
ABSTRACT 

Extremal Conditions in Early Universe Cosmology 

Jeffrey S. Lee, Ph.D. 

Mentor: Gerald B. Cleaver, Ph.D. 

Some aspects of Special Relativity have remained largely unresolved and 

unexplored even after more than a century since its formulation; this is particularly true in 

the case of relativistic thermodynamics. Attempts to derive a relativistic temperature 

transformation have met with limited success, particularly when trying to transform a 

scalar temperature. Much more credible results have emerged when the inverse 

temperature (a van-Kampen Israel future-directed timelike 4-vector) was invoked. In this 

dissertation, the first self-consistent formulations of the relativistic Wien’s Displacement 

Law and the relativistic Stefan-Boltzmann Law are presented. Also examined is the use 

of occupation number and the inverse temperature 4-vector to justify temperature 

inflation of the Cosmic Microwave Background for any relativistic observer. The 

interaction of the Hawking spectrum of a 1 attometer (10-18 m) primordial black hole with 

an incoming composite particle reveals that when a primordial black hole reaches the 

Planck scale, its absorptivity and emissivity cause it to effectively become a white hole 

for the final instant of its existence.  
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CHAPTER ONE  

 

Introduction 

 

 

The Special Theory of Relativity has fascinated physicists since its 1905 

elucidation in Einstein’s seminal paper On the Electrodynamics of Moving Bodies [1]. It 

firmly established the speed of light as “nature’s speed limit” and dispatched Lord 

Kelvin’s certitude that “one thing we are sure of, and that is the reality and substantiality 

of the luminiferous ether.” [2] Special Relativity (SR) quickly provided, in a cogent 

framework, a consistent and seemingly irrefutable description of numerous physical 

quantities (e.g., distance, velocity, momentum, kinetic energy, etc.) under relativistic 

conditions. A Lorentz covariant 4-vector in frame X  is related to its equivalent in frame 

X   by  ( )X B v X = , where the boost matrix ( )B v  given by 

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

2 2 2

2

2 2 2

2

2 2 2

1 1 1 1

1 1 1 1

1 1 1 1

yx z

x yx x x z

y y x y y z

z yz xz z

vv v

c c c

v vv v v v

c v v v
B v

v v v v v v

c v v v

v vv vv v

c v v v

   

   

   

   

 
− − − 

 
 
− + − − − 
 =
 
− − + − − 
 
 
− − − + − 
 

. (1.1) 

 

Also, ( )
1

2 2 2 2
x y zv v v v= + +  is the velocity magnitude, and ( )

1
2 21 v

−

= −  is the Lorentz 

factor. For a Lorentz boost in the x direction, the ( )X B v X =  transformation can be 

written as 



2 

 

( )

vx
t t

c

x x vt

y y

z z





 
 = − 

 

 = −

 =

 =

. (1.2) 

 

In the limit that the velocity of the observer with respect to the source (and vice 

versa) approached zero, this framework was shown to reproduce flawlessly the accepted 

and long-established Galilean transformation equations. Thus, for 0v  , 1  , and eq. 

(1.2) reduces to 

t t

x x vt

y y

z z

 =

 = −

 =

 =

. (1.2) 

 

Even after Einstein’s 1915 publication of the General Theory of Relativity, SR 

appeared to be largely complete, so long as both the observer and source remained in 

Minkowski spacetime. The emergence of a Poincaré covariant formulation of quantum 

mechanics (relativistic quantum mechanics) continues to be a highly successful 

description of “nature at high speed” at the atomic and subatomic levels. 

However, to this day, there have remained unresolved issues in SR. For instance, 

a gedanken experiment in which a relativistic object’s length-contracted dimension 

reaches its Schwarzschild radius had not been performed. In chapter 2, such a scenario is 

described in which the observed object would become a “black star” with a postulated 

emissivity of truly unity. Additional increases in speed would further decrease the 

observed linear dimension of the object, and the observed density would correspondingly 



3 

 

increase. This would continue until the observed length was the Planck length 
3

G

c

 
  
 

 

and the observed density was the Planck density 
5

2

c

G

 
 
 

, where c is the speed of light, G 

is Newton’s Gravitation Constant, and  is the reduced Planck’s constant. At speeds that 

would supposedly produce shorter lengths and greater densities than these, the Trans-

Planckian Problem (TPP) is encountered. 

 

1.1       A Comment about the Trans-Planckian Problem in SR 

 

Clearly, an observer approaching a real (albeit hypothetical) spherical object at a 

finite subluminal speed greater than that which is required to observe the Planck density 

(given by eq. (2.13)) should, in classical terms, produce an observed density greater than 

the Planck density. However, since such a density is thought not to exist physically, an 

apparent dichotomy – the Trans-Planckian Problem in SR – results.  

In 1927, Robert Lévi postulated the existence of the chronon, the hypothetical 

time taken by a photon to twice cross the classical electron radius (~ 10-24 s) [3]. In 

Quantum Field Theory (QFT), it is conjectured that SR and Quantum Mechanics will 

unify within the chronon. 

 Furthermore, String Theory has demonstrated the irresolvability of particle 

structures of arbitrarily small but finite size [4], [5], [6], [7]. Consequently, cut-off 

regularization became one methodology by which singularities in fundamental theories 

can be avoided. Issues in SR (SR), specifically with Lorentz invariance, emerge because 

the cut-off is not frame independent.  
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However, it has been long argued that regardless of its frame dependence, the cut-off 

must be equal to the fundamental unit of spacetime (i.e., Planck length, Planck time, etc.) 

[8].  

 

1.1.1 A Statement of TPP in SR 

 

One possible statement that avoids the Trans-Planckian Problem in SR is: for an 

observable Q, 

 
P Po PQ L Q Q     = +  (1.4) 

 

where  oL Q  is the Lorentz transformation applied to the observable Q in its rest frame, 

PQ  is the Planck value of the observable Q, 
1   for 

0  otherwiseP

P

 

 
 


= 


, 
1   for 

0  otherwiseP

P

 

 
 


= 


, 
2

1

1 v
 =

−
  is the Lorentz factor, and v is the normalized (to the speed of light) speed. 

However, eq. (1.4) could be interpreted as being “self-servingly circular” because 

it defaults to SR up to the Planck scale, and it defaults to the Planck value of the 

observable for velocities which would try to “force” the value of the observable beyond 

the Planck scale. Nonetheless, although an underlying physical justification appears to be 

missing from eq. (1.4), it should arguably describe the sub-Planck and super-Planck 

results for the transformation of an observable if the Planck scale is to be preserved as the 

fundamental scale of spacetime. 
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1.1.2 Doubly SR 

 

One proposed solution to the Trans-Planckian Problem in SR is the Theory of 

Doubly SR (DSR) which has two postulates [9]: 

1. The principle of relativity holds, and there is an equivalence of all observers.  

 

2. There exist two observer-independent scales: 

 

i. The speed of light (c). 

 

ii. An (invariant) energy scale (E). 

 

Smolin and Magueijo [10] have proposed a nonlinear Lorentz transformation 

( ),E p  with respect to the invariant length . By introducing geometric rotations which 

are linearly dependent on the scale of the linear dimension [11],  two parametrizing 

functions, f  and g , produce nonlinear Lorentz transformations. Expectedly, Lorentz 

transformations are recovered when 1lE  and 
2 2 1l p . As such, f  and g  are given 

by [12], 

( )2 21
1

2

E Ef p e e
E

− = + −
 

, (1.5) 

g E= . (1.6) 

 

 

For a tardyon (subluminal particle) [13], [14],  

 

( )2 21 E E m mp e e e e− −− + = + , (1.7) 

where m is the particle mass. 
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Also, solving eq. (1.7) for Ee  and writing in terms of the hyperbolic cosine 

function gives 

( ) ( ) ( )2 2 2

2 2

cosh cosh 1

1

E
m m p

e
p

+ − −
=

−
. (1.8) 

Eq. (1.8) produces a momentum upper bound of 2

max 2

1
p   [12]. It is now 

arguable that momentum can assume an arbitrary value which is restricted by a finite 

length. The discrete structure of spacetime at the Planck scale places an upper bound on 

the value of a particle’s momentum.  

For tardyons (subluminal particles), it is then possible to form a generalized 

uncertainty principle for generalized position and momentum operators which is given by 

[10], 

( )

2

,
cosh

i jE

i j ij

p p
X P i e

m
−

 
  = +    

 
. (1.9) 

 

Clearly, 
( )

2

lim
cosh

i jE

ij
m

p p
i e

m
−

→

  
+   

   

 demonstrates that a transition from a 

quantum phase space to a classical phase space must occur. This occurs because 

( )

2

0
cosh

i jp p

m
→  as m → , and 0Ee− →  due to E →  as m → . 

The discussion above is for tardyons. For luxons (luminal particles), a similar 

strategy applies for eq. (1.8) becomes  

1

1

Ee
p

=
−

 (1.10) 
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because the hyperbolic cosine terms are equal to 1 for massless particles. Additionally, 

eq. (1.9) becomes the generalized uncertainty principle for massless particles given by  

 

( )( )2, 1i j ij i jX P i p p p  = − +  . (1.11) 

 

 

1.2       Contentions on the Relativistic Transformation of Temperature 

 

Perhaps most elusive among the unresolved relativistic descriptions is a 

relativistic transformation of temperature. 

Contentions have emerged supporting three published transformations under the 

Lorentz group: Temperature Deflation [15], [16]; Temperature Inflation [17], [18], [19], 

and Temperature Invariance [20], [21], [22], [23]. Temperature inflation and deflation 

can be specified operationally by means of a relativistic Carnot cycle [24], [25], [26]. 

A universal approach for determining the Lorentz transformations of heat and 

temperature considers a bounded volume Vo of an ideal fluid moving relativistically with 

respect to the laboratory frame [27], [28]. The clear phenomenological advantage of this 

approach is that pressure p  is a Lorentz invariant, and the work done by the fluid is 

simply 
0pV .  

The confusion that arises regarding temperature in relativistic thermodynamics 

can be clarified by elucidating the respective differences between empirical and absolute 

temperatures. The empirical temperature is a frame-independent, relativistic scalar that 

depicts (for instance) the CMB rest frame and the moving frame as being in thermal 

equilibrium [29]. It follows from the Zeroth Law of Thermodynamics and can be related 
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to the absolute temperature in the rest frame of a thermodynamic system. The Zeroth Law 

holds without invoking any thermodynamic property (including energy and entropy) [30]. 

The absolute temperature of a thermodynamic system follows from the Second 

Law of Thermodynamics and is defined as the product of the Lorentz factor and the 

absolute temperature in the rest frame (eq. (1.9)). Although potentially perceptible in 

non-relativistic thermodynamics, the difference between empirical and absolute 

temperatures becomes cogently elucidated in relativistic thermodynamics.  

Unique insights into the problem of the Lorentz transformations of heat and 

temperature are offered by two alternative approaches. The solid angular number density 

of photons, as described by a Planck distribution, defines a directional temperature. 

However, it arises from purely mathematical manipulations, and therefore, its 

thermodynamic relevance is questionable.  

Chapters three to five discuss previously undescribed relativistic phenomena by 

means of the inverse temperature. A van-Kampen Israel future-directed timelike 4-vector, 

inverse temperature   is defined as 
0

v

T



 =  , where v  is the 4-velocity, and 0T  is the 

temperature in the rest frame. Such an approach retains the thermodynamic relevance of 

the empirical and absolute temperatures, and at the same time, the necessary angular 

distribution description (as described by the thermodynamically questionable directional 

temperature) is preserved. Illumination of this idea is most easily provided with a simple 

example.  
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Consider an observer relativistically approaching an isotropically radiating heat 

source.  

0T T=  (1.12) 

 

where T is the temperature of the source in the observer’s frame, T0 is the temperature of 

the source in the rest frame, 
2

1

1 v
 =

−
, and v is the normalized speed expressed in units 

of the speed of light, is very likely an incorrect relativistic transformation of temperature 

because even though the source is an isotropic radiator, the direction of the observer’s 

approach is a parameter for which the transformation of temperature must account. 

Furthermore, a simple Doppler shift of the incident-upon-the-observer photons applied to 

the rest frame temperature does not provide an adequate relativistic transformation of 

temperature because it clearly lacks a thermodynamic relevance.  

 

1.2.1 Other Attempts at Defining a Relativistic Blackbody Spectrum 

 

In a 1995 gedanken experiment, Costa and Matsas [31] used an Unruh-DeWitt 

detector to obtain the distribution of photons (of angular frequency  ) in a relativistic 

inertial frame (given by eq. (1.13)). 

( )
2

00

0

1
1 exp

11
ln

4 1
1 exp

1

v

T vT v
n

v v

T v




 

  +
− −  

−−   =
  −
 − − 
 +  

 (1.13) 
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Eq. (1.13) is not a Planck distribution1, and this caused Landsberg and Matsas [32], [33] 

to suggest that a relativistic transformation of temperature is not possible. A more precise 

statement would be that a relativistic transformation of a Lorentz-invariant scalar 

temperature is not possible. However, when inverse temperature is considered as a van 

Kampen-Israel future-directed timelike 4-vector, a meaningful relativistic transformation 

of temperature is possible.  

In 1992, Aldrovandi and Gariel attempted a relativistic temperature 

transformation by considering the thermodynamically questionable directional 

temperature. However, they preferred to “avoid an ‘inside’ thermodynamical discussion” 

[34]. They do contend that an object moving in a heat bath (e.g., the Cosmic Microwave 

Background (CMB)) will experience temperature inflation. However, this is not entirely 

correct. The forward and rearward surfaces of an object moving through an isotropic 

photon field will experience temperature inflation and temperature deflation, 

respectively. If these surfaces are not thermally isolated from each other, an induced 

Carnot cycle becomes possible, as discussed in chapter 5.3.4.  

 

1.3       Black Holes (BHs) 

 

In 1916, Karl Schwarzschild established the first metric for a region of spacetime 

containing a point of infinite curvature [35]. The Schwarzschild metric (in spherical 

coordinates), given by  

22222
2

22 sin
1

1

1
1  drdr

r

dr
dt

r
ds −−









−

−







−= , 

(1.14) 

 
1 It is noteworthy that distribution functions change shape when expressed in terms of only energy. 
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provides a purely classical description of a spherically symmetric, non-rotating, 

electrically neutral spacetime expanse; the concept of a black hole had been born. 

In 1974, the first theoretical demonstration that black holes are not truly black 

(i.e., objects whose emissivity ~ 1, but not equal to 1) was set forth by Stephen Hawking 

[36]. Stellar mass and supermassive black holes were shown to produce entirely photonic 

Hawking radiation, and their lifetimes were approximately the ratio of the initial mass 

energy to the rate of photon emission from a blackbody spectrum2.  

So long as the black hole’s curvature remains sufficiently small that the Hawking 

radiation is entirely describable by a blackbody spectrum, the above-mentioned lifetime 

calculation is valid. However, toward the end of the black hole’s lifetime, as its curvature 

increases, Hawking radiation is no longer wholly photonic. Supersymmetric models 

become important because not only is particle production occurring in the Quantum 

Electrodynamics (QED) vacuum, but it is also occurring in the Quantum 

Chromodynamics (QCD) vacuum and energies beyond.  

1.3.1 Primordial Black Holes 

Although Schwarzschild demonstrated that a sufficient mass density would create 

a horizon and become self-trapped, the Einstein Field Equations do not require that the 

necessary energy density result from the gravitational compaction of mass (such as in the 

case of stellar mass and supermassive black holes). In 1966, Zel'dovich and Novikov 

2 Although simplistic, this approximation is valid for stellar (and greater) mass black holes 

because for most of the black hole’s lifetime, the rate of emission is approximately constant, and higher 

energy particle production can be neglected. This assumption becomes invalid for Primordial Black Holes. 
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proposed that during the radiation dominated era in Big Bang cosmology, primordial 

black holes (PBHs) could have formed due to the required density fluctuations in the 

early universe [37]. Since PBHs would not have been formed by gravitational collapse, 

they are expected to have masses significantly smaller than one solar mass. Harada, Yoo, 

and Khori demonstrated the required minimum energy density fluctuation for PBH 

formation to be given by [38] 

~ 0.1



, (1.15) 

 

where   is the energy density of the universe, and   is the local energy density 

fluctuation. 

Kashlinsky postulated that if the abundance of PBHs is comparable to that of dark 

matter, PBHs may be responsible for unresolved gamma ray emissions and background 

x-ray radiation [39]. However, this appears to be highly unlikely in light of a 2019 study 

which ruled out Stephen Hawking’s speculation that dark matter is primarily PBHs 

smaller than 10-4 m (7 × 1022 kg) [40]. Even more speculative is Scholtz’s and Unwin’s 

2019 contention that 5-15 M⊕ 3 PBHs may lurk in the Kuiper Belt and are responsible for 

the orbital anomalies suggesting a 9th planet in the Solar System [41].   

The extreme curvature of a PBH suggested a Hawking radiation spectrum that is 

not purely photonic. This led MacGibbon and Webber, in 1990 and 1991, to perform the 

first calculations of the instantaneous and lifetime spectra, respectively, of PBHs [42], 

 
3 This is one Earth mass. 
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[43]. For attometer (10-18 m) PBHs, three established particle species emerge from the 

QED vacuum ( ),e   and four from the QCD vacuum ( ), , ,p p   .

The particle energy and flux of each species are dependent on the mass of the PBH and 

are discussed in chapter seven. Elucidation of the details of the likely conjecture of an 8th 

particle species, spin-2 G, will probably need to await a more complete theory of 

quantum gravity. 

It is a reasonable supposition that PBHs are a far-future evaporation state of 

stellar mass4 and supermassive5 black holes far beyond the end of the Stelliferous era6. 

