
ABSTRACT 
 

Hierarchical Stability Based Model Selection for Clustering Algorithms 
 

Bing Yin, M.S.C.S. 
 

Advisor: Gregory J. Hamerly, Ph.D. 
 
 

 We present an algorithm called HS-means, which is able to learn the number of 

clusters in a mixture model based on the hierarchical analysis of clustering stability. Our 

method extends the concept of clustering stability to a concept of hierarchical stability. 

The method estimates a stable model for the data based on analysis of stability; it then 

analyzes the stability of each component in the estimated model and chooses a stable 

model for this component. It continues this recursive stability analysis until all the 

estimated components are unimodal. In so doing, the method is able to handle data 

symmetry that existing stability based algorithms have difficulty with. We test our 

algorithm on both synthetic datasets and real world datasets. The results show that HS-

means apparently outperforms existing stability based model selection algorithms and is 

competitive to other often-used model selection methods. 
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CHAPTER ONE 

Introduction 

 
 

1.1 Motivation 
 
 

1.1.1 Introduction to Clustering Analysis 
 

Clustering analysis has been considered as one of the most important exploratory 

data analysis tools, which aims at sorting different objects into groups in a way that the 

degree of association between two objects is maximal if they belong to the same group 

and minimal otherwise. Given the above, cluster analysis can be used to discover 

structures in data without providing an explanation/interpretation. In other words, cluster 

analysis simply discovers structures in data without explaining why they exist. 

Clustering techniques have been applied to a wide variety of research problems 

and real world applications which are helping us in everyday life. For example, in 

psychology and medicine, clustering analysis can be used to detect patterns in the spatial 

or temporal distribution of a disease and identify different types of subcategories of a 

illness; in climate research, clustering analysis has been applied to find patterns in the 

atmospheric pressure of polar regions and areas of the ocean that have a significant 

impact on land climate; in business, clustering analysis can be used to analyze the large 

amount of information on current and potential customers by segmenting customers into 

small number of groups for additional analysis and marketing activities; in information 

retrieval, clustering techniques are widely applied as a tool for post search analysis in the 

search engine which groups the searched results into several categories for the users; in 

biology, the analysis of gene family information, gene expression information, and 
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taxonomy all find the importance of clustering analysis; in data compression, clustering 

analysis is used in image, sound, and video data compression where many of the data 

objects are highly similar to each other. In general, whenever one needs to classify a 

"mountain" of information into manageable meaningful piles, clustering analysis is of 

great utility.  

Throughout many years, researchers in statistics and machine learning have 

developed many clustering algorithms such as Hierarchical Clustering (J.H. Ward 1963), 

K-means (S.P. Lloyd 1982), Expectation Maximization (EM) (Arthur, Laird and Rubin 

1977), Fuzzy C-Means (J. Bezdek 1981), spectral clustering algorithms (A.Y. Ng, M. 

Jordan and Y. Weiss 2001) and so on. In fact, there is a large collection of clustering 

algorithms available now. We can first distinguish these various types of clustering 

algorithms by how they group the data: hierarchical versus partitional, and exclusive 

versus overlapping.  

 Hierarchical versus Partitional. A partitional clustering is a division of the data set 

into non-overlapping subsets such that each data objects belongs to exactly one 

subset. A typical example is the K-Means clustering algorithm. Hierarchical 

clustering permit clusters to have subclusters. The clusters and their subclusters 

are organized as a tree where each node is the union of its children (subclusters) 

with the root node containing all the objects in the data set. A partitional 

clustering can be obtained by cutting the tree at a particular height. The 

commonly used single linkage clustering is an example of this kind of algorithms. 

 Exclusive versus Overlapping. In exclusive clustering algorithms, one data object 

is assigned to a single cluster, for example the K-Means algorithm. In some cases 

this could be a problem because where objects could reasonably be assigned to 
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more than one cluster. The overlapping clustering algorithms solves this problem 

by allowing objects can be assigned simultaneously to multiple groups. The EM 

algorithm and the Fuzzy-Means are examples where a single data point can be 

assigned to multiple clusters. 

Different clustering algorithms also have different view of what is a cluster. 

Generally they could interpret clusters as center based, connectivity based and density 

based. In center based clustering, like K-Means, a cluster is a set of objects in which each 

object is closer to the center that defines that cluster than to the centers of any other 

cluster. In connectivity based clustering, like spectral clustering algorithms, a cluster can 

be viewed as a connected component in the graph in which each object is highly 

connected to objects within the cluster and loosely connected to objects outside the 

cluster. In density based clustering, like the EM algorithm with a mixture model, a cluster 

is a dense region of objects surrounded by a region of low density. 

Though these algorithms vary in their definition of a cluster and the way to group 

objects into clusters, most of them have a common problem: the number of clusters in the 

data should be known before running of the algorithms. Without this prior knowledge, 

these algorithms cannot find the optimal grouping of the objects in the data. In other 

words, they may result in some clusterings which are neither meaningful nor useful. As 

we walk through the details of several clustering algorithm in next chapter, this problem 

will be clearer. At this point, we can understand this problem in the following way. 

Clustering algorithms work in this way: you must first tell the algorithm to look for k 

clusters in the data. Then the algorithm analyzes the data set and groups the objects into k 

clusters according to its definition of cluster and its strategy of grouping objects into 

clusters. The algorithm cannot discover how many clusters are really in the data. It will 
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just return k clusters you tell it to look for. The wrong k will result in a clustering of bad 

quality. For example, if the data set contains four clusters but the algorithm is given the 

order to look for five clusters, the resulting clustering would not be the best clustering for 

the data set. We are using clustering algorithms because we want get a useful and 

meaningful grouping of the data. If the returned clustering is meaningless or useless, why 

do we waste the resources on clustering algorithms? So giving clustering algorithms the 

right k is a critical part in the application of clustering algorithms.  Figure 1 shows 

examples where k has been improperly chosen. 

 
Figure 1: Two Clusterings Where k Was Not Properly Chosen. The crosses represent 
cluster centers. The data contains four clusters. In figure 1.a, there are too few clusters 
used, and in figure 1.b there are too many clusters used. 
 

Here is a problem: how do we know the number of clusters beforehand? In some 

cases, we can use the domain knowledge or some expert guess to obtain this information. 

However, in most cases, the information is unavailable. Automatically selecting the right 

number of clusters in the data is often referred as the model selection problem for 
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clustering algorithms. Unfortunately, despite the fact that clustering algorithms have been 

thoroughly researched, the model selection problem remains a challenging issue for data 

clustering. Though, many ideas have been proposed, but all of them have limitations and 

neither of them works perfectly. 

 
1.1.2 Introduction to Model Selection 
 

Model selection is originally a term widely used in statistics, which aims at 

selecting a statistical model that best fits the given data from a set of potential models. 

This is a more general view of model selection. In clustering algorithms, researchers 

often use model selection to refer to the task of automatically selecting the number of 

clusters (k) which best fit the given data. Though some times other parameters of the 

clustering algorithms such as the centers of clusters and membership of the objects to the 

clusters are also included in the model selection, most of the time this term focuses on 

selecting the right k. As we said, model selection is an important and challenging problem 

of cluster analysis. Thus a significant amount of research effort has been devoted to this 

problem. And as a result, a variety of different methods are proposed. Several popular 

methods include the Akaike information criterion (AIC) (H. Akaike 1974), Bayesian 

information criterion (BIC) (G.E. Schwarz 1978), X-Means (A.Moore and D. Pelleg 

2000), the gap statistic (R. Tibshirani, T. Hastie and G. Walther 2001), G-Means (G. 

Hamerly and C. Elkan 2003) and PG-Means (Y. Feng and G. Hamerly 2006), and 

stability based approaches. AIC, BIC and Deviance information criterion are proposed in 

the area of statistics based on the likelihood ratio approach. G-Means and PG-Means 

were proposed by Greg Hamerly and his colleagues based on model fitness testing. G-

Means incrementally increase k and  uses hypothesis testing technique called Anderson-

Darling Test (T.W. Anderson and D.A. Darling 1952) which tests whether each cluster in 
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the new model is Gaussian or not. If not, increase k and repeat the process again. PG-

Means also incrementally increase k. Unlike G-Means, for each k PG-Means tests 

whether the whole model fits the data or not instead of testing whether each cluster is a 

Gaussian or not. The number of clusters will be increased until a model fitting the data is 

found. The Gap statistic is based on the fact that the within-cluster dispersion (the sum of 

distance from each object to the center of its cluster) drops most apparently around the 

right k. Among these methods, stability is drawing a lot of attention recently which is 

based on the observed fact that the clustering results are stable when the algorithm is told 

the right k and instable with the wrong k. 

Despite the fact that many model selection methods for clustering algorithms have 

been proposed, there is no common agreement on which is the best solution to this 

problem. Those proposed methods work under certain situations, but they all have 

limitations. The problem is so hard because generally there is no common standard on 

what is a good clustering, which make sense because when different algorithms look at a 

data set their have different interpretations of the data and their own view of the “good 

clustering”. However, stability was proposed as a model selection algorithm which is 

independent of the underlying clustering algorithm used. In other words, stability based 

model selection methods work with any clustering algorithm, and the result should not 

vary with the particular clusterings algorithm used. 

