
ABSTRACT

Quantization of Black Holes and Singularity Resolution in Loop Quantum Gravity

Wen-Cong Gan, Ph.D.

Advisor: Anzhong Wang, Ph.D.

In this dissertation, we study the properties of quantum black holes in the

framework of loop quantum gravity. Loop quantum gravity is based on the canonical

quantization of holonomies and fluxes of densitized triads. In loop quantum cosmology

(LQC), the effective Hamiltonian can be obtained from the classical Hamiltonian by

polymerization. The interior of Schwarzschild black hole is isometric to Kantowski-

Sachs cosmological model with symmetry group R× SO(3). Thus loop quantization

techniques of LQC can be used in loop quantization of black holes. On the other hand,

different choices of quantum parameters δb, δc correspond to different quantization

schemes and will lead to different loop quantum black hole solutions. In particular,

we investigate global and local properties of Bodendorfer, Mele, and Münch (BMM)

model, Alesci, Bahrami and Pranzetti (ABP) model and Böhmer-Vandersloot (BV)

model. We find that different choice of parameters will lead to different asymptotic

behaviors. Specifically, for appropriate parameters, BMM model has black hole/white

hole structure, ABP model has asymptotic de Sitter solution, while in BV model,

black hole/white hole horizon never forms due to large quantum effects.
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CHAPTER ONE

Introduction to Loop Quantum Gravity

1.1 3+1 decomposition and Hamiltonian formulation

Loop quantum gravity (LQG) is based on the canonical quantization of general

relativity [4] which is based on the Hamiltonian formulation. Thus, we need to split

four-dimensional (4D) spacetime into 1D “time” and 3D “space”, i.e. 3 + 1 decompo-

sition of spacetime. To do this, we need to introduce a one-parameter family of 3D

spacelike hypersufaces {Σt} to foliate the 4D spacetime manifold M. The induced

metric on Σ reads

qµν = gµν + nµnν , (1.1)

where gµν is metric on M, and nµ is the unit normal vector of Σ.

Further, we also need to associate points on different Σt to each other, in

order to describe the field’s evolution with respect to “time” parameter t. This can

be done by introducing the timelike vector tµ, which satisfies tµ∇µt = 1. Its integral

curves specify space coordinates xa on each Σt. Then for each t, we have embedding

Xt : Σt →M such that Xt(x) = X(t, x), where Xµ is spacetime coordinates. Then

tµ(X) =

(
∂Xµ(t, x)

∂t

)∣∣∣∣
X=X(t,x)

. (1.2)

We can decompose tµ in the following form

tµ(X) = N(X)nµ(X) +Nµ(X), (1.3)

1



where N and Nµ are called the lapse function and the shift vector, respectively. The

freedom to use arbitrary spacetime coordinates corresponds to the freedom to use an

arbitrary lapse function and shift vector.

We have nµ = (tµ −Nµ)/N , then

gµν = qµν − nµnν = qµν − 1

N2
(tµ −Nµ)(tν −Nν). (1.4)

In coordinates (t, xa), we have tµ = (1, 0), Nµ = (0, Na), then nµ = ( 1
N
, −N

a

N
),

qµν =

0 0

0 qab

 , (1.5)

and

gµν =

− 1
N2

Na

N2

Nb

N2 qab − NaNb

N2

 , (1.6)

thus

gµν =

−N2 +NaNa Nb

Na qab

 , (1.7)

which leads to

ds2 = gµνdx
µdxν = −N2dt2 + qab(dx

a +Nadt)(dxb +N bdt). (1.8)

Denote Da as the spatial covariant derivative compatible with metric qab, i.e. Daqbc =

0, then the spatial curvature tensor is defind by

(DaDb −DbDa)v
c = R

(3) c
dabv

d. (1.9)

The extrinsic-curvature tensor is defined by

Kab := Danb = q c
a q

d
b ∇cnd. (1.10)

The Ricci scalar is given by

R = R(3) +KabK
ab −K2 − 2∇av

a, (1.11)
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where va = nc∇cn
a − na∇cn

c, K = Ka
a . We also have g = −N2q, where g = detgµν

and q = detqab. Then up to a boundary term, we have

SEH =

∫
dtL =

1

16πG

∫
d3xN

√
q
(

R(3) +KabK
ab −K2

)
. (1.12)

The conjugate momentum of qab reads

pab =
δL

δq̇ab
=

1

2N

δL

δKab

=
1

16πG

√
q
(
Kab −Kqab

)
. (1.13)

Then the gravitational Hamiltonian is given by

Hgrav =

∫
d3x pabq̇ab − L, (1.14)

and can be written in the form

Hgrav =

∫
d3x

[
16πG

N
√
q

(
pabp

ab − 1

2
p2
)
− 1

16πG
N
√
q(3)R + 2pabDaNb

]
, (1.15)

where p = paa. The Lagrangian in Eq.(1.12) does not contain Ṅ and Ṅa, thus we

have primary constraints

pN =
δL

δṄ
' 0, pa =

δL

δṄa
' 0, (1.16)

where ' means equal on the constraint surface. Primary constraints imply secondary

constraints

0 ' Ha = −{pa, Hgrav} = −2Dbp
b
a = −2

√
qDb

(
q−1/2pab

)
, (1.17)

called the diffeomorphism constraint (or vector constraint), and

0 ' H = −{pN , Hgrav} = 16πG
1
√
q

(
pabp

ab − 1

2
p2
)
− 1

16πG

√
q(3)R, (1.18)

called the Hamiltonian constraint (or scalar constraint). Then

Hgrav =

∫
d3x (NH +NaHa) , (1.19)

where integration by parts has been used and the boundary term 2
∫
d3x
√
qDa(p

ab Nb√
q
)

has been ignored.
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1.2 Ashtekar’s variables

Orthonormal triads eai (x) for the spatial metric qab are introduced,

qabe
a
i e
b
j = δij, (1.20)

and densitized triads are defined by

Ea
i =
√
qeai , (1.21)

which will be treated as the new canonical variables. The triads expand the internal

space, and the covariant derivative for vectors in internal space reads

Dav
i = ∂av

i + Γ i
a jv

j, (1.22)

where the connection Γ i
a j is determined by the compatibility condition,

Dae
i
b = ∂ae

i
b − Γcabe

i
c + Γ i

a je
j
b = 0. (1.23)

Spin connections are defined as

Γia = −1

2
εijkΓajk. (1.24)

The Ashtekar-Barbero connection is defined by

Aia = Γia + γKi
a, (1.25)

where

Ki
a = Kabq

bceic, (1.26)

and γ is called the Barbero-Immirzi parameter. Ashtekar found that

{Aia(x), Eb
j (y)} = 8πGγδbaδ

i
jδ

(3)(x, y). (1.27)

Introducing the covariant derivative with the Ashtekar connection as

Davi = ∂av
i + εijkA

j
av

k, (1.28)
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then there is a new constraint called the Gauss constraint

0 ' Gi =
1

8πγG
DaEa

i , (1.29)

which generates the SO(3) gauge transformation. In terms of Ashtekar’s new vari-

ables, the diffeomorphism constraint reads

Ha =
1

8πγG
F i
abE

b
i , (1.30)

where

F i
ab = ∂aA

i
b − ∂bAia + εijkA

j
aA

k
b . (1.31)

The Hamiltonian constraint reads

H =
1

16πG

Ea
i E

b
j√

detE

(
εijkF

k
ab − (1 + γ2)

(
Ki
aK

j
b −K

j
aK

i
b

))
. (1.32)

1.3 Holonomy and flux

The holonomy is defined by

he[A] = P exp

(∫
e

A

)
, (1.33)

where P exp denotes the path-ordered exponential, and e is the curve parametrized

by s ∈ [0, 1]. The holonomy can be explicitly expressed as

he[A] = 12×2 +
∞∑
n=1

∫ 1

0

ds1

∫ 1

s1

ds2· · ·
∫ 1

sn−1

dsn ė
a1(s1)Aa1

(
e(s1)

)
· · · ėan(sn)Aan

(
e(sn)

)
,

(1.34)

where he(0) = 1, and Aa = Aiaτi, with τi = −1
2
σi the generators of SU(2) (σi is the

Pauli matrix). Then he[A] ∈ SU(2). The conjugate momentum of the holonomy is

given by the flux of densitized triads and is defined by

Ei(S) =

∫
S

d2σ na(σ)Ea
i

(
x(σ)

)
, (1.35)
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where S is a two-dimensional surface, σ is a coordinate on it, and

na(σ) = εabc(∂x
b/∂σ1), (∂xc/∂σ2) (1.36)

is the normal one-form on S.

Suppose curve e intersects surface S at point P with parameter s0, then the

Poisson brackets are given by [5, 6]

{
he[A], Ei(S)

}
= −8πγGν(S, e)he(1,s0)τihe(s0,0), (1.37)

where the factor ν(S, e) is defined as

ν(S, e) =



+1 if S and e have same orientation

−1 if S and e have opposite orientation

0 if e does not intersect S or intersects S tangentially

(1.38)

If there are more than one intersection points between S and e, then each intersection

point has contribution in the form (1.37).

1.4 Quantization

Wave functions are functions of all holonomies on Γ

ΨΓ[A] = ψ
(
he1 [A], . . . , heN [A]

)
, (1.39)

where Γ represent the graph. ΨΓ[A] are called cylindrical functions on Γ. The kine-

matical Hilbert space is constructed by square-integrable complex-valued functions

on SU(2)N , i.e.

Hkin = L2 (SU(2), dg)N , (1.40)
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where N is the number of oriented edges in graph Γ and dg is the Haar measure of

SU(2). If we parametrize

h = eα1τ3/2eα2τ2/2eα3τ3/2, (1.41)

with α1, α2, α3 Euler angles, then for any function f(h) ≡ f(α1, α2, α3), dg is defined

by ∫
dg(h)f(h) ≡ 1

8π3

∫ 2π

0

dα1

∫ π

0

sinα2dα2

∫ 2π

0

dα3f(α1, α2, α3). (1.42)

Then scalar product is defined as

〈ΨΓ|ΦΓ〉 =

∫
dg1 . . . dgN ψ(g1, . . . , gN)φ(g1, . . . , gN). (1.43)

Physical Hilbert space Hphys is obtained by imposing constraints

Hkin
Ĝiψ=0−−−−−−−→ HG

Ĥaψ=0−−−−−−−→ Hdiff
Ĥψ=0−−−−−−−→ Hphys.

1.5 Conventions

The following conventions are used in this dissertation. The signature of met-

rics is gµν = {−1,+1,+1,+1}. The Christoffel symbol is

Γλµν =
1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν).

The Riemann tensor is [7]

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ.

The Ricci tensor is

Rµν = Rρ
µρν .

The Ricci scalar is

R = gµνRµν .

7



The Einstein tensor is

Gµν = Rµν −
1

2
Rgµν .

The Weyl tensor in n dimensions is

Cρσµν = Cρσµν −
2

(n− 2)
(gρ[µRν]σ − gσ[µRν]ρ) +

2

(n− 1)(n− 2)
gρ[µRν]σR.

Einstein’s equations are

Gµν = 8πGTµν .
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CHAPTER TWO

Introduction to Loop Quantum Black holes

2.1 Symmetry reduction

The interior of the Schwarzschild black hole is isometric to the Kantowski-

Sachs (KS) cosmological model with symmetry group R × SO(3). Introducing the

fiducial metric ds2
o on homogeneous Cauchy slices of the KS model [8, 9]

ds2
o := dx2 + r2

o(dθ
2 + sin2 θ dφ2), (2.1)

by imposing the symmetry and Gauss constraint, we find that the connection and

triad are given by

Aia τi dx
a = c̄ τ3 dx+ b̄ ro τ2dθ − b̄ ro τ1 sin θ dφ+ τ3 cos θ dφ, (2.2)

and

Ea
i τ

i ∂

∂xa
= p̄c r

2
o τ3 sin θ

∂

∂x
+ p̄b ro τ2 sin θ

∂

∂θ
− p̄b ro τ1

∂

∂φ
. (2.3)

Then the metric is given by

ds2 = −N2dt2 +
p̄2
b

|p̄c|
dx2 + |p̄c| r2

o (dθ2 + sin2 θ dφ2), (2.4)

and the symplectic structure

Ω̄ =
Lor

2
o

2Gγ

(
2db̄ ∧ dp̄b + dc̄ ∧ dp̄c

)
, (2.5)

depends on Lo and ro explicitly. We can absorb Lo and ro by introducing

c = Lo c̄, pc = r2
o p̄c, b = ro b̄, pb = ro Lo p̄b, (2.6)

which satisfy

{c, pc} = 2Gγ, {b, pb} = Gγ . (2.7)
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The Ashtekar connection and spatial triads now can be written as:

Aia τi dx
a =

c

Lo
τ3 dx+ b τ2dθ − b τ1 sin θ dφ+ τ3 cos θ dφ, (2.8)

and

Ea
i τ

i∂a = pc τ3 sin θ ∂x +
pb
Lo

τ2 sin θ ∂θ −
pb
Lo

τ1 ∂φ. (2.9)

And the metric now reads

ds2 = −N2dt2 +
p2
b

|pc|L2
o

dx2 + |pc|(dθ2 + sin2 θdφ2), (2.10)

which is invariant under rescaling ro → λ1ro and Lo → λ2Lo, where λ1, λ2 are con-

stants.