1.3.2 White Holes (WHs) 

Conjectured in 1964 by Novikov [44] as entirely hypothetical postulates, white 

holes are the consequences of the maximally extended Schwarzschild solution. White 

hole geometry is well-described using the Kruskal–Szekeres timelike coordinate ( )T  and

spacelike coordinate ( )X . The transformation between Kruskal–Szekeres coordinates

( ),T X and Schwarzschild coordinates ( ), , ,t r   is given by

1

2

1 exp sinh
2 4 4

r r t
T

GM GM GM

     
= −     
     

and 

(1.16) 

4 The evaporation time for a stellar mass black hole is approximately 2 × 1067 years. 

5 The evaporation time for the TON 618 supermassive black hole (~6.6 ×1010 M⊕) is 

approximately 6 × 1099 years. 

6 This current era in Big Bang cosmology will end approximately 1014 years after the Big Bang. 
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1

2

1 exp cosh
2 4 4

r r t
X

GM GM GM

     
= −     
     

 (1.17) 

  

for the region exterior to the event horizon ( )2r GM , and  

1

2

1 exp cosh
2 4 4

r r t
T

GM GM GM

     
= −     
     

 

and 

(1.18) 

1

2

1 exp sinh
2 4 4

r r t
X

GM GM GM

     
= −     
     

 (1.19) 

 

for the region interior to the event horizon ( )0 2r GM  . 

In the maximally extended solution that arises from the transformation between 

Schwarzschild coordinates and Kruskal–Szekeres coordinates, there exist two 

singularities for T  at 0r = . Diagrammatically, this is depicted in Figure 1.1 and Table 

1.1. 

 

 
 

Figure 1.1: A Kruskal–Szekeres diagram for 2 1GM = . The dotted lines represent the event horizons. The 

dark hyperbolas in regions II and IV are the singularities. The lighter hyperbolas represent the 

Schwarzschild r-coordinate contours, and the lighter solid straight lines through the origin represent the 

Schwarzschild t-coordinate contours [45].  



15 

 

Table 1.1: Region descriptions of the Kruskal–Szekeres diagram in Figure 1.1 in both Kruskal–Szekeres 

and Schwarzschild coordinates [45]. 

Region Number Region Description 
Kruskal–Szekeres 

Coordinates 

Schwarzschild 

Coordinates 

I Exterior X T X−  +  2GM r  

II Interior Black Hole 21X T X  +  0 2r GM   

III Parallel Exterior X T X+  −  2GM r  

IV Interior White Hole 21 X T X− +   −  0 2r GM   

 

In contrast to black holes whose absorptivity has reached a limit of one and whose 

emissivity is zero, correspondingly, white holes have an absorptivity of zero and an 

emissivity of one. As such, no matter or energy is capable of entering a white hole.  

When a black hole is near its final stages of evaporation, its Schwarzschild radius 

decreases, and the Hawking radiation flux and particle energy increase resulting in a 

progressively opaquer and radially expanding particle shower. Any external particles on 

inward trajectories toward the eventually-quantum-scale black hole’s (or quantum-scale 

PBH’s) event horizon would interact with the emitted Hawking radiation, and 

consequently it would be prevented from entering the BH (or PBH).  

Chapter seven discusses this particle interaction in detail and demonstrates that at 

the instant an evaporating PBH reaches the Planck scale, the probability of particle 

absorption by the PBH is zero, and for that last instant of the PBH’s existence, in terms of 

its absorptivity and emissivity, it momentarily mimics a white hole. 
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CHAPTER TWO  

 

Apparent Ultra-Relativistic Energy Density Inflation of Astrophysical Bodies into 

Apparent Black Stars  

 

This chapter published as: J. S. Lee and G. B. Cleaver, "Apparent Ultra-Relativistic 

Energy Density Inflation of Astrophysical Bodies into Apparent Black Stars," Journal of 

Applied Physical Science International, vol. 9, no. 2, pp. 51-53, 2017. 

 

 

2.1       Introduction 

 

From SR, all objects of non-zero mass approaching or receding from an observer 

with a relative velocity of magnitude β will appear to the observer to have both a mass 

inflated by the Lorentz factor 
21

1




−
= , and a length contracted along the direction of 

relative motion by this same factor g . Although there has been historical contention in 

the literature about length dilation [46], [47], [48], and the Principle of Photographability 

[49], standard length contraction of receding objects, and not length dilation, is expected 

to occur. Therefore, 


oV
V = , and receding and approaching objects are indistinguishable 

in terms of their densities. 

Thus, an object that is spherical in its rest frame with radius oR and is 

relativistically approaching toward, or receding from, an observer will appear as an oblate 

spheroid with motion along the polar axis and a volume given by 


 3

02

3

4

3

4 R
baV == , 

where a = oR  is the major axis, and 


oR
b = is the minor axis. Thus, in an inertial frame 

moving with regard to the rest frame, the observer in the rest frame would measure the 
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volume of the oblate spheroid to be 


oV
V = . Also, from SR, the relativistic mass 

becomes oMM = . Therefore, the mass density   of an object in terms of its rest frame 

mass density o  appears to the observer as: 

2

0  =  (2.1) 

 

The corresponding energy density of the moving object,
E , appears to the observer as 

E 2 2

0c  =  (2.2) 

 

In order to avoid considering spacetime curvature, which would invalidate SR, 

black stars, rather than black holes, will be considered. Recall that the Schwarzschild 

radius of a black star in its rest frame is 

2

2

c

GM
RS = . (2.3) 

The rest frame mass density BH  and the rest frame energy density rBH

E = rBHc
2
 of a 

Schwarzschild black star are thus given respectively by 

2

2

BH
8

3

So

o

GR

c

V

M


 ==  (2.4) 

and 

2

4
E

BH
8

3

SGR

c


 = , (2.5) 

 

where Mo is the rest frame mass of the object, Vo is the rest frame volume of the object, c 

is the speed of light, and G is Newton’s gravitation constant. 
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2.2       Apparent Black Star Perception 

 

If the Lorentz factor is sufficient, then an object’s mass density, as measured by 

the inertial observer at rest, will appear to approach the density of a black star of mass 

Mo. From eq. (2.1), the critical velocity at which the relativistic mass density equals the 

Schwarzschild black star density is 

o


 BH2

BH = . (2.6) 

From eqs. (2.4) and (2.6),1 

oS GR

c




8

3
BH = . (2.7) 

 

For example, in the case of the 5.98×1024 kg, 6.38×106 m radius Earth with a 

corresponding Schwarzschild radius of 8.86 mm, the minimum Lorentz factor at which it 

would “appear” to be a black star is ~1.93×1013. This corresponds to a speed of 

271034.11 −−= . In terms of the rest mass and rest frame radius of the object, eq. (2.7) 

becomes 

2

3

3

BH 









=

o

o

GM

R
c . (2.8) 

If the object is to appear to the observer to contract in length in the direction of 

motion to an arbitrary width oRR * , then eq. (2.8) becomes 

o

o

GM

R

R

c

2

3

*

= . (2.9) 

 
1 As noted above, a moving spherical object would appear as an oblate spheroid as observed by an 

inertial observer. The increasing relativistic density in eq. (2.6) results from this increasing oblateness. 
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Also consider the Planck density, P , which is given by 

2

5

G

c
P 
= , (2.10) 

 

where   is the reduced Planck’s constant. From quantum mechanics, this is likely the 

maximum rest frame density possible. In the case of P  , the trans-Planckian problem 

emerges [50]. One proposed solution is a scenario whereby black holes are actually black 

stars, in which vibrations can result in the emission of a Hawking radiation spectrum. 

Also, the bosonic nature of photons does not require photon conservation in curved 

spacetime. In this case, the maximum mode frequencies never achieve trans-Planckian 

values, and the density never exceeds the Planck density, even for P  . 

The associated Lorentz factor P , giving an object an apparent Planck density, 

results from combining eqs. (2.1) and (2.10), giving 

o

o
P

M

Rc

G 3

2 35
 = . (2.11) 

 

When eq. (2.11) is applied to the Earth, 
461007.3 =P  which corresponds to a speed of 

941030.51 −−= . 

Note that a black star in its rest frame is an actual black star in every frame, 

although the Hawking spectra will differ. Furthermore, the extreme values of the Lorentz 

factor required for an inertial observer to perceive astrophysical bodies as apparent black 

stars ensure, at the observer’s location in spacetime, a prodigious relativistic energy 

density, given by 
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V

Mc 2
E 

 = . (2.12) 

 

Interestingly, equating eqs. (2.5) and (2.12) gives the minimum Lorentz factor of 

g =
3c6V

32pG3Mo

3
, (2.13) 

 

for which an inertial object would be expected by the observer at rest to form a horizon 

and become self-trapped as a black star based on its perceived relativistic mass density 

interpreted instead as its rest mass density. In the literature on the relativistic collision of 

particles, and the possible formation of small black stars in accelerators, a different 

definition is often used. Specifically, the Schwarzschild radius belonging to the 

relativistic mass (not the rest mass) should exceed the transverse size of the body. See, 

for example, [51]. 

Defining 
V


  , eq. (2.13) becomes: 

33

6

32

3

oMG

c


 =  (2.14) 

 

 

2.3       Summary 

 

Interestingly, it has been shown that at extremely high relativistic velocities close 

to c, with regard to an observer in an inertial frame, a massive object can appear to 

become a black star, based on its relativistic mass density. It is significant that the rest 

frame observer only perceives that such an object should apparently form a black star 

based on its relativistic mass density. In reality, the massive object does not form a black 
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star. What determines if a distribution of mass is a black star or not is whether or not it 

creates an event horizon as predicted by the Einstein field equations. Whether or not it 

does, depends on the existence of an asymptotic region, and whether the gravity of the 

object would allow the light to escape to that region or not. However, it is independent of 

whatever inertial observer–even arbitrarily fast moving in the rest frame of the massive 

object–describes it. For example, the distribution of mass of the Earth does not create any 

horizon, no matter who describes it. 

In other words, if an object’s density exceeds that of a black star with the same 

mass, then that object would create a horizon, and would itself be a black star, as 

perceived by an external observer. However, this result is valid only when the quantities 

are taken in the rest frame of the object. Although the mass density may predict the 

existence of a horizon in other inertial frames, if not truly a black star in the rest frame, 

then not truly a black star in any frame. 
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CHAPTER THREE  

1. 

 

The Relativistic Blackbody Spectrum in Inertial and Non-Inertial Reference Frames 

 

This chapter published as: J.S. Lee and G. B. Cleaver, “The Relativistic Blackbody 

Spectrum in Inertial and Non-Inertial Reference Frames”, New Astronomy, Volume 52, 9 

October 2016. arXiv:1507.06663 

 

 

3.1 Introduction 

 

The semi-empirical derivation and applications of the blackbody spectrum for 

exclusively stationary radiation sources have been well-established and are in many 

physics textbooks. However, significant progress in fully establishing the relativistic 

blackbody spectrum has been stymied, at least to some extent, by unresolved issues in 

relativistic thermodynamics.  

This chapter makes use of the inverse temperature 4-vector to derive the 

Relativistic Planck’s Law, the Relativistic Wien’s Displacement Law, and the Relativistic 

Stefan-Boltzmann Law in inertial reference frames. In order to correctly describe the 

relativistic blackbody spectrum, relativistic beaming and Doppler shifting, in addition to 

relativistic temperature transformation, must be considered. Additionally, the non-

inertial reference frame case is established with the azimuthally constant 4-acceleration 

and, when necessary, the proper time derivative of the spectral radiance, the wavelength 

of maximum irradiance, and the radiation irradiance. Also, non-trivial solutions are 

sought for equal spectral radiances, equal wavelengths of maximum irradiance, and equal 

irradiances of the relativistic and radiation frame blackbody spectra. 
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3.2 The Application of Inverse Temperature to the Blackbody Spectrum 

 

Although attempts have been made to develop the Relativistic Blackbody 

Spectrum [52], [53], [54], these endeavors have been unsuccessful due, at least in part, to 

unresolved issues in relativistic thermodynamics [55], [15], [16], [56], [57], [58], [59]. 

Disputes have arisen supporting three published Lorentz group transformations: 

Temperature Deflation [15], [16], and Temperature Inflation [17], [18], [19] (which can 

be operationally quantified with a relativistic Carnot cycle [24], [25], [26]); and 

Temperature Invariance [20], [21], [22], [60]. 

Significant misperceptions have arisen concerning temperature in relativistic 

thermodynamics due in part to the confusion surrounding the respective differences 

between empirical and absolute temperatures. The empirical temperature is a Lorentz 

invariant, relativistic scalar that considers the radiation rest frame and the observer frame 

to be in thermal equilibrium [29]. This ensues from the Zeroth Law of Thermodynamics, 

and correlates directly to the absolute temperature in the radiation (source) frame. The 

Zeroth Law’s validity is required without making use of any thermodynamic property 

(including entropy and energy) [30].  

The absolute temperature of a thermodynamic system is a consequence of the 

Second Law of Thermodynamics. It is the product of the Lorentz factor and the absolute 

temperature in the radiation frame, and it contains no angular dependence. Even though 

the difference between empirical and absolute temperatures may be observable in non-

relativistic thermodynamics, it becomes persuasively illuminated in relativistic 

thermodynamics. 
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The Planck distribution describes a solid angular photon number density, and it 

defines a directional (or effective) temperature. However, this results from solely 

mathematical manipulations, and its thermodynamic relevance is, at best, questionable. 

Alternatively, temperature transformations can be accomplished by treating inverse 

temperature as a van Kampen-Israel future-directed timelike 4-vector [53], [61]. 

Although Przanowski and Tosiek [27]2 have demonstrated temperature inflation without 

making use of inverse temperature, angular dependence is required for the relativistic 

blackbody spectrum. 

 

3.3 Derivation of the Relativistic Spectral Radiance  

 

The relativistic blackbody spectrum can be obtained by considering the blackbody 

spectrum of a stationary radiation source and including temperature inflation (in terms of 

inverse temperature), Doppler shifting, and relativistic beaming. The inertial and non-

inertial frames cases are each examined. In the non-inertial case, the Unruh Effect is not 

considered because it is many orders of magnitude smaller than the effect presented here. 

 

3.3.1 Inertial Frames 

 

The radiation (source) frame photon energy density ε in frequency and 

wavelength spaces of a Planckian distribution are [62]: 

 






 d

Tk

h

c

h

d

oB

1exp
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3
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
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


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
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



=  (3.1) 

and 

 
2 By using a superfluidity gedanken experiment. 
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=  (3.2) 

 

where h is Planck’s constant, c is the speed of light, kB is Boltzmann’s constant, To is the 

rest frame absolute temperature, ν is the frequency, and λ is the wavelength. 

Relativistically, the reciprocal of absolute temperature is replaced by the inverse 

temperature 4-vector3: 

cost z

o

u

T
   = = − , (3.3) 

 

where 
oT  is the proper temperature (in the radiation frame), u  is the relative 4-velocity 

between the radiation and the observer,   is the van Kampen-Israel inverse temperature 

4-vector, and 
c

u
V =  (fraction of light speed). | | denotes magnitude of the vector quantity. 

  is the planar angle between the observer’s motion and the source. If the observer if 

moving through a photonic gas, then   is the planar angle between the observer’s motion 

and the direction of observation. 

The t and z components of the inverse temperature 4-vector can be determined 

from the number density of photons ( ),n    arriving through the solid angle Ω and with 

angular frequency ω which is given by [63], [64], [65] 

 
3 In this paper, the case of the azimuthally constant inverse temperature vector is chosen (hence, 

0== yx  ), and consequently, all motion is along the z-axis. 
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The directional (or effective) temperature is given by  

cos1

1 2

eff
V

VT
T o

−

−
= . (3.5) 

 

The momentum of a photon within a photonic gas is determined from its four-

dimensional wave number. If the observer is in motion along the z-axis at velocity V, the 

x and y components of the momentum must be zero. Therefore, the number of photons in 

the ith wave mode is given by [53] 

( )
1

exp 1
i

t i z iz

N
k  

=
− −

, (3.6) 

 

where izk  and i  are the wave number and frequency, respectively, of the ith mode. 

 

By introducing polar coordinates ( ), ,r   , setting 0 =  (the spatial wave 

vector’s direction), assuming a continuous frequency distribution, and considering the 

photon dispersion relation ( )2 2

zk = , the number of photons is given by  

( )
( )

2

2
,

2 exp cos 1t z

n d d d d


  
    

  = 
 − −   

. (3.7) 

 

Comparing (3.4) and (3.7) yields [53] 
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and 
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21 VT

V

o

z

−
= . (3.9) 

 

Although the azimuthally constant 4-vector   is a function of the reciprocal of 

the effective temperature, given by eq. (3.5), it arises directly from thermodynamic 

considerations, whereas the effective temperature is obtained entirely from mathematical 

manipulation. Although effT  is adequate to determine planetary and stellar motion with 

respect to the CMB [63], [64], [65], its thermodynamically non-physical origin leaves it 

unclear whether or not 
effT  represents temperature. Additionally, relativistic beaming and 

Doppler shifting must be considered, and this is accomplished by introducing the Doppler 

factor 




−

+
=

1

1
D . 

Rewriting eqs. (3.1) and (3.2) in terms of inverse temperature yields4 
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and 
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respectively. 

 
4 Primed quantities indicate the observer frame. Derivatives with respect to the proper time are 

denoted with dot notation. 
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where 
21

1

V−
= is the Lorentz factor, D is the Doppler factor, 

'

B  and 
'

B  are 

respectively the frequency and wavelength spectral radiances in the observer’s frame. 

Rewritten in terms of the temperature in the radiation frame, eqs. (3.12) and 

(3.13) become 

 

( )

( )
( )

( )



















−














−

−








−

−








= dd

V

V

Tk

h
V

V
c

h

ddB

B










1

1

cos1
expcos1

1
2

2

1
2o

3

2

3
2

2

3

'
 

(3.14) 
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respectively. The dependency on wavelength of the spectral radiance in wavelength space 

is shown in Figure 3.1. 