 
1.1.3 Introduction to Clustering Stability 
 

As we said stability based model selection algorithms are based on the fact that 

correct model will often lead the clustering results, obtained by repeating the clustering 

algorithms on the same data for many times, to be very similar to each other. In other 

words, correct model tends to have the stable clustering results with regarding to the 
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repeating of the algorithm while on the other hand wrong models will yield unstable 

results (S. Ben-David, U. von Luxburg and D. Pal 2006; S. Ben-David, D. Pal and H.U. 

Simon 2007). Several algorithms have been proposed and tested on some generated toy 

data. It has appeared as a promising approach and drawn significant attention from 

researchers.  

The intuitive idea behind this stability based approach is that if we repeatedly 

sample the data and apply the clustering algorithm with the parameter k, then a “correct” 

k should lead the algorithm to produce clusterings that do not vary much from one 

sample to another. In other words, the algorithm with the specified k is stable with 

respect to input randomization. On the other hand, if k is a wrong number then the 

resulting clustering from the algorithm will be unstable. For example, if the given data 

contains two clusters, but we run the algorithm for three clusters in the data, the 

algorithm needs to split one of the clusters into two. Which of the two clusters is split 

may change from one sample to another and result in instable clustering results. 

Generally speaking, this fact follows the common rule that scientific truth should be 

reproducible in experiments with respect to randomizations of the experiments. Figure 2 

is a simple illustration on this intuitive idea about how stability can tell the number of 

clusters in the data set. 

Based on this intuition, several methods are proposed to tune the parameters of 

clusterings algorithms, like the number of clusters, centers of the clusters, or various 

stopping criteria. As we can see from the intuitive idea discussed above, stability will be 

defined by comparing the clustering results from the same algorithm with input 

randomizations. This brings the two key parts for all stability based model selection 

approaches: how to get different results from the algorithm using randomization and how 



 

 8

to calculate how much these results vary from each other. A common approach to 

introduce the input randomization to clustering algorithm is resampling the data set which 

is widely used by the existing stability based model selection algorithms. Note that the 

size of the resampled data set should be large enough to preserve the clustering behavior 

of the original data set. Another approach we found is randomly choosing the starting 

position of the cluster centers without resampling the original data. We applied this 

approach in our algorithm and compared the performance with resampling. The results 

show that this is also an useful approach to introduce input randomization to the 

algorithm. As we talk about several existing stability based model selection algorithms, 

we will explain in details how the resampling approach works. The details on random 

initialization of cluster centers will be discussed in Chapter Four as we move on to our 

algorithm. 

Not only working on proposing many stability based model selection methods, 

researchers also work on the theoretic basis of these methods. However, after thorough 

investigation, we find that these proposed stability based model selection algorithms 

often have bad performance on some data because they cannot handle a special structure 

we call symmetric data which happens a lot in real application data. To solve this 

problem, we propose our hierarchical stability based model selection algorithm. 

 
1.2 Research Summary 

 
In this thesis work, we thoroughly investigated the existing stability based model 

selection algorithms and tested them on a large amount of data including both 

synthetically generated datasets and real application datasets. By analysis the 

performance and results of these methods, we identified the symmetric data problem 

which is a bottleneck for the current concept of stability. To solve the problem we 
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extended the current concept of stability to a concept of hierarchical stability which can 

handle the symmetric data very well. During the work, we also found that the common 

belief that resampling is a necessity of evaluating stability is not always true.  

To extend the stability into a hierarchical manner, one critical question need to be 

addressed is unimodality testing (single cluster problem). Because the current concept of 

stability has an assumption that the data set always contains at least two clusters, when it 

comes to a single cluster, stability based methods cannot detect this case. To address this 

problem, we involve unimodality testing during the analysis of stability to identify these 

single clusters against mixture of clusters. Unimodality testing is a key part in 

hierarchical stability based model selection. Unfortunately, unimodality testing is a still 

an open and challenging problem in statistics. We investigated many existing techniques 

for unimodality testing and developed our own unimodality testing method which works 

well. 

We tested our hierarchical stability based algorithm on a variety of data. The tests 

have shown that our work made the stability a competing and powerful tool for model 

selection. We also tested our algorithm on data from SimPoint application and compared 

the results with current SimPoint application. This application has shown that our 

algorithm can be applied in real world applications.  

 
1.3 Structure of This Thesis 

 
The rest of this paper is organized as following. Chapter Two will describe in 

details about the related work. This will include the introduction to two clustering 

algorithms we used in our program, some popular non-stability based model selection 

algorithms and some existing stability based model selection algorithms. The focus of 

Chapter Two will be the existing stability based model selection algorithms. In Chapter 
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Three, we will describe the data symmetry problem which causes these existing stability 

based model selection algorithm not performing well on some real application data. In 

Chapter Four, we will talk about the detail of our hierarchical stability based algorithm 

which we call HS-means as well as the unimodality testing techniques we used in our 

algorithm. The experimental results will be in Chapter Five followed by conclusion and 

discussing in Chapter Six. 

 
 

Figure 2: A Simple Illustration of Stability. The toy data contains four clusters. 
Clustering the data into five clusters confuses the algorithm on how to split the data and 
the resulted clustering varies much when we repeatedly run the algorithm. The same 
thing happens when clustering the data into two clusters. Only when clustering the data 
into four clusters, there is no confusing and the results are stable. Thus we can say the 
data contains four clusters as shown by the circles. 
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CHAPTER TWO 
 

Related Work 
 
 

In this chapter, I summarize the related work from other researchers. I first talk 

about details of two clusterings algorithm which are used in my research: K-Means and 

Expectation-Maximization (EM). Then I introduce some popular model selection 

methods and algorithms, followed by introduction to details of some existing stability 

based model selection algorithms. 

 
2.1 Clustering Algorithms 

 
A large number of clustering algorithms are available, as we talked in Chapter 

One. In my thesis work, two popular clustering algorithms are used: K-Means and 

Expectation-Maximization (EM). The K-Means algorithm is a fairly fast hard clustering 

algorithm which assigns one observation to only one cluster while EM algorithm is a soft 

clustering algorithm which may assign one observation to multiple clusters. 

 
2.1.1 K-Means Algorithm 
 

The K-Means algorithm was first proposed by Stuart Lloyd as a technique for 

pulse-code modulation (S.P. Lloyd 1982). Given a set of observations ),...,,( 21 nxxx , 

where each observation is a d-dimensional vector, then K-Means algorithm aims to 

partition the observations into k sets ( nk  ) },...,,{ 21 kSSSS  so as to minimize the 

within-cluster dispersion which is calculated as 
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 
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mxW
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where im is the mean of iS . 

The algorithm uses an iterative refinement technique. Given an initial set of k 

means )0()0(
2

)0(
1 ,...,, kmmm  where the number in the parentheses indicates how many 

iterations have been performed including the current iteration. The initial set of k means 

can be specified randomly or by some heuristic. After starting, the algorithm proceeds by 

alternating between assignment step and update step until it converges. In the assignment 

step, the algorithm assigns each observation to one cluster whose mean (center) is the 

closest to this observation, that is, partitions the observations according to Voronoi 

diagram generated by the means of the k sets. In the update step, the algorithm calculates 

the new mean for each set according to the assignments obtained in the assignment step. 

Algorithm 1 is a formal description of K-Means algorithm. The algorithm will run until it 

converges. To increase the speed, many different versions of K-Means have been 

proposed. The version we use in our program is called K-Means++ which chooses better 

starting clusters such that the algorithm will converge quickly (D. Arthur and S. 

Vassilvitskii 2007). 

 
2.1.2 EM Algorithm 
 

An expectation-maximization (EM) algorithm is used in HTstatisticsTH for finding 

HTmaximum likelihoodTH estimates of HTparametersTH in probabilistic models, where the model 

depends on unobserved HTlatent variablesTH. Like K-Means, EM is also an HTiterative method TH 

which alternates between performing an expectation (E) step, which computes an 

expectation of the log likelihood with respect to the current estimate of the distribution 
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for the latent variables, and a maximization (M) step, which computes the parameters 

which maximize the expected log likelihood found on the E step. These parameters are 

then used to determine the distribution of the latent variables in the next E step. 