The volume of the fiducial cell is

V =

∫
d3x
√

det q = 4π Lor
2
o|p̄b||p̄c|1/2 = 4π |pb||pc|1/2 . (2.11)

2.2 Classical solution

The smeared Hamiltonian constraint in full theory [10]

H[N ] ≡ 1

16πG

∫
d3xNH =

1

16πG

∫
d3xN

Ea
i E

b
j√

detE

(
εijkF

k
ab−(1+γ2)

(
Ki
aK

j
b−K

j
aK

i
b

))
(2.12)

reduces to the following form in terms of phase space variables in the reduced phase

space

HGR[NGR] = − 1

2Gγ

(
2c pc +

(
b+

γ2

b

)
pb

)
, (2.13)

with the lapse function

NGR = γ b−1sgn(pc) |pc|1/2. (2.14)
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The equations of motions (EoMs) of the system can be obtained from the Hamiltonian

equations,

dA

dT
= {A,H} , (2.15)

for any physical variable A of the system. Then we find,

ḃ = {b,HGR} = Gγ
∂HGR

∂pb
= − 1

2b

(
b2 + γ2

)
, (2.16)

ċ = {c,HGR} = 2Gγ
∂HGR

∂pc
= −2c, (2.17)

ṗb = {pb, HGR} = −Gγ∂H
GR

∂b
=

pb
2b2

(
b2 − γ2

)
, (2.18)

ṗc = {pc, HGR} = −2Gγ
∂HGR

∂c
= 2pc, (2.19)

where an overdot denotes the derivative with respect to T . Then, the integrations of

Eqs.(2.16), (2.17) and (2.19) yield, respectively,

bGR(T ) = ±γ
√
eTo−T − 1, (2.20)

cGR(T ) = coe
−2T , (2.21)

pGR
c (T ) = poce

2T , (2.22)

where To, co and poc are three integration constants with To and co being dimensionless

and poc of L2. To find pb, we can first substitute the above solutions to Eq.(2.18) and

then integrate it to find pb, which will contain an integration constant, say, pob. But,

this constant is not arbitrary and must be chosen so that the classical Hamiltonian

given by Eq.(2.13) vanishes identically. A more straightforward way is to submit the

above solutions into the classical Hamiltonian Eq.(2.13) and directly find pb. In doing

so, we find that [3]

pGR
b (T ) = ∓2cop

o
c

γ
eT−To

√
eTo−T − 1. (2.23)

11



Hence, we find

NGR = ±sgn(pc) |poc|
1/2

√
eTo−T − 1

eT , (2.24)

and

ds2 = poc

{
− sgn (poc) e

2T

eTo−T − 1
dT 2

+
4c2
oe
−2To

γ2L2
o

(eTo−T − 1)dx2 + e2TdΩ2

}
. (2.25)

Clearly, to have the proper signature, we assume poc > 0. Then, setting r =
√
poce

T

and rescaling x by

x→ t ≡ −2co
√
poce
−To

γLo
x, (2.26)

the above metric takes the form of the classical Schwarzschild solution in the internal

region of the black hole

ds2 = − 1
2m
r
− 1

dr2 +

(
2m

r
− 1

)
dt2 + r2dΩ2, (2.27)

with m ≡ √poceTo/2, related to the mass of the black hole via the relation M = m/G.

From the above analysis, we can see that, without loss of the generality, the

rescaling (2.26) simply allows us to set

2co
√
poce
−To

γLo
= −1. (2.28)

On the other hand, using the gauge residual T → T̂ = T + Co, we can always set

p0
c = 1, where Co ≡ (1/2) ln poc. Certainly, this rescaling will lead to T − To = T̂ − T̂o

and m ≡ √poceTo/2 = eT̂o/2, where T̂o ≡ To + Co. In addition, Lo does not appear in

the dynamical equations (2.16) - (2.19). Therefore, without loss of the generality, we

can always set Lo = 1. In summary, the constants poc, co and Lo can be chosen as

poc = 1, Lo = 1, co = −γLoe
To

2
√
poc

= −γm, (2.29)
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without affecting the physics of the spacetimes of the corresponding dynamical equa-

tions. Hence, we obtain

bGR(T ) = ±γ
√

2me−T − 1,

pGR
b (T ) = ±eT

√
2me−T − 1,

cGR(T ) = −γme−2T , pGR
c (T ) = e2T . (2.30)

In the rest of this dissertation, without loss of the generality, we shall choose the “+”

signs for both bGR(T ) and pGR
b (T ).

It is interesting to note that there is essentially only one physical parameter

m that determines the properties of the classical spacetime, while the parameter γ

affects only the dynamical equations through Eqs.(2.16) - (2.19), but has no effect on

the spacetime. This is true only classically, and quantum mechanically γ does affect

the properties of quantum spacetimes. In particular, the considerations of black hole

thermodynamics in LQG requires γ ' 0.2375 [11].

2.3 Loop Quantization

The connection c is considered over edges labelled by τ in the x-direction and b

is considered over edges labelled by µ in the θ- and φ-directions. Then the holonomies

are given by [8, 10]

h(τ)
x = cos(τc/2) + 2 τ3 sin(τc/2) , (2.31)

h
(µ)
θ = cos(µb/2) + 2 τ2 sin(µb/2) , (2.32)

and

h
(µ)
φ = cos(µb/2)− 2 τ1 sin(µb/2) . (2.33)
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The Kinematical Hilbert space is spanned by eigenstates of p̂b and p̂c:

p̂b |µ, τ〉 =
γ`2

pl

2
µ |µ, τ〉, p̂c |µ, τ〉 = γ`2

pl τ |µ, τ〉 , (2.34)

which satisfy orthonormal condition 〈µ′, τ ′|µ, τ〉 = δµµ′δττ ′ . Then

Vµτ = 2πγ3/2`3
pl|µ||τ |1/2. (2.35)

The Hamiltonian constraint of the full theory can be written in the form [8]

H[N ] = − N

16πG

∫
d3x e−1εijkE

aiEbj(γ−2 oF k
ab − Ωk

ab) , (2.36)

where Ω = − sin θτ3dθ ∧ dφ is the curvature of the spin connection Γ = cos θ dφ, and

oF k
ab is the curvature of extrinsic curvature

Ki
a = γ−1(Aia − Γia). (2.37)

To quantize the theory, we need to write the Hamiltonian constraint in terms of

holonomies. We need to consider loops in x − θ, x − φ an θ − φ planes to define

holonomies. The length of the edge along the x-direction is δcLo and the length of

each edge along longitudes and the equator of S2 is δbro. Then [8]

εijke
−1EajEbk =

∑
k

oεabc oωkc
2πγGδ(k)`(k)

Tr
(
h

(δ(k))

k {(h(δ(k))

k )−1, V }τi
)
, (2.38)

where δ(k) represents δb or δc, and `(k) represents Lo or ro. And

oF k
ab = −2 lim

Ar�→0
Tr

h(δ(i),δ(j))

�ij
− 1

δ(i)δ(j)`(i)`(j)

 τ k oωia
oωjb , (2.39)

where

h
(δ(i),δ(j))

�ij
= h

(δ(i))

i h
(δ(j))

j (h
(δ(i))

i )−1(h
(δ(j))

j )−1 . (2.40)
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Plugging Eqs.(2.38) and (2.39) into the Hamiltonian constraint (2.36), we have [8]

H(δb,δc)[N ] = − N

16πG

2

γ3Gδ2
b δc

[
2 γ2δ2

bTr
(
τ3h

(δc)
x {(h(δc)

x )−1, V }
)

+
∑
ijk

εijkTr
(
h

(δ(i),δ(j))

�ij
h

(δ(k))

k {(h(δ(k))

k )−1, V }
)]

, (2.41)

which can be written as [12]

N eff =
γδb
√
pc

sin(δbb)
, (2.42)

Heff[N eff] = − 1

2γG

[
2

sin(δcc)

δc
pc +

(
sin(δbb)

δb
+

γ2δb
sin(δbb)

)
pb

]
, (2.43)

in terms of phase space variables (pb, pc, b, c). Because of Eq.(2.39), the classical ex-

pression is recovered under limit δb → 0, δc → 0, i.e. HGR[NGR] = limδb,δc→0 H
eff[N eff].

Effective expressions can be obtained by the substitutions

b→ sin(δbb)

δb
, c→ sin(δcc)

δc
, (2.44)

which is called “polymerization”.

Utilizing Eq.(2.43), we can obtain the effective Hamiltonian EoMs

ḃ = Gγ
∂Heff

∂pb
= −1

2

{
2

(
c cos(δcc)

δc
− sin(δcc)

δ2
c

)
∂δc
∂pb

pc +

[
γ2δb

sin(δbb)
+

sin(δbb)

δb

]

+pb
∂

∂pb

[
γ2δb

sin(δbb)
+

sin(δbb)

δb

]}
,

(2.45)

ċ = 2Gγ
∂Heff

∂pc
= −

{
2

(
c cos(δcc)

δc
− sin(δcc)

δ2
c

)
∂δc
∂pc

pc + 2
sin(δcc)

δc

+pb
∂

∂pc

[
γ2δb

sin(δbb)
+

sin(δbb)

δb

]}
, (2.46)

ṗc = −2Gγ
∂Heff

∂c
= 2pc cos(δcc), (2.47)

ṗb = −Gγ∂H
eff

∂b
=
pb
2

cos(δbb)

[
1− γ2δ2

b

sin2(δbb)

]
, (2.48)

where we have assumed that δb and δc depend only on pb and pc.
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Different choices of δb and δc correspond to different quantization schemes and

will lead to different effective dynamics.

2.3.1 µ0 scheme

In the µ0 scheme [10,12,13], δb and δc are set to be constants,

δb = 2
√

3, δc = 2
√

3. (2.49)

When δb and δc do not depend on phase space variables, Hamiltonian equations reduce

to

ḃ = Gγ
∂Heff

∂pb
= −1

2

(
sin(δbb)

δb
+

γ2δb
sin(δbb)

)
, (2.50)

ċ = 2Gγ
∂Heff

∂pc
= −2

sin(δcc)

δc
, (2.51)

ṗb = −Gγ∂H
eff

∂b
=
pb
2

cos(δbb)

(
1− γ2δ2

b

sin2(δbb)

)
, (2.52)

ṗc = −2Gγ
∂Heff

∂c
= 2pc cos(δcc), (2.53)

and has the general solution [9]

tan
(δc c(T )

2

)
= ∓γLoδc

8m
e−2T , (2.54)

pc(T ) = 4m2
(
e2T +

γ2L2
oδ

2
c

64m2
e−2T

)
, (2.55)

cos
(
δb b(T )

)
= bo tanh

(
1

2

(
boT + 2 tanh−1

( 1

bo

)))
, (2.56)

where

bo = (1 + γ2δ2
b )

1/2, (2.57)

and

pb(T ) = −2
sin(δc c(T ))

δc

sin(δb b(T ))

δb

pc(T )
sin2(δb b(T ))

δ2
b

+ γ2
. (2.58)
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2.3.2 µ̄-scheme

In LQC, the consistent prescription for the polymerization parameters were

obtained by requiring that the physical area Axθ (= δbδcpb) [14] 1 of the closed holon-

omy loop in the (x, θ)-plane be equal to the minimum area gap predicted by loop

quantum gravity, ∆ ≡ 2
√

3πγl2pl, so that

δbδcpb = ∆. (2.59)

However, for the holonomies on the two-sphere, the loop does not close, and BV

required that Aθφ (= δ2
bpc) be equal to the minimum area, i.e.

δ2
bpc = ∆. (2.60)

Then, from the above equations, we find

δb =

√
∆

pc
, δc =

√
∆pc
pb

, (2.61)

which are all dimensionless and often referred to as the µ̄-scheme for the spherically

symmetric spacetimes [15]. Hence, we have

∂δb
∂pb

= 0,
∂δb
∂pc

= − δb
2pc

, (2.62)

∂δc
∂pb

= −δc
pb
,
∂δc
∂pc

=
δc

2pc
. (2.63)

1 In the homogeneous isotropic universe, we have δb = δc. As a result, the condition (2.59)
uniquely determines them. But, in the Kantowski-Sachs spacetime, this is no longer the case. So,
in general we have δb 6= δc, and now one more condition is needed in order to determines them
uniquely.
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Inserting them into Eqs.(2.45) and (2.46), we obtain [3]

ḃ = − cF
2 sin(δcc)

δc

cos(δcc), (2.64)

ċ = −
sin(δcc)
δc

F

{
b cos(δbb)− b cos(δbb)

γ2δ2
b

sin2(δbb)

+2
γ2δb

sin(δbb)

+δcc cot(δcc)

[
γ2δb

sin(δbb)
+

sin(δbb)

δb

]}
, (2.65)

ṗc = 2pc cos(δcc), (2.66)

ṗb =
pb
2

cos(δbb)

[
1− γ2δ2

b

sin2(δbb)

]
, (2.67)

where

F ≡ γ2δb
sin(δbb)

+
sin(δbb)

δb
. (2.68)

After taking the following identity into account

pc
pb

=
δc
δb

= − F
2 sin(δcc)

δc

, (2.69)

it can be shown that Eqs.(2.64)-(2.67) reduces to Eqs.(58)-(61) given in [15]. In

particular, now the effective Hamiltonian (2.43) takes the form

Heff[N eff] = − pc
2γG sin (δbb)δc

CBV, (2.70)

CBV ≡ 2 sin (δbb) sin (δcc) + sin (δbb)
2 + γ2δ2

b . (2.71)

Therefore, the Hamiltonian constraint Heff[N eff] ' 0 can be written as CBV ' 0.
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CHAPTER THREE

Properties of the spherically symmetric polymer black holes

This chapter is published in [1]: W. C. Gan, N. O. Santos, F. W. Shu and A. Wang,

Properties of the spherically symmetric polymer black holes, Phys. Rev. D 102,

124030 (2020).