 
 

Figure 3.1: Spectral radiance versus wavelength for a 5000 K radiation source in four inertial reference 

frames. θ = 0. 

 

The dependency on speed of the spectral radiance in wavelength space is shown 

in Figure 3.2. 

 
 

Figure 3.2: Spectral radiance versus speed at five angles for a 5000 K blackbody at the wavelength of 

maximum irradiance in the radiation frame (0.5796 μm). The B′-axis intercept is the spectral radiance in the 

radiation frame (12.7 kW∙m-2∙sr-1∙nm-1). 
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The contour lines on the V-θ contour plot (Figure 3.3) of eq. (3.15) reveal that B′ 

increases with increasing V only for first and fourth quadrant angles ( cos 0  ), while it 

decreases for second and third quadrant angles ( cos 0  ). Expectedly, the inertial 

relativistic spectral radiance decreases most appreciably with increasing speed when θ = 

180o. Thus, the 4-vector velocity behavior of relativistic spectral radiance does not 

trivially increase B′ for increasing θ. 

 
 

Figure 3.3: Contour plot of inertial relativistic spectral radiance as a function of speed and angle for a   

5000 K blackbody at the wavelength of maximum irradiance in the rest frame (0.5796 μm). The color 

spectrum gives the approximate values of B′ (kW∙m-2∙sr-1∙nm-1). The contour lines’ intersections with the 

Angle-axis represent the spectral radiance in the rest frame, which is 12.7 kW∙m-2∙sr-1∙nm-1. The region of 

smallest spectral radiance is actually B' ≤ 10-5 kW∙m-2∙sr-1∙nm-1. 

 

Several authors [53], [54], [31] have remarked that the Bose-Einstein distribution 

form of the blackbody spectrum of a stationary radiation source is not relativistically 

invariant. However, eqs. (3.14) and (3.15) clearly reveal that, in terms of the radiation 

frame temperature, the Bose-Einstein distribution for spectral radiance is retained in a 
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relativistic inertial reference frame (as shown in Figure 3.1). Regardless, inverse 

temperature remains a valid thermodynamic quantity [53]. In the non-relativistic limit, 

eq. (3.15) becomes 
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(3.16) 

From eq. (3.15), 1V   clearly disallows any non-zero speed with respect to the 

radiation frame for which 0B = , and also, since cos 1  , there is no subluminal speed 

for which B  is infinite. When 0=V , then 0z = , 1t oT =  (the zeroth component of 

inverse temperature in the radiation frame), and 1= . Therefore, as required, the 

stationary forms of eqs. (3.14) and (3.15) are recovered. This result is, of course, clear 

from eq. (3.16) as well from which the wavelength form (eq. (3.18)) emerges. The 

equivalent frequency form is given by eq. (3.17).  
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The inertial relativistic blackbody spectra for other spaces are summarized in Table 3.1. 
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Table 3.1: Inertial relativistic blackbody spectra in terms of six spectral variables. 
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3.3.1.1.   The Angular Periodicity of the Inertial Relativistic Spectral Radiance.  

Due to cos  in eq. (3.15), the relativistic spectral radiance exhibits an angular 

periodicity with an angular wavelength of 360o. This result is independent of speed 

(Figure 3.4) and temperature when the radiation frame wavelength of maximum 

irradiance is considered (Figure 3.5); this is, of course, reasonable because the 

temperature dependence in the angular term of eq. (3.15) vanishes as a result of Wien’s 

Displacement Law applied in the rest frame, as shown in eq. (3.19). 
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where b ~ 2.8977721×106 nm·K is Wien’s displacement constant. 

 

 

Figure 3.4: Inertial relativistic spectral radiance versus angle for a 5000 K blackbody at the wavelength of 

maximum irradiance in the rest frame (0.5796 μm). The black and orange lines represent V = 0.1 and V = 

0.2, respectively. 
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Figure 3.5: Relativistic spectral radiance versus angle for two blackbodies. The black and orange lines 

represent T0 = 5000 K and T0 = 7000 K, respectively. The wavelengths are for maximum irradiance in the 

rest frame (0.5796 μm for 5000 K and 0.4140 μm for 7000 K). V = 0.1. 

 

The angles at which the maxima occur (0o and 360o) and minima occur (180o) are 

not surprisingly independent of the speed and temperature. 

 

3.3.2 Non-Inertial Frames 

 

The relativistic spectral radiance in a non-inertial reference frame is determined 

with the 4-acceleration a , which is the proper time (τ) derivative (denoted with dot 

notation) of the 4-velocity ( ) ua = . Combining eq. (3.15) and 

( )AV tanh= , (3.20) 

where 
a

A
c

  (the zeroth term of the acceleration 4-vector), the relativistic spectral 

radiance in a non-inertial frame is given by 
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As →A , 0' →B  when 0  . Although this might not be intuitively 

obvious, it too, is sensible because for every 0   approach vector, the observer must 

eventually reach a closest point of approach to the source and begin receding from it 

indefinitely. Also, as →A , →'

B  when 0= . This is reasonable because 

approaching the source directly will expectedly increase the spectral radiance. If the 

observer were to eventually reach the source, 0 180o = → = , and the observer will, at 

that point, recede from the source indefinitely.  

As required, when  0=A , the stationary form of the spectral radiance, eq. 

(3.18), is recovered. A plot of eq. (3.21) is shown in Figure 3.6 and Figure 3.7. 

 

 
Figure 3.6: Non-inertial relativistic spectral radiance versus proper time for a 5000 K blackbody.  A = 10-5 






 =

2
m/s 

3
103a . The lower left region is enlarged in Figure 3.7. 
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Figure 3.7: Non-inertial relativistic spectral radiance versus proper time for a 5000 K blackbody. A = 10-5 






 =

2
m/s 

3
103a . 

 

For constant acceleration (in both magnitude and direction), the functional form 

of eq. (3.12) is unchanged. Hence, the angular dependence of the non-inertial spectral 

radiance is unchanged from the inertial case.  

As →A  for 
o900   or 

oo 360270   (approaching the radiation 

source), the non-inertial relativistic spectral radiance becomes infinite. However, for 

oo 27090   (receding from the radiation source), 0'→B . This angular dependence is 

the same for the inertial relativistic spectral radiance in eq. (3.12). Also, as required, 

when 0=A , the stationary form of the non-inertial relativistic spectral radiance, eq. 

(3.15), is recovered. This behavior was discussed briefly in Section 3.3.1. 

The time rate of change of the relativistic spectral radiance is its proper time 

derivative,  
d

dB
B

'
' , and is non-trivially given by  
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For an observer in a photonic gas who is accelerating due to both a change 

in speed and a change in direction,   becomes a time-dependent angle which, in 

general, is given by d =  . As such,   and   are not independent quantities. 

The oscillatory behavior of the time rate of change of the spectral radiance is 

apparent in Figure 3.8 and Figure 3.9.  

(3.19) 

 

 
Figure 3.8: The rate of change of spectral radiance as a function of proper time for an observer with a 

proper acceleration of 10-5, 
1

 s
9




−
= , and a rest frame temperature of 5,000 K.  
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Figure 3.9: The rate of change of spectral radiance as a function of proper time for an observer with a 

proper acceleration of 10-5, 
1

 s
9




−
= , and a rest frame temperature of 5,000 K. 

 

3.4 The Relativistic Wien’s Displacement Law  

 

The derivation of the Relativistic Wien’s Displacement Law (RWDL) employs 

the same methodology as the stationary case for both the inertial and non-inertial 

reference frames and can be easily derived from the relativistic spectral radiance in 

wavelength space, eq. (3.13). 

 

 RWDL in Inertial Reference Frames 

 

Letting ( )cost z

B

hc
Q

k
  = −  and setting the derivative (with respect to λ) of the 

relativistic spectral radiance in wavelength space, eq. (3.13), equal to zero yields 

05

1exp

exp'

=−

−

















=








Q

Q
Q

d

dB
. (3.23) 

-4.00E+10

-3.00E+10

-2.00E+10

-1.00E+10

0.00E+00

1.00E+10

2.00E+10

3.00E+10

4.00E+10

0 10 20 30 40 50 60 70 80 90 100

(d
B

/d
τ)

' (
k
W

∙m
-2

∙s
r-1

∙n
m

-1
∙s

-1
)

τ (s)



39 

 

This is the familiar transcendental equation that arises in the Wien’s Displacement Law 

derivation for stationary observers. Eq. (3.23) yields ...965224231.4
'

max

=


Q
b , and 

( ) cos'

max zt

Bbk

hc
−= . (3.24) 

 

Rewriting eq. (3.24) in terms of V: 

( )
maxmax

1

2

' cos1
1

 −=−
−

= DV
VTbk

hc

oB

, (3.25) 

 

where 
m ax

  is the wavelength of maximum irradiance in the radiation frame. 

Eqs. (3.24) and (3.25) are the Relativistic Wien’s Displacement Law. In the non-

relativistic limit ( )1V , 

( )2' cos
~

max
VOV

Tbk

hc

Tbk

hc

oBoB

+−


 , (3.26) 

 

where the first term in eq. (3.26) is 
m ax  (the radiation frame Stefan-Boltzmann Law). 

Also, as 1→V , 0'

max
→  when 0= , otherwise →'

max
 . Consequently, when 

the velocity vector and the incident radiation vector are parallel (i.e. the observer is 

approaching the source directly), the frequency of radiation is completely blue shifted. 

Thus, the wavelength of maximum irradiance radiation in the observer frame approaches 

zero, and the frequency becomes infinite. However, for all off-axis observations of a 

moving radiation source, the wavelength becomes infinite and the frequency approaches 

zero because for increasing θ, the redshifted component of the velocity vector dominates 

for increasing V. Since the RWDL is independent of temperature inflation and depends 
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exclusively on Doppler shifting, it obviously exhibits the same behavior as pure Doppler 

shifting. This result is shown in Figure 3.10. 

 

Figure 3.10: Wavelength of maximum irradiance versus speed for a radiation source with a proper 

temperature of 5000 K. The wavelength of maximum irradiance for the source when V = 0 is 0.5796 μm. 

 

The angle which results in the maximum wavelength is expectedly the pure 

redshift case ( )o180=  and occurs from 

0
1

sin

2

'

max =
−

=
V

V

d

d 




, (3.27) 

and thus, 

 

( )
V

V

Tbk

hc

oB −

+
==

1

1
180o'

max
 , (3.28) 

as required. 

 

 RWDL in Non-Inertial Reference Frames 

 

When the Relativistic Wien’s Displacement Law is considered in a non-inertial 

reference frame, eqs. (3.20) and (3.25) are combined to give 
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( ) ( )( ) ( ) ( )( )
max max

' cosh 1 tanh cos cosh 1 tanh cos
B o

hc
A A A A

bk T
       = − = − . (3.29) 

 

The angular dependence of the non-inertial, but constant-direction, RWDL is a 

simple cosine function, and its dependence on constant-direction acceleration and proper 

time is ultimately the same as the velocity dependence in eq. (3.25). 

The time rate of change of the wavelength of maximum irradiance with a constant 

acceleration magnitude and a constant time rate of change of direction is 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 



  sinsinhcoscoshcostanh1sinh

d

'

' max

max
AAAAAA

Tbk

hcd

oB

++−= . (3.30) 

 

Clearly, if both the speed and direction components of the acceleration 4-vector 

are zero, then 0'

max
= . Plots of eq. (3.30) are shown in Figure 3.11, Figure 3.12, and 

Figure 3.13. 

 

 

Figure 3.11: Time rate of change of wavelength of maximum irradiance versus proper time using an 

iterative scheme of 10,000 timesteps (dτ = 1s). To = 5000 K, 
510−=A , 

1-
s

9
=


 . 
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Figure 3.12: Time rate of change of wavelength of maximum irradiance versus proper time using an 

iterative scheme of 10,000 timesteps (dτ = 0.1s). To = 5000 K, 
510−=A , 

1-
s

9
=


 . (See the discussion 

regarding the apparent jaggedness for τ.) 

 

 
Figure 3.13: Time rate of change of wavelength of maximum irradiance versus proper time using an 

iterative scheme of 10,000 time steps (dτ = 0.01s). To = 5000 K, 
510−=A , 

1-
s

9
=


 . 

 

The non-trivial periodicity of 
'

max
  produces a function with an average period, in 

the above-mentioned example, of 0.06 s. The numeric noise, which is evident at a 

resolution of 0.1 s, is largely smoothed out at a resolution of 0.01 s. 
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3.5 The Relativistic Stefan-Boltzmann Law  

 

Attempts to derive the Relativistic Stefan-Boltzmann Law have not relied on 

inverse temperature. Veitsman [54] did not rely on the invocation of the inverse 

temperature 4-vector and asserts the necessity of accounting for the tensor character of 

temperature. However, his specific solution for θ = 0 and his general solution for all θ do 

not agree, and numeric differences due to renormalization from using different coordinate 

systems is not, in contrast to his claim, a viable explanation for this discrepancy.  

 

3.5.1 Inertial Reference Frames 

 

The derivation of the Relativistic Stefan-Boltzmann Law can be accomplished by 

considering the power ( )P , the area ( )A , and the irradiance ( )S  in frequency space, in 

a matter analogous to the derivation of the stationary Stefan-Boltzmann Law. 

 

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'' ''
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S  (3.31) 

 

From eqs. (3.12) and (3.31)5, 
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5 The integral over ϕ is independent of V because the motion is azimuthally constant. The cosθsinθ 

product arises from Lambert’s Cosine Law (cosθ) and the solid angle integration (sinθ). 
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By setting ( )  ( )  
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letting cost zR   = − , and setting 
B

h
x R

k
= , eq. (3.32) becomes 
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The integral over x yields ( )
15

4
4

 = , where   is the Riemann zeta function.  

Thus, 
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which becomes 
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From eqs. (3.12) and (3.35), and expanding eq. (3.36), 
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 Eq. (3.37) is the inertial Relativistic Stefan-Boltzmann Law, which can also be 

rewritten in terms of the rest frame irradiance, S. 
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In the non-relativistic limit, 
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where the first term in eq. (3.39) is expectedly the radiation-frame Stefan-Boltzmann 

Law. Also, in eq. (3.37), when 1→V , relativistic beaming and temperature inflation 

cause S→ , also as expected. Illustrated in Figure 3.14 is the irradiance of an inertial 

relativistic radiation source. 

 

 

Figure 3.14: The inertial Relativistic Stefan-Boltzmann Law showing irradiance versus speed for a 

relativistic radiation source at three different temperatures. The S'-axis intercepts represent the irradiances 

in the radiation frame (90.3 W/m2 for 200 K, 5.64×105 W/m2 for 1000 K, 3.53×107 W/m2 for 5000 K). 
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3.5.2 Non-Inertial Reference Frames 

 

When the proper acceleration (with constant direction) is considered, eq. (3.40) 

results from eqs. (3.20) and (3.37), and it is plotted in Figure 3.15. 
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As expected, when 0=A , S S = , and when →A , S→ . 

 

 

Figure 3.15: The inertial Relativistic Stefan-Boltzmann Law showing irradiance versus time for a non-

inertial relativistic radiation source at three different temperatures. The S'-axis intercepts represent the 

irradiances in the radiation frame. 510−=A . 

 

The time rate of change of the Relativistic Stefan-Boltzmann Law requires the 

proper time derivative of eq. (3.40) 









d

dS
S

'' , which produces the cumbersome result: 
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When A = 0, the irradiance is constant. However, in the non-relativistic limit when 0A  

and 0~ , 

A
hc

Tk
S oB

32

445
'

45

28
~

 . (3.42) 

 

Perhaps unexpectedly, it is reasonable that both S   and S   lack angular 

dependence, even though the 4-acceleration is, in general, directionally dependent. This 

arises because the strict definition of 
dS

S
d


   requires the proper time differentiation of 

a function from which all angular dependence has been removed by the prior d  

integration. Defining '

0

S B d d 


     does not adhere to the required proper time 

derivative definition of S  , in part because the order of the differentiation and integration 

must be preserved. Figure 3.16 illustrates the proper time rate of change of the irradiance. 
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Figure 3.16: Proper time rate of change of irradiance of a relativistic blackbody. To = 5000 K, 
510A −= . 

 

 

3.6 Observer and Radiation Frame Equivalences  

 

The relativistic Planckian spectrum poses numerous questions of interest. Among 

them is whether there are non-trivial solutions for which the observer frame and radiation 

frame spectral radiances, wavelengths of maximum irradiance, and irradiances are equal.  

3.6.1 Relativistic and Radiation Frame Spectral Radiances 

 

The case of equal relativistic and radiation frame spectral radiances comes from 

equating eqs. (3.15) and (3.18)6. Eq. (3.43) is the ratio of eqs. (3.15) and (3.18) set equal 

to 1.  
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(3.43) 

 

 
6 This is in wavelength space. The case for frequency space is analogous. 
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Obviously, neither V nor θ can be isolated as a closed-form function. However, a 

contour plot of eq. (3.43) is shown in Figure 3.17, and it is clear (as it was in Figure 3.2 

and Figure 3.3) that there are non-zero speeds, as well as angles, for which B  is equal to 

B, or even less than B. 

 

 

Figure 3.17: Contour plot of the ratio of inertial relativistic and radiation frame spectral radiances for a 

5000 K blackbody observed at its wavelength of maximum irradiance (0.5796 μm). The yellow region 

indicates the V and θ values at which the inertial relativistic spectral radiance is equal to the radiation frame 

spectral radiance. The green and blue regions represent the V and θ values for which B′ is less than B. The 

region of smallest spectral radiance is actually B'/B ≤ 10-4. 

