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This thesis looks at the Univariate Box-Jenkins Models for time series analysis. It 

introduces readers to the concepts of time series and this analytical model. Starting from 

underlying principles of time series, we cover the practice of ARIMA modeling, 

including a three-stage procedure: identification, estimation and forecasting.  
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CHAPTER ONE 

We always try to explore our understanding and realization about the future based on 

what we know about the present. Though many approaches have successfully fulfilled the 

prediction task, one that is widely used in a variety fields of study and that is, time series.  

Time-series data refers to observations on a variable that occur in a time sequence.  

By applying techniques and analysis on these data, we strive to find the interrelationship 

between the data and use it to predict the possible future outcomes, changes or trends. 

This thesis focuses on using one of the models in time series analysis --- the Univariate 

Box-Jenkins (UBJ) models to forecast time series data. This thesis will discuss details of 

this methodology. 

As stated above, the field, time series analysis, consists of the techniques which when 

applied to time series lead to improved knowledge about this data set (Brillinger). It 

serves to summarize, predict, and describe the behavior of the target data set. According 

to Brillinger, there are two sides of this field: one is a theoretical side and the other is an 

applied side. In this thesis, both will be considered. The theoretical side includes the 

theory of stochastic processes, such as representation, prediction, information, and limit 

theorems, while applications involve extensions of techniques of statistics like regression, 

analysis of variance, multivariate analysis and sampling (Brillinger). The theories and 

techniques involved in analyzing a time series data set will be presented clearly for UBJ 

models.  
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An introduction to UBJ models 

The UBJ models are named after its two individuals, George E. P. Box and Gwilym 

M. Jenkins. George E. P. Box was a statistician. He worked in the areas of quality control, 

time-series analysis, design of experiments and Bayesian inference.   His name appears in 

such statistical results as Box-Jenkins models, Box-Cox transformations, and Box-

Behnken designs, to name a few.  One of his famous comments would be that 

“essentially, all models are wrong, but some are useful”, where he wrote it in his book on 

response surface methodology with Norman R. Draper.  

Box was born in Gravesend, Kent, England in 1919. He did not begin his journey of 

statistics until he performed experiments of exposing small animals to poison gas during 

World War II when he was serving British Army. After the war, he finished his PhD in 

statistics at the University of London. Later he worked as a statistician for Imperial 

Chemical Industries (ICI). He was also the founder of the Department of Statistics in the 

University of Wisconsin-Madison. He retired in 1992, becoming an Emeritus Professor 

and died on March 28, 2013.  

Gwilym Meirion Jenkins was a Welsh statistician and systems engineer born in 

Gowerton, Swansea, Wales August 12, 1932. He was most known for his pioneering 

work with George Box on autoregressive moving average models, also called Box-

Jenkins models, in time series analysis. He died in 1982 from Hodgkin’s lymphoma.  

G.E.P. Box wrote his obituary. 
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Returning to the models that bear their names, we not that UBJ models are for 

univariate or single-series data meaning only past data observations of a single variable 

of interest. The models are also referred to as auto-regressive integrated moving average 

(ARIMA) models. We will discuss the two parts of our models, autoregressive (AR) and 

moving average (MA). This model is used to forecast	
  time-series data, or observations on 

a variable that occur in a time period.  

Though the UBJ models are practical in most of the cases, there are still some 

preferred conditions for which they are optimal. The first one is for short-term forecasting. 

As the UBJ models are weighted toward the most recent past, a distant past will make the 

model less reliable. The second concerns data type. UBJ models will work with either 

discrete or continuous data. The constraint on both discrete and continuous data is that it 

should be measured at equally spaced and discrete time intervals. UBJ-ARIMA models 

are particularly useful for forecasting data series that contain seasonal (or other periodic) 

variation, including those with shifting seasonal patterns (Pankratz). Another requirement 

is an adequate sample size. Generally about 50 observations are needed. With regard to 

seasonal data, a larger sample size may be required. Lastly, UBJ-ARIMA applies only to 

stationary data: meaning that the mean, variance, and autocorrelation function are 

unchanged through time.  

Time- series data is encountered in areas such as economics, meteorology, sociology 

and geography ... Some examples include weekly share prices, monthly profits, daily 



	
  
 

4 
	
  

rainfall, wind speed, temperature, and crime figures. The following graphs give some 

examples of time series plots. 

 

 

 

There is a clear upper trend in this plot, implying that the latter data are related to the 
previous ones.      

The general procedures for a UBJ modeling process include three stages: 

identification, estimation, and diagnostic checking. In the first stage, we choose one or 

more of the most suitable ARIMA models as candidates based on the behaviors of the 

data. Second, we estimate the parameters of the model(s) chosen at stage one. And lastly, 

we check the candidate model(s) for adequacy. If the model is satisfactory, then we use it 

to forecast; otherwise, repeat from stage one. More details of each stage will be explained 

and illustrated with our analysis of a particular case study later.  You have not included 

the case study, so you need to add that before the conclusion. 

Figure One: a time series data counted monthly of airline passengers 
from January 1949 to December 1960 (measured in thousand). 
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There are three advantages to UBJ models. First, they are derived foundational results 

in classical probability theory and mathematical statistics.” Others are often based on ad 

hoc or intuitive methods. Second, ARIMA model is a family of models instead of a single 

model. Box and Jenkins provided analysts a guide for how to choose proper models from 

this family. Third, no other standard single-series model can give forecasts with a smaller 

mean-squared forecast error than an appropriate ARIMA model.  