3.1 Abstract

In this chapter we systematically study a recently proposed model of spheri-

cally symmetric polymer black/white holes by Bodendorfer, Mele, and Münch (BMM),

which generically possesses five free parameters. However, we find that, out of

these five parameters, only three independent combinations of them are physical and

uniquely determine the local and global properties of the spacetimes. After exploring

the whole 3-dimensional (3D) parameter space, we show that the model has very rich

physics, and depending on the choice of these parameters, various possibilities exist,

including: (i) spacetimes that have the standard black/white hole structures, that is,

spacetimes that are free of spacetime curvature singularities and possess two asymp-

totically flat regions, which are connected by a transition surface (throat) with a finite

and nonzero geometric radius. The black/white hole masses measured by observers

in the two asymptotically flat regions are all positive, and the surface gravity of the

black (white) hole is positive (negative). In this case, there also exist possibilities in

which the two horizons coincide, and the corresponding surface gravity vanishes iden-

tically. (ii) Spacetimes that have wormholelike structures, in which the two masses

measured in the two asymptotically flat regions are all positive, but no horizons exist,

neither a trapped (black hole) horizon nor an anti-trapped (white hole) horizon. (iii)
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Spacetimes that still possess curvature singularities, which can be either hidden inside

trapped regions or naked. However, such spacetimes correspond to only some limit

cases. In particular, the necessary (but not sufficient) condition is that at least one

of the two “polymerization” parameters vanishes. These results are not in conflict

to the Hawking-Penrose singularity theorems, as the effective energy-momentum ten-

sor, purely geometric and resulted from the “polymerization” quantization, satisfies

none of the three (weak, strong or dominant) energy conditions in any of the two

asymptotically flat regions for any choice of the three independent free parameters,

although they can hold at the throat and/or at the two horizons for some particular

choices of them. In addition, it is true that quantum gravitational effects are mainly

concentrated in the region near the throat, however, in this model even for solar mass

black/white holes, such effects can be still very large at the black/white hole horizons,

again depending on the choice of the parameters. Moreover, in principle the ratio of

the two masses (for both of the black/white hole and wormhole spacetimes) can be

arbitrarily large.

3.2 Introduction

In classical Hamiltonian mechanics, a canonical transformation

(qi, pi)→ (Qi, Pi), (3.1)

is always allowed, and does not change the physics of the system, where Qi =

Qi(qk, pk; t), Pi = Pi(qk, pk; t), qi = (b, c), and pi = (pb, pc) [16]. However, the

polymerization (2.44) depends on the choice of the canonical variables, and differ-

ent canonical variables in general lead to different effective theories. It was exactly

along this vein, Bodendorfer, Mele, and Münch (BMM) considered the following
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transformation [17,18],

v1 ≡
1

24
|pc|3/2 , v2 ≡ −

1

8
p2
b , (3.2)

for which the corresponding conjugate momenta are denoted by P1 and P2, respec-

tively. Then, instead of Eq.(2.44), now the polymerizations are carried out via the

replacements [17],

P1 →
sin(λ1P1)

λ1

, P2 →
sin(λ2P2)

λ2

, (3.3)

where λ1 and λ2 play the same role as δb and δc. In this approach, the polymerization

scales (λ1, λ2) are taken as constants, but as pointed out in [18], this choice of poly-

merization scales does not correspond to µ0-scheme in terms of the variables (b, c),

instead, when translated back to (b, c), they correspond to a specific µ̄-scheme.

It must be noted that the BMM model is based on a set of new canonical

variables (vi, Pi). Although the canonical transformation (3.1) is always allowed clas-

sically, the corresponding loop quantization has not been carried out yet in terms of

these new variables. As a result, it is not clear what are relations of such effective

theory [obtained by simply the replacement of Eq.(3.3)] to LQG. Therefore, to be

distinguished with the effective theory obtained from LQG by taking only the leading

order of quantum corrections into account, we refer such black holes as polymer black

holes. Additional questions related to this issue can be found from [10,19].

With the above caveat in mind, in this chapter, we shall systematically study

the local and global properties of the model proposed in [17]. In particular, we find

that, out of the five parameters appearing in the model, only three independent

combinations of them are physically relevant, and uniquely determine the properties

of the spacetimes. In this 3D phase space, there exist regions, in which the solutions
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can represent two asymptotically flat regions connected by a throat with a finite

and nonzero geometric radius, and the masses read off in these two asymptotically

flat regions are all positive. In such case, a black/white horizon exists or not also

depending on the choice of the three free parameters. When they do exist, the surface

gravity at the black (white) hole horizon can be positive (negative). When they do

not exist, the spacetimes have wormhole structures. In all these solutions, spacetime

curvature singularities are absent, which does not contradict to the Hawking-Penrose

singularity theorems [20], as now the effective energy-momentum tensor does not

satisfy any of the three energy conditions in the two asymptotically flat regions,

despite the fact that the masses measured by observers in these two asymptotical

regions are all positive. This is mainly due to the fact that the relativistic Komar

energy density [21] is still positive in a large region of the spacetime. The violation of

the three energy conditions in the asymptotically flat regions is a generic feature of

the model, independent of the choice of the parameters of the solutions. Spacetime

curvature singularities can occur, but the necessary (not sufficient) condition is at

least one of the two “polymerization” parameters vanishes. In addition, although it

is true that quantum gravitational effects are mainly concentrated in the region near

the throat, in this model such effects still can be very large at the black/white hole

horizons even for solar mass black/white holes, again depending on the choice of the

free parameters. Moreover, in principle the ratio of the two masses (for both of the

black/white hole and wormhole spacetimes) can be arbitrarily large.

It should be noted that, despite the fact that in this chapter we consider only

a particular model, we believe the main conclusions should hold for more general

cases. In particular, the Schwarzschild solution is the unique vacuum solution of GR
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with a single parameter—the black hole mass, according to the Birkhoff theorem [22].

However, due to the polymerization process, two more free parameters, δb and δc

(or in the present case, λ1 and λ2), are introduced. So, the resulted spacetimes

should be characterized physically by only three free parameters, although the two

polymerization parameters may be completely fixed, when the quantization is carried

out explicitly, such as in the case considered in [9, 23]. Clearly, in order for this to

be consistent with the Birkhoff theorem, effective matter must be present, purely due

to the quantum geometric effects. In addition, to be in harmony with the Hawking-

Penrose singularity theorems [20], the effective energy-momentum tensor necessarily

violates the weak/strong energy conditions.

The rest of the chapter is organized as follows: In Sec. 3.3, we first review

the model built in [17] and then write the corresponding solutions in terms of only

three independent combinations of the original five parameters, which are denoted by

D, C, x0, defined explicitly in Eq.(3.9). Then, we study the model in detail over the

whole parameter space in Secs. 3.4 - 3.6, respectively, for ∆ > 0, ∆ = 0, and ∆ < 0,

as in each case the spacetimes have quite different properties, where ∆ is defined by

Eq.(3.13). The main results in each of these sections are summarized, respectively,

in Tables 3.1 - 3.3. The chapter is ended up in Sec. 3.7, in which we summarize our

main conclusions. An appendix is also included, in which the general expressions of

the energy density and pressures of the effective energy-momentum tensor are given

explicitly.
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3.3 Spherically symmetric polymer black holes

Studying spherically symmetric spacetimes inside black holes, Bodendorfer,

Mele, and Münch recently obtained the following spherically symmetric black hole

solutions [17],

ds̄2 = − ā(x)

L2
0

dt̄2 +
L2

0

ā(x)
dx2 + b̄2(x)dΩ2, (3.4)

where L0 =
√
n, x ∈ (−∞,∞), and

ā(x) = n

(
λ2√
n

)4(
1 +

nx2

λ2
2

)1− 3CD

2λ2

√
1 + nx2

λ2
2


×

 λ6
2

16C2λ2
1n

3

(√
nx

λ2

+

√
1 +

nx2

λ2
2

)6

+ 1

−2/3

×
(

1

3C2Dλ2
1

)2/3
(√

nx

λ2

+

√
1 +

nx2

λ2
2

)2

,

b̄(x) =

√
n (3C2Dλ2

1)
1/3

λ2

×

[
λ6

2

16C2λ2
1n

3

(√
nx
λ2

+
√

1 + nx2

λ2
2

)6

+ 1

]1/3

√
nx
λ2

+
√

1 + nx2

λ2
2

, (3.5)

where λ1, λ2, n, C and D are real constants with n > 0.

As shown in [17], there are two independent Dirac observables, FQ and F̄Q,

which are constants along the trajectories of the effective dynamics, and their on-shell

values are given by,

FQ =

(
3D

2

)4/3(
C√
n

)
,

F̄Q =
3CD

√
n

λ2
2

(
3DC2λ2

1

)1/3
. (3.6)

It can be shown that both of them are invariant under a fiducial cell rescaling. As

a result, the integration constants C and D are independent. In fact, at the limits,

24



x→ ±∞, we have

ā(x) ∝


1− FQ

b̄
, x→∞,

1− F̄Q
b̄
, x→ −∞.

(3.7)

Thus, they are essentially related to the black and white hole masses via the relations,

M̄BH =
1

2
FQ =

(
3D

2

)4/3(
C

2
√
n

)
,

M̄WH =
1

2
F̄Q =

3CD
√
n

2λ2
2

(
3DC2λ2

1

)1/3
. (3.8)

Introducing the quantities,

D ≡ 3CD

2
√
n
, C ≡

(
16C2λ2

1

)1/6
, x0 ≡

λ2√
n
, (3.9)

we find that the metric (3.4) takes the form,

ds̄2 =

(
3D

16

)2/3

ds2

≡
(

3D

16

)2/3(
−a(x)dt2 +

dx2

a(x)
+ b2(x)dΩ2

)
, (3.10)

with t ≡ (
√
n/L0) (16/3D)2/3 t̄, and

a(x) =
(x2 −∆)XY 2

(X +D)Z2
, b(x) =

Z

Y
, (3.11)

where

X ≡
√
x2 + x2

0, Y ≡ x+X,

Z ≡
(
Y 6 + C6

)1/3
, (3.12)

and

∆ ≡ D2 − x2
0 =

9C2D2 − 4λ2
2

4n
. (3.13)
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Figure 3.1: The geometric radius b(x) vs x. (a) Upper panel: Cx0 6= 0. When
plotting this curve, we had set x0 = 1, C = 1. (b) Middle panel: C 6= 0, x0 = 0.
When plotting this curve, we had set C = 2. (c) Bottom panel: C = 0, x0 6= 0. When
plotting this curve, we had set x0 = 1.

Since ds2 is related to ds̄2 only by a conformal constant factor (3D/16)2/3 1,

without loss of generality, we shall consider only the spacetimes described by ds2.

Then, we can see that only three independent combinations of the five parameters

λ1, λ2, n, C, and D appear in the metric coefficients, as defined by Eq.(3.9).

It is remarkable to note that in GR, due to the Birkhoff theorem [22], the black

hole mass is the only free parameter. However, in LQG, due to the polymerizations

(3.3), two new parameters λ1 and λ2 are introduced, so now the solutions generically

depend on three free parameters. When setting λ1 = λ2 = 0 (or C = x0 = 0), the

1 Under this rescaling, the Ricci and Kretschmann scalars are scaling, respectively, as R =

(3D/16)
2/3

R̄ and K = (3D/16)
4/3

K̄.
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above solutions reduce precisely to the Schwarzschild solution with D as the black

hole mass.

One of our goals in this chapter is to understand their physical and geometrical

meanings. To this goal, let us first note the following:

• Since x ∈ (−∞,∞), from Eq.(3.12) we find that

X ≥ x0, Y > 0, Z > C2. (3.14)

• In [17,18] it was assumed that

D > 0, ∆ > 0, (3.15)

so that two metric horizons always exist at x±H ≡ ±
√

∆, and the asymptotic

limits of Eq.(3.7) are always true (See also [24]).

• The solutions were initially derived only in the region −x−H < x < x+
H , in

which the spacetime is homogeneous, and the Killing vector ξ ≡ ∂t is space-

like. The horizon at x = x+
H is referred to as the black hole horizon, while the

one at x = x−H is referred to as the white hole horizon, although in between

them, no spacetime singularities exist at all [9, 23]. However, following the

standard process of extensions, one can easily extend the solutions beyond

these horizons to the regions |x| >
√

∆. In the extended regions x < x−H and

x > x+
H , the metrics will take the same form as that given by Eqs.(3.10)-

(3.12), but now the Killing vector ∂t becomes timelike.

In this chapter, we shall not impose the conditions (3.15), except that we

still assume that C and D are real. In particular, since C, D, n, λ1, and λ2 are

arbitrary constants, in principle, they can take any real values. However, since ds2 =

(3D/16)2/3 ds̄2, we shall assume that D = 0 holds only in the limiting sense. In
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addition, the two constants λ1 and λ2 originate from the polymerization (3.3), so we

also assume that λ1λ2 6= 0, and consider the case λ1λ2 = 0 only as some limit cases,

as to be explained explicitly below. Recall that we also assumed n > 0 in order to

have the metric be real.

Then, the geometric radius b(x) and the ranges of x all depend on the choices

of the two parameters x0 and C, which are shown explicitly in Fig. 3.1. In particular,

when Cx0 6= 0, we find that x ∈ (−∞,∞), and a minimal point (the throat) of b(x)

always exists, with b(±∞) = ∞, as shown by the upper panel of Fig. 3.1. When

C 6= 0, x0 = 0, the range of x is restricted to x ∈ (0,∞) with b(0) =∞ and b(∞) =∞.

In this case, a minimum (throat) of b(x) also exists, as shown explicitly in the middle

panel of Fig. 3.1]. When C = 0, x0 6= 0, the range of x is x ∈ (−∞,∞), but now

b(x) is a monotonically increasing function of x with b(−∞) = 0 and b(∞) =∞, and

a throat does not exists [cf. the bottom panel of Fig. 3.1].

In this chapter, we shall study the main properties of these spherical polymer

black hole solutions. In particular, we shall pay particular attention to the locations

of the throat and horizons, and the asymptotic behaviors of the spacetimes.