 

 

3.6.2 Wavelengths of Maximum Irradiance 

 

Far simpler is determining V and θ for which the wavelength of maximum 

irradiance in the observer frame is equal to the wavelength of maximum irradiance in the 

radiation frame. From eq. (3.25), 
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which has no subluminal solution. When eq. (3.25) is solved for V, 

1cos
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−
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V . (3.45) 

However, since 10 V , V = 0 is the only physical solution to eq. (3.45). Therefore, as 

expected, there is no frame which is not comoving with the radiation frame in which 

maxmax

'  = . 

 

3.6.3 Irradiances 

 

The solution for the irradiance from the Relativistic Stefan-Boltzmann Law comes 

from eq. (3.38). The only real solution to eq. (3.46) (plotted in Figure 3.18) is V = 0. 

Expectedly, there is no frame which is not comoving with the radiation frame in which 

the irradiance equals the irradiance in the radiation frame. 
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Figure 3.18: Ratio of irradiances in the observer and radiation frames as a function of speed for a 

blackbody. Clearly, only for V >> 0 does the departure from unity of S′/S become significant. 

 

3.7 Summary  

 

The Relativistic Planck’s Law, the Relativistic Wien’s Displacement Law, and the 

Relativistic Stefan-Boltzmann Law have been established in inertial and non-inertial 

reference frames by invoking the inverse temperature 4-vector, 4-acceleration, relativistic 

beaming, Doppler shifting, and, when required, the appropriate proper time derivatives. 

In the low velocity limit of the relativistic blackbody spectrum, the corresponding and 

well-established stationary blackbody spectrum has been shown to emerge for each of the 

aforementioned relativistic laws. The Relativistic Wien’s Displacement Law was shown 

to be independent of temperature inflation and entirely dependent on Doppler shifting. In 

each case, the high velocity limit of the relativistic blackbody spectrum produced the 

expected zero or infinite outcome. 

The angular periodicity of the Relativistic Planck’s Law was determined, and 

further work needs to be done to elucidate the emergent picture. The relativistic versions 
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of Planck’s Law, Wien’s Displacement Law, and the Stefan-Boltzmann Law were 

compared to the stationary versions, and it was determined that only in the case of 

spectral radiance are there non-trivial solutions by which the descriptions produce equal 

results.  
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CHAPTER FOUR  
 

Black Sun: Ocular Invisibility of Relativistic Luminous Astrophysical Bodies 

 

This chapter published as: J.S. Lee, and G.B. Cleaver, “Black Sun: Ocular Invisibility of 

Relativistic Luminous Astrophysical Bodies”, Journal of High Energy Physics, 

Gravitation and Cosmology, 2, pp. 562-570, 12 September 2016. 

http://dx.doi.org/10.4236/jhepgc.2016.24048. 

 

 

4.1 Introduction 

 

The relativistic blackbody spectrum suggests the intriguing possibility that a 

luminous astrophysical body can be rendered optically invisible to the human eye by 

relativistic Doppler shifting the wavelengths of maximum intensity from the visible 

frequency range to above or below the frequency thresholds of human vision.1 This 

chapter examines, as a gedanken experiment, the specific conditions under which this 

effect would occur.2  

Furthermore, relativistic blackbody radiators will emit spectral radiances which 

are increased (in the case of approaching) or decreased (in the case of receding), due to 

temperature inflation and relativistic beaming. By considering in the gedanken 

experiment the relativistic blackbody spectrum, the proper distances can be determined at 

 
1 For this effect, CCD detectors could be considered in place of human eyes, but the nature of the 

phenomenon wouldn’t change. Of course, the numbers would strongly change, due to the strong differences 

between the spectral response function of human eye and CCD cameras: for instance, a relativistic Doppler 

shift could make the object even more detectable by an IR sensitive CCD. 

 
2 Whether the physical situations could exist for this effect to be realized is VERY uncertain. As 

an example, relativistic speeds might be obtainable in the expulsion of a low-mass star from the region of 

the Galactic Center as a consequence of a fly-by with the central massive black hole. Nevertheless, such a 

star might already appear invisible from earth because of its distance, rather than as a result the relativistic 

Doppler Effect and would be strongly decelerated (or even completely destroyed) by the relativistic drag of 

the dense interstellar matter of the Galactic Center region. The possible astrophysical application of this 

gedanken experiment is thus unlikely. 
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which the apparent magnitude of a blackbody radiator is greater (i.e., dimmer) than 

approximately 6.5 (the threshold of vision for the typical unaided human eye).  

Additionally, laboratory tests of the sensitivity of the unassisted human eye are 

described, and this paper asserts that the Judd & Voss CIE 1978 photopic luminous 

efficiency function would not be applicable to the situation of LABs due to the much 

greater luminosity than in the laboratory tests. 

 

4.2 The Apparent Magnitude of Blackbody Radiators in the Rest Frame 

 

The relationship between absolute magnitude, apparent magnitude, and distance 

to an arbitrary stationary blackbody radiation source has been well established and is 

given by 

zmM log55−+= . (4.1) 

 

where M is the absolute magnitude of any blackbody radiator, m is its apparent 

magnitude, and z is the distance to the observer in parsecs. Also, in terms of luminosity, 









−=

o

o
L

L
MM log5.2 . (4.2) 

 

where Mo is the absolute magnitude of a reference star (e.g., the sun), L is the luminosity 

of the radiation source at an arbitrary distance z, and Lo is the absolute luminosity of that 

source3.  

 

 

 

 

 
3 The luminosity of the source at the absolute magnitude distance (i.e., 10 parsecs). 
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Equating eqs. (4.1) and (4.2) yields 

o

Mm

L

L
z

o

5

5

10

−+

= . (4.3) 

 

Thus, for the sun, Mo = 4.83, L = Lo = 1, and for it to be invisible to the naked eye 

in the [nearly] total blackness of interstellar space, m = 6.5 [66] (discussed in Section 

4.4). Therefore, the sun is visible to the unaided eye at distances up to 21.58 pc (70.39 

LY). 

 

4.3 The Apparent Magnitude of Relativistic Blackbody Radiators 

 

Sufficiently high-speed relativistic motion of blackbody radiators would clearly 

Doppler shift the wavelengths of maximum luminosity to beyond the human visual range. 

Therefore, the lower luminosity wavelengths are Doppler shifted into the visible range, 

and the overall visible luminosity is reduced.  

However, in the case of an approaching blackbody, the radiation is relativistically 

beamed, and the blackbody temperature is “inflated”. Both of these effects serve to 

increase the luminosity. For a receding blackbody, relativistic beaming (“expanding”) 

and temperature “deflation” will have the reverse effect. Therefore, eq. (4.3) becomes 

o

Mm

L

L
z

o '
10 5

5−+

= . (4.4) 

 

where L  and 0L  are the luminosities in the relativistic and rest frames respectively4. 

 

Luminosity is obtained by integrating the spectral radiance over frequency and solid 

angle: 

 
4 Primed quantities indicate the relativistic frame. 
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 (4.5) 

 

where ν1 and ν2 are the mean lower and upper frequencies of ocular visibility. B´ and Bo 

are the spectral radiances in the relativistic and rest frames respectively, which must be 

integrated over the appropriate solid angle Ω.  

The relativistic spectral radiance in frequency space, accounting for Doppler 

shifting, relativistic beaming, and temperature inflation, was determined in Chapter 3.3 

and is given eq. (3.12) (restated as eqs. (4.6), (4.7) and (4.8)), by: 
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 (4.6) 

 

where [67], 

 

21

1

VTo

t

−
=  (4.7) 

 

21 VT

V

o

z

−
= , (4.8) 

 

oT  is the proper absolute temperature, u  is the relative 4-velocity between the radiation 

and the observer, , , ,t x y z       is the van Kampen-Israel inverse temperature 4-vector, 

θ is the angle between u  and  , and 
c

u
V =  (fraction of light speed). 



57 

 

The integration of the spectral radiance over all frequencies is straightforward 

because, with the limits of 0 and ∞, the result is simply π4/15. However, the in-band 

luminosity requires integration over a finite frequency range. Here, the method of Widger 

and Woodall is followed [68]. 
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Let 
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and  
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Also, letting '' Rx = , and from eqs. (4.7) and (4.8), eq. (4.9) becomes 
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Expanding eq. (4.12) as a difference of integrals: 
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Evaluating eq. (4.13) and re-substituting x R = : 
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Expanding the solid angle integration, combining sums, and making use of 

  =
2

1
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 ddBL  from eq. (4.5), the relativistic luminosity in frequency space (eq. 

(4.14)) becomes5 
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In the case of approaching the LAB [approximately] directly, a simplification of 

eq. (4.15), which cannot be resolved as a closed form function, can be made. Since θ is 

very small,  ~sin  and 1~cos . This removes the angular dependence from eq. 

(4.11), which reduces to 

 
V

V

Tk

h
R

oB +

−
=

1

1
. (4.16) 

 

 
5 The cosθ term accounts for the Lambertian radiator, and the sinθ term arises from the solid angle 

integration. 
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Frequently, when evaluating the d  integration, the solid angle over which the 

integration is performed is the solid angle through which the blackbody radiates. 

However, that is not the case here. The solid angle is that which is subtended by the 

blackbody from the vantage point of the observer.  

Therefore, when Dz  , ~ D z  (z is the observer proper distance, and D is the 

diameter of the blackbody). For a blackbody with a circular x-y cross-section, ~ D z . 

Therefore, 
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Thus,  
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Similarly, 
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Combining eq. (4.3), in terms of relativistic luminosity, with eqs. (4.18) and 

(4.19) yields 
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(4.20) 

 

Evaluation of the infinite sums is greatly simplified due, in large part, to the rapid 

convergence of the series as a result of the 
nRe−

 terms. The smallest value of R 

(requiring the largest number of summation terms) occurs when V = 0, and from eq. 

(4.11), is 
oBTk

h
. The smallest useful value of 400.0=R  would result from an O-class 

star with a surface temperature of ~50,000 K and at the lowest frequency of human 

visibility.  

Table 4.1 gives the number of summation terms (n) (in eq. (4.20)) that would be 

required to produce at least 10 significant figure convergence for 251.0  R . 
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Table 4.1: Number of summation terms required for series convergence of eq. (3.22) to at least 10 

significant figures [68]. 

Rν Number of Summation Terms (n) 

0.1 101 

0.2 65 

0.3 50 

0.4 50 

0.5 35 

0.6 30 

0.7 25 

0.8 22 

0.9–1.4 20 

1.5–1.9 15 

2.0–2.9 10 

3.0–3.9 8 

4.0–4.9 6 

5.0–9.9 4 

10.0–24.9 3 

≥ 25.0 1 

 

 

 

4.4        The Ocular Invisibility of Relativistic Radiators 

 

The visibility to the naked eye of astronomical objects has been discussed 

extensively in the literature [69], [70], [71], [72], [73]. The “sky” of interstellar space is 

considered to be absolutely black, and a viewing port is taken to be, at optical 

wavelengths, a perfectly transparent aperture that subtends a solid angle of at least the 

human field of vision and with a magnification of 1.  

The efficiency by which photons are used by the retina was accounted for by 

correcting for the Stiles-Crawford effect of the first (SCE I) and second (SCE II) kind6, 

 
6 The Stiles-Crawford effect of the first kind is the phenomenon by which light entering the edge 

of the pupil elicits a smaller response from the cone photoreceptors than light entering the center of the 

pupil. The Stiles-Crawford effect of the second kind states that the perceived hue from a monochromatic 

light source is dependent on its obliquity with respect to the retina. 
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photon absorption by the optical media, photopigment absorption of photons, and the 

photon isomerization efficiency of the photopigment. 

For a 22´ (diameter), 10 ms, 507 nm monochromatic source, in which, of the ~100 

quanta incident upon the retina, 10 to 15 were absorbed by the ~1600 illuminated rods 

[74]. From this experiment, Packer and Williams determined the rod actinometric, 

radiometric, and photometric7 absolute thresholds to be 0.35 γ/s, 4.35×10-6 W·m-2·sr-1, 

and 1.33×10-3 cd·m-2, respectively [75]. However, also examined was the case of a 

stimulus which exceeded the visual system’s spatial summation area and temporal 

integration time, in which the rod actinometric, radiometric, and photometric absolute 

thresholds are 2.00×10-4 γ/s, 2.47×10-9 W·m-2·sr-1, and 7.5×10-7 cd·m-2, respectively.  

However, even accounting for the standard observer’s spectral sensitivity by 

applying the Judd & Voss CIE 1978 photopic luminous efficiency function, these results 

are difficult to apply to the scenario presented here because of the enormous disparity 

between the spectral irradiances of the Hallett test sources [74] and stars. 

The frequency range of human vision is slightly variable. However, 4.17×1014 Hz 

and 7.89×1014 Hz, which correspond to wavelengths of 720 nm and 380 nm respectively, 

are acceptable approximations of the limits of human vision, and are in keeping with the 

wavelengths of 700 nm and 390 nm published by Starr [76]. The limiting magnitude of 

the unassisted human eye is taken to be 6.5 [66]. This figure applies to all visible 

wavelengths and accounts for eye sensitivity. Consequently, inclusion of the Judd & Voss 

CIE 1978 photopic luminous efficiency function would not be appropriate. 

 

 

 
7 Assuming a 6 mm in diameter pupil. 
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4.4.1 θ = 0 Ocular Invisibility 

 

In the case of approaching the sun directly (θ = 0), the distance at which the 

apparent magnitude is 6.5 can be determined from eq. (4.20), and is shown in Figure 4.1. 

 

 
Figure 4.1: Distance versus speed for limiting magnitude (m = 6.5) of the sun. The wavelengths of vision 

are taken to be between 380 nm and 720 nm, and the temperature is 5780 K. The region below the curve 

represents the distance at which the sun is visible to the typical unaided eye of an observer in the frame of 

the sun. 

 

 

4.4.2 Ocular Invisibility for Arbitrary θ 

 

In order to determine the ocular invisibility curve for an arbitrary velocity vector, 

the solid angle integration in eq. (4.15), and correspondingly for the stationary case, must 

be performed. However, since the solid angle over which the integration must be taken 

does not significantly exceed ~10 mrad8 (and is considered primarily for angles much 

smaller), z can be approximated as being constant at each value of θ in the 315-time step 

iterative scheme, which was used to evaluate the solid angle integral. When eq. (4.20) is 

evaluated for the sun, Figure 4.2 results. 

 
8 The angle subtended by the sun at approximately 1 AU. 
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Figure 4.2: Proper distance of limiting magnitude as a function of V and θ for the sun. The wavelengths of 

vision are taken to be 380 nm to 720 nm, and the temperature is 5780 K. The numbers in the legend 

represent the proper distances in light years at which the apparent magnitude is 6.5. The purple region of 

0.01 LY represents proper distances which are ≤ 0.01 LY. The intersection of the contours with the Angle-

axis is expectedly 70.39 LY (as determined in Section 4.2). 

 

As expected and shown in Figure 4.2, ultra-relativistic velocities permit 

exceptionally close approaches to luminous astrophysical bodies, while maintaining an 

apparent magnitude which is less than the limiting magnitude of the unaided human eye.  
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4.5 Summary 

 

By making use in this gedanken experiment of the relativistic blackbody 

spectrum, the velocity profile for the apparent magnitude of a LAB has been determined. 

Optical invisibility to the unaided eye arises due to the Doppler shifting of the 

wavelengths of maximum radiance to beyond the limits of human visual sensitivity. 

Temperature inflation and relativistic beaming can either increase this incident radiance 

(for an approaching source) or decrease it (for a receding source).  By considering the 

wavelength limits of human vision to be 380 nm and 720 nm, and the limiting magnitude 

of the unaided human eye to be 6.5, the proper distance versus velocity function for 

ocular invisibility of relativistic luminous astrophysical bodies has been determined; this 

profile was determined for the sun. 

Whether the physical situations could exist for this effect to be realized is 

uncertain. As an example, relativistic speeds might be obtainable in the expulsion of a 

low-mass star from the region of the galactic center as a consequence of a fly-by with the 

central massive blackhole. Nevertheless, such a star might already appear invisible from 

earth because of its distance, rather than as a result the relativistic Doppler Effect. The 

possible realization of this gedanken experiment is an open question.  
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CHAPTER FIVE  

 

Relativistic Drag and Emission Radiation Pressures in an Isotropic Photonic Gas 

 

This chapter published as: J.S. Lee and G. B. Cleaver, “Relativistic Drag and Emission 

Radiation Pressures in an Isotropic Photonic Gas”, Modern Physics Letters A, Volume 

31, Issue 19, 21 June 2016. arXiv:1508.00534 

 

 

5.1     Introduction 

 

This chapter challenges the results of Balasanyan and Mkrtchian [77], in which 

the blackbody radiation drag on a relativistically moving mirror is calculated. To 

determine the relativistic photon drag, temperature inflation, Doppler shifting, and 

relativistic beaming of radiation in the direction of motion must all be considered.  

Here, a z-axis-directed relativistic planar surface with an arbitrary 

absorptivity/emissivity, which is in thermal equilibrium with an isotropic thermalized 

photonic gas, is examined. Relativistic temperature transformations are accomplished by 

means of inverse temperature, a van Kampen-Israel future-directed timelike 4-vector. 

The body experiences radiation drag due to the momentum transfer from Doppler shifted 

and relativistically beamed photons incident upon its forward-directed planar surface.  

With increasing speed, the radiation field becomes progressively more anisotropic 

in the inertial frame, thus, creating a rising temperature difference between the forward- 

and rearward-directed thermally isolated surfaces of the body; this results in an emission 

radiation pressure gradient. If thermal sequestration of the forward- and rearward-

directed surfaces is removed, the resulting temperature gradient across the body induces a 

short-lived Carnot cycle with a speed-dependent efficiency. 
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Additionally, the non-inertial reference frame case for drag and emission radiation 

pressures is established by making use of the proper time derivative of the inertial frame 

relativistic radiation pressures. For surfaces which are not thermally isolated, a positive 

forward-to-rearward temperature gradient induces an ongoing Carnot cycle, as the 

surface temperatures never equalize. If the forward-to-rearward temperature gradient is 

negative (i.e., the body’s speed is reducing), the Carnot cycle ceases upon thermal 

equilibrium of the surfaces. Also, the drag radiation pressure acting upon a body with an 

arbitrary frontal surface geometry is determined. 