 
Algorithm 1 K-Means Algorithm 
Input: data set X containing n observations on d attributes; initial set of k centers 

)0()0(
2

)0(
1 ,...,, kmmm  

Output: },...,,{ 21 kSSSS  , the partition of X in k sets 

 
Repeat until convergence: 
1. assign each observation to the closest center 

},...,1||||||:||{ )()()( klallformxmxxS t
lj

t
ijj

t
i   

2. update the k centers in tht )1(  iteration according to S in tht iteration 




 
)(||

1)1(

t
ij Sx

jt
i

t
i x

S
m  

 
 
We use EM algorithm to estimate a Gaussian mixture from the given data. The 

Gaussian EM is one of the implementation of EM algorithm which aims at learning 

Gaussian mixture model from the data. Given a set of observations ),...,,( 21 nxxx  and the 

number of Gaussians in the mixture (k), the algorithm estimates the centers k ,...,, 21 , 

covariance matrixes k ,...,, 21 and the prior probabilities kppp ,...,, 21 for all 

Gaussians in the mixture. Denote by },...,,,,...,,,,...,,{ 212121 kkkt ppp   our 

estimates on the tht  iteration. In the E-step, the algorithm calculates for each observation 

the probability it comes from each Gaussian in the mixture. Then based on this new 

estimation in E-step, in the M-step the algorithm updates the new mean, covariance, and 

prior probability for each Gaussian. These two steps will be alternated until the algorithm 
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converges or reaches some specified stop criteria. Algorithm 2 is a more formal 

description of Gaussian EM algorithm. 

 
2.2 Some Popular Model Selection Algorithms 

 
Several algorithms have already been proposed to automatically learn the number 

of clusters from the data. I will talk about some of them with which I will compare the 

performance of our algorithm. 

 
Algorithm 2 Gaussian EM Algorithm 
Input: data set X containing n observations; initial model parameters 1  

Output: },...,,,,...,,,,...,,{ 212121 kkk ppp , the estimated mixture model 

 
Repeat until convergence: 
1. E-step: calculate for each observation the probability it from each Gaussian 







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k

j
jjjjl

iiiil
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1
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


  for ki ,...,1  

where iw indicates the probability this observation comes from the thi  Gaussian, 

))(),(,|( ttuwxg iiil   is the evaluation of a Gaussian at this observation lx ,

)(),(),( tptt iii  are the estimates of those parameters in the tht iteration. 

 
2. M-step: updates the estimates for the three model parameters 
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2.2.1 G-Means 
 

G-means stands for Gaussian Means, proposed by Greg Hamerly and Charles 

Elkan as method which can learn the best k for a given data (G. Hamerly and C. Elkan 
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2003). G-means runs k-means with increasing k until the test accepts the hypothesis that 

the data assigned to each k-means center are Gaussian. G-means algorithm starts with a 

small k like k = 1 and grows the k as the algorithm runs. Each iteration of the algorithm 

splits the clusters whose data appear not to come from a Gaussian distribution into two. 

Between each round of splitting, k-means is run on the entire dataset and all the centers to 

refine the current clustering solution. The decision of whether to split a cluster into two is 

made based on the Anderson-Darling statistic, which is shown to be a powerful one 

dimensional normality test based on the empirical cumulative distribution function. To 

test whether a cluster is from Gaussian or not, the algorithm projects the data to one 

dimension along the direction that k-means has found to be important for separating the 

data. If the data currently assigned to a k-means cluster appear to be Gaussian, then only 

one center will be used to represent the data. However, if the same data do not appear to 

be Gaussian, multiple centers will be used to model the data properly. G-means runs k-

means up to k times when finding k centers, so the time complexity is at most O(k) times 

that of k-means. 

 
Algorithm 3 G-means(Dataset X, significant level  ) 
Input: The data set X; the significant level of the normality fitness testing . 
Output: the number of clusters best fit the data 
 
1: Let C be the initial set of cluster centers 
2: CK-Means (C, X). 
3: Let })(|{ jxclassx ii   be the set of data points assigned to center jc  . 

4: Use Anderson-Darling statistic test to detect if each })(|{ jxclassx ii   follow a  

    Gaussian distribution (at confidence level ). 
5: If the data look Gaussian, keep jc . Otherwise replace jc  with two centers. 

6: Repeat from step 2 until no more centers are added. 
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Algorithm 3 describes the G-means algorithm. The critical part is in line 4 where 

the statistical testing is used to determine whether new clusters should be added or not. 

Note that this algorithm has a strong assumption that the clusters in the given data set can 

be modeled by Gaussians. This assumption leads the algorithm to perform badly on the 

data sets which are not from Gaussian mixtures. Also since the G-means is a wrapper 

around k-means algorithm which is an exclusive clustering algorithm, when the data set 

contains overlapping clusters the algorithm will result in a number of non-Gaussian 

“clipped” clusters. These “clipped” clusters will fail in the normality test and thus be split 

further. As a result, if the data contains overlapping clusters, G-means will find a k much 

larger than the correct one. We will see this disadvantage in next chapter when we 

compare them with our algorithm on several real data. 

 
2.2.2 PG-Means 
 

As we mentioned above, G-means does not work well with non-Gaussian data 

sets and overlapped data sets. To fix this, Greg Hamerly proposed another algorithm 

called Projected Gaussian Means (PG-means)  which keep the basic idea of G-means but 

improved the statistical testing for model fitness and resulted in a greatly improved 

performance (Y. Feng and G. Hamerly 2006). Like G-means, PG-means starts with a 

simple model and increases k by one at each iteration until it finds a model that fits the 

data well. Unlike G-means, PG-means test whether the whole projected model (all the 

clusters found so far) fits the whole projected data well instead of performing statistical 

test for each cluster individually. This avoids the “clipped” cluster problem as we have 

seen in G-means. The statistical test performed by PG-means is Kolmogorov-Smirnov 

test (F.J. Massey 1951). Algorithm 4 describes the PG-means algorithm.  
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Algorithm 4:  PG-means (dataset X, confidence  , number of projections p) 
Input: Data set X; confidence level  for the Kolmogorov-Smirnov test; number of 
projects p 
Output: number of clusters best fit the data and the clustering 
 
1: Let k    1. Initialize the cluster with the mean and covariance of X. 
2: for pi ,...,1 do 
3:     Project X and the model to one dimension with the same projection. 
4:     Use the KS test at significance level   to test if the projected model fits the  
        projected dataset. 
5:     If the test rejects the null hypothesis, then break out of the loop. 
6: end for 
7: if any test rejected the null hypothesis then 
8:     for 10,...,1i  do 
9:         Initialize k + 1 clusters as the k previously learned plus one new cluster. 
10:       Run EM on the k + 1 clusters. 
11:   end for 
12: Retain the model of k + 1 clusters with the best likelihood. 
13: Let k  k + 1, and go to step 2. 
14: end if 
15: Every test accepts the null hypothesis; stop and return the model. 
 
 
2.2.3 Gap Statistic 
 

The Gap statistics is based on the fact that the sum of within-cluster dispersion 

drops (difference of the dispersion from one k to the next one, assuming we investigate 

from the smallest k to the largest k) most apparently when clustering algorithm was told 

the right k. Tibshirani et al. standardize the graph of within-cluster dispersion by 

comparing it to its expectation under an appropriate null reference distribution of the data 

(R. Tibshirani, T. Hastie and G. Walther 2001). Figure 3 is an illustration of the idea 

behind Gap statistic. 

Suppose we clustered data set X into k clusters krX r ,...,2,1,   where rn  denotes 

the size of each cluster. Let ijd  denote the squared Euclidean distance between two 

observations ix , jx . The sum of pairwise distances for all points in cluster rX is 



 

 18


 


r rn

i

n

j
ijr dD

1 1

, where ji,  are the indices of points in cluster rX . 

Compute kW  as 
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The Gap statistic of k is calculated as 

)log())(log()( *
kkn WWEkGap   

))(log(*
kn WE  denotes expectation under the sample of size n averaged from several 

copies of reference distributions which contain only one single cluster.  

Algorithm 5 describes Gap Statistics. Note that we estimate the ))(log(*
kn WE  by 

an average of B copies of )log( *
kW , each of which is computed from a Monte Carlo 

sample drawn from a single cluster uniform distribution. To control the sampling 

distribution of the Gap, we compute )(ksd and ks . 


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B
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1
1  

 We use a “one standard error” rule to choose the k as shown in line 5. 

 
2.3 Existing Stability Based Model Selection Algorithms 

 
In this section I will describe several existing model selection algorithms which 

are based on the concept of stability. 
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Figure 3: Illustration of Gap Statistics. The data in figure 3.a contains two clusters. The 
within-cluster dispersion drops most apparent with k=2 as shown in figure 3.c. Figure 3.b 
shows the comparing of within-cluster dispersion (top curve) and its expectation in single 
cluster null reference (bottom curve). Figure 3.d shows the computed Gap. 
 

 
Algorithm 5 Gap Statistic(Dataset X) 
Input: Data set X 
Output: a Boolean value indicating whether X is a mixture or a single cluster 
 
1: Cluster X with 3,2,1k , giving within-cluster dispersions 3,2,1, kWk respectively. 

2: Generate B reference data sets from uniform distribution 
3: Cluster each reference data set with 3,2,1k  and obtain within-cluster dispersion    

    measures BbandkWkb ,...,2,13,2,1,*   

3:  Compute the Gap statistics for each k as 

)log()log(
1

)(
1

*
k

B

b
kb WW

B
kGap  



 

    


B

b
kbW

B 1

* )log(
1

 is the ))(log(*
kn WE  we mentioned before. 