To these purposes, let us first notice that the effective energy-momentum ten-

sor Tµν , defined as Tµν ≡ κ−1Gµν , can be cast in the form,

Tµν = ρuµuν + prvµvν + pθ (θµθν + φµφν) , (3.16)

where

u+
µ = −a1/2(x)δtµ, v+

µ = a−1/2(x)δxµ,

θµ = b1/2(x)δθµ, φµ = b1/2(x) sin θδφµ, (a > 0), (3.17)
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and

κρ+ = − 1

b2

[
b(x) (2ab′′ + a′b′) + ab′

2 − 1
]
,

κp+
r =

1

b2

[
ba′b′ + ab′

2 − 1
]
,

κpθ =
1

2b

[
ba′′ + 2ab′′ + 2a′b′

]
, (a > 0), (3.18)

with κ ≡ 8πG/c4, a′ ≡ da(x)/dx, and so on.

It should be noted that in writing down Eqs.(3.17) and (3.18) we had assumed

that a(x) > 0, as already indicated in these equations, so the coordinate t is timelike.

However, if a (black/white) horizon exists, across this horizon a(x) becomes negative,

and the two coordinates t and x exchange their roles. Then, in the region a(x) < 0,

the effective energy-momentum tensor can be still cast in the form (3.16), but now

with

u−µ = |a|−1/2δxµ, v−µ = −|a|1/2δtµ,

κρ− = − 1

b2

[
ba′b′ + ab′

2 − 1
]
, (a < 0),

κp−r =
1

b2

[
b(x) (2ab′′ + a′b′) + ab′

2 − 1
]
, (3.19)

while θµ, φµ, and pθ are still given by Eqs.(3.17) and (3.18).

It should be also noted that, although the effective energy-momentum tensor

in both of the regions a > 0 and a < 0 is written in the same form given by Eq.(3.16),

the physical interpretations of the quantities ρ± and p±r are different. In particular,

the energy density ρ+ in the region a > 0 is measured by the observers who are moving

along dt-direction, while their x, θ, and φ coordinates are fixed. The quantity p+
r is

the principal pressure along the dx-direction measured by these observers. On the

other hand, the energy density ρ− in the region a < 0 is measured by the observers

who are moving along dx-direction, while their t, θ, and φ coordinates are fixed. In
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addition, the quantity p−r now is the principal pressure along the dt-direction. Thus,

in general such defined ρ± and p±r are not continuous across the horizons. One way

to avoid such discontinuities is to adopt the Eddington-Finkelstein coordinates, and

then define a new set of observers, with respect to whom the energy density and

principal pressure along the radial direction are continuous across these horizons.

However, since in this chapter we are mainly concerned with the energy conditions of

“the effective (quantum) matter,” 2 the current considerations are sufficient.

In addition, although this effective energy-momentum tensor is purely due to

the polymerization (3.3), and is not related to any real matter fields, it does provide

important information on how the spacetime singularity is avoided, and the deviation

of the spacetimes from the classical one, as in GR the geometry is uniquely determined

by the Schwarzschild spacetime, in which the spacetime is vacuum, and a spacetime

curvature singularity is always present at the center of the black hole. In fact, this

kind of singularities inevitably occurs in GR, as longer as the corresponding matter

fields satisfy some energy conditions, as follows directly from the Hawking-Penrose

singularity theorems [20].

The commonly used three energy conditions are the weak, dominant, and

strong energy conditions [20]. For Tµν given by Eq.(3.16), they can be expressed

as follows: The weak energy condition (WEC) is satisfied, when

(i) ρ ≥ 0, (ii) ρ+ pr ≥ 0, (iii) ρ+ pθ ≥ 0, (3.20)

2 As mentioned above, the BMM model has not been obtained from quantizations of gravity
yet, but rather obtained by simply applying the “polymerization” (3.3) to the corresponding classical
Hamiltonian. So, it is not clear whether these effects are indeed due to quantizations of gravity or
not. In the rest of this chapter, whenever we mention “quantum gravitational effects” or “quantum
geometric effects” of this model, we always understand them as “polymerization effects” without
any further explanations. In the same sense, the expression “quantum black holes” of this model
really means polymer black holes.

30



while the dominant energy condition (DEC) is satisfied, provided that

(i) ρ ≥ 0, (ii) − ρ ≤ pr ≤ ρ, (iii) − ρ ≤ pθ ≤ ρ. (3.21)

The strong energy condition (SEC) requires,

(i) ρ+ pr ≥ 0, (ii) ρ+ pθ ≥ 0, (iii) ρ+ pr + 2pθ ≥ 0. (3.22)

Moreover, without causing any confusions, in the rest of this chapter we shall

absorb κ into ρ, pr and pθ, i.e.,

κ (ρ, pr, pθ)→ (ρ, pr, pθ) . (3.23)

To study these solutions in more details, let us consider the cases ∆ > 0, ∆ = 0 and

∆ < 0, separately, in the following three sections.

3.4 Spacetimes with ∆ > 0

From Eq.(3.13) we find that this case corresponds to

|λ2| <
3

2
|CD| . (3.24)

However, depending on the choice of the integration constants C and D, there are

still the possibilities, D > 0, and D < 0, provided that ∆ = D2 − x2
0 > 0. In each

of these cases, the physics of the corresponding solutions is quite different, so in the

following let us consider them case by case.

3.4.1 D > 0

In this case, we have CD > 0, and ∆ = D2 − x2
0 > 0 implies,

β ≡ D
|x0|

> 1. (3.25)
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Then, we find that there are two asymptotically flat regions, corresponding to x →

±∞, respectively. They are connected by a throat located at

bm ≡ 21/3C, xm =
1

2C
(
C2 − x2

0

)
, (3.26)

where bm ≡ b(x = xm) and b′(x = xm) = 0 [cf. Fig. 3.1(a)]. It is interesting to

note that xm can be positive, zero or negative, depending on the choice of the two

parameters C and x0 (or λ1, λ2, n and C).

On the other hand, in the current case the white and black hole horizons

always exist, and are located, respectively, at

x±H = ±
√
D2 − x2

0. (3.27)

Clearly, there exist the possibilities in which |xm| ≤ x+
H , or |xm| > x+

H . When

|xm| ≤ x+
H , the throat is located in the region between the black and white hole

horizons, in which we have a(x) ≤ 0, so the corresponding energy density and radial

principal pressure in the region containing the throat are given by ρ− and p−r . When

|xm| > x+
H , the throat is located in the region where a(x) > 0, so the corresponding

energy density and radial principal pressure at the throat are given by ρ+ and p+
r ,

respectively.

3.4.1.1 x−H ≤ xm ≤ x+
H.

In this case, we find that |xm| ≤ x+
H implies

(i) α = 1, or (3.28)

(ii) β ≥ 1 +
(α− 1)2

2α
, (3.29)

where α ≡ C/|x0| > 0. Since now the throat is located inside the black hole horizon,

in which we have a(x) < 0, we need to use Eq.(3.19) to calculate the effective energy
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Figure 3.2: Case ∆ > 0, D > 0, |xm| < x+
H , β = 1 + (α−1)2

2α
, α 6= 1: The physical

quantities, ρ, (ρ + pr), (ρ − pr), (ρ + pθ), (ρ − pθ), and (ρ + pr + 2pθ), represented,
respectively, by Curves 1 - 6, vs x: When plotting these curves, we had set α = 2,
β = 5/4, x0 = 1, so that the condition (3.33) is satisfied, for which we have xm =
x+
H = −x−H = 0.75. Panel (a): the physical quantities in the region between the white

and black horizons, x−H ≤ x ≤ x+
H . Panel (b): the physical quantities in the region

outside the black horizon, x ≥ x+
H = 0.75. Panel (c): the physical quantities in the

region outside the white horizon, x ≤ x−H = −0.75.

density ρ and pressure pr at the throat, and find that

ρ =
1

22/3C2
,

pr = −C(12D − 5C)− 5x2
0

22/3C2 (x2
0 + C2)

,

pθ =
(x2

0 + C2)
3 − 4Dx2

0C3

22/3C2(x2
0 + C2)

3 . (3.30)
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Figure 3.3: Case ∆ > 0, D > 0, |xm| < x+
H , β 6= 1 + (α−1)2

2α
: The physical quantities,

ρ, (ρ+ pr), (ρ− pr), (ρ+ pθ), (ρ− pθ), and (ρ+ pr + 2pθ), represented, respectively,
by Curves 1 - 6, vs x: When plotting these curves, we had set α = 1, β = 2,
x0 = 1, x±H = ±

√
3, xm = 0. None of the three energy conditions is satisfied at

the throat, although all of them are satisfied at the two horizons x = x±H . Panel
(a): the physical quantities in the region between the white and black horizons,
x−H ≤ x ≤ x+

H . Panel (b): the physical quantities in the region outside the black

horizon, x ≥ x+
H =

√
3. Panel (c): the physical quantities in the region outside the

white horizon, x ≤ x−H = −
√

3.

Then, we find that at the throat WEC is satisfied for

(a) β ≤ 1 +
(α− 1)2

2α
, or (3.31)

(b) β ≤ 1

2
α. (3.32)

Combining Eqs.(3.28)-(3.29) with Eqs.(3.31)-(3.32) and considering Eq.(3.25), we find

that their common solutions are

β = 1 +
(α− 1)2

2α
, α 6= 1, (3.33)
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which leads to xm = x+
H .

On the other hand, SEC is also satisfied in the domain given by Eq.(3.33),

while DEC requires

(a) 0 < α < 2β, β ≤ α2 + 1

2α
≤ 3

2
β, or (3.34)

(b) 2β ≤ α < 3β, β ≥ 1 + α2

3α
. (3.35)

Combining Eqs.(3.28)-(3.29) with Eqs.(3.34)-(3.35), we find that their common solu-

tion is also given by Eq.(3.33).

Therefore, at the throat none of the three energy conditions is satisfied, except

for the case in which the throat coincides with the black hole horizon, xm = x+
H , which

is a direct result of the condition Eq.(3.33). In Fig. 3.2, we show this case, from which

one can see that the three energy conditions are satisfied indeed only at the throat.

In Fig. 3.3, we show the case that does not satisfy the condition Eq.(3.33), from

which one can see that none of the three energy conditions is satisfied at the throat

(xm = 0).

In addition, if we consider the limit to the black hole horizon from outside of

it, then we have ρ = ρ+ and pr = p+
r , and the energy density and pressures are given,

respectively, by

ρ = −pr = − Y 3

XZ8

[(
32D5C6 + 10Dx10

0 − 160D3x8
0

+672D5x6
0 − 1024D7x4

0 + 2Dx4
0C6 + 512D9x2

0

−24D3x2
0C6
)√

∆ + 32D6C6 − x12
0 + 50D2x10

0

−400D4x8
0 + 1120D6x6

0 − 1280D8x4
0 + 10D2x4

0C6

+512D10x2
0 − 40D4x2

0C6 + C12

]
, (3.36)
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pθ =
Y 2

2X2Z8

[(
128D7C6 + 2DC12 + 10Dx12

0

−160D3x10
0 + 672D5x8

0 − 1024D7x6
0 − 12Dx6

0C6

+512D9x4
0 + 88D3x4

0C6 − 192D5x2
0C6
)√

∆

+128D8C6 + 2D2C12 − x14
0 + 50D2x12

0

−400D4x10
0 + 1120D6x8

0 + 2x8
0C6 − 1280D8x6

0

−40D2x6
0C6 + 512D10x4

0 + 168D4x4
0C6

−256D6x2
0C6 − x2

0C12

]
. (3.37)

It can be shown that each of the three energy conditions is satisfied provided that

β > 1, which is precisely the condition ∆ > 0, as shown in Eq.(3.25). In addition,

the surface gravity of the black hole is given by,

κBH ≡ 1

2
a′(x =

√
∆) =

Y 2 |x0|7

2Z5

×

[√
β2 − 1

(
32β6 − 48β4 + 18β2 − 1 + α6

)
+2β

(
16β6 − 32β4 + 19β2 − 3

) ]
, (3.38)

which is also always positive for β > 1.

At the white hole horizon (x = −
√

∆), taking the limit from the outside of it,

so that ρ = ρ+ and pr = p+
r , we find that

ρ = −pr = − Y

DZ8

([
128D7C6 + 2DC12 − 12Dx12

0 + 280D3x10
0 − 1792D5x8

0

+4608D7x6
0 − 2Dx6

0C6 − 5120D9x4
0 + 48D3x4

0C6 + 2048D11x2
0 − 160D5x2

0C6
]√

∆

−128D8C6 − 2D2C12 − x14
0 + 72D2x12

0 − 840D4x10
0 + 3584D6x8

0 − 6912D8x6
0

+14D2x6
0C6 + 6144D10x4

0 − 112D4x4
0C6 − 2048D12x2

0 + 224D6x2
0C6 + x2

0C12

)
,

(3.39)

36



(a) (b)

(c) (d)

Figure 3.4: The physical quantity (ρ+pr) vs the radial coordinate x and the parameter
C: (a) outside the black hole horizon; (b) inside the black hole horizon; (c) outside
the white hole horizon; and (d) inside the white hole horizon. Graphs are plotted
with x0 = 1, D = 10, for which the horizons are at x±H ≈ ±10.

pθ =
Y 2

2D2Z8

([
128D7C6 + 2DC12 + 10Dx12

0 − 160D3x10
0 + 672D5x8

0 − 1024D7x6
0

−12Dx6
0C6 + 512D9x4

0 + 88D3x4
0C6 − 192D5x2

0C6
]√

∆− 128D8C6 − 2D2C12

+x14
0 − 50D2x12

0 + 400D4x10
0 − 1120D6x8

0 − 2x8
0C6 + 1280D8x6

0 + 40D2x6
0C6

−512D10x4
0 − 168D4x4

0C6 + 256D6x2
0C6 + x2

0C12

)
. (3.40)

It can be shown that for β > 1, all the three energy conditions are satisfied at

the white hole horizon. Moreover, at this white hole horizon, the surface gravity is
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given by,

κWH ≡ 1

2
a′(x = −

√
∆)

= − Y 2

2Z5
×

[(
32D6 − x6

0 + 18D2x4
0 − 48D4x2

0 + C6
)√

∆− 32D7 + 6Dx6
0

−38D3x4
0 + 64D5x2

0

]
, (3.41)

which is always negative when the condition (3.25) holds.