Now that we have considered the overall picture of the procedures of a UBJ modeling, 

we need to examine more closely the actual tools used in these procedures. The estimated 

autocorrelation function (acf) and the estimated partial autocorrelation function (pacf) are 

the two one of the most essential tools.  
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CHAPTER TWO 

Theoretical analysis 

Adjustment of a set of data 

 

We begin our analysis by adjusting the observed data set. There are two steps for us 

to adjust a set of data if it does not satisfy our requirement of stationarity. The first one is 

differencing, which is used when the mean of a series is changing over time (i.e. non-

stationary). This operation involves calculating successive changes in the values of a data 

series (𝑧!). The specific procedures are as the following: we name the first order of 

differences  𝑤!, where 

𝑤! =   𝑧!   −   𝑧!!!, 𝑡 = 2, 3,… ,𝑛                    (1) 

Notice that n starts at 2 instead of 1, and with this we lose one observation. After the 

differencing, 𝑤! tends to have a more constant mean. If not, we need to redefine 𝑤! to be 

the following: 

𝑤! = 𝑧! −   𝑧!!! − 𝑧!!! − 𝑧!!! , 𝑡 = 3, 4, 5,… ,𝑛                    (2) 

and so forth. A question may be raised here that would this differencing operation change 

our set of data and thus lead to unreliability? The answer is no, because 𝑧! and 𝑤! are 

related by definition. Therefore, by appropriate differencing frequently, we can transform 

a non-stationary series into stationary one, with mean zero. 
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The second step is expressing the data in deviations from the mean. This tool is 

used when the mean of a series is constant (stationary), and we consider the mean as a 

fixed and non-stochastic component of the series. We define a new series  𝑧! =   𝑧! −   𝑧. In 

this case, the mean of the new series is zero, which is the only difference between 𝑧! 

and  𝑤!.  

 

 

Two analytical tools 

After adjusting our data set to meet the requirement, we can embark on finding the 

correlations among each order pairs derived from our data set. Here we introduce two 

new concepts, the estimated autocorrelation functions (acf) and estimated partial 

autocorrelation functions (pacf).  

First, let us take a look at the estimated autocorrelation functions (acf). It is a 

collection of the correlation coefficients between each set of ordered pairs (𝑧! , 𝑧!!!) and 

we use 𝑟!  to denote the estimated autocorrelation coefficient of observations separated by 

k time periods within a time series. The true, underlying autocorrelation coefficients 

however are designated  𝜌!, which are estimated by the  𝑟!’s statistics. The estimated 

autocorrelation functions measure the direction and strength of the statistical relationship 

between ordered pairs of observations of two random variables that are measured k time 

units apart. The calculation of 𝑟! is given as the following: 

𝑟! =   
(𝑧! −   𝑧)(𝑧!!! −   𝑧)!!!

!!!

(𝑧! −   𝑧)!!
!!!

                    (3) 
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The maximum number of useful estimated autocorrelations is roughly ¼ of the total 

observations, which makes it more convenience for calculation. Here is an example of 

output displaying the estimated autocorrelation function of simulated time-series data.  

 

 

We use the term lag k to represents the number of time periods separating the ordered 

pairs used to calculate each  𝑟!. Why is the acf so important that we spend this much effort 

finding it? It is because that the acf is a key element at the identification stage of the UBJ 

method. The analyst must make a judgment about what ARIMA model(s) might fit the 

data by examining the patterns in the estimated acf.  

 Next we consider the partial autocorrelation functions (pacf). It is also used as a 

guide for choosing the suitable models for our data set. It provides us a way to measure 

how 𝑧! and 𝑧!!! are related and meanwhile takes the effect of the  𝑧’s intervene into 

account. For example, if we want to examine the relationship between (𝑧!,𝑧!!!), the 

Figure Two: ACF of simulated data of AR (2) model using R 
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effect of 𝑧!!!, 𝑧!!!,… , 𝑧!!! needs to be taken into consideration. The estimated partial 

autocorrelation coefficient is denoted by �!!. As, 𝑟! is the estimated coefficient of 𝜌!, 

�!! estimates the true partial autocorrelation coefficient �!!. An algorithm for 

calculating �!! using least squares is given below.   : 

(1) 𝑧!!! = �!!𝑧! + 𝑢!!!, where 𝑧!!! and 𝑧! are all the possible ordered pairs of 

observations; �!! is the true coefficient we want to estimate; 𝑢!!! is the error 

term. 

(2) 𝑧!!! = �!"𝑧!!! + �!!𝑧! + 𝑢!!!, for finding  �!!. 

(3) 𝑧!!! = �!"𝑧!!! + �!"𝑧!!! + �!!𝑧! + 𝑢!!!, for finding �!! and so on.  Then we 

get 

(4) �!! = 𝑟!, and 

�!! =
𝑟! − �!!!,!𝑟!!!

!!!
!!!

1− �!!!,!𝑟!
!!!
!!!

                             𝑘 = 2, 3,…                     (4) 

where  �!" = �!!!,! − �!!�!!!,!!!                                    (𝑘 = 3, 4,… ; 𝑗 = 1, 2,… , 𝑘 − 1) 

Here is a graphical example of pacf function computed from simulated data 



	
  
 

10 
	
  

 

 

We can use the estimated acf graph to help us decide whether a data series is stationary or 

not. For a mean-stationary data set, the estimated acf drops off rapidly to zero. Otherwise, 

it drops slowly to zero. We will examine stationarity more carefully later in Chapter 

Three, but the following gives a good example of a non-stationary series acf and pacf:	
  	
  

                 

 

Figure Three: PACF of simulated data of AR (2) model using R 

 

Figure Four: ACF and PACF for non-stationary time series data 
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 So far, we have examined the difference between acf and pacf, how the estimated 

coefficients are calculated, how to interpret the estimated coefficients, and how the 

estimated coefficients are represented graphically. 