4:  Compute the standard deviation as 





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b
knkbk WEW

B
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** )))(log()(log(
1  

     And compute a quantity ks as 

B
sds kk

1
1   

5: choose the smallest k such that 1)1()(  kskGapkGap  
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2.3.1 Levin and Domany's Algorithm 
 

Levin and Domany propose a method for estimating the number of clusters based 

on the comparison of stability of each k (E. Levine and E. Domany 2001). The stability is 

calculated by comparing the clustering result on resampled data with the result on the 

original full data. For each k under consideration, they first run the clustering algorithm 

on the data with the parameter k and obtain the clustering result on the full data set. Then 

they take a resample from the full data and run the same clustering algorithm on the sub 

sample with the same parameter k to obtain the clustering result on this sub sample. The 

distance between this result and the result on the full data set will be calculated using 

Hamming distance. They repeat this resampling process for r times and average the r 

distances as the stability score for this k. After calculating the stability scores for all ks 

under consideration, they take the k which has the smallest stability score as the selected 

model for the data set.  

As we can notice here, the stability score stab(k) Levin and Domany calculate 

really means how instable the corresponding k is: the higher stab(k) is, the more the 

clustering results from resampling vary against the result from the full data, that is, the 

more instable the k is. The k with the smallest stab(k) leads the most stable results. 

As we mentioned, measuring the distance between clustering results is always a 

key part for stability calculation. Levin and Domany use the Hamming distance on 

NN  cluster connectivity matrices ij , defined by 






otherwise

clustersamethetobelongjandi
ij 0

1
                              
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One problem with this method is that the value of )(kstab scales with k, which 

makes sense because the more clusters you have, the more possible ways there are to 

partition the data. Selecting the k without normalizing the stability score some times will 

choose the wrong model. Algorithm 6 is a formal description of the algorithm. 

Algorithm 6 Levin and Domany’s Algorithm 
Input: data set X containing N  observations on D  attributes 
Output: the k which best fits the data set X 
 
For each value of k under consideration: 
1: Run the clustering algorithm and cluster the full data set X 
2: Repeat the resample process r times 
     2.1: Randomly draw a sub sample from X and cluster it 
     2.2: Calculate the distance rD between the clustering of the full set and the one of     
             the sub sample (Hamming distance on the connectivity matrix on sub sample) 
3: Compute stability for the current k as )()( rr Dmeankstab   
 
Choose the k for which )(kstab is minimal 

 
 
2.3.2 Ben-Hur, Elisseeff and Guyon’s Algorithm 
 

Ben-Hur, Elisseeff and Guyon propose a stability based model explorer algorithm 

for visually assessing the presence of structure in clustered data (A. Ben-Hur, A. Elisseeff 

and I. Guyon 2002). In their method, stability is characterized by the distribution of 

pairwise similarities between clusterings obtained from sub samples of the data. Unlike 

Levin and Domany’s method which choose the optimal k based on a quantitative stability 

score, Ben-Hur’s algorithm explore the candidate models visually by choosing the 

parameter k for which the histogram of the similarities between resulted clusterings under 

this k is most concentrated. As a result, Levin and Domany’s method is easy to 

implement in computer program. However it is hard to write a program to implement 
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Ben-Hur’s algorithm because looking at the histograms and choose the most concentrated 

one is too complicated for a computer program. 

For each k under consideration, the algorithm draws two sub samples 1X  and 2X  

from the full data set X and clusters 1X  and 2X with the same k respectively. Then these 

two clusterings are compared on the joint domain 21 XX   and a similarity score is 

calculated on this joint domain. This process is repeated r times for each k and r 

similarity scores are calculated. Then for each k we will have a histogram of the r 

similarity scores. If the histogram is highly concentrated, it means that under resampling 

the clustering results do not vary very much from each other. In other words, the k for 

which the histogram is the most concentrated is the best answer for how many clusters 

there are in the data set. 

The similarity score in Ben-Hur’s algorithm is calculated as Jaccard coefficient. 

As we have already seen in our discussion of Levin and Domany’s method, the clustering 

result can be represented by the cluster connectivity matrix. Let 1C  and 2C  represent the 

clustering results on sub samples 1X  and 2X  respectively and let ijN for }1,0{, ji  be 

the number of entries on which 1C  and 2C  have values i and j, respectively. The 

matching coefficient can be easily calculated as the ratio of entries on which the two 

clusterings agree: 

11100100

1100
21 ),(

NNNN

NN
CCM




                             

This coefficient usually varies in a very small range because 00N  is always the 

dominant factor. To use it in a more efficient way, the negative matches can be ignored, 

which leads to the Jaccard coefficient (P. Jaccard 1901): 
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Ben-Hur’s algorithm can be summarized as Algorithm 7. 

 
Algorithm 7 Ben-Hur, Elisseeff and Guyon’s Algorithm 
Input: data set X containing N  observations on D  attributes 
Output: the optimal number of clusters for X 
 
1: For each value of k under consideration, Repeat the resample process r times: 
    1.1: Randomly draw two sub samples 1X and 2X , then cluster them 

    1.2: Restrict clusterings to the joint domain 21 XX   and calculate the two    

           Connectivity Matrices 1C and 2C . 
    1.3: Compute the similarity score using Jaccard coefficient. 
2: Generate the histogram of the r similarities for each k. 
3: Choose the k for which the histogram of similarities is most concentrated 

 
 
2.3.3 Lange, Roth, Braun and Buhmann’s Algorithm 
 

Tilman Lange and his colleagues propose another stability based model selection 

algorithm (T. Lange, V. Roth, M. Braun and J. Buhmann 2004). They propose a way to 

normalize the stability score. Their algorithm uses the same Jaccard coefficient to capture 

the quantity of similarity. They have their own special way of resampling. They divide 

the full data into two halves and cluster on them respectively. Then instead of comparing 

the resulted clusterings on the two halves directly, they extend each clustering to the 

other half data and obtain two different clusterings on the full data. The distance between 

these two clusterings on the full data is calculated and averaged as the stability score for 

the k.  As we have discussed, the stability score scales with k and we need to normalize 

the score before we use the score to choose the answer. Lange’s normalization strategy is 

on the split two halves data, instead of clustering them, randomly assign labels to each 

data point and obtain a “clustering” on each half. The obtained two clusterings are then 
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extended in the same way to the other half to obtain two clusterings on the full data. And 

a score is calculated in the same way as we calculate the stability score. This score will be 

used to normalize the stability score. The algorithm can be summarized as the following. 

We have tried these algorithms on a large variety of data set and compared their 

performance. Though each of these existing stability based model selection algorithms 

has their own way of creating input randomization and their own way of characterizing 

the stability score, they are similar in performance, which means the selected k from these 

algorithms does not vary too much. We can say that the different ways of input 

randomization and different ways of characterizing stability are equal in power.  

However, this does not mean the answers from these methods are right. In fact, 

there is a common phenomenon in most real data set which can not be handled by all the 

existing stability based methods. This is what we call the symmetric data problem, which 

is discussed in the next chapter. 

 
Algorithm 8 Lange, Roth, Braun and Buhmann’s Algorithm 
Input: data set X containing N  observations on D  attributes 
Output: the optimal number of clusters for X 
1: For each value of k under consideration, Repeat the resample process r times: 
    1.1: Randomly divide the data into two halves 1X and 2X , then cluster them 
    1.2: Extend both clusterings from their “half” to the other “half” using k-Nearest  
           Neighbors algorithm. 
    1.3: Compute the similarity score between the two new clusterings. 
2: Average the similarities as the stability score )(kstab for k. 
For normalization: 
    1: Consider the same splits as above, assign random labels to points 
    2: Extend both “random clusterings” as above to the other half. 
    3: Calculate the stability as )(kstabrand  

Choose the k such that )(
)(

kstab
kstab

rand
 is minimal 
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CHAPTER THREE 
 

The Data Symmetry Problem 
 
 

3.1 The Problem 
 

When we evaluate the existing stability based model selection algorithms, we find 

that on many datasets they find a k which is much smaller than expected (with the 

expectation coming from prior knowledge or data exploration). After close investigation 

on the clustering structures discovered in these problem datasets, we find that a common 

property for many of these datasets is that they have symmetry across multiple groups of 

clusters. Figure 4 is a simple example of a dataset with symmetric clusters. The data set 

contains four Gaussians in two dimensions. However these four Gaussians are grouped 

into two vertical strips which form bigger clusters. The two leftmost Gaussians are closer 

to each other than to the two rightmost Gaussians, and vice-versa. Clearly, the four 

clusters have a symmetric and hierarchical structure. As a result, in the stability curve 

shown in Figure 4.b, though k = 4 has a relatively good stability score, k = 2 is more 

stable, even though there are four distinct clusters. We name this the symmetric data 

problem, because it arises from having symmetric groups of clusters. The reason that it 

occurs is that hill-climbing clustering algorithms (such as k-means) can more easily fall 

into sub-optimal solutions when k is large than when k is small. Thus, when k is small, 

algorithms like k-means will more often find consistent, high-quality solutions. Thus, 

smaller k is more likely to be stable. Going to the logical extreme, k-means with k = 1 is 

(almost surely) the most stable solution for any dataset. 



 

 26

.  
 