 

5.2       The Drag Radiation Pressure 

 

There are significant unresolved issues in the literature regarding temperature in 

relativistic thermodynamics [55], [15], [16], [56], [57], [58]. Throughout the twentieth 

century, three published Lorentz group transformations have emerged: Temperature 

Deflation [15], [16] and Temperature Inflation [17], [18], [19] (which can be 

operationally quantified with a relativistic Carnot cycle [24], [25], [26]), and Temperature 

Invariance [20], [21], [22], [23]. 

The empirical temperature (a Lorentz invariant), which follows from the Zeroth 

Law of Thermodynamics, is a relativistic scalar that reflects the radiation rest frame and 

the observer frame as being in thermal equilibrium [29]. The validity of the Zeroth Law is 

necessarily independent of any reference of any thermodynamic property (including 

energy and entropy) [30]. 

The Second Law of Thermodynamics gives rise to the absolute temperature, 

which contains no angular dependence, and is the product of the radiation rest frame 

absolute temperature and the Lorentz factor. 
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Temperature transformations can be successfully realized by treating inverse 

temperature as a van Kampen-Israel future-directed timelike 4-vector. Although 

Przanowski and Tosiek [27]1 have demonstrated temperature inflation without making 

use of inverse temperature, a relativistic blackbody spectrum necessitates a consideration 

of angular dependence. 

Balasanyan and Mkrtchian [77] calculate the drag pressure from blackbody 

radiation on a relativistic mirror. However, temperature, rather than the 

thermodynamically relevant inverse temperature, is transformed as a scalar. Also, 

relativistic beaming and Doppler shifting of incident radiation, which are essential to 

describing the relativistic spectral radiance and energy density of a blackbody, are not 

considered.  

 

5.2.1 Inertial Frames 

 

The total radiation pressure on an opaque object in an inertial frame with a 

frequency-independent absorption/emission coefficient ε, is the sum of the radiation 

pressures due to absorption and reflection: 

( ) ( )TOT INC INC INC2 1 2P P P P  = + − = − , (5.1) 

 

where INCP  is the incident radiation pressure2. 

 

Also, 

 



−

=
0 2

2

TOT cos
2






 ddB
c

P , (5.2) 

 
1 With a superfluidity gedanken experiment. 

 
2 This is the total radiation pressure experienced by a body with an absorptivity coefficient of 1. 
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where c is the speed of light, θ is the angle of incoming radiation with respect to the 

direction vector of the object’s motion, ν is the frequency of incoming photons, and B  is 

the spectral radiance in frequency space. 

The solid angle integration is performed over 2π sr ( ) 0  because the photon 

drag occurs only on the forward-directed side of the object. Relativistically, eq. (5.2) 

transforms to 

 



−

=
0 2

2''

TOT '''cos
2






 ddB
c

P . (5.3) 

 

The relativistic spectral radiance in frequency space was discussed in chapters 2 

and 3, and is given by the frequency- and solid angle-integrated form of eq. (3.12), which 

is eq. (5.4). 

( )
( )  3

2

3

' cos1

1cosexp

2

−
−

−







−










= 






 V

k

h

c

h

B

zt

B

 (5.4) 

where the time-axis and z-axis velocity vector components were given by eqs. (3.8) and 

(3.9) respectively and are restated as eqs. (5.5) and (5.6) respectively. 

21

1

VTo

t

−
=  (5.5) 

21 VT

V

o

z

−
=  (5.6) 

 

where oT  is the proper temperature. , , ,t x y z       is the van Kampen-Israel inverse 

temperature 4-vector. u  is the relative 4-velocity between the radiation and the 



70 

 

observer. ( )
1

2 21 V
−

= −  is the Lorentz factor. 
c

u
V =  (fraction of light speed). h and kB 

are Planck’s and Boltzmann’s constants, respectively.  

 

Combining eqs. (5.3) and (5.4) yields: 

( )
( )  


−

−

−







−










−
=

0 0

2

0

23
2

3

'

TOT sincoscos1

1cosexp

2

2












ddV

k

h

c

h

c
P

zt

B

 (5.7) 

 

Since motion is along the z-axis, and the radiation is [azimuthally] isotropic, the 

relativistic spectral radiance can be separated from the azimuthal integral                    

(i.e., 0=− yx  ). By setting: 

( )
( ) 

( )
( )  









sincoscos1
22

sincoscos1
22 23

3

0

23

3

−−
−

−
=−

−
=  V

c

h
dV

c

h
, 

letting  cosztR −= , and setting R
k

h
x

B

= , 
'

TOTP  becomes 

 


−
=

0

2

0

3
'

TOT
1






dd
e

P
x

. (5.8) 

 

The integral over frequency yields 
15

4
.  

 

Thus, 

=
2

0

44

44
'

TOT
15






d
Rh

k
P B . (5.9) 
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From eqs. (3.8), (3.9), and evaluating eq. (5.9), 

( ) ( ) 4

3

223

33

45
'

TOT
1

1
120156

450

2
o

B T
V

V
VVVV

hc

k
P





















−

+
−−+−

−
=


. (5.10) 

 

Eq. (5.10) is the total radiation pressure experienced by a relativistic body with arbitrary 

absorptivity. Expectedly, when 1→V , relativistic beaming and temperature inflation 

cause →'P . Also, as expected, when 0=V : 

 

( )
( ) ( ) ( )

3
2

3
2

3
2

45

22 4

33

445 U

c

S

c

T

hc

Tk
P ooB 





−=−=−=

−
=  (5.11) 

 

where S is the radiation frame intensity, 
23

45

15

2

ch

kB
 =  is the Stefan-Boltzmann constant, 

and U is the energy density. In the cases of a perfect blackbody ( )1=  and a perfect 

reflector ( )0= ,  
3

' U
P =  and 

3

2' U
P =  respectively, as required. 

Balasanyan and Mkrtchian [77] contend that the drag force (and drag pressure) 

are zero when an object is at rest in the photon field. However, this is not correct, as there 

will always exist a radiation pressure on all objects, regardless of whether they are in the 

same frame as the radiation source. Of course, an observer can be at rest in the frame of 

the radiation source, but is never at rest in the frame of the photons. In an isotropic 

radiation field, the net drag radiation pressure will be zero when an axially symmetric 

object is stationary. However, this requires angular dependent Doppler shifting of the 

incident photons, which was not considered in [77]. This is shown in Figure 5.1. 
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Figure 5.1: Drag radiation pressure versus speed for a perfectly absorbent blackbody (ε = 1) at 200 K. The 

P′-axis intercept represents the radiation pressure in the radiation frame and is 0.2006 μPa. 

 

 

5.2.2 Non-Inertial Frames 

 

The radiation pressure in a non-inertial reference frame is determined with the 4-

acceleration a , which is the proper time (τ) derivative (denoted with dot notation) of the 

4-velocity ( ) =a . Combining eqs. (5.12) and (5.10), and defining 
c

a
A =  (the zeroth 

term of the acceleration 4-vector), the relativistic spectral radiance in a non-inertial frame 

is given by eq. (5.13). 

( )AV tanh=  (5.12) 

 

( ) ( ) ( ) ( )( )
( )

( )
( )

4

323

33

45
'

TOT
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1tanh

cosh

20tanh15tanh6tanh
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2
o

B T
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hc

k
P
























−

+−+−−
=








 (5.13) 

 

As →A , →'

TOTP , and when 0=A , the rest frame radiation pressure, given by 

eq. (5.11), is recovered. A plot of eq. (5.13) is shown in Figure 5.2. 
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Figure 5.2: Radiation pressure as a function of proper time for a 200 K blackbody (ε = 1). 

510−=A . The  

P′-axis intercept represents the radiation pressure in the radiation frame and is 0.2006 μPa. 

 

In general, V and θ will be time-dependent functions, and the time rate of change of 

radiation pressure is described by the proper time (τ) derivative (denoted with dot 

notation) of the relativistic radiation pressure. Thus, 
d

dP
P  . 

When eq. (5.13) is differentiated, the result is eq. (5.14), which is plotted in 

Figure 5.3.  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

4

3

23452

33

45
'

TOT
tanh1cosh

105tanh7tanh35tanh39tanh20tanh41tanh

450

2
o

B T
AA

AAAAAA
A

hc

k
P 









−

++−+−+−
=



  
(5.14) 

Although perhaps unexpected, it is reasonable that 
'

TOTP  does not have angular 

dependence, even though V and θ are time-dependent functions, because the strict 

definition of 
d

dP
P   requires the proper time differentiation of a function from which all 

angular dependence has been removed by the d  integration.  
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Defining  



−

=
0 2

2''

TOT '''cos
2






 ddB
c

P   does not adhere to the required proper time 

derivative definition of 
'

TOTP , in part because the order of the differentiation and 

integration cannot be inverted. 

 

 
Figure 5.3: Time rate of change of radiation pressure as a function of proper time for a 200 K blackbody    

(ε = 1). 510−=A . dP/dτ′-axis intercept is the initial instantaneous rate of change of the radiation pressure 

(5.27 pPa/s). 

 

Also,  

( )
( )

UAAT
c

AT
hc

k
P oo

B

4

7

4

7

30

27
0 44

33

45
'

TOT ==
−

==


 . (5.15) 

 

Expectedly, when 0=A , 0'

TOT =P .  

 

5.3     Emission Radiation Pressure in Inertial Reference Frames 

 

For a relativistic body in thermal equilibrium with an incident blackbody 

spectrum, the radiation pressure due to emission can be calculated. Since temperature is 

not a Lorentz invariant, the temperature at which the body equilibrates with the 
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surrounding radiation is relativistically transformed. For bodies with forward- and 

rearward-directed surfaces which are in thermal isolation, the temperature gradient 

through the body is maintained, and there is a net forward-directed radiation pressure. If 

the surfaces are not thermally isolated, the temperatures equalize by means of internal 

heat conduction, and the net emitted radiation pressure approaches zero. The emitted 

radiation pressure experienced by the body in its frame is: 

 

4emission −
==

ocTc

S
P


 (5.16) 

 

 

5.3.1 Radiation Pressure due to Forward Emitted Radiation 

 

The pressure due to radiation emitted in the direction of motion ( )0=  
→

em issionP , 

can be determined from eqs. (5.5), (5.6), and by replacing 
1−

oT  with the inverse 

temperature 4-vector 


 coszt

oT

u
−== . 

4

2

emission
1

1
oT

V

V

c
P 









−

+
=→ 

 (5.17) 

 

Clearly, when 0=V , the rest frame Stefan-Boltzmann Law (divided by c) is 

recovered. As 1→V , the emission radiation pressure becomes infinite.  

For 0~V , a series expansion of eq. (5.17) yields 

( )( ) 432

emission 841~ oTVOVV
c

P +++→ 
. (5.18) 
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The emissivity which produces equal drag and forward-directed emission 

radiation pressures is independent of temperature, can easily be calculated by equating 

eqs. (5.10) and (5.17), and is given by 

( )

20156
1

60

201562

23

2

23

−+−+










−

−

−+−
=

VVV
V

VVV
 . 

(5.19) 

 

A plot of eq. (5.19) is shown in Figure 5.4. 

 

 
Figure 5.4: Emissivity versus speed for equal drag and forwarded-directed emission radiation pressures. 

 

The emissivities which produce equal radiation pressures when 0=V  and 1→V  

are not surprising 0.5 and 0 respectively. 

The speed which produces equal drag and emission radiation pressures for a given 

emissivity is also independent of temperature, and is given by the non-trivial solution to 

( )
2

60
120156 223

−
=−−+−



VVVV . (5.20) 
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5.3.2 Radiation Pressure due to Rearward Emitted Radiation 

 

The pressure due to radiation emitted in the direction opposite of motion 

( )o180=  


em issionP , can be determined again from eqs. (5.5), (5.6), and by replacing 
1−

oT  

with the inverse temperature 4-vector 


 coszt

oT

u
−== :   

4

2

emission
1

1
oT

V

V

c
P 









+

−
= 

 (5.21) 

 

As is the case with eq. (5.17), when 0=V , the rest frame Stefan-Boltzmann Law is 

recovered. As 1→V , the emission radiation pressure becomes zero.  

For 0~V , a series expansion of eq. (5.21) gives: 

( )( ) 432

emission 841~ oTVOVV
c

P ++− 
 (5.22) 

A comparison of drag radiation pressure and emission radiation pressures is shown in 

Figure 5.5. 
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Figure 5.5: Drag, forward-directed, and rearward-directed emission radiation pressures for a 200 K 

blackbody (ε = 1). The drag and forward-directed radiation pressures are equal for a speed of ~0.7927c. 

The drag and rearward-directed radiation pressures are equal for a speed of ~0.1189c. Clearly, the forward-

directed and rearward-directed radiation pressures are equal only when the object is stationary. 

 

This result is in contradiction to the calculation of Balasanyan and Mkrtchian 

[77], in which a speed of ~0.1c results in equal drag and emission radiation pressures. 

However, they show that as 1→V , the drag radiation pressure vastly exceeds the 

emission radiation pressure, with which Figure 5.5 is in agreement. 

Although the forward-directed emission radiation pressure is markedly greater 

than the drag radiation pressure for the expected speeds of a solar sail spacecraft 

( )34 1010~ −− −V , the flux anisotropy of incident radiation results in a greater rearward-

directed thrust from both the forward-directed emission radiation pressure and the 

rearward-directed drag radiation pressure. 

The emissivity which produces equal forward drag radiation pressure and 

rearward emission radiation pressure is also independent of temperature, can easily be 

calculated by equating eqs. (5.10) and (5.21), and is given by 
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A plot of eq. (5.23) is shown in Figure 5.6. 

 

 

 
Figure 5.6: Emissivity versus speed for equal drag and rearward-directed emission radiation pressures. The 

region of the graph above the orange line represents non-physical emissivities, and thus speeds for which it 

is not possible for these radiation pressures to be equal. As expected from Figure 5.5, the cutoff speed at 

which the radiation pressures are equal is ~0.1189c. The emissivity which produces equal radiation 

pressures when V = 0 is, not surprisingly, 0.5. 

 

 

5.3.3 Emitted Radiation Pressure in Non-Inertial Frames 

 

The forward- and rearward-directed emission radiation pressures in a non-inertial 

frame can be determined by combining eq. (5.12) with eqs. (5.17) and (5.21) 

respectively. 
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Therefore,  

( )
( )

4

2

emission
tanh1

tanh1
oT

A

A

c
P 







 
=

→






. (5.24) 

 

A plot of eq. (5.24) is shown in Figure 5.1. 

 

 
Figure 5.7: Drag, forward-directed, and rearward-directed emission radiation pressures for a 200 K 

blackbody (ε = 1). 
510−=A . The drag and forward-directed radiation pressures are equal at a proper time of 

~1.0835×105 s. The drag and rearward-directed radiation pressures are equal for a speed of ~1.2001×104 s. 

Clearly, the forward-directed and rearward-directed radiation pressures are equal only when the object is 

stationary. 

 

The time rate of change of the forward- and rearward-directed emission radiation 

pressures can be easily determined. 

d

dP
P emission

emission 
  (5.25) 

 

Therefore, from eq. (5.24): 
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Clearly, when 0=A , A
c

P
4

emission =
→

 , and when →A , →→

emissionP  and 

0emission →
P . 

 

 

5.3.4 Temperature Gradient-Induced Carnot Cycle 

 

Since the forward surface of the body experiences temperature inflation and the 

rearward surface experiences temperature deflation, then if the surfaces of the body are 

not thermally isolated, heat will flow from the forward to the rearward surface, and a 

Carnot cycle results. The efficiency η of a Carnot cycle in the inertial frame of the body is 

H

C

T

T
−=1 , (5.27) 

 

where TC and TH are the cold and hot reservoir temperatures respectively. 

 

From eqs. (5.5), (5.6), and by replacing 
1−

oT  with the inverse temperature 4-vector 




 coszt

oT

u
−== , TC ( )o180= , TH ( )0= , η in terms of V can easily be 

determined. 

V

V

+
=

1

2
  (5.28) 

 

Expectedly, when 0=V , the efficiency is zero, and the Carnot cycle does not exist due 

to the zero-temperature gradient. As 1→V , 1→ .  

However, without thermal isolation in an inertial frame (or a non-inertial frame 

with negative acceleration, see below), the surface temperatures eventually equilibrate, 
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and the Carnot cycle shuts down in a proper time which is dependent on the thermal 

diffusivity of the body.  

In a non-inertial frame, the Carnot efficiency is obtained by combining eqs. (5.12) 

and (5.28), is given by eq. (5.29)3, and is plotted in Figure 5.8. 

( )
( )



A

A

tanh1

tanh2

+
=  (5.29) 

  

 
Figure 5.8: Efficiency of a Carnot cycle as a function of proper time for an accelerating blackbody with a 

radiation frame temperature of 200 K. 
510−=A . 

 

In the frame of the body, the time rate of change of the Carnot cycle efficiency is 

the proper time derivative of eq. (5.24), and is given by eq. (5.30) and is plotted in Figure 

5.9 for positive acceleration and Figure 5.10 for negative acceleration. 

 

 
3 A  is required because 0= AV . 



83 

 

( )
( )










+

−
=






A

A
A

tanh1

tanh1
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With positive acceleration and consequently increasing speed, the Carnot cycle 

continues indefinitely because the constantly rising temperature of the forward surface 

and the finite time required for heat to flow through the body collectively prevent the 

forward and rearward surfaces from ever achieving thermal equilibrium, as 1→  and 

0→ . However, in the case of negative acceleration, the Carnot efficiency is decreasing 

in time, as 0→  and −→ . Therefore, the surfaces do approach thermal equilibrium, 

and the Carnot cycle eventually shuts down. 