 

Underlying Statistically Principles 

In this section, we are going to discuss the three-stage UBJ procedure, 

terminology and principles of the UBJ method.   

 This three-stage process is known as the Process, Realization and Model process. 

Stage one is process, where all the possible outcomes and a stochastic generating 

mechanism specify how these observations are related through time. Stage two, which is 

realization, we construct an acf and a pacf using available data. The last stage, model, is a 

representation of the process developed by analyzing the realization. Usually, the process 

stage is the starting place. It gives rise to a realization. After having a realization we 

choose a model to fit the realization best. Hopefully the model we choose is a good 

representation of the unknown, underlying process.  

There are two common processes we can use to examine the series on stage one: 

AR process and MA process. AR is the abbreviation for autoregressive process. It 

associates  𝑧! immediately with the past value  𝑧!!!. A general form for AR order one 

would be 

𝑧! = 𝐶 + �!𝑧!!! + 𝑎!                    (5) 
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where C is constant term related to the mean of the process; �! is a parameter of fixed 

numerical value; 𝑧!!!is the one period previous data of the same series; 𝑎! is a random 

shock element. (Note: the AR order, denoted by AR (n), is the longest time lag associated 

with a z term on the right-hand-side). Now consider MA process. MA is the abbreviation 

for moving average. It associates 𝑧! with  𝑎!!!. Alternatively speaking, an MA term 

represents a relationship between 𝑧! and a component of a past z term, where the 

component is the appropriately lagged random shock. A general form for MA order one 

is 

𝑧! = 𝐶 − 𝜃!𝑎!!! + 𝑎!                    (6) 

where  𝜃! is a fixed value;  𝑎!!! is the past random shock;  𝑎! is the present random shock. 

The 𝑎! terms are usually assumed to be normally, identically and independently 

distributed random variables with a mean of zero and a constant variance .We often refer 

to these random variables as “white noise.” Any specific value of an observation is 

composed by three parts: a deterministic part denoted by C, another part reflecting the 

past data AR and MA, and a pure random term  𝑎!, the presence of this white noise is vital 

with regard to our consideration that   𝑧! should be at least partly affected by random 

chance.  
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Theoretical ACF’s and PACF’s Vs estimated ACF’s and PACF’s 

In order for us to distinguish which process a case falls into either AR or MA, it’s 

important to know some characteristics of the theoretical acf’s and pacf’s. For stationary 

autoregressive processes (AR), they have theoretical acf that decay or damp out toward 

zero. However, their theoretical pacf’s cut off sharply to zero after a few spikes. The lag 

length of the last pacf spike equals the AR order (p) of the process. On the other hand, for 

moving-average processes (MA), the theoretical acf’s cut off sharply to zero after a 

certain number of spikes. The lag length of the last acf spike equals the MA order (q) of 

the process. The theoretical pacf’s decays toward zero. The following graphs are some 

examples for theoretical acf’s and pacf’s for stationary AR (1) and MA (1) processes.  

Example I: �! is positive 
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Example II: �! is negative 

                  

 

Example I: 𝜃! is negative 
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Example II: 𝜃! is positive 

                  

 

The estimated acf and pacf are calculated by using formulas (3) and (4) and the observed 

data. Next we compare the estimated acf and pacf to a range of common theoretical acf’s 

and pacf’s and find a match and select an initial model. During this process, we cannot 

expect the estimated acf and pacf match exactly to one of the theoretical ones. After all, 

the observed data are realization based and therefore involve sampling error. Here is an 

example of estimated acf and pacf for AR (1) process    𝑧! = 0.5𝑧!!! + 𝑎!, 

with  𝑎!  ~  𝑖𝑖𝑑  𝑁(0,�
!). We used the simulated data generated from R.               

	
   	
  	
  	
  	
  	
  	
  	
   	
  

Figure Five: Theoretical ACF and PACF’s for AR (1) and MA (1) 

Figure Six: Estimated ACF and PACF for   𝑧! = 0.5𝑧!!! + 𝑎! 
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Standards for a good ARIMA model 

Before we introduce more of ARIMA modeling, there are several criteria for a 

good model that should be kept in mind. The model should be parsimonious or as 

simplest model that still explains the data.  It should also be stationary and invertible.  

The estimated coefficients should be statistically significant and not highly correlated 

with each other. The residuals should be uncorrelated and most importantly, the model 

must forecast well.  

Notation and interpretation of ARIMA model 

Now we introduce notation and the interpretation of ARIMA models. It is useful 

to explain the intuition behind the model. As mentioned above, the two common ARIMA 

processes, the AR (1) and MA (1) are:  

𝑧! = 𝐶 + �!𝑧!!! + 𝑎!   

𝑧! = 𝐶 − 𝜃!𝑎!!! + 𝑎! 

here are three additional common processes researchers use a lot shown as the following: 

𝑧! = 𝐶 + �!𝑧!!! + �!𝑧!!! + 𝑎!                    (7) 

  𝑧! = 𝐶 − 𝜃!𝑎!!! − 𝜃!𝑎!!! + 𝑎!                    (8) 

𝑧! = 𝐶 + �!𝑧!!! − 𝜃!𝑎!!! + 𝑎!                      (9) 
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Equation (7) is called an AR (2) because it contains only AR terms, which is  𝑧!’s 

and the maximum time lag on the AR terms is two (i.e.  𝑧!!!). Similarly, equation (8) is 

MA (2). Equation (9) is more interesting being a mixture of both AR and MA. It is an 

ARMA (1, 1) process because the order for AR and MA are both one.  