Figure 4: An Illustration of Data Symmetry. Though in figure 4.b, k=4 have the second 
highest stability score, k=2 have the highest stability score and thus will be considered as 
the best model fitting the data by stability. 
 

The symmetric data problem often occurs in real-world data sets. As a result, 

existing stability based model selection algorithms do not work well on all the real world 

application data we have used. One of our primary application areas in the SimPoint 

project is on prediction of program performance based on code usage. We gather data on 

which static basic blocks are being used at different times during a program’s execution. 

Many programs naturally have a very hierarchical and symmetric structure, due to loops, 

function calls, and recursion. Figure 5 are some examples of this data symmetry in 

several programs from the SPEC CPU 2000 benchmark suite (specifically on the 

programs art, vpr, and gzip). Note that art has two traces on two different inputs (110 and 

470). Figure 5 shows each program along its first two principal components. Each dot 

represents an interval of time during execution, and the values are based on which basic 
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blocks are used during that interval. Each of these datasets has several giant clusters 

which consist of smaller clusters. 

 
 

Figure 5: Data Symmetry in Program Execution Data 
 
 

3.2 The Ideas for Solution 
 

Looking again at Figure 4, we find that it makes sense to analyze the stability of 

the data in a hierarchical manner. That is, we accept the answer from stability analysis 

that k = 2 and then divide the data into two disjoint subsets according to that clustering. 

Then we analyze each of the two large clusters respectively using stability analysis to 

find two clusters for each. Finally we can find the four Gaussians for the data. This 

hierarchical stability analysis forms the basis of our algorithm.   

It is important in this hierarchical stability analysis that when it comes to a single 

cluster, the algorithm should stop splitting this single cluster. In other words, it is 



 

 28

important to distinguish single cluster from a mixture of clusters. This task is generally 

referred as unimodality testing and remains a difficult and open issue. We adopted 

several testing methods and proposed our own testing methods as well. 

In the next chapter, I will describe our algorithm which is based on the 

hierarchical stability analysis. I will discuss the details our algorithm, including the 

calculation of stability, input randomization, and the unimodality testing strategy we use. 
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CHAPTER FOUR 

 
Hierarchical Stability Based Model Selection 

 
 

4.1 The Algorithm 
 

Our approach is called HS-means, where HS stands for hierarchical stability. 

Given a data set X, HS-means starts with unimodality test on the data to determine 

whether X is a single cluster or a mixture of multiple clusters. If the test result shows the 

data set is from a mixture model instead of a single component model, the method finds a 

stable clustering model for the data by analyzing the stability of possible models and 

partitions the data into several subsets (clusters) according to this stable model. Then the 

method recursively analyzes each subset in the same way and finds the stable model for 

each subset. At the termination of this recursive stability analysis, a stable clustering 

model for the data will be obtained by aggregating the stable models for each subset. The 

basic idea is recursively divide the data set into several subsets by analyzing stability 

until all the subsets are single clusters. Algorithm 9 describes the overview of the method 

more formally. 

At line 1, the algorithm performs a test to determine whether X is unimodal. If X 

is a single component cluster, the algorithm simply returns this cluster as in lines 2 to 7. 

If X is from a mixture model, then the first question to estimate this mixture model is: 

how many components are there in this mixture? The algorithm answers this question by 

analyzing and comparing the stability scores of all possible ks under consideration, which 

are specified by the lower boundary minK and upper boundary maxK as shown in line 8. 
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Note that this selected k may not be right one which best fits the data since the symmetric 

data problem might happen. This k only means at the current granularity, stability scores 

indicate that this k is the most stable model. Once we find how many clusters there are in 

X, the algorithm will estimate the parameters of this mixture model by the Expectation-

Maximization (EM) algorithm.  

 
Algorithm 9 HS-means(Dataset X , minK, maxK) 
Input: dataset X  contains N observations on D attributes; minK and maxK are the lower 
and upper bounds of the possible number of clusters we will consider at this level of 
recursion. 
Output: K-the number of clusters; M-centers of the clusters; G-membership of points to 
clusters. 
 
1: unimodal = Unimodality Test( X ) 
2: if  unimodal   true  then 
3:      K = 1 
4:      M = mean( X ) 
5:      all observations belong to one cluster, G = indices of  each point in the original data 
6:      return 
7: else 
8:      k = Stability Analysis( X , minK, maxK) 
9:      [ms, E] = K-Means( X , k) 
         {ms  are the estimated centers and E is the membership assignments} 
10:      [ 1X , 2X , … , kX ] = Data Partition( X , ms, E) 

11: end if 
 
12: for all iX  where ki ,...,2,1 do 

13:      [ iK , iM , iG ] = HS-means( iX , minK, maxK) 

14: end for 
 

15: 



k

i
iKK

1

 

16: },...,,{ 21 kMMMM    

17: },...,,{ 21 kGGGG   

 

Though we choose the K-Means clustering algorithm here, it can be substituted 

by any other clustering algorithm. At line 9, the K-Means algorithm estimates the centers 
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of the clusters ms and the point-to-cluster assignments E. The estimated parameters will 

then be used to partition X into several subsets at line 10. Then the algorithm moves to 

the next level of recursion to analyze the structure of each subset as lines 12 to 14, 

applying the same analysis technique described from line 1s to 11. Lines 15 to 17 are the 

tail of the recursion which aggregates the results of the lower level recursions. Two major 

parts of this method are unimodality test and stability analysis. I will talk about the details 

of them in the following sections. 

 
4.2 Stability Analysis 

 
We have seen in chapter two that though failing to handle some special structures 

in the data like symmetric data problem, stability is still a good tool to find the number of 

clusters in data set. Our work is to improve this kind of methods. So we still apply 

stability analysis as the tool to find stable k for the data set. As we said, stability is 

calculated by comparing clusterings resulting from the same algorithm on the same data 

with input randomization like resampling or random initialization of the cluster centers. 

Thus to calculate stability we need a quantitative measure for the distance/similarity 

between clusterings. We have already seen several proposals like the Jaccard Coefficient, 

Hamming distance, Rand index and Mallow index which are computed base on a 

clustering confusion matrix. When comparing clusterings, there is commonly a problem 

called cluster rotation, for example, cluster 1 in clustering 2 might be called cluster 2 in 

clustering 2. Thus to compute the matrix, we need to mapping clusters between the two 

clusterings which introduces complexity. The Lange et al. talked about the mapping 

problem in their paper. To simplify, we use Variation of Information (VI) as a measure of 

similarity between clusterings.  
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4.2.1 Compare Clustering by Variation of Information (VI) 
 

VI is the criterion proposed by Marina Meila for comparing two clusterings (M. 

Meila 2003). Let's say we have dataset X containing N observations and a clustering C on 

X containing k clusters kXXX ,...,, 21 . If we are going to randomly pick up an observation 

from X, how much uncertainty is there about which cluster the picked point is in? Let the 

probability that the point is in cluster iX be )(iP , which is reflected by the proportion of 

the size of cluster iX  to the size of the full data set X. 

N

X
iP i ||
)(                                                     

Then we have a discrete random variable taking k values )(),...,2(),1( kPPP , which is 

uniquely associated to clustering C. According to information theory, the entropy of this 

variable is measured by )(CE  





k

i

iPiPCE
1

)(log)()(                               

)(CE  is a measure of how much information clusterings C contains about which cluster a 

randomly picked point should belong to.  

Now suppose we have two clusterings on the same data: 1C  which contains 1k  

clusters and 2C  which contains 2k clusters to compare. Denote by 11 ,...,2,1),( kiiP   and 

22 ,...,2,1),( kjjP   the random variables associated with two clusterings 1C  and 2C  

respectively. Let ),( jiP  represent the probability that a point belongs to cluster iX  in 

clustering 1C  and jX  in clustering 2C , namely the joint distribution of the random 
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variables associated with the two clusterings. Then we define mutual information 

between the two clusterings 1C  and 2C  to be ),( 21 CCI  


 


1 2

1 1 21
21 )()(

),(
log),(),(

k

i

k

j jPiP

jiP
jiPCCI               

),( 21 CCI can be interpreted in the following way: for any randomly picked point in X, the 

uncertainty about which cluster it belongs to in 2C  is measured by )( 2CE . Suppose we 

are told which cluster the point belongs to in 1C . Will this reduce the uncertainty about 

which cluster it belongs to in 2C ? It may, depending on how similar 1C  and 2C  are. Then 

how much uncertainty is reduced from )( 2CE ? ),( 21 CCI measures how much this 

knowledge-which cluster the point is in 1C -reduces the uncertainty about where it 

belongs in 2C . For example, when the two clusterings 1C  and 2C  are equal, we have  

)()(),( 2121 CECECCI  ,                               (1) 

which means once we know where the point is in one clustering, we know completely 

where it is in the other clustering. Based on this, VI is proposed as a criterion for 

comparing two clusterings which can be calculated as 

),(2)()(),( 212121 CCICECECCVI            (2)           

Algorithm 10 describes the calculation of VI score for a specified k. To calculate 

the VI score for a given k, we obtain r clusterings on the same data set by repeating the 

same algorithm. These r clusterings are compared in a pairwise manner and the pairwise 

VI scores are averaged as the VI score for the k. In algorithm 5 we use K-means as the 

clustering algorithm to obtain the r clusterings. I would like to clarify that we use K-

means here just for the reason that K-means generally runs faster than other algorithms. 
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Since we are repeating the clustering algorithm r times here, slow algorithms will 

definitely slow down HS-means. K-means can be substituted by any other clustering 

algorithm.  