 

 
Figure 5.9: Logarithmic plot of the time rate of change of the Carnot efficiency as a function of proper time 

for a 200 K blackbody. 
510−=A . 
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Figure 5.10: Logarithmic plot of the time rate of change of the Carnot efficiency as a function of proper 

time for a 200 K blackbody. 
510−=A . 

 

 

5.4       Drag Radiation Pressure on a Surface of Arbitrary Geometry 

 

For an object with an arbitrary frontal surface geometry moving relativistically in 

an inertial reference frame and in thermal equilibrium with an isotropic radiation field, 

the drag radiation pressure can be calculated. If the surface is described by the function 

( ) 0,, =zyxF , then the normal n̂  to the surface is clearly 

F

F
n




=ˆ . (5.31) 

 

The total drag radiation pressure 
'

TOTP is merely the scalar product of the total drag 

radiation pressure vector 
'

TOTP


 and the surface normal vector.  

nPP ˆ'
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 (5.32) 
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Since motion occurs only along the z-axis, 
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. (5.33) 

 

If the frontal surface geometry is a plane parallel to the x-y plane, then zF ˆ= , 

and 
'

TOTP  is given by eq. (5.33). If the reference frame in non-inertial, then the time rate 

of change of the drag radiation pressure is 
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which yields, 

 

( )













++




−




+




= zzyyxx FFFFFF

F

F

F

F
zP

F

FzP
P 






3

'

TOT

'

TOT
'

TOT
ˆ

ˆ

, (5.35) 

 

where iF  are the partial derivatives of F , and '

TOTP

  is given by 
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(5.36) 

 

which is just the magnitude of eq. (5.14). If the frontal surface geometry is a plane 

parallel to the x-y plane, then zF ˆ= , and 
'

TOTP  is given by eq. (5.14). 
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5.5       Summary 

 

The relativistic radiation pressure due to drag, experienced by a thermally 

equilibrated planar surface moving through an isotropic radiation field in both inertial and 

non-inertial reference frames, has been determined. These have been compared to the 

forward- and rearward-directed emission radiation pressures caused by the thermally 

isolated surfaces of the body. Also, the speeds at which the emission and drag radiation 

pressures are equal were determined and shown to be dependent on the emissivity, and 

independent of the temperature of the photonic gas. 

An inertial body (or a non-inertial body with a negative acceleration), through 

which thermal conduction can occur, will experience a Carnot cycle between its forward- 

and rearward surfaces which will continue until the surface temperatures equalize in a 

time which is dependent on the body’s thermal diffusivity. However, for such a body in a 

non-inertial frame with a positive acceleration, there will be a continuous Carnot cycle 

with a steadily increasing acceleration-dependent efficiency. 
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CHAPTER SIX  

 

Ultra-relativistic Thermodynamics and Aberrations of the Cosmic Microwave 

Background Radiation 

 

This chapter published as: J.S. Lee and G. B. Cleaver, “Ultra-relativistic 

Thermodynamics and Aberrations of the Cosmic Microwave Background Radiation”, 

Modern Physics Letters A, Volume 30, Issue 09, 21 March 2015. 

 

 

6.1       Introduction 

 

The pervasiveness and extreme isotropy of the Cosmic Microwave Background 

radiation result in every ultra-relativistic reference frame with an arbitrary velocity vector 

encountering an extremely Lorentz transformed CMB. This chapter extends the work of 

Przanowski and Tosiek [27] by demonstrating that the occupation number (also a Lorentz 

invariant) can be used to revise the thermodynamic stress-energy tensor and that 

Temperature Inflation by the Lorentz factor ( ) 







−=

−
2

1
21   of an isotropic radiation 

field (CMB) and not only a relativistic perfect fluid, as set forth by Ott [17], Arzelies 

[18], and Møller [19], is ultimately supported. Additionally, ultra-relativistic motion 

would induce a significant intensification of the CMB in the non-laboratory frame due to 

“Doppler Boosting”. 

In this chapter, Planck units (i.e., 1=== khc ) are used, where h and k are 

Planck’s and Boltzmann’s constants respectively. 
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6.2     Directional Temperature and Inverse Temperature Approaches to the Lorentz 

Transformation of Temperature 

 

Alternatively, the transformations can be undertaken by treating inverse 

temperature as a van Kampen-Israel future-directed timelike 4-vector. However, this 

method does not provide a unique determination of the correct transformation. 

 

6.2.1      Directional Temperature 

 

By taking the CMB to be blackbody radiation, it can be described by the Planck 

distribution given by eq. (6.1): 

( )









−








=

1exp2 2

2

T

n





 , 

(6.1) 

 

where n  is the number density of photons with frequency ω, and T is the temperature.  

For an object moving with respect to the CMB frame, the photon number density, 

which is incident through solid angle Ω, can be determined. 

( )

( )











−








=  dd

T

n 









1exp2
eff

2

2

 
(6.2) 

 

where ( )effT  is the so-called effective or directional temperature, and is defined as 

( )





cos1

1 2

eff
−

−
= oT

T , (6.3) 

where θ is the angle between the velocity vector and a reference point in the CMB, and 

c

v
= . 
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However, effective temperature comes about solely from mathematical manipulation, and 

does not require any thermodynamic consideration. Although sufficient for the 

determination of planetary and stellar motion with respect to the CMB [63], [64], [65], 

the lack of any direct thermodynamic connection renders it unclear whether or not ( )effT  

represents temperature. 

For instance, the direction of heat flow is indeterminable for an object with a 

proper temperature ( ) 









2
0 effeff


TTT . Consequently, the cases of temperature 

inflation and temperature deflation become indistinguishable.  

 

6.2.2 Inverse Temperature as a 4-vector 

 

Although Landsberg and Matsas [32], [33] have argued that the relativistic 

transformation of temperature is impossible, Wu [78] has asserted that such a 

transformation can be accomplished because inverse temperature, as a van Kampen-Israel 

future-directed timelike 4-vector, can be applied to a superfluidity gedanken experiment. 

However, the supposition that the inverse temperature 4-vector   takes the form 

o

u

T



 =  (where u  is the 4-velocity, and To is the temperature in the laboratory frame) 

is, in and of itself, unsuccessful at resolving the transformation dilemma.  

If the zeroth component of the inverse temperature is 1−T , then   has 

components ( )0,0,0,1−

oT  in the co-moving frame, and temperature deflation is supported. 

If the zeroth component of the inverse temperature is T , then   has components 

( )0,0,0,oT  in the co-moving frame, and temperature inflation results. If the temperature is 
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a scalar, then the outcome is temperature invariance. Wu [78] argues for the existence of 

a frame in which   has the form ( )0,0,0,1−

oT , although this frame may not be the co-

moving frame. However, this chapter supports the work of Przanowski and Tosiek [27], 

in which a Lorentz transformation of temperature can be determined without the use of 

inverse temperature as a 4-vector. 

 

6.3        Justification for Temperature Inflation of the CMB using Occupation Number 

 

The CMB is a highly isotropic radiation field and constitutes a continuous 

medium in thermodynamic equilibrium with particles in the moving frames. A domain of 

spacetime with a unit volume ( )1=oV  is chosen to move at constant velocity v


 with 

respect to the rest frame of the universe. To avoid the complexities associated with 

finiteness, a periodic boundary condition is imposed. The spatial axes in the CMB and 

moving frames are assumed to be mutually parallel. The spacetime metric is given by: 

( )+−−−== ,,,diag ij

ij   (6.4) 

 

By making use of the Lorentz transformation 
k

o

j

k

j xx = , the coefficients of 

which are given by 

( )  









 ===−−= 4

44

4

2
     ,v     ,v     ,1

v

vv
. (6.5) 

 

The energy-momentum tensor jkT  is [79], [80], [81], [82]: 

kjjkkjojk TuuT =+=  , (6.6) 
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where εo is the energy density in the CMB frame, ( ) ,v=ju  is the 4-velocity, and



  o

kjjk =  (
 o is the stress tensor).  

044 == j

o

j

o   because in the rest frame, 04 = o . Additionally, oT =44
 and 

044 =o . From eq. (6.5), 


  o

kjjk = , and eq. (6.6), the total energy can be calculated. 

It is merely the volumetric integral of 44T . 

 

( )


 
ooEE vv+= . 

 

(6.7) 

where oE  is the energy in the CMB frame. 

The 4-momentum can be similarly calculated: 

( )


 



oo

V
c

EdxdxdxTP 







−−+==  22

3214

v

vv
1

v
v  (6.8) 

where =
oV

ooooo dxdxdx 321:


 . 

Application of the generalized conservation law 0=



k

jk

x

T
 to objects in 

thermodynamic equilibrium with the CMB results in 

0=







x

o . (6.9) 

 

Eq. (6.10) follows from eq. (6.9) [80], [81]. 

 




−==

oo V

oooo

V

ooooo dlxdxdxdx  



 321
, 

(6.10) 
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where 


ol  is the   component of the outward unit vector which is normal to the boundary 

oV  of oV . od  is the surface element of oV . From the symmetry of eq. (6.10): 

 

( )


+−=

oV

ooooooo dlxx  


2

1
 (6.11) 

 

Although the stress-energy tensor is often rewritten by considering the relativistic 

motion of an ideal fluid, such an invocation would not be apropos for the CMB. The 

obvious appeal of an ideal fluid is the Lorentz invariance of pressure. Since occupation 

number (also defined as the number density of photons with a given momentum and 

polarization) is directly relevant to the CMB, and is a Lorentz invariant, it is used to 

rewrite jkT . The following results: 

( )

















po

po

jkpkjopjk

n

n

nuunT







−=

−=

−+=

 (6.12) 

 

where pn 
  is the occupation number, and p & 


 designate the polarization and 

momentum, respectively. 

Due to the Lorentz invariance of occupation number, and since 


1
=V , the energy 

and momentum differentials can be calculated: 

 









+=+ 

==

2

1

3
2

1

3     cos    cos






  ooooopop dddtdAhndEdddtdAhndE o
  (6.13) 
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




  v    cos

2

1

3









+= 

=

dddtdAhndEdP po
  (6.14) 

 

The 
=

2

1

pn   term accounts for both polarization states. From eqs. (6.5), (6.13), and 

(6.14), it is clear that the 4-momentum is ( )
pnEEPPP 


+,,, 321  [57], [19], [83], [84], [85]. 

The quantity 
3
oh  is the specific intensity I . It is noteworthy that h

I

o

=
3
  must also be a 

Lorentz invariant, and could have been used instead to rewrite the stress-energy tensor. 

The first law of thermodynamics is constrained to have its covariant form: 

ooo LQdE  += , (6.15) 

where oQ  is the heat entering the moving frame from the CMB, and oL  is the 

thermodynamic work done on an object in the moving frame. It is assumed that the 

thermodynamic process is reversible, and therefore, 

 

o

o p o o o p o

V

o o o

L n l dx d n dV

Q T dS

 

    





= = −

=



, (6.16) 

 

where oT  is the CMB frame temperature, and oS  is the system’s entropy. 

From eqs. (6.7), (6.8), and (6.15), the first law of thermodynamics in the moving 

frame is: 

( )


 
ooo dLdQdE vv++=  (6.17) 
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  ( )


 



ooo dLQP 








−−++=

2v

vv
1vv  (6.18) 

Since any adiabatic reversible process needs to be frame independent, 0=Q . Thus, eq. 

(6.15) becomes 

LQdE  += . (6.19) 

 

Eq. (6.20) specifies the direction of heat flow. Thus, the forward-directed heat in 

the moving frame must always be greater than or equal to (in the case of 1= ) the heat 

in the CMB frame. 

oQQ  = . (6.20) 

 

To determine a relativistic dependence for absolute temperature, the Clausius 

inequality for cyclic reversible processes, eq. (6.21), in addition to the stipulations in eq. 

(6.22) for a smooth continuous function for temperature, are needed. 

0=
o

o

T

Q
 (6.21) 

( ) ( ) ooo TTTTTT ==
→

v,lim        ,        v,
0v

 (6.22) 

This yields the Ott [17], Arzelies [18] and Møller [19] result of relativistic temperature 

inflation: 

oTT =  (6.23) 

From Figure 6.1, it is clear that in the Earth frame ( )410~ − , the directional and 

absolute temperatures of the CMB are effectively indistinguishable. However, at ultra-

relativistic velocities, the difference becomes considerable.  
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Figure 6.1: Absolute Temperature and Directional Temperature (θ = 0) of the CMB versus Speed. 

 

 

6.4       Relativistic Aberration of the CMB 

 

The CMB will also be relativistically aberrated. Doppler Boosting (the increase of 

the CMB intensity) is confidently expected. For an object moving at proper speed β, the 

CMB intensity in the moving frame I , in terms of the CMB intensity in the CMB frame 

o
I , is given by 

( )
( )

( )  3
cos1

−
−= 









o
I

I
. (6.24) 

 

where ( ) cos1−  is the Doppler Factor D, and θ is the angle between the proper 

velocity and the direction of observation.  
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Therefore, the ratio of the total intensities can be calculated by determining the 

surface integral through the forward-directed solid angle (2π). 

( )  −= 
−

d
I

I

So

3
cos1 



  (6.25) 

 

This results in 

( ) ( )








−

−−+
=

1

211

2

1
2

o
I

I
. (6.26) 

 

Treating the CMB as an isotropic blackbody, the flux density 
o

F  through a 

spherical Gaussian surface is 
o

I . This cancels with the π factor that emerges from the 

azimuthal component of the solid angle integration. Expectedly, =
→

o
I

I





 1
lim  and 

1lim
0

=
→

o
I

I






. A plot of eq. (6.26) is shown in Figure 6.2. 

 

 

Figure 6.2: Plot of 
o

II 
 for the CMB versus speed. 
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6.5       Summary 

 

Since the relativistic motion of an ideal fluid is not directly relevant to the CMB, 

the stress-energy tensor has been rewritten by means of the occupation number. The 

inflation of heat and temperature from their rest frame values by the Lorentz factor is 

supported. Additionally, Doppler boosting at ultra-relativistic speeds is significant. 

Consequently, the CMB is manifested as a relativistically aberrated, velocity-dependent 

heat bath in the direction motion.  
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CHAPTER SEVEN  

 

White Holes as the Asymptotic Limit of Evaporating PBHs 

 

This chapter published as: J.S. Lee and G. B. Cleaver, “White holes as the asymptotic 

limit of evaporating PBHs”, International Journal of Modern Physics A, Volume 31, 

Number 30, 24 October 2016. 

 

 

7.1       Introduction 

 

The Hawking radiation spectrum of a PBH with a Schwarzschild radius in the 

attometer (10-18 m) range is awash with p , p , 
e ,  ,  , and  . Particles of a 

surrounding radiation field, incident upon the PBH, will interact with the expelled 

Hawking radiation and form an accretion cloud of high opacity.  

This chapter provides an overview of the Hawking spectrum of a PBH and the 

interactions between incident fermions and each of the emitted particle species. 

Significant analyses of the interactions have been done and are described in the literature. 

 Although the Hawking radiation is not self-interactive and does not itself form an 

accretion cloud, the scattering and particle annihilation that occurs from incident 

fermions does result in a highly opaque accretion cloud through which particles with 

energies comparable to the PBH’s mass energy cannot retain sufficient energy to have a 

high absorption probability. It is shown that when extrapolated to Planck-sized PBHs, the 

absorption probability, although extremely negligible, is non-zero. Consequently, Planck-

sized PBHs can approximately mimic white holes’ zero-absorption characteristic, but 

they do not achieve it. Thus, in terms of absorptivity, white holes are the asymptotic limit 

of evaporating PBHs. 
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7.2       Evaporation Times of a PBH 

 

The classical evaporation time tev, of a Schwarzschild black hole with initial 

Schwarzschild radius 
osR  and initial mass Mo, obtained from solving 

dt

dM
cP 2−=  (using 

classical Hawking power) and expressed in MKS units, is 

 

4

3

0

25120

c

MG
t N
ev 


= . (7.1) 

 

Since, 

2

02

c

MG
R N

So
= , (7.2) 

 

therefore, 

N

S

ev
G

Rc
t



32

0
640

= , (7.3) 

 

where NG  is the Newtonian Gravitation Constant (6.6738×10-11 m3∙kg-1∙s-2). 

However, significantly shorter evaporation times are calculated when particle 

production is considered. Crane and Westmoreland [86] have calculated the approximate 

range of evaporation times to be 

( )
( )

( )33

2

4

0

33

2

4

0

0

0 675 YY ss

HN

evss

N

RR
TafG

c
ttRR

aG

c
−−− , (7.4) 

 

where 
YsR is the Schwarzschild radius of a reference PBH (taken to be 0.6 am) with an 

evaporation time of ot (calculated to be one year), a is the radiated power constant     

(1.06 × 10-20 W∙m2), and ( )
0HTf  is a numerical function accounting for particle 
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production [43]. In supersymmetric, and beyond the standard model (BSM) in general, it 

has been postulated that ( )
0HTf  ⪅ 100. 

 

 

Figure 7.1: Life expectancy vs. initial Schwarzschild radius for a PBH showing the classical and particle 

production life expectancies. 

 

Therefore, the classical evaporation time calculation exaggerates a PBH’s life 

expectancy by 2-3 orders of magnitude. The relevant data is shown in Table 7.1, Figure 

7.1, Table 7.2, Table 7.3, and Table 7.4.  
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Table 7.1. Schwarzschild radius in attometers, mass in megatons, temperature in gigaelectron-volts, power 

(petawatts), evaporation rate (kg/s), evaporation time (years), power per unit mass (petawatts per megaton) 

for PBHs. The results shown here are in accord with Crane and Westmoreland [86]. 