The notation ARIMA (p, d, q) is used to denote a complete ARIMA process. The 

p indicates the number of the AR order and q is the number of the MA order. Sometimes 

we use AR and MA process interchangeably.   It can be shown that an MA (1) process is 

equivalent to an AR process of infinitely high order and an AR (1) process is equivalent 

to an MA process of infinitely high order. The d represents how many times a series has 

been differenced. If a series has been differenced, then the letter “I” is added, as well.  

We can have ARMA (p, q) models or ARIMA (p, d, q) models. 

Another useful notation is the backshift operator B. Here is how it 

operates:  𝐵𝑧! = 𝑧!!!. It would be really tempting to think B is just a number; however, 

this algebraic term does not stand number, but it is an operator acting on𝑧! or  𝑎!. B is 

meaningful. Its task is to shift the time subscripts. For example, 𝐵!gives  𝐵!𝑧! = 𝑧!!! and 

more generally,  𝐵!𝑧! = 𝑧!!!. The next operator is the differencing operator (1-B). Recall 

that a non-stationary series must be differenced before we run analysis on it. Therefore, 

1− B 𝑧! = 𝑧! − 𝑧!!! produces the first differences of  𝑧!. And similarly,   (1− 𝐵)!𝑧! =

𝑧! − 2𝑧!!! + 𝑧!!! generates the second differences. 
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CHAPTER THREE 

Identification Stage 

Theoretical ACF’s and PACF’s for five common processes 

 

 In this chapter, we will introduce the method used to identify a model by 

matching the estimated acf’s and pacf’s with the theoretical ones. Although there are 

numerous ARIMA models proposed, only a few commonly appear in practice. Besides, 

the characteristics of the rare models are included in the ordinary ones. Knowing the 

theoretical acf’s and pacf’s for five common processes is a start.  

Below are the models for five common processes.  

AR (1):    1− �!𝐵 𝑧! = 𝑎!                    (10) 

AR (2):    1− �!𝐵 − �!𝐵
! 𝑧! = 𝑎!                    (11) 

MA (1): 𝑧! = 1− 𝜃!𝐵 𝑎!                    (12) 

MA (2): 𝑧! = 1− 𝜃!𝐵 − 𝜃!𝐵! 𝑎!                    (13) 

ARMA (1, 1):    1− �!𝐵 𝑧! = 1− 𝜃!𝐵 𝑎!                    (14) 

The tables below summarize the characteristics of acf’s and pacf’s for the 

common models. (Pankratz, page 122-123) 
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Process acf Pacf 

AR Tails off toward zero (exponential 

decay or damped sine wave) 

Cuts off to zero (after lag p) 

MA Cuts off to zero (after lag q) Tails off toward zero 

(exponential decay or damped 

sine wave) 

ARMA Tails off toward zero Tails off toward zero 

More specifically, with different signs of coefficient in front, each individual may 

behave differently.  

Process acf Pacf 

AR (1) 

 

Exponential decay: (i) on the 

positive side if  �! > 0; (ii) 

alternating the sign starting on the 

negative side if  �! < 0. 

Spike at lag 1, then cuts off to 

zero: (i) spike is positive if 

�! > 0; (ii) spike is negative if 

�! < 0. 

AR (2) A mixture of exponential decays or 

a damped sine wave. The exact 

pattern depends on the signs and 

Spikes at lags 1 and 2, and then 

cuts off to zero. 
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sizes of �!and  �!. 

MA (1) Spike at lag 1, then cuts off to zero: 

(i) spike is positive if 𝜃! < 0; (ii) 

spike is negative if 𝜃! > 0. 

Damps out exponentially: (i) 

alternating in sign, starting on the 

positive side, if 𝜃! < 0; (ii) on the 

negative side, if   𝜃! > 0. 

MA (2) Spikes at lags 1 and 2, and then 

cuts off to zero. 

A mixture of exponential decays 

or a damped sine wave. The exact 

pattern depends on the signs and 

sizes of 𝜃!and  𝜃!. 

ARMA (1, 1) Exponential decay from lag 1: (i) 

sign of �!= sign of    �! − 𝜃! ; (ii) 

all one sign if   �! > 0; (iii) 

alternating in sign if �! < 0. 

Exponential decay from lag 1: (i) 

�!! = �!; (ii) all one sign if 

𝜃! > 0; (iii) alternating in sign if 

𝜃! < 0. 

The graphs provided below would provide a better understanding of those shapes. 

The first examples are for AR (2).   
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                                                     Example I: 

                    

                                                    Example II: 

                     

                                                   Example III: 
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                                                   Example IV: 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  

	
  

 

Stationarity 

Earlier it was mentioned that we require our models to be stationary.  In order to 

have stationarity, there are conditions that AR coefficients must satisfy. These conditions, 

and how to determine if a realization or model is stationary in practice are discussed 

below. (Pankratz , page 130)  

The table displayed below explains the conditions of stationarity for AR 

coefficients: (Pankratz, page 130) 

Model Type Stationarity Conditions 

ARMA (0, q) Always stationary 

Figure Seven: Theoretical ACF and PACF’s for AR (2) model 
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AR (1) or ARMA (1, q) �! < 1 

AR (2) or ARMA (2, q)  �! < 1;   �! + �! < 1 

                                       �! − �! < 1 

For p >2, the stationarity conditions become complicated. However, this doesn’t happen 

frequently in practice, so we omit discussion on the complicated situation.  