Note that the computed averaged VI score for the specified k actually reflects how 

instable the k is. The higher the VI score is, the more different the clusterings are and the 

more instable this k is. To be consistent, we calculate the stability of k by taking the 

negative of calculated VI score. 

)()( kVIkstability   

Finally, the value r is chosen from experience. If r is too small, the averaged VI 

may not be stable and the calculated stability may be inaccurate. Based on our 

experiments, r = 10 is a suitable value most of the time.  

 
Algorithm 10 Calculate VI(Dataset X, r, k) 
Input: dataset X contains N observations on D attributes; r is the number of clusterings 
compared; k is number of clusters 
Output: )(kVI - VI score of this k 
 
1: for rtoi 1 do 

2:      iC = K-means(X, k) 

3: end for 
 
4: for rtoi 1  do 
5:      for rtoij  do 

6:           ),(2)()( jijiij CCICECEVI   

7:      end for 
8: end for 
 
9: )(kVI = average ijVI  

10: return )(kVI  
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4.2.2 Stability Analysis 
 

Once we have calculated the stability score for each k under consideration, we can 

select the k for which the stability score is maximal. Algorithm 11 describes the 

procedure of our Stability Analysis. 

 
Algorithm 11 Stability Analysis(Dataset X, r, minK, maxK) 
Input: dataset X contains N observations on D attributes, r is the number of clusterings 
that will be compared to compute VI score, minK and maxK are the lower and upper 
bounds of the possible number of clusters under consideration 
Output: the k with the highest stability score 
 
1: for k = minK to maxK do 
2:       )(kStability =  – Calculate VI(X, r, k) 
3: end for 
4: return k that has maximum stability score  

 
 

4.3 Unimodality Test 
 

As mentioned above, our HS-means method recursively partitions the data set and 

performs stability analysis on subsets to find a stable model for each subset. It is critical 

that the method should stop splitting when it comes to a subset which is a single cluster. 

In other words, the method must be able to tell a mixture model from a single component 

model. However, stability analysis assumes that the data always contains at least two 

clusters. Back to our definition of VI score, if the data contains one cluster and if we 

cluster the data into one cluster, then the resulting clusterings 1C  and 2C  are the same. 

According to equation (1) and equation (2), the stability for k=1 will be 1. In other words, 

k=1 is always the most stable model for any data set. Thus we cannot use stability score 

to answer the question of whether the given data set contains only one single cluster or 

multiple clusters.  
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Stability analysis can not answer this single component versus mixture question. 

We need a unimodality test which can detect the single component model and help the 

recursive stability analysis terminate. Unimodality testing is a very difficult problem in 

the area of statistics, which has no common agreement upon good solutions. We have 

investigated several typical unimodality testing strategies as well as our own unimodality 

testing proposals. In this section, I will talk about the details of several unimodality test 

approaches, which we found in the experiments can produce acceptable results. 

 
4.3.1 Dip Statistics 
 

The Dip test of unimodality was first proposed by Hartigan (P.M. Hartigan 1985; 

J.A. Hartigan and P.M. Hartigan 1985). This method is based on the fact that a 

distribution function F that is unimodal with mode m if F is convex in ],( m  and 

concave in ),[ m . Denote by ),( UL xx  the modal interval, that is, where the mode of F 

falls in. For a given data set X, there are 
2

)1( nn
 possible modal intervals ),( ji xx  in 

total. Let nF  denote the empirical distribution function of X. For each modal interval

),( ji xx , compute the greatest convex minorant (g.c.m.) of  nF  in ),( ix and least 

concave majorant (l.c.m.) of nF  in ),( jx . Denote by ijd  the maximum distance between 

nF and these computed curves. Then the minimum ijd  divided by 2 will be the dip value. 

For details of the calculation of dip test, please refer Hartigan's paper.  

To use dip statistics value to test the unimodality of X, we need some unimodal 

distribution as a reference distribution. Normally, the Gaussian distribution is a good 

choice. Compare the dip value of X with the dip value of the reference distributions to get 
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a p-value. This p-value is an indicator of how much X looks like a single component 

model. Also notice that dip statistics only works in one dimension. So during the 

unimodality testing, we perform principal components analysis on the given data and take 

the projected data on the principal component to apply the dip statistics. 

 
4.3.2 Gap Statistics 
 

Gap statistics was proposed by Tibshirani et al. for estimating the number of data 

clusters, that is, as a model selection algorithm. Our experience with Gap statistics show 

that this method only works well when the number of clusters is small. However, the idea 

behind Gap statistics can still be adapted to test whether the given data contains one 

single cluster or not. We do not really use Gap statistics to find how many clusters are 

there in the data. We just calculate the gap statistics of k=1 and k=2 respectively and 

compare the two value to test whether the data contains more than one cluster or not. This 

is a simple application of gap statistics. 

 
Algorithm 12 Gap Unimodality Test(Dataset X) 
Input: Data set X 
Output: a Boolean value indicating whether X is a mixture or a single cluster 
 
1: Calculate gap for k=1and k=2 using the same method discussed in Chapter Two 
2: if  1k  then 
3:       X is single component cluster, return true. 
4: else 
5:       X is a mixture, return false. 
 
 
4.3.3 2 Unimodality Test 
 

One of the most famous properties of Gaussian distribution is that the sum of 

squares of d independent Gaussian variables follows 
2  distribution with degrees of 

freedom d (S. Kotz, N. Balakrishnan and N.L. Johnson 2000). This simple fact can be 
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used to test the unimodality of data set X with the assumption that X is from a 

multivariate Gaussian or a mixture of multivariate Gaussians. Assume the data set X 

which contains N observations on d attributes ( dxxx ,...,, 21 ) is from a multivariate 

Gaussian distribution in d dimensional space, and further assume the covariance matrix is 

a identity matrix, if we sum the squares of each attribute we will have a 
2 distribution 

with degrees of freedom d. 

For each data objects ix  in X we can compute iS as  

     22
22

2
11 ˆ...ˆˆ didiii xxxS    

Where j̂  represents the estimated mean of X along dimension j. 

If X is indeed approximately from the multivariate Gaussian distribution we 

mentioned above, },...,,{ 21 nSSSS  will be a sample drawn from a 
2 distribution with 

freedom d. We also note the fact that when X is from a mixture of multivariate Gaussians, 

the sample S will not follow the 
2 distribution with freedom d, as shown in Figure 6. 

Unfortunately, we do not know yet what the distribution of S is when X is from a mixture 

of multivariate Gaussians. Thus we can use a hypothesis test to check whether S follows a 

2  distribution of freedom d. If yes, we consider X as a single component cluster and 

otherwise consider X as a mixture model.  

Algorithm 13 describes the procedure our 
2  unimodality test. In our test 

approach described above we assume that if X is from a single multivariate Gaussian, 

then the covariance matrix of that multivariate Gaussian is an identity matrix, that is, the 

d attributes are independent of each other. So before we calculate the S, we first need to 

normalize the given data set and force it to have an identity covariance matrix. Our 
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approach for normalization is centering the data to have sample mean of zero and 

projecting the data along each of the d eigenvectors and dividing by square root of the 

corresponding Eigen value. After normalization, the data set will look spherical and have 

identity matrix as the covariance. 

 

 
 

Figure 6: The Distribution of Sum of Squared Gaussians. Figure 6.a and figure 6.c are 
two data sets in two dimensions drawn from a single multivariate Gaussian and a mixture 
of multivariate Gaussians respectively. Figure 6.b and figure 6.d are the histogram of S 

respectively. It is clear that S of single multivariate Gaussian follows the expected
2

distribution shown in figure 6.e while the S of the mixture does not. 
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Algorithm 13 
2 unimodality Test(Dataset X) 

Input: Data set X 
Output: A Boolean value indicating whether X is from a single multivariate Gaussian or 
not 
 
1: center and spherize the data 
2: Calculate S for X. 

3: Do a ks-test on whether S follows 
2  distribution with freedom d 

4: if ks-test accepts null hypothesis then 
5:       X is a single multivariate Gaussian. 
6: else 
7:       X is from a mixture 
8: end if 
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CHAPTER FIVE 
 

Experiment Evaluation 
 
 

We evaluated the performance of HS-means on several data sets and compared 

the performance with the competing methods we discussed in chapter four. The results 

shows that HS-means is competitive to PG-means and out-performs the existing stability 

based model selection algorithms, Gap statistics and G-means. We compared the 

performance on both generated data sets and two real world data sets.  

