
(c− b).

Lemma 6.4. (i) The Green’s function of the homogeneous BVP (6.7), (6.11) is as

follows

G4(x, s) =



(2s−c−η)(x−b)
2

, b ≤ x ≤ s ≤ c, s < η,

(2s−c−η)(x−b)
2

+ 1
2
(s− x)2, b ≤ s ≤ x ≤ c, s < η,

− (x−b)(s−c)2
2(c−η)

, b ≤ x ≤ s ≤ c, s ≥ η,

− (x−b)(s−c)2
2(c−η)

+ 1
2
(s− x)2, b ≤ s ≤ x ≤ c, s ≥ η.

(ii) Then, the solution of (6.1), (6.6) can be expressed as

y(x) = y2 +
m(c− η)(2b− c− η)− 2y3

2(c− η)
(x− b) +

m

2
(x− b)2

+

∫ c

b

G4(x, s)f(s, y(s), y′(s), y′′(s))ds. (6.15)
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(iii)

A4 := max
x∈[b,c]

∫ c

b

|G4(x, s)|ds < 1

3
(c− b)3,

B4 := max
x∈[b,c]

∫ c

b

∣∣∣∣∂G4(x, s)

∂x

∣∣∣∣ ds < 1

2
(c− b)2,

C4 := max
x∈[b,c]

∫ c

b

∣∣∣∣∂2G4(x, s)

∂x2

∣∣∣∣ ds < c− b.

6.2 Main Results

The Contraction Mapping Principle is stated as follows:

Lemma 6.5. Let (X, d) be a non-empty complete metric space. Let T : X → X be a

contraction mapping on X, i.e., there is a nonnegative real number α < 1 such that

d(T (x), T (y)) ≤ αd(x, y) for all x, y ∈ X. Then, the map T admits one and only one

fixed point x∗ in X (this means T (x∗) = x∗).

Theorem 6.1. For f : [a, c]×R3 → R, suppose there are real numbers Li,Mi, Ni such

that for all x ∈ [a, c] and zj, wj ∈ R for i = 1, 2, 3, 4, j = 1, 2, 3,

|f(x, z1, z2, z3)− f(x,w1, w2, w3)| ≤ Li|z1 − w1|+Mi|z2 − w2|+Ni|z3 − w3|,

where

L1(b− a)3

12
+
M1(b− a)2

6
+

2N1(b− a)

3
< 1, (6.16)

L2(b− a)3

3
+
M2(b− a)2

2
+N2(b− a) < 1, (6.17)

L3(c− d)3

12
+
M3(c− d)2

6
+

2N3(c− d)

3
< 1, (6.18)

L4(c− d)3

3
+
M4(c− d)2

2
+N4(c− d) < 1. (6.19)

Then, the BVP’s (6.1) satisfying each of (6.3), (6.4), (6.5) and (6.6), have a unique

solution for any yi ∈ R, i = 1, 2, 3, ξ ∈ (a, b), and η ∈ (b, c), respectively. If condition

(A1) on f is also satisfied, then (6.1), (6.2) has a unique solution for any yi ∈ R,

i = 1, 2, 3, ξ ∈ (a, b), and η ∈ (b, c).
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Proof. We use the Contraction Mapping Principle, Lemma 6.5, to prove our conclu-

sions.

For i = 1, 2, consider the complete metric spaces Xi = C(2)([a, b],R) with

di(y, z) = Li|y − z|∞ +Mi|y′ − z′|∞ +Ni|y′′ − z′′|∞ for y, z ∈ X, with the maximum

norm | · |∞ in C([a, b],R), and the complete metric spaces Ej = C(2)([b, c],R) with

d(y, z) = Lj|y − z|∞ +Mj|y′ − z′|∞ +Nj|y′′ − z′′|∞ for y, z ∈ Ej, with the maximum

norm | · | in C([b, c],R), for j = 1, 2. According to parts (ii) of the Lemmas 6.1, 6.2,

6.3 and 6.4, we define the following four operators on X1, X2, E1 and E2, respectively:

(T1y)(x) = y2 +m(x− b) +
(y1 +m(ξ − a))(x− b)2

(ξ − a)(2b− a− ξ)

+

∫ b

a

G1(x, s)f(s, y(s), y′(s), y′′(s))ds, for y ∈ X,

(T2y)(x) = y2 +
m(ξ − a)(2b− a− ξ)− 2y1

2(ξ − a)
(x− b) +

m

2
(x− b)2

+

∫ b

a

G2(x, s)f(s, y(s), y′(s), y′′(s))ds, for y ∈ X,

(T3y)(x) = y2 +m(x− b) +
y3 +m(c− η)

(c− η)(2b− η − c)
(x− b)2

+

∫ c

b

G3(x, s)f(s, y(s), y′(s), y′′(s))ds, for y ∈ E,

(T4y)(x) = y2 +
m(c− η)(2b− c− η)− 2y3

2(c− η)
(x− b) +

m

2
(x− b)2

+

∫ c

b

G4(x, s)f(s, y(s), y′(s), y′′(s))ds, for y ∈ E.