Ensuring the stationarity of a series can help us generate useful estimates of the 

mean, variance and acf. Since there is only one observation at time t, it would be difficult 

to produce a practical model if the mean were changing over time. Therefore, it is 

important to have the following check for the stationarity. First, examine the realization 

visually to see if the mean and variance appear to be constant, and examine the estimated 

acf to see if it drops to zero rapidly; if it does not, the mean may not be stationary and 

differencing maybe needed. Finally, check any estimated AR coefficients to see that they 

meet the relevant stationarity conditions. (Pankratz, page 149) 

Invertibility 

 Like AR process, there are certain conditions on MA coefficient that must be 

satisfied. The table below gives a description of these certain conditions.  

Model Type Invertibility Conditions 

ARMA (p, 0) Always invertible 
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MA (1) or ARMA (p, 1) 𝜃! < 1 

MA (2) or ARMA(p, 2) 𝜃! < 1; 𝜃! + 𝜃! < 1 

               𝜃! − 𝜃! < 1 

 It is significant to have   𝜃 < 1, since this condition can lead to 

invertibility. Recall equation (12):  

MA (1): 𝑧! = 1− 𝜃!𝐵 𝑎!                     

If   𝜃 < 1, we can write the MA (1) as the following:  

1− 𝜃!𝐵 !!𝑧! = 𝑎! 

and further, write it into a series: 

(𝜃!)!
!

!!!

∙ 𝑧!!! = 𝑎! 

which is invertible according to the definition.  

 The definition of invertibility stated explicitly that a linear process {𝑧!} is 

invertible (strictly an invertible function of {𝑎!} if there is a  

𝜋 𝐵 = 𝜋! + 𝜋!𝐵 + 𝜋!𝐵! +⋯ 

with 𝜋!!
!!! < ∞ and 𝑎! = 𝜋(𝐵)𝑧! (Bartlett).  
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The implement of invertibility can help us get more accurate weights placed on 

past z observations. Observations further the past have less effect on the present. 

Therefore, if the coefficients for the equivalent AR process of infinitely high order do not 

decline, then the invertibility of this series is violated. 
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CHAPTER FOUR 

Estimation Stage 

Principle of Estimation 

 

 In the identification stage, we estimate n/4 autocorrelation and partial 

autocorrelation coefficients, and then tentatively choose a model. For the estimation stage, 

we precisely estimate a small number of parameters of the chosen model. At the 

estimation stage, the values of estimated coefficients are chosen based on some criteria. 

Maximum likelihood (ML) and least-squares (LS) are two favored criteria chosen by Box 

and Jenkins. Another common methods used is a nonlinear least-squares (NLS) approach. 

We will introduce these methods used to estimate the coefficients in the next discussion.  

 “Least-squares” refers to parameter estimates associated with the smallest sum of 

squared residuals or errors. A residual is the difference between the true value and the 

predicted one. For example, for an AR (1) model: 

1− �!𝐵 𝑧! = 𝑎! 

or 

𝑧! = �(1− �!)+ �!𝑧!!! + 𝑎!                    (15) 
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where �(1− �!) is the constant term  C. If we want to predict the value of  𝑧!, we 

need  �,  �! and  𝑧!!!. Since  𝑎! is the random shock, it is not observable. Thus, we assign 

the expected value of  𝑎! to be zero and use  �,  �!, and  𝑧!!! to find the predicted value of 

𝑧! designated 𝑧!: 

𝑧! = � 1− �! + �!𝑧!!!                    (16) 

Then we subtract equation (16) from (15), and get: 

𝑧! − 𝑧! = 𝑎! 

 In practice, we do not know the true values for our parameters of ARIMA models; 

but we use the estimated ones from the data, i.e.  � and  �!. Therefore, the modified 

equation (16) is like the following: 

𝑧! = � 1− �! + �!𝑧!!!                    (17) 

The residual is the estimated random shock  𝑎!, which is the difference between equation 

(17) and (15).   

 Next, we introduce the concept SSR---sum of squared residuals. First, let us take a 

look at how to calculate SSR.  

 The table below is an example of an AR (1), with  �! = 0.5. 

t 𝑧! 𝑧! = 𝑧! − 𝑧 𝑧! = �!𝑧!!! 𝑎! = 𝑧! − 𝑧! 𝑎!! 
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0 / / / / / 

1 80 20 / / / 

2 60 0 10 -10 100 

3 30 -30 0 -30 900 

4 40 -20 -15 -5 25 

5 70 10 -10 20 400 

6 80 20 5 15 225 

From column 2, we can calculate  � = 𝑧 = !!
!
= 60. Recall that 𝑧! is the differenced 

series with the same stochastic properties as  𝑧!, but a mean at zero, i.e.   𝑧! = 0. The last 

column showed the squared residuals, moreover, we can calculate SSR from it:  SSR =

𝑎!! = 1650.  

Our task is to assign different values on �! that will give us the minimum SSR.  

 

 

 

Nonlinear Least-squares Estimation 
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 Unlike linear-least-squares (LLS) methods, where we derive a set fairly easy-

solving of equations from SSR using calculus, with an ARIMA model  SSR produces a 

set of highly nonlinear equations and can be solved only with a nonlinear, iterative 

technique. This technique is similar to the “grid-search” method.  

The grid search is idea from of trial-and-error. From the example above, using an AR (1) 

model, we got a SSR of 1650 by assigning  �! = 0.5. We can also try other different 

values from -1 to1, since   �! < 1 is promised under a stationary condition. Therefore, 

we can plot each corresponding SSR associates with the change of  �!, shown as below: 

	
  

	
  

Obtained from this graph, we now have a sense that the minimum SSR appears 

between  �! = 0.2~0.5. Then, we can assign a set of different values from this range 
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Figure Eight: Nonlinear least squares estimation-grid search 
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to  �!, calculate SSR and compare and so forth. The commonly used NLS method, 

however, has a better algorithm and will converge quicker to the ideal the estimates using 

a computer.  