 
5.1 Performance on Generated Data Sets 

 
We first evaluate the performance of our algorithm on several generated data sets 

which vary in underlying statistical distribution, number of clusters, number of 

dimensions, and the degree of overlapping. The data sets are generated from both 

Gaussian mixtures and uniform mixtures in both low dimension and high dimension, 

including both well separated clusters and highly overlapped clusters. Especially, we 

reproduce the symmetric data problem and evaluate how well our HS-means and other 

competing methods perform on the symmetric data sets. 

 
5.1.1 Generating the Data Sets 
 

A single cluster of data points is generated from a single Gaussian distribution. 

Our generated Gaussian sample can be either spherical or elongated. To make the 

generated data set looks elongated, we make a dd   scaling matrix S which has certain 

eccentricity specified by a parameter ecc such that 
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ecc
S

S


)min(

)max(
 

where )max(S and )min(S are the maximum and minimum variance (standard deviation) 

of S in any axis-aligned direction. The scaling matrix is equivalent to the square root of 

diagonal matrix of Eigen values. To rotate the generated Gaussian, we construct a 

random orthogonal basis as a dd  matrix.  The generated single Gaussian sample is 

computed as 

'RSYX   

where Y is a random sample from a Gaussian with identity matrix as covariance matrix, S 

is the scaling matrix and R is the rotation basis. 

When we generate a mixture of Gaussians, each Gaussian in the mixture is 

generated in the same way as above. To control the degree of overlapping between the 

Gaussian components in the mixture, we use the definition of c-separation (S. Dasgupta 

2000). Two Gaussians ),( 11 N  and ),( 22 N in n are c-separated if 

)}(),(max{|||| 2121  tracetracec  

A mixture of Gaussians is c-separated if its component Gaussians are pairwise c-

separated. 

 In the similar way, we generate mixtures of Uniform clusters. 

 
5.1.2 Algorithm Performance 
 

Figure 7 is an illustration of how HS-means performs over a generated Gaussian 

mixture. The generated data, as shown in Figure 7.a contains six clusters in two 

dimensions with each cluster having 200 data points. The eccentricity of each Gaussian is 

2. Figure 7.b is the stability curve of this whole mixture. In the stability curve, k=3 and 
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k=6 are the two peak of the curve which means the mixture might contain three clusters 

or six clusters. However, the symmetric data problem happens, that is, k=3 has the higher 

stability score than k=6. Thus from the stability curve, we choose k=3 as the best result 

of the top level stability analysis. Figure 7.c shows how the whole mixture is divided into 

three clusters. The subset with green color contains two clusters and the subset with red 

color contains three clusters. In the next lower level of stability analysis, these two bigger 

clusters will be divided into two small clusters and three small clusters, respectively. 

Together, six clusters are found after the second level of stability analysis. The 

unimodality test accepts these six clusters as single Gaussian clusters. Thus the original 

data are clustered into six clusters as the red crosses indicating in figure 7.a.  

 

Figure 7: An Illustration of HS-means. The data set contains 6 generated clusters 
Gaussian mixture in two dimensions. Figure 7.a shows the six clusters found by HS-
Means with the crosses indicating the centers of the clusters. Figure 7.b shows the 
stability curve in the first level of analysis. k=3 has a better stability score than k=6. 
Figure 7.c shows how the Lange’s algorithm will partition the data set based on only one 
level of stability analysis. 
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We also run the competing methods on several generated data sets and compared 

the results with our HS-means. Table 1 is a summary of the comparisons. In the 

generated data sets we used for these comparisons, each data set contains 10 clusters with 

each cluster containing 200 data points. The c-separation we used is 3. The data might 

contain overlapping clusters, but not highly overlapped. For each category of the test 

data, we run the test for 20 times.  

 
Table 1: Learned k on Different Synthetically Generated Data Sets with Correct k=10 

 
 Gaussians 

3 dimensions 
Gaussians 
16 dimensions 

Uniforms 
3 dimensions 

Uniforms 
16 dimensions 

G-means 10.0476 0.8047 10 0 20.25 2.5521 14.3 1.8972 
PG-means 10 0.6666 9.6 1.3498 11.7 1.2517 10.15 0.7436 
Gap 4.3 3.1222 4.2 2.6583 3.9 2.846 4.7 2.5976 
Lange’s 6 3.559 10.8 1.032 6.2 2.8597 9.8 1.025 
Levin’s 6.32 3.258 10.5 1.521 5.92 2.942 8.8 1.35 
HS-means 10.01 0.325 9.95 0.263 10 0.048 10.6 0.52 

 

As we can see from the table, roughly speaking, PG-means and our HS-means 

have equivalent performance, which are the two best methods among all the methods we 

tested. The learned k from the existing stability based model selection methods are 

smaller than the correct one due to the symmetric data structure. Note that our data 

generating schema generally does not produce symmetric data problem in high 

dimensions. This is why in the table, for Gaussian mixture and Uniform mixture in 16 

dimensions, the existing stability based methods does not perform as bad as with data in 

low dimension. But in the real data set we tested later, the data symmetry does happen 

and those existing stability based algorithms does not perform well. As we said, G-means 

has a strong assumption that the data comes from Gaussians, so G-means performs very 

bad with the Uniform mixture data we generated.  
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5.1.3 Performance on the Symmetric Data Sets 
 

Let’s see how our HS-means handles the symmetric data set. To illustrate this, we 

generated two typical symmetric data sets as shown in Figure 8.a, where the data set 

contains four Gaussians grouped into two larger subsets, and Figure 8.d, where the data 

set contains nine Gaussians grouped into three larger subsets.  

We compared our results with the stability based model selection algorithm 

proposed by Tilman Lange et al. Figure 8.a and Figure 8.d shows that our HS-means can 

find correctly four true clusters and nine true clusters respectively. However, as shown in 

Figure 8.b and Figure 8.e, Lange’s algorithm can only find two clusters for data set in 

Figure 8.a and three clusters for data set in Figure 8.d. The stability curves in Figure 7c 

and Figure 8.f shows why this happens. In Figure 8.c, though k=4 does have a good 

stability score, k=2 has a better score because the data set looks like two clusters in the 

view of stability. Our algorithm will further analyze the two large cluster and discover a 

better model to fit the data while Lange’s algorithm will just stop with k=2. Similarly, in 

Figure 8.f, k=3 is more preferred than k=9 by Lange’s stability analysis while our 

algorithm can find exactly k=9. 

This wrong behavior of single level stability analysis does not only happen in 

Lange’s algorithm. After our investigation, we find that this wrong behavior happens in 

all the existing stability based model selection algorithms.  
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5.2 Performance on Real World Data Sets 

 

5.2.1 Handwriting Digits Data Set 
 

This data set contains the normalized handwritten digits, automatically scanned 

from envelopes by the U.S. Postal Service (obtained from http://www-

stat.stanford.edu/~tibs/ElemStatLearn/data.html). There are 7291 training examples and 

2007 test examples, and each example is a 16 x 16 grayscale image. We merge the 

training set and testing set together as our data set for testing HS-means. The examples 

for each digit from 0 to 9 are distributed as follows: 

 
Table 2: Distribution of Examples for Handwriting Data Set 

 
data 0 1 2 3 4 5 6 7 8 9 Total 
Train 1194 1005 731 658 652 556 664 645 542 644 7291 
Test 359 264 198 166 200 160 170 147 166 177 2007 

 

The data set is a commonly used data for clustering and classification algorithms. 

It is not consistent that how many true clusters there are in the data. An intuitive answer 

is that the data contains 10 true clusters since it is a data set for 10 digits from 0 to 9. 

However, since different people have different way of writing the same digit, it is hard to 

have a common standard for how many clusters are exactly presented in the data. We 

investigated the images representing each digit respectively and discovered that, at least, 

interpreting the data as 11 clusters is better than interpreting the data as 10 clusters since 

there are, roughly speaking, two different style of writing digit 0: thin and tall 0 versus fat 

and round 0. Thus in our experiments, we use k=11 as the number of true clusters for the 

handwriting data set though there might be more true clusters in fact. Put it in one word, 
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our data set is a 256 dimensional data set containing 9298 data points in 11 clusters. We 

don’t expect the data is from a mixture of Gaussians or a mixture of Uniforms. 

 
5.2.2 Synthetic Control Curves Data Set 
 

This dataset contains 600 examples in 60 dimensions of control charts(obtained 

from UCI machine learning repository)  which are synthetically generated by the process 

in Alcock and Manolopoulos (R.J. Alcock and Y. Manolopoulos 1999). Each instance in 

the data set represents a time series. There are six different clusters of control charts: 

normal, cyclic, increasing trend, decreasing trend, upward shift, and downward shift as 

shown in Figure 9. The data set contains six true clusters with each cluster contains 100 

data points. 

 
5.2.3 Data Projection 
 

As we have seen in the description of the Handwriting digits data set and the 

synthetic control charts data set, the dimension of these data sets are extremely large. To 

reduce the time of running tests on these data sets we perform data projections to reduce 

the dimension and run the algorithms on the projected low dimensional data.  Generally, 

two projection methods can be used here: random linear projection (S. Dasgupta 2000) 

and principal components analysis (I.T. Jolliffe 2002). Random linear projection is fast 

and easy. PCA is more expensive, but can give really good results which present the 

structure of the data very well. 