RS (am) M (MT) kBT (GeV) P (PW) P/c2 (kg/sec) L (years) P/M (PW/MT) 

0.16 0.108 98.1 5519 61.4 0.04 51101.85185 

0.3 0.202 52.3 1527 17 0.12 7559.405941 

1 0.673 15.7 129 1.43 5 191.679049 

1.5 1.01 10.5 56.2 0.626 16-17 55.64356436 

2 1.35 7.85 31.3 0.348 39-40 23.18518519 

2.5 1.68 6.28 19.8 0.221 75-80 11.78571429 

3 2.02 5.23 13.7 0.152 131-140 6.782178218 

6 4.04 2.62 3.26 0.0362 1042-1177 0.806930693 

7 4.71 2.24 2.36 0.0262 1661-1903 0.501061571 

10 6.73 1.57 1.11 0.0123 4843-5783 0.164933135 

 

MacGibbon [43] has calculated the fractions of total flux, total power, and kinetic 

energy transported by each particle species. 
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Table 7.2. Fractions of total power transported by the emitted species, including statistical errors [43]. 

T (GeV) Total Power pp  e± γ   

0.3 PTOT = 2.17 ± 0.05 × 1023 s-1 10.23% 20.65% 23.09% 46.03% 

 (% of PTOT) (±0.31%) (±0.47%) (±0.51%) (±0.99%) 

      

 Jet Products 10.23% 11.18% 21.37% 30.35% 

 (% of PTOT) (±0.31%) (±0.94%) (±0.64%) (±1.34%) 

      

1 PTOT = 3.03 ± 0.05 × 1024 s-1 8.79% 20.19% 24.14% 46.89% 

 (% of PTOT) (±0.19%) (±0.30%) (±0.35%) (±0.66%) 

      

 Jet Products 8.79% 12.14% 22.20% 32.15% 

 (% of PTOT) (±0.19%) (±0.46%) (±0.42%) (±0.69%) 

      

10 PTOT = 3.56 ± 0.09 × 1026 s-1 11.22% 18.71% 24.73% 45.33% 

 (% of PTOT) (±0.20%) (±0.23%) (±0.25%) (±0.43%) 

      

 Jet Products 11.22% 12.13% 23.12% 32.86% 

 (% of PTOT) (±0.20%) (±0.59%) (±0.34%) (±0.71%) 

      

50 PTOT = 9.79 ± 0.28 × 1027 s-1 11.36% 18.79% 24.77% 45.08% 

 (% of PTOT) (±0.21%) (±0.30%) (±0.41%) (±0.92%) 

      

 Jet Products 11.36% 12.37% 23.26% 33.75% 

 (% of PTOT) (±0.21%) (±0.53%) (±0.50%) (±1.22%) 

      

100 PTOT = 3.91 ± 0.12 × 1028 s-1 11.10% 18.93% 24.70% 45.27% 

 (% of PTOT) (±0.17%) (±0.19%) (±0.25%) (±0.52%) 

      

 Jet Products 11.10% 12.37% 23.22% 24.52% 

 (% of PTOT) (±0.17%) (±0.44%) (±0.36%) (±0.84%) 
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Table 7.3. Fractions of total flux transported by the emitted species, including statistical errors [43]. 

 

     T (GeV) Flux pp  e± γ   

0.3 TOTN = 1.13 ± 0.02 × 1024 GeV-1∙s-1 1.75% 20.62% 20.33% 57.30% 

 
(% of TOTN ) (±0.04%) (±0.23%) (±0.23%) (±0.49%) 

      

 Jet Products 1.75% 18.24% 19.89% 52.69% 

 
(% of TOTN ) (±0.04%) (±0.27%) (±0.25%) (±0.55%) 

      

1 TOTN = 1.05 ± 0.01 × 1025 GeV-1∙s-1 1.75% 20.15% 20.89% 58.20% 

 
(% of TOTN ) (±0.03%) (±0.14%) (±0.15%) (±0.31%) 

      

 Jet Products 1.75% 18.89% 20.35% 54.13% 

 
(% of TOTN ) (±0.03%) (±0.16%) (±0.16%) (±0.37%) 

      

10 TOTN = 3.89 ± 0.08 × 1026 GeV-1∙s-1 2.18% 19.62% 22.19% 56.01% 

 
(% of TOTN ) (±0.03%) (±0.13%) (±0.14%) (±0.28%) 

      

 Jet Products 2.18% 19.25% 22.00% 44.06% 

 
(% of TOTN ) (±0.03%) (±0.13%) (±0.20%) (±0.29%) 

      

50 TOTN = 4.28 ± 0.09 × 1027 GeV-1∙s-1 2.30% 19.64% 22.09% 55.97% 

 
(% of 

TOTN ) (±0.02%) (±0.09%) (±0.09%) (±0.19%) 

      

 Jet Products 2.30% 19.49% 22.02% 55.59% 

 
(% of 

TOTN ) (±0.02%) (±0.09%) (±0.10%) (±0.19%) 

      

100 TOTN = 1.12 ± 0.03 × 1028 GeV-1∙s-1 2.37% 19.63% 23.13% 55.88% 

 
(% of 

TOTN ) (±0.02%) (±0.09%) (±0.10%) (±0.21%) 

      

 Jet Products 2.37% 19.50% 22.07% 55.59% 

 
(% of 

TOTN ) (±0.02%) (±0.44%) (±0.11%) (±0.21%) 
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Table 7.4. Average kinetic energies in GeV of the emitted species, including statistical errors [43]. 

 

T (GeV) pp  e± γ   

0.3 0.190 0.192 0.219 0.155 

 (±0.001) (±0.001) (±0.001) (±0.001) 

     

1 0.515 0.289 0.335 0.238 

 (±0.001) (±0.001) (±0.001) (±0.001) 

     

10 3.781 0.872 1.021 0.741 

 (±0.001) (±0.002) (±0.001) (±0.001) 

     

50 10.340 2.187 2.565 1.843 

 (±0.023) (±0.009) (±0.013) (±0.018) 

     

100 15.450 3.367 3.899 2.829 

 (±0.040) (±0.006) (±0.005) (±0.012) 
 

 

A convincingly comprehensive discussion of the thermal nature of the Hawking 

flux has been offered by Visser [87]. 

 

7.3       PBH Absorption of Incident Radiation 

 

Neglecting any interaction with Hawking radiation, the de Broglie wavelength of 

an incoming particle needs to be comparable to the Schwarzschild radius, in order to have 

a significant probability of being absorbed by a PBH. For a wavelength of, for instance, 1 

am, this corresponds to an energy of 1.24 TeV.  

Absorption probabilities are being considered in the rest frame of the PBH near 

(and specifically outside of) the event horizon. This follows from the WKB 

approximation approach used (and discussed) by R. Sini and V. Kuriakose in [88] and by 

R. Sini, N. Varghese, and V. Kuriakose in [89]. The discussion here is based on this 

approach also. The non-relativistic Planckian spectrum is given by 
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


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12
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2

Tk

hc

hc
TB

B




, (7.5) 

where kB is the Boltzmann Constant. 

For the G-type star and a 1 am PBH, ( )( ) 12

m 10
10K 5778log 18 −− TB . Of the 

approximately 1062 photons emitted to date by the sun, confidently, none have had 

sufficiently short wavelengths to be absorbed by a PBH. From Wien’s Law, the 

temperature required to emit radiation dominated by 10-18 m photons is approximately 

1015 K; the CMB was at this temperature during the Quark Epoch of the Radiation Era 

(10-10 s after the Big Bang).  

Since the electric charge of an attometer-sized PBH would be radiated away in a 

time that is much shorter than the evaporation time [90], the Schwarzschild metric is 

apropos. Additionally, if fermions are considered as the particles incident upon the 

horizon of a PBH, the relativistic particle shower in which the PBH would be engulfed, 

would constitute a high intensity Dirac field. 

 

7.3.1 The Dirac Field in Schwarzschild Spacetime 

 

For convenience and clarity, 1=== Bkc . The Schwarzschild metric, in 

spherical coordinates, is given by 

22222
2

22 sin
1

1

1
1  drdr

r

dr
dt

r
ds −−









−

−







−= . 

(7.6) 

 



106 

 

The Schwarzschild horizon is located at 1=r  (the location of the singularity). For 

incident particles, the relevant region for absorption is 1→r . In curved spacetime, the 

Dirac equation is 

 

( )( ) 0=++  

 mDei a

a
, (7.7) 

 

where 
ab

abi
D 

4
−=  is the covariant derivative for fermion fields, 



ae  is the 

vierbein given by eq. (7.8),  baab

i
 ,

2
=  is the commutator of the Dirac matrices, and 

ab

  are the spin correction components. 
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rf

rrf

rrf

f

ea  (7.8) 

 

Eq. (7.9) specifies the spin. 

  


  ;,
2

1
ba

ba ee= , (7.9) 

where a are the Dirac matrices, 



 bbb eee −=;  is the covariant derivative of be , 

and 


  are the Christoffel symbols.  

It can be shown that the Dirac radial equation for a spherically symmetric solution 

of a stationary spacetime metric is 
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where G is the fermion field function. From 2f = : 
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Using the convenient substitution drdx
2

1



+
=  and the relationship 




 = , the inverse 

of the vierbein 


ae  is [88] 
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. (7.12) 

 

( )G  (the radial wave function), obtained through the WKB approximation, 

contains wave functions for both the incident and reflected waves. For 1~r  (i.e., in the 

purlieu of the horizon), the interference between incident (the first term in eq. (7.13)) and 

reflected (the second term in eq. (7.13)) waves is: 

( )( ) ( )( ) ( )( )1lnexp1lnexp −+−− riRrirG   (7.13) 

  

After completion of a 2π rotation in the complex z-plane, ( )G  attains the value 

( )( ) ( )GrG  2,  on its Riemannian surface.  
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( ) ( )( ) ( )( )1lnexp1lnexp~2, −+−− ri
R

rirG 


  (7.14) 

 

where R  is the reflection coefficient, and ( )exp 2 1 = −  . Thus,  

( )exp 2R  = = − . Since the wave will either be reflected or absorbed, therefore, 

ref abs 1P P+ =  and 
2

ref RP = , and thus, ( )abs 1 exp 4P = − − . Greater detail can be found 

by consulting [88]. In terms of the Hawking temperature, 
HT , the absorption probability 

becomes 









−−=

HT
P


exp1abs

, (7.15) 

 

where ε is the energy of the re-inflating particles.  

 

Figure 7.2: Plot of reflection & absorption probabilities as a function of energy for fermions incident upon 

a 100 GeV PBH. The reflection and absorption probabilities are equal when 2lnHT=  (about 70 GeV for a 

100 GeV PBH). 

From Figure 7.2, it is desirable that incident fermions arbitrarily have an energy 

of at least 5 B Hk T  and therefore, an absorption probability of 0.9933.  
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7.3.2 Position Uncertainty: The Effect on Absorption Probability 

 

If an incident fermion field of nearly infinite pseudorapidity is considered, the 

Heisenberg Uncertainty Principle, 
2


DpDx  (where   is the reduced Planck’s 

constant), significantly increases the required energy of the incident fermions for a given 

absorption probability. If the incoming fermions have an uncertainty in position of, for 

instance, SR1.0 , the corresponding uncertainty in energy is HB

S

Tk
R

c
DE 20

5
==


. For a 1 

attometer PBH, this corresponds to TeV 1~ .  

In this scenario, in order to have a low reflection probability (< 0.1), incident 

fermions would need to have a minimum of ( )20 5 ~ 67.8B H B Hk T k T + . For a reflection 

probability < 0.01, the required energy is 633.3 B Hk T . For a 100 GeV PBH, the incident 

fermion field would need an average energy of TeV 63~  which is two orders of 

magnitude greater than the rest energy of the PBH4. 

 

7.3.3 Incident Fermion Flux: Non-interaction 

 

Clearly, if a PBH were to increase in mass, the rate of energy absorption from 

incoming particles must exceed the energy loss rate by Hawking radiation. In the simplest 

approximation, the interaction between the incident radiation field and the Hawking 

radiation was neglected. However, this simplistic approach significantly underestimates 

the fermion energy requirement for absorption due to energy losses sustained from 

scattering and particle annihilation.  

 
4 This is approximately four times greater than the upper limit of the current energy capability of 

the Large Hadron Collider (LHC). 
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7.3.4 Incident Fermion Flux: Interaction 

 

The non-interaction model for determining the minimum necessary flux for a 

PBH to retain its mass does not account for particle-particle interaction between the 

outgoing Hawking radiation and the incoming radiation field. The most elementary 

approach to particle interaction is to treat the entire Hawking radiation spectrum as 

photonic. However, the instantaneous Hawking radiation is composed of pp , e , γ, and 

 , each particle species contributing substantially to the emergent flux and total power.  

A black hole with angular velocity Ω, electric potential V, and surface gravity  , 

which emits particles of spin s, charge q, axial quantum number n , absorption 

probability s , has a particle emission rate for particles with energies between E and E + 

dE, per degree of particle freedom given by: 

 

( )
1

2
1

2/
exp

2

−









−−







 −−
=

ss

c

qVnEdE
N

 




  (7.16) 

 

Since for a PBH, the electric potential goes to zero very rapidly, and most of its lifetime 

is spent with 0= , eq. (7.16) strongly resembles the thermal emission of a blackbody.  

Photons, massless neutrinos, and very low mass neutrinos contribute very high 

Hawking fluxes at all PBH temperatures. Often, these particles are considered to tunnel 

quantum mechanically through the event horizon [91]. More specifically, virtual particle 

pairs are being spontaneously produced, by the gravitational field, in the region of the 

event horizon [92]. Particle annihilation is prevented if the virtual pair’s wavelength (i.e., 

the separation of the particles) is approximately the Schwarzschild radius. The observed 

thermal radiation of a black hole is actually a positive-energy particle escaping to infinity 
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after a classically prohibited negative-energy particle quantum mechanically tunnels 

through the event horizon to the black hole’s interior.  

The exponential dependency of N  on the energy assures some contribution of 

massive species at all energies. A black hole will conserve all of the associated quantum 

numbers because it acts as a source of any massless gauge group [93], including the 

SU(3) color gauge field; thus, the emission of both Strongly Interacting Massive Particles 

(SIMPs) and Weakly Interacting Massive Particles (WIMPs) is expected for temperatures 

beyond several hundred MeV.  

With the obvious exceptions of pp and e , massive particles are stable only on 

non-astrophysical timescales, which are nonetheless significantly longer than the time 

required to travel to the region where they would interact with the incident radiation. For 

instance, a neutron emitted from a 100 GeV PBH, has a lifetime of approximately 1 day. 

MacGibbon [43] has shown that when the decay of primary particles is considered, eq. 

(7.16) becomes 

( )
( )
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−
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, (7.17) 

 

where 
( )

TOT

TOT

TOTjX
dE

dE

EEdg ,
 is the relative number of particles of species X possessing 

energy ETOT that are created by particle j with energy E, and 
TOTdE

Nd X


 is the instantaneous 

flux of particles in species X. The purpose of the sum of j is to account for all energy-

carrying particle species and their concomitant degrees of freedom. 
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The de Broglie wavelength B  of an interacting particle (hence its effective 

“size”) emitted with an energy equal to the Hawking temperature, is 
28 SR , where RS is 

the Schwarzschild radius.  If the emissions rate is greater than 
B

c


, interactions between 

emitted particles, irrespective of their species, would be expected. Consequently, a PBH 

would be surrounded by a high-density/high-opacity accretion cloud in the region 

surrounding the event horizon.  

However, Oliensis has shown that less than 0.1% of the emitted particles in the 

lifetime of a PBH are interacting [94]. Therefore, a PBH’s emitted particles are not self-

interacting as a result of short-range forces prior to fragmentation. Furthermore, color is 

irrelevant to the short-range propagation of emitted particles. Thus, a dense cloud of 

emitted particles does not surround the PBH. 

Additionally, relativistic jets of emitted particles are fragmented as a result of qq

pairs produced in the region 1~r  of the PBH, with one quark tunneling back to the 1r  

region. The color field lines connecting the quark and anti-quark, located in the 1r  and 

1r  regions, are compressed into a “conduit-like” length of spacetime. If there is 

constant linear energy density in the interior of the conduit, the potential energy between 

the quarks is proportional to their spatial separation. As their separation increases, the 

potential energy also increases to the value required to produce another qq  pair, and the 

color conduit is hewn into two approximately equal length color conduits. This process 

will continue until the quark and gluon kinetic energies drop below the fragmentation 

threshold, at which point, color coupling will dominate. This signifies the end of 
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fragmentation and the commencement of hadronization (the grouping of particles into 

color-singlet states) [95]. 

If an intense field of relativistic protons is incident upon the horizon of a PBH, 

multiple interactions with Hawking radiation will occur. Examined here are +p , 

ppp + , p e+ , and +p  collisions, and their likely effect on the net flux of subsequent 

incident fermions. While an incident radiation field of any particle species could be 

considered, protons are selected, and their interactions with all of the emergent Hawking 

species are described. 

Although neutrinos are often treated as non-interacting particles, neutrino-

annihilation, neutrino-absorption, and neutrino-nucleon scattering can, in varying 

degrees, all be confidently expected at the energy levels considered here. Although the 

formation of an accretion cloud of emitted Hawking particles is not expected, an 

accretion veil, resulting from the interaction with incident fermions, is anticipated.  