Maximum Likelihood Estimation of ARIMA Models 

 This approach is a common statistical approach to estimate. However, in time 

series we cannot use the normal version of the maximum likelihood estimation (MLE), 

but a modified one.  First, we will review the normal version and introduce the new one 

for an ARIMA model. 

To find the maximum likelihood function for an identically independent data set 

(iid) with marginal probability density function (pdf)  𝑓 𝑦!;𝜃 , we first find the joint pdf, 

which is just the product of the marginal pdf: 

  𝑓 𝑦;𝜃 = 𝑓 𝑦!,… ,𝑦!;𝜃 = 𝑓(𝑦!;𝜃)
!

!!!

                    (18) 

The likelihood function is this joint density but treating θ as the parameter given the 

data  y: 

𝐿 𝜃|𝑦 = 𝐿 𝜃|𝑦!,… ,𝑦! = 𝑓(𝑦!;𝜃)
!

!!!

                    (19) 

Then we take the natural log of both sides and get the log-likelihood: 
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ln 𝐿(𝜃|𝑦) = ln 𝑓 𝑦!;𝜃
!

!!!

                    (20) 

 However, for a time series data set, this method does not work because the 

random variables in the sample are not iid. One approach is to use the  T×T variance 

covariance matrix  var(y) to determine the joint pdf  𝑓 𝑦!,… ,𝑦!;𝜃  directly. Discussed 

below is an alternative solution to this problem. We can write the joint density as a 

product of conditional densities and then maximize the log likelihood (Zivot). Starting 

from only two observations of a time series  𝑦!,𝑦!, the conditional density of  𝑦! given  𝑦! 

we obtain 

𝑓 𝑦!,𝑦!;𝜃 = 𝑓 𝑦! 𝑦!;𝜃 𝑓 𝑦!;𝜃                     (21) 

Carrying the same pattern, for three observations, the conditional density becomes: 

𝑓 𝑦!,𝑦!,𝑦!;𝜃 = 𝑓 𝑦! 𝑦!,𝑦!;𝜃 𝑓 𝑦! 𝑦!;𝜃 𝑓 𝑦!;𝜃                     (22) 

In general, for T observations, this conditional density form becomes like this: 

𝑓 𝑦!,… ,𝑦!;𝜃 = 𝑓(𝑦!|𝐼!!!,𝜃)
!

!!!!!

∙ 𝑓(𝑦!,… ,𝑦!;𝜃)                    (23) 

where  𝐼! = 𝑦! ,… ,𝑦!  denotes the information available at time t, and  𝑦!,… ,𝑦! denotes 

the initial values. Then the log-likelihood can be written as the following: 

ln 𝐿 𝜃 𝑦 = ln 𝑓 𝑦! 𝐼!!!,𝜃 + ln 𝑓 𝑦!,… ,𝑦!;𝜃
!

!!!!!

                    (24) 
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This is called the exact log-likelihood. The first term with summation is called the 

conditional log-likelihood, and the second term is called the marginal log-likelihood for 

the initial values. Therefore, there are two types of maximum likelihood estimates (mles) 

that can be computed from equation (24). The first is based on the first term and the 

estimators are called conditional mles given by 

𝜃!"#$ = max
!

ln 𝑓(𝑦!|𝐼!!!,𝜃)
!

!!!!!

                    (25) 

The second type is based on the exact log-likelihood function. We call this estimator 

exact mles. Here is the definition: 

𝜃!"# = max
!

ln 𝑓(𝑦!|𝐼!!!,𝜃)
!

!!!!!

+ ln 𝑓(𝑦!,… ,𝑦!;𝜃)                     (26) 

 It is important for us to keep in mind that these two types have the same limiting 

normal distribution and the two estimators 𝜃!"#$ and  𝜃!"# are consistent if we have 

stationary models. It should be noted that “𝜃!"#$ and  𝜃!"# can be substantially different if 

the series is non-stationary or non-invertible.” (Zivot) 

 We now demonstrate the maximum likelihood estimation in the following 

example. Consider an AR (1) model with the assumption of the random shock 

term  𝑎!~iid  N(0,�
!): 

𝑦! = 𝑐 + �!𝑦!!! + 𝑎! ,𝑎!~iid  N 0,�! , 𝑡 = 1,… ,𝑇                    (27) 
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𝛉 = 𝑐,�,�!  
!
, � < 1 

Then conditional on  𝐼!!! is 

𝑦!|𝐼!!!~𝑁 𝑐 + �𝑦!!!,�
! , 𝑡 = 2,… ,𝑇 

which only depends on  𝑦!!!. The conditional density  𝑓 𝑦!|𝑦!!!,𝜽  is then 

  𝑓 𝑦!|𝑦!!!,𝜽 = (2��!)!!/! exp −
1
2�!

𝑦! − 𝑐 − �𝑦!!! ! , 𝑡 = 2,… ,𝑇                    (28) 

Next, we determine the marginal density for the initial value  𝑦!. In order to do that, we 

first determine the mean and variance of the AR (1) process. Recall that   �  is less than 1 

under stationarity or the variance goes to infinity. Consequently, the mean  E(𝑦!) is 

identical for all t and we denote the mean to be  �. Therefore, 

𝐸(𝑦!) = 𝐸(𝑐)+ �!𝐸(𝑦!!!)+ 𝐸(𝑎!) 

or  

� = 𝑐 + �!� 

As a result,  

E 𝑦! = � =
𝑐

1− �
                    (29) 

Also, we can determine the variance, which is 
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Var 𝑦! =
�!