In Figs. 3.2 and 3.3, we also show the physical quantities near the two horizons,

and find that all the three energy conditions are indeed satisfied at these horizons,

no matter whether Eq.(3.33) is satisfied or not. From these figures we can see that

ρ+ pr is the key quantity to determine the energy conditions. In particular, it is zero

only at the two horizons and negative at other locations. Thus, the energy conditions

are normally satisfied only at horizons. To show this more clearly, we plot ρ + pr vs

x and the parameter C in Fig. 3.4, from which we can see that even with different

choices of the free parameter, ρ+ pr is non-negative only on the two horizons.

In addition, as x→ ±∞, we find that

ρ(x) =


Dx2

0

8x5 +O (ε6) , x→∞,

− Dx6
0

8x5C4 +O (ε6) , x→ −∞,

pr(x) =


− x2

0

4x4 +
Dx2

0

8x5 +O (ε6) , x→∞,

− x6
0

4x4C4 − Dx6
0

8x5C4 +O (ε6) , x→ −∞,

pθ(x) =


x2

0

4x4 − Dx
2
0

4x5 , x→∞,

x6
0

4x4C4 +
Dx6

0

4x5C4 +O (ε6) , x→ −∞,

(3.42)
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where ε ≡ 1/|x|. Thus, in these two asymptotically flat regions, none of these three

energy conditions holds. On the other hand, at these limits, we also have,

a(x) =


1
4

(
1− 2D

b

)
+O (ε2) , x→∞,

x4
0

4C4

(
1− (2DC2/x2

0)
b

)
+O (ε2) , x→ −∞,

b(x) '


2x, x→∞,

−2 (C2/x2
0)x, x→ −∞,

(3.43)

from which we find that the masses of the black and white holes are given, respectively,

by

MBH = D, MWH =
DC2

x2
0

. (3.44)

To study the quantum gravitational effects further, let us turn to consider the

Ricci scalar R and the relative difference ∆K of the Kretschmann scalar, defined by

∆K ≡ K −K
GR

KGR
, (3.45)

where KGR denotes the Kretschmann scalar of the Schwarzschild solution, given by,

KGR ≡ RαβµνR
αβµν =


48M2

BH

b6(x)
, x > xm,

48M2
WH

b6(x)
, x < xm.

(3.46)

In GR, we have RGR = 0, But due to the quantum geometric effects, clearly now we

have R 6= 0. Therefore, both quantities, R and ∆K, will describe the deviations of

the quantum black holes from the classical one. Before proceeding further, we would

like to point out that Eqs.(3.45) and (3.46) are applicable when the two horizons and

asymptotic regions exist. In some particular cases, this is not true, and a proper

modification for ∆K is needed, as to be shown below.
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Figure 3.5: Case ∆ > 0, D > 0, |xm| ≤ x+
H , β = 1 + (α−1)2

2α
, α 6= 1: The quantities

R and ∆K vs x. Here we choose C = 2 × 106, x0 = 106, D = 5
4
× 106, for which

the horizons are located at x±H = ±0.75 × 106, and the throat is at xm = x+
H , while

the black and white hole masses are MBH = 5
4
× 106 MPl and MWH = 5 × 106 MPl,

respectively.

In addition, another important quantity is the scalar

CµναβC
µναβ = K2 +

1

3
R2 − 2RµνR

µν , (3.47)

where Cµναβ denotes the Weyl tensor. However, for the sake of simplicity, in the

following we shall consider only the quantities ∆K and R, which are sufficient for our

current purpose.

In Fig. 3.5, the quantities R and ∆K are plotted in the region between the

two horizons (x±H = ±0.75× 106), from which it can be seen that the deviation from

GR are still large near these two horizons, although the curvature decays rapidly

when away from them in both directions. In particular, for MBH = 2× 106 MPl and

40



-2×1038 -1×1038 1×1038 2×1038
x

1.×10-76

2.×10-76

3.×10-76

4.×10-76

5.×10-76

R

-2×1038 -1×1038 1×1038 2×1038
x

-0.8

-0.6

-0.4

-0.2

ΔK

(a) (b)

Figure 3.6: Case ∆ > 0, D > 0, |xm| < x+
H , β 6= 1 + (α−1)2

2α
: The quantities R and

∆K vs x. Here we choose C = 1038, x0 = 1038, D = 2× 1038, for which the horizons
are located at x±H = ±

√
3 × 1038, and the throat is at xm = 0, while the black and

white hole masses are MBH = 2× 1038 MPl and MWH = 2× 1038 MPl, respectively.

MWH = 32×106 MPl, near the horizons we find that R(x+
H) . 10−13, R(x−H) . 10−14,

and
∣∣∆K(x+

H)
∣∣ . 0.50,

∣∣∆K(x−H)
∣∣ . 0.65, respectively. This is because now the throat

coincides with the black hole horizon (xm = x+
H = 0.75× 106), and to keep the throat

open, the quantum effects at this point must be strong enough.

In Fig. 3.6, we plot R and ∆K in the region that covers the throat (xm = 0)

as well as the two horizons (x±H = ±
√

3 × 1038). Thus, in the current case the

throat is located far away from both of the two horizons. But, the deviations of

the curvature near the two horizons are still large. In particular, we find that

R(x+
H) . 10−76, R(x−H) . 10−76, and

∣∣∆K(x+
H)
∣∣ . 0.2 and

∣∣∆K(x−H)
∣∣ . 0.2 for

solar mass MBH = 2×1038 MPl and MWH = 2×1038 MPl. Therefore, in the current

model the quantum gravitational effects can be still large near the horizons even for

astrophysical black holes. More detailed analyses show that this is due to the fact

that in the current case both x0 and C are large (x0 = C = 1038). Since large x0

and C implies large λ1 and λ2, as one can see from the relations C ≡ (16C2λ2
1)

1/6

and x0 ≡ λ2√
n
. As mentioned above, the two parameters λ1, λ2 control quantum
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gravitational corrections. In particular, large λ1 and λ2 will lead to large quantum

effects.
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Figure 3.7: Case ∆ > 0, D > 0, |xm| ≤ x+
H , β 6= 1 + (α−1)2

2α
: The quantities R and

∆K vs x. Here we choose C = 1, x0 = 1, D = 2 × 106, for which the throat is at
xm = 0 and the black/white hole horizons are located at x±H ≈ ±2×106, respectively.
The black and white hole masses are MBH = MWH = 2× 106 MPl.

Therefore, to have negligible quantum gravitational effects, we must consider

the cases where λ1 and λ2 are effectively small. In Fig. 3.7, we plot R and ∆K in

42



the region between the two horizons for C = 1, x0 = 1, D = 2 × 106, for which the

horizons are located at x±H ≈ ±2× 106, and the throat is at xm = 0, while the black

and white hole masses are MBH = MWH = 2× 106 MPl. From this figure we can see

that now the deviations from GR decays rapidly when away from the throat in both

directions, and near the two horizons the quantum effects already become extremely

small. In fact, near the two horizons now we find thatR(x+
H) . 10−25, R(x−H) . 10−25,

and
∣∣∆K(x+

H)
∣∣ . 10−13 and

∣∣∆K(x−H)
∣∣ . 10−13. Therefore, in the current case, the

quantum gravitational effects are mainly concentrated in the neighborhood of the

throat.

On the other hand, in Fig. 3.8 we plot R and ∆K in the region between the

two horizons for C = 10−6, x0 = 1, D = 106, for which the horizons are located at

x±H ≈ ±106, and the throat is at xm ≈ −1
2
×106, while the black and white hole masses

are MBH = 106 MPl, MWH = 10−6 MPl, respectively. From this figure we can see

that now the deviations from GR decays rapidly when away from the throat only in

the black hole direction, that is, only for x > x+
H , and near the white hole horizon the

quantum effects become very large again. In fact, near the two horizons now we find

that R(x+
H) . 10−25, R(x−H) ' 1010, and

∣∣∆K(x+
H)
∣∣ . 10−12 and

∣∣∆K(x−H)
∣∣ ' 0.05.

Thus, in the current case the quantum gravitational effects are negligible only at the

black hole horizon but still very large at the white hole horizon. This is due to the

fact that the throat is now very close to the white hole horizon.

The above examples show clearly that, depending on the values of the three

free parameters C, D, x0 (or D, λ1, λ2), quantum gravitational effects can be large,

even for the cases in which the black/white hole masses are of order of solar masses.
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Figure 3.8: Case ∆ > 0, D > 0, |xm| ≤ x+
H , β 6= 1+ (α−1)2

2α
: The quantities R and ∆K

vs x. Here we choose C = 10−6, x0 = 1, D = 106, for which the throat is at xm ≈
−1

2
× 106 and the black/white hole horizons are located at x±H ≈ ±106, respectively.

The black and white hole masses are MBH = 106 MPl, MWH = 10−6 MPl.

In particular, near the two horizons x = x±H , we find

R =


− x6

0

D2
(

2D
(√
D2−x2

0−D
)

+x2
0

)
R+
H

, x = x+
H ,

x6
0

D2
(

2D
(
D+
√
D2−x2

0

)
−x2

0

)
R−H

, x = x−H ,

(3.48)

44



where R±H ≡
((
D ±

√
D2 − x2

0

)6

+ C6

)2/3

. Thus, for D � |x0|, we have

R '


4x2

0

[(2D)6+C6]2/3
, x = x+

H ,

x6
0

4D4C4 , x = x−H .

(3.49)

Therefore, to have the effects negligibly small near the two horizons, we must require

C & |x0|, D � |x0|. (3.50)

On the other hand, as x→ ±∞, we find that

R '


− x2

0

4x4 +
Dx2

0

2x5 +O (ε6) , x→∞,

− x6
0

4x4C4 − Dx6
0

2x5C4 +O (ε6) , x→ −∞,
(3.51)

and

∆K '


− 4x2

0

3MBHx
+O (ε2) , x→∞,

+ 4C2

3MWHx
+O (ε2) , x→ −∞,

(3.52)

where MBH and MWH are given by Eq.(3.44). Then, we have |∆K+/∆K−| = 1 +

O (ε2), as |x| → ∞. That is, whether MWH � MBH or not, |∆K+| will always have

the same asymptotic magnitude as |∆K−|, and both of them approach their GR limits

as O(1/|x|).

Therefore, in the present case we find the following:

• The throat is always located in the region between the black and white hole

horizons, x−H ≤ xm ≤ x+
H , and each of the three energy conditions, WEC,

DEC, and SEC, is satisfied at the throat only in the case where the condition

(3.33) holds. In this case the quantum gravitational effects are always large

at the black hole horizon x = x+
H . This is expected, as at the throat the

quantum effects need to be strong, in order to keep the throat open, and
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when the condition (3.33) is satisfied, the black hole horizon always coincides

with the throat, xm = x+
H .

• Even the condition (3.33) does not hold, and the throat is far from both

of the white and black hole horizons, that is, |xm| �
∣∣x±H∣∣, the quantum

gravitational effects can be still large at the two horizons, including the cases

in which both of the white and black hole masses are large, MBH , MWH �

106 MPl. Only in the case where the conditions (3.50) hold, can the effects

become negligible at the two horizons.

• In general, none of the three energy conditions is satisfied in the neighbor-

hoods of the white and black hole horizons, x = x±H , except precisely at these

two surfaces. However, the surface gravity at the black (white) hole horizon

is always positive (negative), as now the condition ρ + pr + 2pθ > 0 is still

satisfied in the most part of the spacetime [21], as can be seen from Figs. 3.2

and 3.3. So, the trapped region (x−H < x < x+
H) is still attractive to observers

outside of it.

• In the two asymptotically flat regions x → ±∞, for which the geometri-

cal radius becomes infinitely large, b(±∞) = ∞, none of the three energy

conditions is satisfied.

• The black and white hole masses read off from these two asymptotically flat

regions are given by Eq.(3.44), which are always positive, no matter the con-

dition (3.33) is satisfied or not. Again, this is because the relativistic Komar

mass density ρ+ pr + 2pθ is still positive in a large part of the spacetime. As

a result, the total masses of the spacetime read off at the two asymptotically

flat region are positive.
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It should be noted that the absence of spacetime singularities in this case does

not contradict to the Hawking-Penrose singularity theorems [20], as now none of the

three energy conditions is satisfied in the two asymptotically flat regions, including

the case in which the condition (3.33) holds, as shown in the above explicitly.

3.4.1.2 |xm| > x+
H.

Now, let us turn to consider the case |xm| > x+
H , which implies that

β < 1 +
(α− 1)2

2α
. (3.53)

In this case, since the throat is located in the region where a(x) > 0, then at the

throat we have ρ = ρ+ and pr = p+
r . Hence, from Eq.(3.18) we find that the effective

energy density ρ and pressures pr and pθ at the throat are given by

ρ =
C(12D − 5C)− 5x2

0

22/3C2 (x2
0 + C2)

,

pr = − 1

22/3C2
,

pθ =
(x2

0 + C2)
3 − 4Dx2

0C3

22/3C2(x2
0 + C2)

3 . (3.54)

From these expressions, we find that in the 3D parameter space, WEC is satisfied

when,

β ≥ 1 +
(α− 1)2

2α
, and β >

1

2
α. (3.55)

Clearly, these conditions contradict to the condition |xm| > x+
H , as it can be seen

from Eq.(3.53). Therefore, in the current case WEC is always violated at the throat.