 

7.3.4.1.   Absorption.  Nucleonic absorption of neutrinos and anti-neutrinos 

results in momentum and energy transfers to the nucleons. Kneller et al. have determined 

the neutrino-antiproton and neutrino-neutron absorption cross sections to be [96]: 
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where Ag  and   are the axial-vector coupling constant and the neutron-proton mass 

difference respectively, and MW  and M
W  are the two weak magnetism corrections [97] 

given by 

n

M
m

E
W 1.11+=  (7.20) 

n

M
m

E
W 1.71−= . (7.21) 

 

The rates of total momentum and energy transfer from neutrinos materializing at 

( ),  , 
( )abs

F  and 
( )abs

W  respectively, per particle, to all nucleonic particles at position 

( ),r z  are 

( )   ( )
( ) ( )absabs ,

4

,ˆ cosˆ cossin NES
Erb

dEkidF 


 


  +−=  (7.22) 

( ) ( )
( ) ( )absabs ,

4

,
NES

Erb
dEdW 


 

 = , (7.23) 

 

where ( ),b r E   is the differential neutrino flux per unit area that derives from radial 

coordinate r  in the frame of the accretion disk. 

The momentum transfer occurs in the k̂   direction. The basis vectors 

transformations are 

kjii ˆ sinˆ cossinˆ coscosˆ  −−−= , (7.24) 

jij ˆ cosˆ sinˆ  −= , (7.25) 

and  

kjik ˆ cosˆ sinsinˆ cossinˆ  +−−= . (7.26) 
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7.3.4.2.   Annihilation.  The energy density deposition rate 
dV

dL  , for the 

annihilation of neutrino-antineutrino pairs into electron-positron pairs, is independent of 

the polar angle.  
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where ( ),b r E   is the differential neutrino flux per unit area that emerges from radial 

coordinate r  in the frame of the accretion disk.  v vE E    −  is a Lorentz 

invariant, which is most easily determined in the center of mass frame of the accretion 

disk, and then articulated in terms of s, the Mandelstam variable. 

Herrera et al. have calculated the annihilation cross section, which allows eq. 

(7.27) to be evaluated [98]. 
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where 
21

2sin
2

V WC = + , 
1

2
AC = , 

2 2

4

4 F e
o

G m



= , and 

1cos W
W

Z

m

m
 −=  is the Weinberg 

Angle. ( ) ( ) ( ), secv vS a r r a       = − + −  and 

( ) ( ) ( ), secS a r r a         = − + −   are the corrections to the neutrino and 

antineutrino differential number fluxes per unit area, respectively and which account for 

neutrino and antineutrino trapping occurring within the optically thick and optically thin 
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zones of the disk.   is the Heaviside function, and a  and a  are the neutrino and 

antineutrino radial boundaries, respectively.   

For stellar mass black holes, a and a  have values from several 10s to several 

100s of km [96]. Due to the significantly smaller radial boundaries in a PBH, neutrino 

and antineutrino trapping within the accretion disk is expected to be greatly reduced, and 

the contributions of ( ),S     and ( ),S     are likely inconsequential. 

 

7.3.4.3.   Scattering.  Momentum and energy transfer, due to the scattering of 

neutrinos and antineutrinos by protons within the incident fermion field, are given by 
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The mass of the scattered particle, in this case a proton, is M. The neutrino is 

scattered at angle   , measured with respect to basis vector k̂   (see Figure 7.3). The 

momentum transfer is always independent of the mass of the scattered particle and is 

approximately equal to the neutrino energy.  

In the event that M E , the energy transfer is negligible. However, as Table 

7.4 shows, the energy of emitted neutrinos and antineutrinos for a 100 GeV PBH is 2.829 
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GeV (~3 times the proton rest mass). Consequently, the energy transfer from   

scattering is not insignificant. 

The differential cross section for neutrino-proton scattering is [99]: 
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where 
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Figure 7.3: Basis vectors, distances and angles for neutrino absorption and scattering. The singularity is at 

the origin. Rout and Rin refer to the outer and inner accretion disk radii respectively. i' is within the same 

plane as θ. [96] 

 

 

7.3.4.4. Critical Density.  It is clear that the energy deposition resulting from 

neutrino-antineutrino annihilation into electron-positron pairs, as well as the scattering of 

neutrinos, will impede the flux of nucleons inbound to the PBH. Fryer & Mészáros [100] 

suggest the following approach to the problem of a differential mass element, beginning 
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at infinity, approaching a stellar mass black hole. This approach is also valid for a 

fermion field incident upon a PBH. A region of the field with density   will experience 

a gravitational force gF . It will further experience a force resulting from neutrino 

annihilation F  and from both scattering and absorption F .  

Since the fermion field emerges from infinity (i.e., 1r ), the change in a mass 

element’s kinetic energy between infinity and a height z is 

( ) ( )


++=
z

g FFFdzzv  2

2

1
. (7.32) 

 

The gravitational force is 

2

SK

z

MG
F N
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The force responsible for the neutrino-antineutrino annihilation acceleration is 

dV

dL

c
F 



1
= . (7.34) 

 

The force responsible for the acceleration due to both neutrino-antineutrino scattering and 

absorption is 

( )( ) ( )( ) ( ) eeeppppnnnn FFnFFFnFFFnF +++++++= absabs
, (7.35) 

 

where in  are the number densities. In the case of atomic matter falling into a black hole, 

p en n=  and ( )n p un n m = + ; um  is the atomic mass unit.  

Fryer & Mészáros [100] introduce a neutron fraction, Y, given by 
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Consequently, eq. (7.35) becomes 
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where nF , pF  and eF  are the total momentum transfer rates.  

Since GF  and F  are functionally dependent on  , there must exist a value of 

0 =  at which 
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If 0  , an incoming mass element will be ejected at a height greater than z. If 

0 = , an incoming mass element will be ejected at z. However, if 0  , the mass 

element will continue past z. Kneller et al. [96] have named the maximum value of 0 , 

the critical density  . 

Material with a density greater than the critical density cannot be neutrino- or 

antineutrino-ejected at any value of z and is therefore accreted into the black hole. 

In the case of a proton radiation field, incident upon a PBH, 0n eF F= = , 1pF = , 

and 0Y = . Eqs. (7.37) and (7.39) reduce to 
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respectively. Using the Schwarzschild radius and infinity as limits of integration 

guarantees that p  and p  interactions will not prevent protons from being accreted 

into the PBH. Thus, 
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7.3.4.5. pp and pp  Scattering.  An intense fermion radiation field will strongly 

resemble a highly collimated, incident beam of nearly infinite pseudorapidity protons, 

and will undergo hard scattering with the protons emerging as Hawking radiation. Since 

the effective radius of all of these protons is less than the Schwarzschild radius (and 

much less than the classical proton radius), the interaction is best represented as collisions 

between the constituent partons.  

The cross-section calculation consists of terms containing the partonic scatter 

cross section ̂ , and the parton density functions pif , , and is given by [101] 
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( ) ( ) ( ) ( )22

21

2

2,

,

2

1,21 ,,ˆ,, FRXijFpi

ji

Fpi sxxxfxfdxdxXpp  →=→ . (7.43) 

 

The sum over i and j is to account for all initial-state partons with longitudinal 

momentum fractions 
1x  and 

2x , capable of giving rise to the final state X whose center 

of mass energy is sxx 21 . 
2

R  and 
2

F  are the factorization scales, which are recovered 

from truncations of the expansion of the strong coupling constant, and which yield 

universal parton densities at a given resolution.  

Parton-parton scattering is arguably by far, the most frequent hadron collision 

process that would occur between a fermion radiation field and Hawking radiation 

protons. Shortly after being collisionally created (and in many cases, prior to reaching the 

horizon), hard partons would continuously radiate low-energy collinear gluons as a 

parton shower.  

If a high energy scattering of two protons occurs at a significant distance from the 

event horizon of the PBH, the emitted high-energy parton will reach distances from the 

proton constituents which are much larger than the constituents’ effective radii; as a 

result, an increase in the QCD force would occur. Radiation of continuously softer 

gluons, at small angles relative to the initial parton, will likely continue.  

When this occurs in a weak gravitational field (i.e., at 1r ), eventually, a non-

perturbative transition would form color-neutral hadrons as a result of parton binding. A 

reasonably well-collimated hadron jet would ensue; its total energy and momentum 

would be comparable to the original scattered parton. If this process remains applicable in 

the vicinity of the horizon (i.e., 1→r ), then relatively little energy loss by incoming 

protons would be expected. Most of the incident energy would be transported by the post-
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hadronisation hadronic jet. The acollinearity effect resulting from the emission of soft 

gluons reduces the probability of further collisions. However, if the extreme gravitation 

gradient in the 1→r  region prevents parton binding, and consequently color-neutral 

hadrons do not form, an uncollimated parton shower could be accreted in the spacetime 

region surrounding the horizon. 

The Compact Muon Solenoid experiment at the LHC produced hadron collisions 

with a double-differential inclusive jet cross section between approximately 10-2 and 107 

pb/GeV for ( )200 GeV 1000Tp  , 
-134 pbL = , 7 TeVs = , and 5.15625.2  y  

[101].  

The scattering picture for proton-antiproton collisions is exceptionally similar. 

The collision cross section is: 

( ) ( ) ( ) ( )22

21

2

2,

,

2

1,21 ,,ˆ,, FRXijFpi

ji

Fpi sxxxfxfdxdxXpp  →=→ , (7.44) 

 

In low-gravity environments, the cross sections for proton-antiproton collisions 

with s  ≳ 100 GeV are approximately equal [102]. Low energy ( s ⪅ 10 GeV) 

proton-proton collisions have cross sections which are 2-3 times smaller than equivalent-

energy proton-antiproton collision cross sections.  

 

7.3.4.6. pe
 Scattering.  The above-discussed proton field will experience deep 

inelastic scattering with Hawking radiation electrons and positrons. This results in 

electron-quark fusion creating resonance peaks in the electron-proton collision cross 

sections, and potentially, hypothetical scalar leptoquark (LQ) isodoublet production. 

Considered here is the reaction: 
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e q LQ + → + , (7.45) 

which comes from 

e p LQ X + → + + , (7.46) 

 

in which the LQ interacts with only the first-generation fermions. 

The integrated cross section of the electron-proton collision is determined by 

convoluting the differential cross sections of the hard subprocesses with the related 

parton density functions [103]: 
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where q is a constituent quark of a targeting proton, ̂  is the cross section of eq. (7.46), 

( )2,q x Q  is the quark distribution function, the 4-momentum transfer scale is 
2 ˆQ s= , 

ŝ xs= ,   is the photon emission angle relative to the proton beam, and ( )cuts ,E   

accounts for the necessary kinematical cuts. Since eq. (7.45) is infrared divergent, 

00   EE . 

A Monte Carlo simulation with 
0 1 GeVE =  (equivalent to the e  energy radiated 

from a 10 GeV PBH), a photon emission angle cut of 
min max

      , a center of mass 

energy of 1740 GeV (corresponding to a 7.6 TeV proton beam), an electron energy of 

100 GeV (much greater than the e  energy radiated from any considered PBH), and an 

integrated luminosity of 1 fb-1 [103] does not imply that the formation of leptoquarks 

would dissipate significant energy of incident protons. Even less proton field energy 
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should be dispelled toward leptoquark formation when incident upon a 100 GeV PBH 

because the center of mass energy for a ~7.6 TeV proton field would be ~320 GeV. 

 

7.3.4.7. p  Scattering.  p  scattering in the vicinity of a PBH is likely to be 

diffractive and in the form of p X → . Perturbative calculations of the scattering cross 

section at large t and extreme energies ( )2 2

QCDW t    exceed the 
J


 

photoproduction cross section and are therefore considered here. The complete scattering 

cross section is [104] 
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where the amplitudes ( )++ ,A  and ( )−+ ,A  are 
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Saddle point approximations for eqs. (7.49) and (7.50) yield 
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 
, (7.54) 

and ( )  is the Riemann zeta function; t is the squared momentum transfer. A more 

detailed explanation can be found in [104]. A Vector Dominance Model numerical 

simulation performed by Ivanov and Wusthoff [104] showed 

( )
( )-27.5 exp 5.3  GeV

d
nb t

dt

 
 − . (7.55) 

 

For the case of Hawking photons emitted from a 100 GeV PBH which scatter off 

an incident 2 TeV proton field, extrapolation of the Ivanov and Wusthoff simulation data 

yields a cross section of approximately 8.2 pb. If a 7.6 TeV proton field (as considered in 

the p  Scattering section) is incident, the cross section is approximately 3.6 pb.  

7.3.4.8. Interaction Summary.  The above analyses of interaction processes and 

scattering cross sections of incident fermions and PBH Hawking radiation have 

phenomenologically shown scattering cross sections that are significantly smaller than 

the available Schwarzschild targeting cross section ( )24 SR . For TeV proton fields 

incident upon a 100 GeV PBH, the Schwarzschild targeting cross section is four orders of 

magnitude larger than the proton-gamma-ray interaction cross section.  
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However, Hawking particle fluxes range from 1026 – 1028 GeV-1∙s-1 for a 100 GeV 

PBH (Table 7.3). If equivalent incident fluxes are isotropically distributed across 2π sr of 

the horizon, the interaction cross section can increase volumetrically by as much as 26-28 

orders of magnitude, yielding a “volumetric” cross section of potentially 100 Tb - 10 Pb. 

In this event, a [relatively] enormous accretion cloud would surround the PBH. The 

approximately equivalent stellar scale would be an accretion disk 30,000 AU - 300,000 

AU in radius surrounding a 10M☉ black hole5. 

 

7.4       Extrapolation to Planck-scale PBHs 

 

While the flux of Hawking radiation from Planck-scale PBHs is uncertain, if a 

Hawking spectrum exists, it can be taken to consist of particles with the Planck energy 

eV 10  43.2~
8

18
5


NG

c



 . At the Planck time prior to evaporation, the PBH temperature 

is the Planck temperature K 10  42.1~ 32

2

5

=
BN

P
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c
T

 . In this context, eq. (7.15) 

becomes 
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PT
P


exp1abs

. (7.56) 

 

However, it is not entirely clear that a Hawking spectrum will exist for a Planck-

sized PBH because Hawking radiation is, of course, a semi-classically derived quantity. 

Without a full quantum approach, it is unclear whether the role of gravitons, which 

account for only ~2% of the Hawking radiation energy at the attometer scale [43], would 

 
5 These radii are the distances from the sun to the Spherical Oort Cloud and Outer Oort Cloud, respectively. 



127 

 

be significant at the Planck scale. The lack of a complete quantum theory of gravity 

precludes a definitive conclusion. 

Since no incident particles can have energy in excess of the Planck energy, the 

maximum absorption probability from eq. (7.56), discounting the interaction with 

Hawking radiation, is ( )1 exp 1 ~ 0.63− − . 

While the final evaporation state of a PBH remains unresolved, the expected time 

required for a Planck-sized black hole to evaporate is the Planck time. Therefore, only 

photons reaching the horizon at the Planck time would have a non-zero probability of 

being absorbed before total evaporation.  

Although it is unclear if Hawking radiation would be produced by a Planck-sized 

PBH, if Hawking radiation does persist until final PBH evaporation, then all particles 

reaching the horizon would first have to traverse the emergent Hawking radiation efflux 

which would likely be exclusively Planck-energy gamma rays. If the incident particles 

are fermions, then the intense parton showers from previous collisions, and energy 

dissipation from scattering and annihilation of many incoming particles would be 

expected. Thus, much of the incoming radiation, even particles with the Planck energy, 

will be subject to a reduction in energy by means of collisions and scattering with both 

the expelled Hawking radiation and the resulting quark- and gluon-rich accretion cloud. 

Therefore, in this interactive model, it is not expected that many particles could arrive in 

the vicinity of the PBH horizon with the Planck energy. 

However, even if Hawking radiation shuts down by the time the PBH reaches the 

Planck scale, and even if the sparseness of the expelled Hawking flux is significant [87] 

allowing the incoming radiation to arrive with the Planck energy, all incoming particles 
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would still be incident upon a horizon with a Schwarzschild radius rapidly approaching 

the Planck length. Therefore, even the non-interactive absorption probability would 

certainly be less than 1. Although, since the absorption probability is asymptotic toward 

zero, absorption of incident particles by the PBH cannot be entirely ruled out. Thus, even 

though relatively low energy particles have an exceedingly negligible chance of being 

absorbed by a PBH approaching the Planck scale, the absorption probability is not 

exactly zero. Consequently, for their Planck time lifetimes, Planck-sized PBHs best 

approximate white holes, in so far as their near 1 scattering probability is concerned. 

However, a totally opaque collisionally-produced accretion cloud will not occur, 

particularly if there is a cessation of Hawking radiation at the Planck length and if the 

expelled Hawking shower is sparse. Therefore, a state of “absolute whiteness” of PBHs is 

just not possible. 

 

7.5       Summary 

 

The Hawking radiation spectrum of attometer PBHs has been described, and the 

non-interactive absorption probability of incident fermions was discussed. Although the 

non-interactive absorption probability of incident fermions by a PBH is not insignificant, 

the probability of a fermion incident on the horizon being absorbed is substantially 

smaller when the interaction with Hawking radiation is considered. 

When the Schwarzschild radius of a PBH is extrapolated to the Planck length, 

even incident fermions with the Planck energy have only an extremely negligible chance 

of absorption due to any degree of opacity of the surrounding accretion cloud and the 

need to cross the intervening distance in the Planck time and be incident upon a target of 

the Planck length. Subsequently, as PBHs evaporate and their Schwarzschild radii 
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approach the Planck length, they asymptotically mimic white holes. However, the 

scattering-probability-equal-to-one characteristic of a white hole is never actually 

achieved by a PBH.  

The consequence of Hawking radiation not being emitted at the precise location 

of the event horizon of a Schwarzschild PBH [87] is unlikely to alter the upshot of the 

argument that as PBHs approach the Planck scale, they increasingly mimic white holes, 

but never actually achieve total whiteness. A more confident picture of pp , pp , pe
, 

p , and p  interactions involving quark-gluon scattering in the purlieu of the horizon 

of a Planck-sized or near Planck-sized PBH awaits further developments in Quantum 

Gravity.  
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