1− �!
                    (30) 

Then  𝑦!~𝑁
!

!!�
   , �!

!!�!
 and its density is  

𝑓 𝑦!;   𝜽 = 2�
�!

1− �!

!!/!

𝑒𝑥𝑝 −
1− �!

2�!
(𝑦! −

𝑐
1− �

    )!                     (31) 

Thus,  

𝑓 𝑦!,… ,𝑦!;𝜃 = 𝑓 𝑦! 𝐼!!!,𝜃
!

!!!

∙ 𝑓 𝑦!;𝜃

= (2��!)!(!!!)/! exp −
1
2�!

𝑦! − 𝑐 − �𝑦!!!

!

!!!

  ! ∙ 𝑓 𝑦!;𝜃  

Then the conditional log-likelihood function is  

ln 𝑓 𝑦! 𝑦!!!,𝜽 = −
𝑇 − 1
2 ln 2�

!

!!!

−
𝑇 − 1
2 ln �! −

1
2�!

𝑦! − 𝑐 − �𝑦!!!

!

!!!

  !          (32) 

If we take the derivative of equation (32) with respect to  �! and set it to zero, then the 

solution is our conditional mle for  �!: 

�!"#$
!

= (𝑇 − 1)!! (𝑦! − 𝑐!"#$ − �!"#$𝑦!!!)
!

!

!!!

                    (33) 
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Then we take the log function of the both sides of equation (31) and get the 

marginal log-likelihood for the initial value  𝑦! is 

ln 𝑓 𝑦!;𝜽 = −
1
2 ln 2� −

1
2 ln

�!

1− �!
−
1− �!

2�!
𝑦! −

𝑐
1− �

!
                    (34) 

Further, the exact log-likelihood function is the addition of equation (32) and (34): 

ln 𝐿 𝜽 𝒚 = −
𝑇
2 ln(2�)−

1
2 ln

�!

1− �!
−
1− �!

2�!
𝑦! −

𝑐
1− �

!

−
𝑇 − 1
2 ln �! −

1
2�!

𝑦! − 𝑐 − �𝑦!!!

!

!!!

  !                    (35) 

 Since the exact log-likelihood function is a non-linear function of the parameter  𝛉, 

there is no closed form solution for the exact mles. As Zivot pointed out that the exact 

mles must be determined by numerically maximizing the exact log-likelihood function. 

Usually we use an iterative scheme from the Newton-Raphson type algorithm for the 

maximation: 

𝜽!"#,! = 𝜽!"#,! −𝑯 𝜽!"#,!!!
!!𝒔 𝜽!"#,!!!                     (36) 

“where 𝑯(𝜽) is an estimate of the Hessian matrix (second derivative of the log-likelihood 

function), and 𝒔(𝜽) is an estimate of the score vector (first derivative of the log-

likelihood function). The estimates of the Hessian and Score may be computed 

numerically (using numerical derivative routines) or they may be computed analytically 

(if analytical derivatives are known).” 
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CHAPTER FIVE 

Forecasting 

 To forecast future values for an ARIMA model, we have point estimator and 

interval estimators. In this chapter, we introduce the method of producing the point 

estimate for ARIMA forecasts and then we consider interval estimation. Further, we 

illustrate some criteria for an optimal forecast.  

 The most convenient way to derive the point estimators are to write the model in 

difference-equation form. Let  𝑡 be the current time period, and we are interested in 

forecasting  𝑙 periods after  𝑡, in which  𝑡 is also called the forecast origin and  𝑙 is called the 

forecast lead time.  z!!! is denoted to time period l after the origin. Then the forecast 

of  z!!!, designated as  𝑧!(𝑙), is the conditional expectation of  z!!!: 

𝑧! 𝑙 = 𝐸 𝑧!!! 𝐼!                     (37) 

where  𝐼! is the information contained in the set of pervious observations  (𝑧! , 𝑧!!!,… ). An 

example of an ARIMA model (1, 0, 1) will illustrate this better. Written in the backshift 

notation, ARIMA (1, 0, 1) model is 

1− 𝜙!𝐵 𝑧! = (1− 𝜃!𝐵)𝑎! 
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or  

𝑧! = 𝜇 1− 𝜙! + 𝜙!𝑧!!! − 𝜃!𝑎!!! + 𝑎! 

Then for time period t+1 (where l=1), the expression is 

𝑧!!! = 𝜇 1− 𝜙! + 𝜙!𝑧! − 𝜃!𝑎! + 𝑎!!!                    (38) 

Then we apply equation (37) to (38) to find the forecast for  𝑧!!!: 

𝑧! 1 = 𝐸 𝑧!!! 𝐼! = 𝜇 1− 𝜙! + 𝜙!𝑧! − 𝜃!𝑎!                    (39) 

Since we do not know  𝑎!!! at time t, we assign zero for its expected value. Thus, 𝑧! 

and  𝑎! are relevant to the information needed for 𝑧!!! prediction.  

In practice, we use the previous predicted value  𝑧! to forecast z for the next time 

period  𝑧!!! and forecasts for l > 1 are called “bootstrap” forecasts. Similarly, the mean 𝜇, 

coefficients 𝜙 and 𝜃 are unknown as well, so we use estimated values for them, i.e. 𝜇,𝜙 

and  𝜃. A forecast for the 61th and 62th period with a sample size n=60 can be written as: 

𝑧!" = 𝑧!" 1 = 𝐶 + 𝜙!𝑧!" − 𝜃!𝑎!"                    (40) 

𝑧!" = 𝑧!" 2 = 𝐶 + 𝜙!𝑧!" − 𝜃!𝑎!"                    (41) 

where  𝐶 = 𝜇(1− 𝜙!) is the estimated constant term.  