Now we show Ti’s for i = 1, 2, 3, 4 are contraction mappings. Take T1 as an

example. Others can be proved similarly. For any y, z ∈ X, by Lemma 6.1, we have

|(T1y)(x)− (T1z)(x)|

=

∣∣∣∣∫ b

a

G1(x, s)(f(s, y(s), y′(s), y′′(s))− f(s, z(s), z′(s), z′′(s)))ds

∣∣∣∣
≤

∫ b

a

|G1(x, s)| |f(s, y(s), y′(s), y′′(s))− f(s, z(s), z′(s), z′′(s))|ds

≤
∫ b

a

|G1(x, s)| [L1|y(s)− z(s)|+M1|y′(s)− z′(s)|+N1|y′′(s)− z′′(s)|] ds
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≤
∫ b

a

|G1(x, s)| [L1|y − z|∞ +M1|y′ − z′|∞ +N1|y′′ − z′′|∞] ds

≤ A1d(y, z) ≤ (b− a)3

12
d(y, z).

Similarly, we have

|(T1y)′(x)− (T1z)′(x)|≤
∫ b

a

∣∣∣∣∂G1(x, s)

∂x

∣∣∣∣ ds · d(y, z) ≤ B1d(y, z) ≤ (b− a)2

6
d(y, z)

and

|(T1y)′′(x)−(T1z)′′(x)|≤
∫ b

a

∣∣∣∣∂2G1(x, s)

∂x2

∣∣∣∣ ds · d(y, z) ≤ C1d(y, z)≤ 2(b− a)

3
d(y, z).

Therefore,

d(T1(y)− T1(z))

= L1|T1(y)− T1(z)|∞ +M1|(T1y)′ − (T1z)′|∞ +N1|(T1y)′′ − (T1z)′′|∞

≤
[
L1(b− a)3

12
+
M1(b− a)2

6
+

2N1(b− a)

3

]
d(y, z).

By (6.16), T1 is a contraction mapping, thus T1 has one and only one fixed point

y ∈ C(2)([a, b],R). In particular, the BVP (6.1) and (6.3) has a unique solution α(x).

Similary, by using (6.17), (6.18) and (6.19) and showing Ti’s for i = 2, 3, 4

are contraction mappings, we get that the BVP’s (6.1) satisfying each of (6.4), (6.5)

and (6.6) have unique solutions u(x), β(x), v(x), respectively. If f also satisfies the

condition (A1), then by Theorem 2.1, the BVP (6.1) and (6.2) has a unique solution

for any yi ∈ R, i = 1, 2, 3, ξ ∈ (a, b), and η ∈ (b, c).
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CHAPTER SEVEN

Conclusion and Future Work

The solution matching techniques have been developed over 30 years and ex-

tended to many types of boundary value problems, but only a few deal with nonlocal

boundary value problems, such as five-point BVP’s, see [15, 24], etc. The problems

discussed in this dissertation are involved with more general nonlocal boundary con-

ditions. In addition, by our results on several different types of boundary conditions

at the matching point b, the solution-matching technique has been extended further.

If we look forward to what future work this dissertation may lead to, we can

consider several directions.

First, the most natural question would be whether these results could be ex-

tended to other types of boundary value problems for differential equations, difference

equations, or dynamic systems on time scales. Different insights could be developed

for different problems.

Second, Liapunov-like functions could be used to substitute the monotone con-

ditions. Basically, the monotone properties of the nonlinear term f are essentially

important for matching solutions, and Liapunov theory [37] is a good tool to weaken

these monotonicity conditions. Some papers have already applied Liapunov theory

to solution-matching methods on certain BVP’s, see [24, 35]. We could also resort to

Liapunov functions to generalize the conditions (A)’s, (B)’s and (C) in this disser-

tation. The cases with odd gaps should be easily dealt with. There might be some

technical difficulties in the cases with even gaps since we have to consider numerical

and monotone conditions at the same time. It is worthwhile to work on it.

Another idea could be to further generalize the cases with even gaps. Based

on the analysis used in this dissertation, we only considered special situations with
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k1 = 0 and k2 = n − 1 in Chapter Five. The natural question is, “how about other

cases?” New methods or tools for analyzing, or stronger conditions, may be needed

to cope with the more general problems.

Last, though continuous differentiability of f is a strong condition, yet we may

consider using it to study boundary data smoothness for solutions, such as the k2nd

order derivative of Φ(b,m) or Ψ(b,m) as defined in Chapter Three or Chapter Five

with respect to the boundary value m of the k1st order derivative of a solution at

the matching point b, that is, Φ(k2)(b,m) or Ψ(k2)(b,m) with respect to m, and then

combine with the solution-matching technique to get the existence and uniqueness

of solutions of certain BVP’s. In this case, it would seem very plausible that the

monotonicity of f may be not required.

The above are some questions and thoughts for further research that arise during

the writing of this dissertation. We hope these are great directions in the future

development of the solution matching technique.
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