In addition, for ρ, pr and pθ given by Eq.(3.54), we also find that neither DEC nor

SEC is satisfied, after the conditions (3.53) are taken into account. Therefore, in the

current case, none of the three energy conditions is satisfied at the throat.
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On the other hand, following the analyses provided in the last subsection, it

can be also shown that in the current case the following is true: (i) All the three

energy conditions are not satisfied generically in the regions near the black hole and

white hole horizons in the whole 3D phase space. But, the surface gravity at the

black (white) hole horizon can be still positive (negative), as the relativistic Komar

mass density can be still positive over a large region of the spacetime, so that its

integration over the 3D spatial space can be positive,
∫
V

(ρ+ pr + 2pθ) dV > 0. (ii)

In the two asymptotically flat regions x→ ±∞, none of the three energy conditions

is satisfied for any given values of C, D and x0, as longer as the condition (3.25)

holds, which is resulted from the condition ∆ > 0. (iii) The black/white hole masses

are also given by Eq.(3.44), which are all positive in the current case, too. (iv) The

quantum effects are mainly concentrated near the throat. Since now the throat is

always located either outside the black hole horizon (xm > x+
H) or outside the white

hole horizon (xm < x−H), the quantum effects can be large near the two horizons, even

for the cases where the white/black hole masses are of order of solar masses.

It should be noted that the above analysis is not valid for the limit cases

x0 → 0 and C → 0. So, in the following, let us consider these particular cases,

separately.

3.4.1.3 x0 = 0, C 6= 0.

If we assume that λ2 6= 0, from Eq.(3.9) we can see that this corresponds to the

limit
√
n→∞. However, to keep D > 0 and finite, we must require D/

√
n→ finite
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and CD > 0. Then, we find that ∆ = D2, and from Eq.(3.12) we find X = |x|, and

Y = x+ |x| =


2x, x ≥ 0,

0, x < 0.

(3.56)

Hence, Eq.(3.11) implies a(x) = 0 and b(x) = ∞ for x ≤ 0, that is, the metric

becomes singular for x ≤ 0. However, since b(0) = ∞, it is clear that now x = 0

already represents the spatial infinity. Therefore, in this case we only need to consider

the region x ∈ (0,∞) [cf. Fig. 3.1(b)]. Then, we find that

X = x, Y = 2x, Z = 4
(
x6 + Ĉ6

)1/3

, (x ≥ 0), (3.57)

where Ĉ ≡ C/2, and

a(x) =
x3 (x−D)

4
(
x6 + Ĉ6

)2/3
,

b(x) =
2

x

(
x6 + Ĉ6

)1/3

. (3.58)

Clearly, a(x) = 0 leads to two roots,

x−H = 0, x+
H = D, (3.59)

while the minimum of b(x) now is located at xm ≡ Ĉ, so we have

b(x) =



∞, x = 0,

24/3Ĉ, x = Ĉ,

∞, x =∞.

(3.60)

It is interesting to note that the outer (black hole) horizon located at x = x+
H can

be smaller than the throat x = xm, that is, Ĉ > D. In addition, the spacetime

becomes antitrapped at x−H = 0. Since b(x = 0) = ∞, this antitrapped point now
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also corresponds to the spatial infinity at the other side (the white hole side) of the

throat.

To study the solutions further, in the following let us consider the cases D ≥ Ĉ

and D < Ĉ, separately.
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Figure 3.9: Case ∆ > 0, D > 0, x0 = 0, C 6= 0: The physical quantities, ρ, (ρ + pr),
(ρ− pr), (ρ+ pθ), (ρ− pθ), and (ρ+ pr + 2pθ), represented, respectively, by Curves 1 -
6, vs x in the neighborhood of the throat. All curves are plotted with C = 1, D = 1,
for which the throat is at xm = 0.5, and the outer horizon is at x+

H = 1.

(Case III.3.1) D ≥ Ĉ: In this case the throat locates always inside the black

hole horizon, so in the region x < x+
H we always have a(x) < 0, and the corresponding
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effective energy density and pressures are given by

ρ(x) =
C6 [64Dx6 + C6(2x−D)]x

213
(
x6 + Ĉ6

)8/3
,

pr(x) = −C
6 (DC6 − 640x7 + 704Dx6)x

213
(
x6 + Ĉ6

)8/3
,

pθ(x) =
C6 [64Dx6 + C6(2x−D)]x

213
(
x6 + Ĉ6

)8/3
. (3.61)

In particular, at the throat (x = Ĉ), we have

ρ = pθ =
1

22/3C2
, pr =

5C − 12D
22/3C3

, (3.62)

from which we find that the WEC, SEC, and DEC are satisfied in the domain,

2D ≤ C ≤ 3D. (3.63)

Combining Eq.(3.63) with C/2 ≤ D, we have C/2 = D, which implies that the effective

energy-momentum tensor satisfies all the three energy conditions at the throat only

when the location of the throat and location of the black hole horizon coincide.

In Fig. 3.9 we plot the physical quantities ρ, ρ± pr, ρ± pθ and ρ+ pr + 2± pθ

in the neighborhood of the throat.

In addition, as x→ 0 (or b(x)→∞), we find that

ρ = pθ = −8Dx
C4

+
16x2

C4
+O

(
x3
)
,

pr = −8Dx
C4

+O
(
x3
)
, (3.64)

from which we find that the WEC, SEC, and DEC are satisfied only at x = 0.
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Figure 3.10: Case ∆ > 0, D > 0, x0 = 0, C 6= 0: The physical quantities R and ∆K.
Here we choose C = 1, D = 106, so that MBH = 106 MPl, x

+
H = D = 106, xm = Ĉ =

1/2.

On the other hand, outside of the black hole horizon (x > x+
H), we always have

a(x) > 0, and the corresponding effective energy density and pressures are given by

ρ(x) =
C6 (DC6 − 640x7 + 704Dx6)x

213
(
x6 + Ĉ6

)8/3
,

pr(x) = −C
6 [64Dx6 + C6(2x−D)]x

213
(
x6 + Ĉ6

)8/3
,

pθ(x) =
C6 [64Dx6 + C6(2x−D)]x

213
(
x6 + Ĉ6

)8/3
. (3.65)

In particular, at the black hole horizon (x+
H = D), we have

ρ = −pr = pθ =
8D2C6

(64D6 + C6)5/3
, (3.66)
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so all the three energy conditions, WEC, SEC, and DEC, are satisfied at the black

hole horizon. The surface gravity now is given by,

κBH ≡
1

2
a′(x = D) =

2D3

(64D6 + C6)2/3
, (3.67)

which is always positive, as now we have D > 0.

At the spatial infinity x→∞, we find

ρ ≈ − 5C6

64x8
+

11DC6

128x9
+O

(
ε10
)
,

ρ+ pr ≈ − 5C6

64x8
+

5DC6

64x9
+O

(
ε10
)
,

ρ+ pθ ≈ − 5C6

64x8
+

3DC6

32x9
+O

(
ε10
)
,

ρ+ pr + 2pθ ≈ − 5C6

64x8
+

3DC6

32x9
+O

(
ε10
)
, (3.68)

from which we can see that none of the three energy conditions is satisfied. In addition,

we also have

a(x) =


1
4

(
1− 2D

b

)
+O (ε2) , x→∞,

−4Dx3

C4 + 4x4

C4 +O (x6) , x→ 0,

b(x) '


2x, x→∞,

C2

2x
+ 32x5

3C4 +O (x6) , x→ 0.

(3.69)

Therefore, the mass of the black hole is given by

MBH = D. (3.70)

To study the quantum gravitational effects further, in Fig. 3.10 we plot R and

∆K in the region that covers the throat and the horizon, from which it can be seen

that the deviation from GR quickly becomes vanishingly small around the horizon.
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Figure 3.11: Case ∆ > 0, D > 0, x0 = 0, xm > x+
H , : The quantities R and ∆K

vs x. Here we choose C = 1039, D = 1038, for which the outer horizon is located
at x+

H = 1038, and the throat is at xm = 5 × 1038, while the black hole mass is
MBH = 1038 MPl.

In addition, as x→∞, we find that

R ' −20C6

b8
+O

(
ε9
)
,

∆K ' 32C6

3MBHb5
+O

(
ε6
)
, (3.71)

from which we can see that quantum corrections are decaying rapidly when x→∞.

When x→ 0 (b→∞), we have

R ' 8D
C2b

+O
(
b−2
)
,

K ' 240D2

C4b2
+O

(
b−3
)
, (3.72)

which decays much less slowly than that in the Schwarzschild case, KGR → b−6. 3 It

is even slower than that of the loop quantum black hole solution found by Ashtekar,

Olmedo and Singh [9, 23], in which R→ b−2 and K → b−4 [25].

(Case III.3.2) D < Ĉ: In this case the throat locates always outside the black

hole horizon, so in the region x > x+
H we always have a(x) > 0, and the corresponding

effective energy density and pressures are given by Eq.(3.65). In particular, at the

3 In [17] a different conclusion was derived, as the authors implicitly assumed that x0C 6= 0.
Therefore, our conclusion in this case does not essentially contradict to the one obtained in [17].
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throat (x = Ĉ), we have

ρ =
6D − 5Ĉ
28/3Ĉ3

, pr = −pθ = − 1

28/3Ĉ2
, (3.73)

from which we find that the WEC, SEC, and DEC are satisfied in the domain,

0 < C/2 < D. (3.74)

Combining Eq.(3.74) with D < Ĉ, we find that in this case, all the energy conditions

are violated at the throat.

In addition, as x → 0 (or b(x) → ∞), we still have Eq.(3.64), from which we

find that the WEC, SEC, and DEC are satisfied only at x = 0. At the spatial infinity

x→∞, we still have Eq.(3.68), from which we can see that none of the three energy

conditions is satisfied. In addition, we also have Eq.(3.69), thus the mass of the black

hole is given by Eq.(3.70).

For the quantum gravitational effects, we still have Eqs.(3.71) and (3.72). In

Fig. 3.11 we plot R and ∆K in the region that covers the throat and the horizon,

from which it can be seen that the deviation from GR is still large around the horizon

even for solar mass black holes, due to the fact that C is very large in this case and

thus makes ∆K large around horizon which can be seen from Eq.(3.71).

3.4.1.4 C = 0, x0 6= 0.

If we assume that λ1 6= 0, from Eq.(3.9) we can see that this corresponds to

the limit C → 0. However, to keep D > 0 and finite, we must require DC → finite

and positive. Thus, we have

a(x) =
(x2 −∆)X

(X +D)Y 2
, b(x) = Y. (3.75)
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Clearly, a(x) = 0 leads to two real roots,

x±H = ±
√

∆, (3.76)

while b(x) is a monotonically increasing function with b(x = −∞) = 0 [cf. Fig. 3.1(c)].

Therefore, in contrast to the above cases, now the spacetime is not asymptotically flat

as x→ −∞, but rather it represents the center of the spacetime, at which a spacetime

curvature singularity appears, as to be shown below. Therefore, in the current case

the spacetime represents a black hole with two horizons located at x = ±
√

∆. This

is quite similar to the charged Reissner-Nordström (RN) solution.

In the trapped region, x−H < x < x+
H , the effective energy density and pressures

are given by

ρ(x) =
x2

0Y
3

X2 (Y 6)8/3

([
1024x10 − 512Dx9 + 2560x8x2

0 − 1024Dx7x2
0 + 2240x6x4

0

−672Dx5x4
0 + 800x4x6

0 − 160Dx3x6
0 + 100x2x8

0 − 10Dxx8
0 + 2x10

0

]
X

+1024x11 − 512Dx10 + 3072x9x2
0 − 1280Dx8x2

0 + 3392x7x4
0 − 1120Dx6x4

0

+1664x5x6
0 − 400Dx4x6

0 + 340x3x8
0 − 50Dx2x8

0 + 20xx10
0 −Dx10

0

)
,

pr(x) = − Dx2
0Y

X2 (Y 6)2/3
,

pθ(x) =
x2

0Y
2

2X3 (Y 6)8/3

([
4096x12 − 4096Dx11 + 13312x10x2

0 − 10752Dx9x2
0 + 16384x8x4

0

−10240Dx7x4
0 + 9408x6x6

0 − 4256Dx5x6
0 + 2480x4x8

0 − 720Dx3x8
0

+244x2x10
0 − 34Dxx10

0 + 4x12
0

]
X + 4096x13 − 4096Dx12 + 15360x11x2

0

−12800Dx10x2
0 + 22528x9x4

0 − 15104Dx8x4
0 + 16192x7x6

0 − 8288Dx6x6
0

+5808x5x8
0 − 2080Dx4x8

0 + 924x3x10
0 − 194Dx2x10

0 + 44xx12
0 − 3Dx12

0

)
. (3.77)
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On the other hand, in the region x < x−H or x > x+
H , the effective energy

density and pressures are given by

ρ(x) =
Dx2

0Y

X2 (Y 6)2/3
,

pr(x) = − x2
0Y

3

X2 (Y 6)8/3

([
1024x10 − 512Dx9 + 2560x8x2

0 − 1024Dx7x2
0 + 2240x6x4

0

−672Dx5x4
0 + 800x4x6

0 − 160Dx3x6
0 + 100x2x8

0 − 10Dxx8
0 + 2x10

0

]
X

+1024x11 − 512Dx10 + 3072x9x2
0 − 1280Dx8x2

0 + 3392x7x4
0 − 1120Dx6x4

0

+1664x5x6
0 − 400Dx4x6

0 + 340x3x8
0 − 50Dx2x8

0 + 20xx10
0 −Dx10

0

)
,

pθ(x) =
x2

0Y
2

2X3 (Y 6)8/3

([
4096x12 − 4096Dx11 + 13312x10x2

0 − 10752Dx9x2
0 + 16384x8x4

0

−10240Dx7x4
0 + 9408x6x6

0 − 4256Dx5x6
0 + 2480x4x8

0 − 720Dx3x8
0

+244x2x10
0 − 34Dxx10

0 + 4x12
0

]
X + 4096x13 − 4096Dx12 + 15360x11x2

0

−12800Dx10x2
0 + 22528x9x4

0 − 15104Dx8x4
0 + 16192x7x6

0 − 8288Dx6x6
0

+5808x5x8
0 − 2080Dx4x8

0 + 924x3x10
0 − 194Dx2x10

0 + 44xx12
0 − 3Dx12

0

)
. (3.78)

In Fig. 3.12 we plot the physical quantities ρ, ρ±pr, ρ±pθ, and ρ+pr+2±pθ in

the neighborhood of the two horizons, from which we can see that all these quantities

become unbounded as x→ −∞ (or b(x)→ 0).