For the Handwriting digits data set, we project the original 256 dimensional data 

into 16 dimensional data and for the synthetic control charts data we project the original 

60 dimensional data into 10 dimensional data. Figure 10 shows how the data sets look 
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like in their first two principal components. As we can observe from this figure, both the 

two data sets have data symmetry. In figure 10, the observed two large cluster in 

Handwriting data set and the observed three large cluster in synthetic control charts data 

set all contain several clusters inside them. Those small clusters are not visible here 

because this figure just illustrates the first two principle components.  

 

Figure 8: HS-means versus Lange’s Algorithm on Symmetric Data Sets. Figure 8.a and 
Figure 8.d show the clustering results from HS-means. Figure 8.b and Figure 8.e show 
the clustering results from Lange’s algorithm. The stability curves of Lange’s algorithm 
are shown in Figure 8.e and Figure 8.f respectively. 
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Figure 9: Six Clusters in Control Charts. From A to F are normal, cyclic, increasing 
trend, decreasing trend, upward shift and downward shift, respectively. 
 

 

 

Figure 10: PCA Illustration on Handwriting Data and Control Charts Data. The first two 
principal components of Handwriting digits data set (figure a) and KDD synthetic control 
charts data set (figure b). 
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5.2.4 Algorithm Performance 
 

As we can see from figure 10, both the two testing data set has symmetric data 

structure. The handwritten digits dataset forms two large clusters. Each of the two large 

clusters has several clusters in it, which are not visible due to projection (the true data 

lives in 256 dimensions). Similarly, the Synthetic Control Charts dataset contains three 

large clusters visible with the two principle components. This data symmetry leads 

Lange’s algorithm to perform poorly. However, HS-means is able to find high quality 

clusterings that use more appropriate k values for the datasets at hand. We also verified 

that the algorithms both give reasonably good (low) VI scores relative to the true labels, 

but HS-means was significantly better on the handwritten digits dataset. As a result, 

running Lange’s stability based model selection algorithm only finds two clusters in 

Handwriting Digits data set and three clusters in Synthetic Control Charts data set, as we 

expected. HS-means performs well on the Synthetic Control Charts data set, finding 

around eight clusters in the data which is the closest to the true number of clusters. PG-

means does not work as well as HS-means on the Synthetic Control Charts data set which 

probably is because the clusters in the data set are not from Gaussian distribution. PG-

means and HS-means have similar performance on the Handwriting Digits data set. The 

results on Handwriting Digits data set, though larger than the true number of clusters, are 

more acceptable than the result from Lange’s algorithm. To better understand the learned 

clusterings, we calculate the VI score between the learned clustering and the true labels. 

These  k and VI scores are calculated by running the experiments for 20 times. The lower 

the VI score, the better the learned clustering. 
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Table 3: Learned k on Handwriting Data and Control Charts Data 
 

 Handwriting Digits Synthetic Control Charts 
learned k VI learned k VI 

HS-means 18.2 2.023 2.23 0.06 8.5 1.5 1.85 0.15 
Lange’s Stability 2.0 0.0 3.02 0.12 3.0 0.0  2.56 0.25 
PG-means 17.2 2.32 2.25 0.02 15.2 2.042 2.06 0.36 

 

5.3 Experiments on SimPoint 

We also evaluated our algorithm using large program traces from SPEC CPU 

2000. These come from our work on the SimPoint project, where the goal is to predict the 

performance of a program on a novel CPU without performing costly detailed simulation 

on the entire program. Instead, we profile the execution patterns (count basic blocks used 

over time intervals) of a program, and cluster this data to identify key regions for detailed 

simulation. By doing this, we can usually predict key performance statistics such as CPI 

and branch miss rates with less than 5% error, based on executing a very small portion of 

the program (e.g. less than 1%). This saves months of time when doing exploratory 

architecture comparisons which require a simulation across dozens of benchmarks for 

hundreds or thousands of potential CPU configurations. The current SimPoint approach 

uses k-means and a scoring system based on the Bayesian information criterion (BIC) to 

choose k; however, we desire a more statistically robust approach. Therefore, we applied 

HS-means to several benchmarks. We are willing to spend more time clustering 

benchmark trace data, since detailed simulation is extremely slow, and these clustering 

results will be used many times over many CPU configurations. 

We compared HS-means and Lange’s stability algorithm on the four benchmarks 

art-110, art-470, vpr-route, and gzip-graphic. These applications have been compiled for 

and profiled on an Alpha ISA processor. Each of these datasets is very high-dimensional 
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(from 2039 dimensions for art-110 to 11732 dimensions for vpr-route). We reduce the 

dimension of these datasets via random linear projection to 15 dimensions. The number 

of objects in each dataset ranges from 418 for art-110 to 1038 for gzip-graphic. Given the 

program traces, we use HS-means and Lange’s algorithm to compute a clustering for 

each. We allow each algorithm to select k in the process. Then we use the clustering to 

label each example in the original dataset, and evaluate the clusterings using 

measurements on the CPI performance metric, which was obtained via slow, detailed 

simulation of these benchmarks.  

In general, HS-means selects a larger k, indicating that it is detecting more fine-

grained behavior in these programs. In Table 4 we see that in all cases, HS-means is able 

to reduce the within-cluster CPI variance by a larger amount, indicating that the clusters 

it is finding are more uniform in their CPI, which is a good indication of a quality 

clustering. The within-cluster variance is a weighted average of the variance within each 

of the clusters, where the weights come from the relative cluster sizes. In Table 5, we 

investigate the ability of each algorithm to correctly predict the true average CPI of the 

whole program based only on samples of k examples (one from each cluster). We 

compute the weighted average CPI of the chosen examples (which are called 

‘SimPoints’), where again the weights come from the cluster sizes, and then we calculate 

the error with respect to the true whole-program average CPI. Having accurate CPI 

predictions is important for making decisions on new CPU designs. In three of the four 

benchmarks, HS-means predicts CPIs much more accurately than Lange’s algorithm. 

This is because Lange’s algorithm cannot handle the data symmetry problem which 
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occurs in these datasets. As a result, Lange’s algorithm cannot learn the k which better 

fits the data and obtain the clustering which better classifies the program execution data. 

 
Table 4: SPEC CPU 2000 Benchmark Results on CPI Variance Reduction. For each 

benchmark we calculate the weighted average within-cluster CPI variance. The 
‘reduction’ column is one minus the clustered CPI variance divided by the whole-

program CPI variance. A better clustering will reduce the CPI variance more. 
 
benchmark whole-

program CPI 
variance 

HS-means Lange 
k Clustered 

CPI 
variance 

reduction k Clustered 
CPI variance 

reduction 

art-110 .01956 5 .00174 .91084 2 .00293 .85009 
art-470 .01916 4 .00277 .85520 2 .00284 .85197 
vpr-route .12242 14 .05926 .51597 2 .08970 .26723 
gzip-graph .00363 6 .00320 .11820 3 .00319 .11792 

 
 

Table 5: SPEC CPU 2000 CPI Prediction Results. We compute a weighted CPI 
prediction for each benchmark using the clusterings from each algorithm. Lower error is 

better. 
 
benchmark whole-

program CPI 
HS-means Lange 
k predicted 

CPI 
error k predicted 

CPI 
error 

art-110 2.156 5 1.158 .0011 2 2.190 .0155 
art-470 2.145 4 2.146 .0090 2 2.167 .0100 
vpr-route 1.455 14 1.315 .0960 2 1.432 .0156 
gzip-graph 0.509 6 .506 .0049 3 .504 .0096 
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CHAPTER SIX 
 

Conclusion and Future Work 

 
The concept of clustering stability was proposed by statisticians and researchers 

in machine learning as a tool to automatically discover the number of clusters which best 

fits the given data. Several model selection methods based on this concept have been 

developed. However, these existing stability based model selection methods can not 

handle the data which contain symmetric data structure. We proposed a method which 

analyzes the clustering stability on multiple hierarchical levels to handle this problem. 

The experiments show that our proposed method solves the symmetric data problem well 

and out performs the existing stability based methods. The experiments on SimPoint data 

shows HS-Means is able to find reasonably good clustering which is comparable to 

current SimPoint algorithm. On the other hand, Lange’s algorithm, one of the existing 

stability based model selection algorithms, performs less well on the data.  

In the existing stability based model selection algorithms, most of them use 

resampling strategy to obtain different clusterings on the same data which are compared 

to compute the stability of the model. During the investigation in our research, we find 

that resampling is not necessary, at least not the only possible method, to achieve this. 

We use randomization of the initial positions of the cluster centers to introduce input 

randomization to the clusterings which works well in our algorithm.  

One key part of our method is detecting the single cluster using unimodality 

testing techniques. The quality of these unimodality testing techniques is the bottle neck 
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of the method. The future improvements could be made to our method by developing a 

better unimodality testing method. We investigated several unimodality testing methods 

during our research. None of the methods we investigated works perfect in all situations. 

The unimodality testing still remains as a challenging problem in statistics.  
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