 If we assign some particular values to 𝜇,𝜙 and  𝜃, then our forecasts are 

converging toward the mean of the series as long as the model is stationary. Whether the 

convergence is rapid or slow depends on each individual model. When the lead time (l) 
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exceeds the lag length of a past shock term (q), we have seen that with a pure AR or 

mixed models, we use forecast z’s instead of observed z’s, which we referred to as 

“bootstrap”. However, with a pure MA or mixed models, we must replace random shocks 

with the expected value of zero. Furthermore, when  𝑙 > 𝑞, the forecasts are equal to the 

estimated mean 𝜇 in pure MA models.  

 In order to derive confidence intervals around our point forecasts, we need to 

write all AR terms with an infinite series of MA terms, since a pure MA model is already 

in random-shock form. 

 Symbol ψ is used to denote the coefficients in a random-shock form, with the 

subscript t corresponding to the time lag of the associated past random shock: 

𝑧! = 𝜇 +   ψ!𝑎! +   ψ!𝑎!!! +   ψ!𝑎!!! +   ψ!𝑎!!! +⋯                     (42) 

where   ψ! = 1. If this sequence is finite, then it represents a pure MA model. On the 

other hand, if it is infinite, it represents a pure AR or mixed model. And 𝜇  is the mean for 

a stationary series. For example, an MA (2) can be written as:  

 (𝑧! − 𝜇) = 1− 𝜃!𝐵 − 𝜃!𝐵! 𝑎!                     

or 

𝑧! = 𝜇 + 𝑎! − 𝜃!𝑎!!! − 𝜃!𝑎!!! 

If we let   ψ! = 1,   ψ! = −𝜃! and  ψ! = −𝜃!, we can rewrite the above equation in 

random-shock form as 
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𝑧! = 𝜇 +   ψ!𝑎! +   ψ!𝑎!!! +   ψ!𝑎!!! 

which is a truncated version of equation (42). Therefore, the random-shock form will 

make it easier for our later discussion about confidence interval.  

Equation (40) and (41) gave us an idea about how to conduct a point estimate 

process. Now we are interested in how reliable a point estimate is, and we incorporate the 

variability by constructing a confidence interval. First, we consider the forecast-error, 

which is the difference between the observed data and the forecasted one, denoted 

by  𝑒!(𝑙): 

𝑒! 𝑙 = 𝑧!!! − 𝑧! 𝑙                     (43) 

Then we write the observed z for period t+l in random-shock form: 

𝑧!!! = 𝜇 +   ψ!𝑎!!! +   ψ!𝑎!!!!! +   ψ!𝑎!!!!! +   ψ!𝑎!!!!! +⋯                     (44) 

and the corresponding forecast term 𝑧!(𝑙) can be written as: 

𝑧! 𝑙 = 𝐸 𝑧!!! 𝐼! = �+   ψ!𝑎! +   ψ!!!𝑎!!! +   ψ!!!𝑎!!! +⋯                     (45) 

since the random shock terms  𝑎!’s cannot be known beyond time t. Therefore, when we 

substitute equation (44) and (45) into equation (43) to get  

𝑒! 𝑙 =   ψ!𝑎!!! +   ψ!𝑎!!!!! +   ψ!𝑎!!!!! +⋯+   ψ!!!𝑎!!!                    (46) 

Next, we can use equation (46) to find the conditional variance of 𝑒! 𝑙  is  

�! 𝑒! 𝑙 = 𝐸 𝑒! 𝑙 − 𝐸 𝑒! 𝑙 𝐼! ! = 𝐸 𝑒! 𝑙 ! 
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= �!
!(1+   ψ!! +   ψ!! +⋯+   ψ!!!!) 

As showed earlier, 𝐸(𝑎!!!) = 𝐸(𝑎!!!) = ⋯ = 0. In addition, all cross-product terms 

have an expected value of zero since the random-shocks are assumed to be independent. 

Constant  �!
!  is the expected value for each of the remaining squared shock terms 

according to our assumption.  

Further, the standard deviation of 𝑒! 𝑙  is the following: 

� 𝑒! 𝑙 = �!(1+   ψ!
! +   ψ!! +⋯+   ψ!!!!)!/! 

 However, this result is not exact. The standard deviation can only be 

approximated since  �!
! ,  ψ! are estimated.  

 Having calculated the standard deviation, we can then construct confidence 

intervals. We made two assumptions here: one, our sample size is large enough and two, 

the random shocks are normally distributed in order to apply the central limit theorem--- 

our forecasts from the model are approximately normally distributed. Thus, an 

approximate 95% confidence interval is given by  

𝑧! 𝑙 ± 1.96� 𝑒! 𝑙  

More generally, an approximate 100(1- α) % confidence interval is: 

𝑧! 𝑙 ± 𝑍!!�
!
∙ � 𝑒! 𝑙  

where 𝑍!!�
!
   is the lower percentile of a standard normal distribution. 
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CONCLUSION 

 This thesis takes a brief look at the modeling of time series data using the 

Univariate Box-Jenkins model, and introduces readers to its three-stage process. We did 

not consider diagnostic checking, which is often involved in practice before the 

forecasting stage to make sure a model is legitimate and optimal. Also, our discussion on 

UBJ model is limited to only stationary data set. More processes will be needed if the 

data set is non-stationary, like differencing. Further work could include comparing 

different methods of estimation. Bayesian methods are of particular interest.  
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