In particular, at the horizon (x =
√

∆), we have

ρ = −pr =

(√
∆ +D

)
x2

0

DZ2
,

pθ =
x4

0

2D2Z2
, (3.79)

so all the three energy conditions, WEC, SEC, and DEC, are satisfied in the domain

|x0| < D, (x0 6= 0) . (3.80)
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Figure 3.12: Case ∆ > 0, D > 0, x0 6= 0, C = 0: The physical quantities, ρ, (ρ+ pr),
(ρ − pr), (ρ + pθ), (ρ − pθ), and (ρ + pr + 2pθ), represented, respectively, by Curves
1 - 6, vs x: (a) between the white and black horizons, x−H ≤ x ≤ x+

H ; (b) outside

the black horizon, x ≥ x+
H =

√
3; (c): outside the white horizon, x ≤ x−H = −

√
3.

All curves are plotted with x0 = 1, D = 2, for which the two horizons are located
respectively at x±H = ±

√
∆ = ±

√
3.

The surface gravity at this horizon is given by,

κBH ≡ 1

2
a′(x =

√
∆)

=
Y 2

2Z5

([
32D6 − x6

0 + 18D2x4
0 − 48D4x2

0

]√
∆

+32D7 − 6Dx6
0 + 38D3x4

0 − 64D5x2
0

)
, (3.81)

which is always positive, provided that the conditions (3.80) hold.
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On the other hand, at the horizon x = −
√

∆, we have

ρ = −pr =
Y

Dx8
0

(
16D4

(
D +

√
∆
)

+ x4
0

(
5D +

√
∆
)

− 4D2x2
0

(
5D + 3

√
∆
))

,

pθ =
x4

0

2D2Y 2
, (3.82)

so all the three energy conditions, WEC, SEC, and DEC, are satisfied in the domain

given by Eq.(3.80). The surface gravity at this horizon is given by,

κBH ≡ 1

2
a′(x = −

√
∆)

= − Y 2

2Z5

([
32D6 − x6

0 + 18D2x4
0 − 48D4x2

0

]√
∆

−32D7 + 6Dx6
0 − 38D3x4

0 + 64D5x2
0

)
, (3.83)

which is always negative when the conditions (3.80) hold.

As x→ ±∞, we find that

ρ(x) =


Dx2

0

8x5 +O (ε6) , x→∞,

−8Dx
x4

0
+O (ε) , x→ −∞,

pr(x) =


− x2

0

4x4 +
Dx2

0

8x5 +O (ε6) , x→∞,

−16x2

x4
0
− 8Dx

x4
0
− 4

x2
0

+O (ε) , x→ −∞,

pθ(x) =


x2

0

4x4 − Dx
2
0

4x5 , x→∞,

16x2

x4
0

+ 8Dx
x4

0
+ 4

x2
0

+O (ε) , x→ −∞,

(3.84)

from which we can show that none of the three energy conditions, WEC, SEC, and

DEC, is satisfied at spatial infinity x = ∞ as well as at the center b(x = −∞) = 0.
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In addition, we also have

a(x) =



1
4

(
1− 2D

b

)
+O (ε2) , x→∞,

4x4

x4
0

+ 4Dx3

x4
0

+ 6x2

x2
0

+ 4Dx
x2

0

+7
4

+ D
4x

+O (ε2) , x→ −∞,

b(x) '


2x, x→∞,

−x2
0

2x
+

x4
0

8x3 +O (ε4) , x→ −∞.
(3.85)

Thus, the mass of the black hole is given by

MBH = D. (3.86)

However, at x = −∞ we have b(−∞) = 0, and the physical quantities, ρ, pr

and pθ, all become unbounded, so a spacetime curvature singularity appears at x =

−∞, and the solution has a RN-like structure, i.e., two horizons, one is inner and the

other is outer, located, respectively, at x = ±
√

∆. The spacetime singularity located

at b(−∞) = 0 is timelike.

On the other hand, in Fig. 3.13 we plot R and ∆K in the region that covers the

throat and the horizons, from which it can be seen that the deviation from GR quickly

becomes vanishing small around the outer horizon, but around the inner horizon, R

deviates from GR significantly. In fact, as x→ ±∞, we find that

R '


− x2

0

4x4 +
Dx2

0

2x5 +O (ε6) , x→∞,

−16x2

x4
0
− 16Dx

x4
0
− 4

x2
0

+O (ε) , x→ −∞,
(3.87)
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Figure 3.13: Case ∆ > 0, D > 0, x0 6= 0, C = 0: The physical quantities R and ∆K
vs x. Here we choose x0 = 1, D = 106, so that MBH = 106 MPl, and the horizons are
located at x = ±D = ±106.

and

K '



3D2

4x6 +O (ε7) , x→∞,

2816x4

x8
0

+ 3072Dx3

x8
0

+
64x2(15D2+22x2

0)
x8

0

+640Dx
x6

0
+

16(11x2
0−8D2)
x6

0
+O (ε) , x→ −∞,

(3.88)
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from which we can see that, as x→ −∞, both of the Ricci and Kretschmann scalars

become unbounded, and a spacetime singularity appears at b(x = −∞) = 0.

It is interesting to note that ∆K is bounded and approaches a nonzero constant

−1, as x→ −∞. In fact, we have

∆K '


− 4x2

0

3MBHx
+O (ε2) , x→∞,

−1 +
11x4

0

12M2
BHx

2 +O (ε3) , x→ −∞,
(3.89)

where in writing the above expressions we had set KGR = 48MBH/b
6 over the

whole region x ∈ (−∞,∞). Thus, near the singular point b(x = −∞) = 0, the

Kretschmann scalar of the quantum black hole diverges much more slowly than that

of the Schwarzschild black hole. This can be seen from Eqs.(3.85) and (3.88), from

which we find that K ∝ b−4 as x→ −∞.

3.4.1.5 x0 = C = 0.

Since λ1λ2 6= 0, from Eq.(3.9) we can see that this corresponds to the limits

C → 0 and
√
n → ∞. However, to keep D > 0, at these limits, we must require

DC/
√
n → finite and positive. Then, we find that ∆ = D2, and from Eq.(3.12) we

find X = |x|, and

Y = x+ |x| =


2x, x ≥ 0,

0, x < 0.

(3.90)

Therefore, the spacetime must be restricted to the region x ≥ 0, in which we have

a(x) =
x−D

4x
=

1

4

(
1− 2D

b

)
,

b(x) = (x+
√
x2) = 2x, (3.91)
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and

ρ(x) = pr = pθ(x) = 0. (3.92)

In fact, this is precisely the Schwarzschild solution, and will take its standard form,

by setting r = 2x and rescaling t,

ds2 =

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2, (3.93)

where m ≡ D. This case can be also considered as the limit of λ1,2 → 0, for which the

GR limit is obtained. Therefore, the results are consistent with the effective theory

of quantum black holes, as the singularities are always avoided exactly because of the

replacement (3.3). When λ1,2 → 0, the classical limits are recovered.

3.4.2 D < 0

In this case, similar to the last one, let us consider x0C 6= 0 and x0C = 0,

separately.

3.4.2.1 x0C 6= 0.

Then, since ∆ = D2 − x2
0 > 0, we must have

D < − |x0| . (3.94)

Thus, from Eq.(3.11) we find that

a(x) =
(X + |D|)XY 2

Z2
, b(x) =

Z

Y
, (3.95)

where X, Y , and Z are given by Eq.(3.12). From the above expressions, it can be

shown that there are two asymptotically flat regions, corresponding to x → ±∞,

respectively. They are still connected by a throat located at xm given by Eq.(3.26)
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[cf. Fig. 3.1(a)]. But since a(x) 6= 0 for any given x, horizons, either WHs or BHs,

do not exist.

At the throat, the effective energy density ρ and pressures pr and pθ are still

given by Eq.(3.54). Then, it can be easily shown that none of the three energy

conditions can be satisfied in the current case, because condition Eq.(3.55) is always

violated for D < 0.

At the spatial infinities x → ±∞, we find that the expression of ρ, pr, pθ

are still given by Eq.(3.42), from which we can see that none of the three energy

conditions is satisfied either. The asymptotic expressions of a(x) and b(x) are still

given by Eq.(3.43), and the total masses measured at x→ ±∞ are

M+ = D, M− =
DC2

x2
0

, (3.96)

but since we now have D < 0, they are all negative. Note that from now on, we

use M± to denote the total masses of the spacetimes measured at x = ±∞, when

no horizons (either BHs or WHs) exist, while reserve MBH/WH to denote the black

(white) hole masses.

It can be shown that in the present case the deviation from GR decays rapidly

when away from the throat from both directions of it only for some particular choice

of the free parameters. In particular, as x→ ±∞, we find that the asymptotic expres-

sions of R(x) and ∆K(x) are still given by Eq.(3.51) and Eq.(3.52), with MBH(MWH)

being replaced by M+(M−). Therefore, we still have |∆K+/∆K−| = 1 + O (ε2), as

|x| → ∞. That is, whether M− � M+ or not, |∆K+| will always have the same

asymptotic magnitude as |∆K−|, and both of them approach their GR limits as

O(1/|x|).
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3.4.2.2 x0 = 0, C 6= 0.

In this case a(x) and b(x) are still given by Eq.(3.58), but since D < 0, a(x) = 0

is possible only when

xH = 0, (3.97)

where b(x = 0) = ∞. Therefore, in the current case there is no black/white hole

horizon either, while the minimum of b(x) now is still located at xm ≡ Ĉ [cf. Fig.

3.1(b)]. On the other hand, in this case the effective energy density and pressures are

still given by Eq.(3.65), which are all become zero as x→ 0.

At the throat (x = Ĉ), ρ, pr, pθ are given by Eq.(3.73), but since now we have

D < 0, none of the three energy conditions is satisfied at the throat.

At the spatial infinity x→∞, on the other hand, we have the same expressions

as given by Eq.(3.68), from which we can see that none of the three energy conditions

is satisfied. The asymptotic behavior of a(x) and b(x) are still given by Eq.(3.69).

Therefore, the total mass at x→∞ is given by

M+ = D < 0. (3.98)

On the other hand, to study the quantum gravitational effects further, we

consider the physical quantities R and ∆K and find that the deviation from GR also

quickly becomes vanishingly small as x → ∞ for some particular choice of the free

parameters. In particular, as x → ∞, we find that the asymptotic expressions of

R(x) and ∆K(x) are still given by Eq.(3.71), with MBH being replaced by M+.

3.4.2.3 x0 6= 0, C = 0.
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Table 3.1: The main properties of the solutions given by Eqs.(3.10)-(3.13) with
∆ > 0 in various cases, where bhH ≡ black hole horizon, whH ≡ white hole horizon,
ECs ≡ energy conditions, SAF ≡ spacetime is asymptotical flat, SCS ≡ spacetime
curvature singularity, and Sch.S ≡ Schwarzschild solution. In addition, “X” means

yes, “×” means no, while “N/A” means not applicable.

Properties ∆ > 0
D > 0 D < 0

C 6= 0, C 6= 0, C = 0, C = x0 = 0 C 6= 0, C 6= 0, C = 0, C = x0 = 0
x0 6= 0 x0 = 0 x0 6= 0 (Sch.S) x0 6= 0 x0 = 0 x0 6= 0 (Sch.S)

bhH exists? X X X X × × × ×
ECs at bhH Eq.(3.25) X Eq.(3.80) X N/A N/A N/A N/A
whH exists? X × X × × × × ×
ECs at whH Eq.(3.25) N/A Eq.(3.80) N/A N/A N/A N/A N/A
Throat exists? X X × × X X × ×
ECs at throat Eq.(3.33) C = 2D N/A N/A × × N/A N/A
ECs at x =∞ × × × X × × × X
Mass at x =∞ D D D D D D D D
ECs at x = −∞ × N/A (x ≥ 0) × N/A (x ≥ 0) × N/A (x ≥ 0) × N/A (x ≥ 0)

Mass at x = −∞ DC2

x2
0

SAF at x = 0 SCS SCS at x = 0 DC2

x2
0

SAF at x = 0 SCS SCS at x = 0

From Eq.(3.11) we find that

a(x) =
(X + |D|)X

Y 2
, b(x) = Y, (3.99)

where X, Y , and Z are given by Eq.(3.12). Clearly, a(x) = 0 has no real roots,

thus no horizons exist, while b(x) is still a monotonically increasing function with

b(x = −∞) = 0 [cf. Fig. 3.1(c)].

On the other hand, in this case the effective energy density and pressures are

still given by Eq.(3.78). In particular, at the spatial infinities x → ±∞, they stall

take the forms of Eq.(3.84), from which we find none of the three energy conditions,

WEC, SEC, and DEC, is satisfied. In addition, the asymptotic behaviors of a(x) and

b(x) are given by Eq.(3.85). Therefore, the total mass at x = ∞ is still given by

Eq.(3.86), which is always negative.

However, at x = −∞ we have b(−∞) = 0, and the physical quantities, ρ, pr

and pθ, all become unbounded, so a spacetime curvature singularity appears at x =

−∞.
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In addition, from R and ∆K we find that the deviation from GR quickly

becomes vanishingly small as x → +∞, but as x → −∞, R deviates from GR

significantly, as a spacetime curvature singularity now appears at x = −∞, at which

we have b(x = −∞) = 0.

3.4.2.4 x0 = C = 0.

In this case, the solution is precisely the Schwarzschild solution with negative

mass, and will take its standard form, by setting r = 2x and rescaling t,

ds2 =

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ2, (3.100)

where m ≡ D < 0.

This completes the analysis of the solutions in the case ∆ > 0. In Table 3.1,

we summarize the main properties of these solutions.

3.5 Spacetimes with ∆ = 0

From Eq.(3.13) we find that this case corresponds to

|λ2| =
3

2
|CD| , or |D| = |x0| . (3.101)

Then, from Eqs.(3.11) and (3.12) we obtain

a(x) =
x2XY 2

(X +D)Z2
, b(x) =

Z

Y
, (3.102)

where

X ≡
√
x2 +D2, Y ≡ x+X,

Z ≡
(
Y 6 + C6

)1/3
. (3.103)

To study these solutions further, in the following let us consider the three

possibilities, D > 0, D = 0 and D < 0, separately.
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3.5.1 D > 0

In this subcase, there are still two possibilities, C 6= 0 and C = 0.

3.5.1.1 C 6= 0.

In this case, since we also have D > 0, we find that

b(x) =



∞, x =∞,

21/3C, x = xm,

∞, x = −∞,

(3.104)

where xm ≡ (C2 −D2)/(2C) [cf. Fig. 3.1(a)].

On the other hand, a(x) = 0 leads to x±H = 0, which is a double root. This is

similar to the charged RN solution in the extreme case |e| = m. At the horizon, we

have

b(0) =
(C6 +D6)

1/3

|D|
, (3.105)

and

ρ = −pr = 2pθ =
D2

(D6 + C6)2/3
, (3.106)

from which we find that all the WEC, SEC, and DEC are satisfied. In addition, the

surface gravity at the horizon is,

κBH ≡ 1

2
a′(x = 0) = 0, (3.107)

as in the extremal case of the RN solution.
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At the throat, the effective energy density ρ and pressures pr and pθ are given

by

ρ =
−5D2 + 12DC − 5C2

22/3C2 (D2 + C2)
, pr = − 1

22/3C2
,

pθ =
(D2 + C2)

3 − 4D3C3

22/3 (D2 + C2)3 , (3.108)

from which we find that WEC, SEC, and DEC are satisfied only when

D = C. (3.109)

Then, from the expression xm = (C2−D2)/(2C), we can see when D = C we also have

xm = 0, i.e., the black hole horizon now coincides with the throat.
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Figure 3.14: Case ∆ = 0, D > 0, C 6= 0: The physical quantities, ρ, (ρ+pr), (ρ−pr),
(ρ+ pθ), (ρ− pθ), and (ρ+ pr + 2pθ), represented, respectively, by Curves 1 - 6, vs x
in the neighborhood of the throat. All graphs are plotted with C = 1.5, D = 2, for
which the throat is at xm ≈ −0.437, and horizons are at x±H = 0.

In Fig. 3.14 we plot out the quantities ρ, ρ± pr, ρ± pθ and ρ+ pr + 2pθ vs x

in the neighborhood of the throat for C = 1.5, D = 2. With these choices, the throat
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is located at xm ≈ −0.437, and the horizon is at x±H = 0. From these curves we can

see clearly that the three energy conditions, WEC, SEC, and DEC, are satisfied only

at the horizon.

At the spatial infinities x→ ±∞, we find that

ρ(x) =


D3

8x5 +O (ε6) , x→∞,

− D7

8x5C4 +O (ε6) , x→ −∞,

pr(x) =


− D2

4x4 + D3

8x5 +O (ε6) , x→∞,

− D6

4x4C4 − D7

8x5C4 +O (ε6) , x→ −∞,

pθ(x) =


D2

4x4 − D3

4x5 +O (ε6) , x→∞,

D6

4x4C4 + D7

4x5C4 +O (ε6) , x→ −∞,
(3.110)

and

a(x) =


1
4

(
1− 2D

b

)
+O (ε2) , x→∞,

D4

4C4

(
1− (2C2/D)

b

)
+O (ε2) , x→ −∞,

b(x) '


2x+O (ε) , x→∞,

−2 (C2/D2)x+O (ε) , x→ −∞,
(3.111)

where ε ≡ 1/x. Therefore, the masses of the black and white holes are given, respec-

tively, by

MBH = D, MWH =
C2

D
. (3.112)
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Figure 3.15: Case ∆ = 0, D > 0, C 6= 0: R and ∆K vs x. Here we choose
C = x0 = 106, for which the horizon and the throat are all located at x±H = xm = 0.

On the other hand, from Eq.(3.110) we find that in the limit x→∞ we have

ρ ≈ D3

8x5
+O

(
ε6
)
,

ρ+ pr ≈ −D
2

4x4
+
D3

4x5
+O

(
ε6
)
,

ρ+ pθ ≈
D2

4x4
− D

3

8x5
+O

(
ε6
)
,

ρ+ pr + 2pθ ≈
D2

4x4
− D

3

4x5
+O

(
ε6
)
, (3.113)

while in the limit x→ −∞, we have

ρ ≈ − D
7

8x5C4
+O

(
ε6
)
,

ρ+ pr ≈ − D
6

4x4C4
− D7

4x5C4
+O

(
ε6
)
,

ρ+ pθ ≈
D6

4x4C4
+
D7

8x5C4
+O

(
ε6
)
,

ρ+ pr + 2pθ ≈
D6

4x4C4
+
D7

4x5C4
+O

(
ε6
)
. (3.114)

Therefore, none of the three energy conditions is satisfied at both x = −∞ and x =∞.

In Fig. 3.15, we plot R and ∆K for solar mass black/white holes in the region

that covers the throat, with C = D = x0 = 106, for which the horizon and the throat

are all located at x±H = xm = 0. In this case, it can be seen that the deviations from
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GR decay rapidly when away from the throat from both directions, and the quantum

gravitational effects are mainly concentrated in the neighborhood of it.

In addition, as x→ ±∞, we find that

R '


− D2

4x4 + D3

2x5 +O (ε6) , x→∞,

− D6

4x4C4 − D7

2x5C4 +O (ε6) , x→ −∞,
(3.115)

and

∆K '


−4MBH

3x
+O (ε2) , x→∞,

+ 4C2

3MWHx
+O (ε2) , x→ −∞,

(3.116)

where MBH and MWH are given by Eq.(3.112).

3.5.1.2 C = 0.

In this case, we have

a(x) =
x2X

(X +D)Y 2
, b(x) = Y. (3.117)

Then, a(x) = 0 leads to x = 0, which is a double root, as mentioned above. The

geometric radius b(x) is a monotonically increasing function with b(x = −∞) = 0 [cf.

Fig. 3.1(c)].

In Fig. 3.16 we plot the physical quantities ρ, ρ±pr, ρ±pθ and ρ+pr+2±pθ

in the neighborhood of the horizon xH = 0, at which, we have

ρ = −pr = 2pθ =
1

D2
, (3.118)

so all the three energy conditions, WEC, SEC, and DEC, are satisfied. In addition,

the surface gravity at this horizon also vanishes.
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Figure 3.16: Case ∆ = 0, D > 0, C = 0: The physical quantities, ρ, (ρ+pr), (ρ−pr),
(ρ+ pθ), (ρ− pθ), and (ρ+ pr + 2pθ), represented, respectively, by Curves 1 - 6, vs x
in the neighborhood of the horizon x±H = 0. All graphs are plotted with D = 2.

At the spatial infinities x→ ±∞, we find that

ρ(x) =


D3

8x5 +O (ε6) , x→∞,

− 8x
D3 +O (ε) , x→ −∞,

pr(x) =


− D2

4x4 + D3

8x5 + (ε6) , x→∞,

−16x2

D4 − 8r
D3 − 4

D2 +O (ε) , x→ −∞,

pθ(x) =


D2

4x4 − D3

4x5 +O (ε6) , x→∞,

16x2

D4 + 8x
D3 + 4

D2 +O (ε) , x→ −∞,
(3.119)
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from which we can see that none of the three energy conditions, WEC, SEC, and

DEC, is satisfied at the spatial infinities. In addition, we also have

a(x) =



1
4

(
1− 2D

b

)
+O (ε2) , x→∞,

4x4

D4 + 4x3

D3 + 6x2

D2 + 4x
D

+7
4

+ D
4x

+O (ε2) , x→ −∞,

b(x) '


2x+O (ε) , x→∞,

−D2

2x
+ D4

8x3 +O (ε4) , x→ −∞.
(3.120)

Therefore, the mass of the black hole is given by

MBH = D. (3.121)

However, at x = −∞ we have b(−∞) = 0, and the physical quantities, ρ, pr and pθ,

all become unbounded, so a spacetime curvature singularity appears at x = −∞.

To study the quantum gravitational effects further, in Fig. 3.17 we plot R

and ∆K, from which it can be seen that the deviation from GR quickly becomes

vanishingly small as x→∞. However, as x→ −∞, R diverges, as now the spacetime

is singular at b(x = −∞) = 0. In fact, as x→ ±∞, we find that

R '


− D2

4x4 + D3

2x5 +O (ε6) , x→∞,

−16x2

D4 − 16x
D3 − 4

D2 +O (ε) , x→ −∞,
(3.122)

K '



3D2

4x6 − D
3

x7 +O (ε8) , x→∞,

2816x4

D8 + 3072x3

D7 + 2368x2

D6

+640x
D5 + 48

D4 +O (ε) , x→ −∞,

(3.123)
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Figure 3.17: Case ∆ = 0, D > 0, C = 0: R and ∆K vs x. Here we choose x0 = 106,
D = 106, so that MBH = 106 MPl. Note that the horizon is located at x±H = 0, and
the spacetime is singular at b(x = −∞) = 0.

and

∆K '


−4MBH

3x
+O (ε2) , x→∞,

−1 + 11D4

12M2
BHx

2 +O (ε3) , x→ −∞.
(3.124)

3.5.2 D = 0

In this case, since |D| = |x0|, we also have x0 = 0. Then, from Eq.(3.9), this

corresponds to the limit n → ∞. Again, to study the solutions further, we consider

the two cases C 6= 0 and C = 0, separately.

3.5.2.1 C 6= 0.
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From Eq.(3.12) we find X = |x|, and

Y = x+ |x| =


2x, x ≥ 0,

0, x < 0.

(3.125)

Thus, from Eq.(3.11) we find a(x) = 0 and b(x) = ∞ for x ≤ 0, that is, the metric

becomes singular for x ≤ 0. However, since b(0) = ∞, it is clear that now x = 0

already represents the spatial infinity. Therefore, in this case we only need to consider

the region x ∈ (0,∞) [cf. Fig. 3.1(b)]. In this case we have

a(x) =
x2Y 2

Z2
, b(x) =

Z

Y
. (3.126)

Clearly, a(x) = 0 leads to a double root, x±H = 0, while the minimum of b(x) now is

located at xm ≡ Ĉ = C/2, so we have

b(x) =



∞, x = 0,

24/3Ĉ, x = Ĉ,

∞, x =∞.

(3.127)

The spacetime becomes antitrapped at x = 0. Since b(x = 0) = ∞, this

antitrapped point now also corresponds to the spatial infinity at the other side of the

throat, located at xm = Ĉ.

On the other hand, the effective energy density and pressures are now given

by

ρ(x) = − 5120x8C6

(64x6 + C6)8/3
,

pr(x) = − 16x2C12

(64x6 + C6)8/3
,

pθ(x) =
16x2C12

(64x6 + C6)8/3
, (3.128)

which all become zero as x→ 0. They are also vanishing as x→∞.
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At the throat (x = Ĉ), we have

ρ = − 5

28/3Ĉ2
, pr = −pθ = − 1

28/3Ĉ2
, (3.129)

so we find that none of the WEC, SEC, and DEC is satisfied.

At the spatial infinity x→∞, on the other hand, we find

ρ ≈ − 5C6

64x8
+O

(
ε9
)
,

ρ+ pr ≈ − 5C6

64x8
+O

(
ε9
)
,

ρ+ pθ ≈ − 5C6

64x8
+O

(
ε9
)
,

ρ+ pr + 2pθ ≈ − 5C6

64x8
+O

(
ε9
)
, (3.130)

while as x→ 0 (or b(x)→∞), we find that

ρ ≈ −5120x8

C10
+O

(
x11
)
,

ρ+ pr ≈ −16x2

C4
− 7168x8

3C10
+O

(
x11
)
,

ρ+ pθ ≈
16x2

C4
− 23552x8

3C10
+O

(
x11
)
,

ρ+ pr + 2pθ ≈
16x2

C4
− 23552x8

3C10
+O

(
x11
)
, (3.131)

from which we can see that none of the three energy conditions is satisfied.

In addition, we also have

a(x) =


1
4

(
1− 2C6

3b6

)
+O (ε7) , x→∞,

4x4

C4 +O (x6) , x→ 0,

b(x) '


2x+O (ε) , x→∞,

C2

2x
+ 32x5

3C4 +O (x6) . x→ 0.

(3.132)
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Thus, the space-time is asymptotically flat as x→∞, with a black/hole mass given

by

MBH/WH = 0. (3.133)
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Figure 3.18: Case ∆ = 0, D = 0, C 6= 0: R and K vs x. Here we choose C = 1. Note
that now the throat is at x = Ĉ = 1/2.

On the other hand, to study the quantum gravitational effects, in Fig. 3.18

we plot R and K in the region that covers the throat, and in the asymptotical regions

x→ 0 and x→∞, from which it can be seen that the deviation from GR is mainly

in the region near the throat, and quickly becomes vanishingly small as x → ∞ or

x→ 0.

The spacetime is also asymptotically flat as x → 0 (b(0) = ∞). In fact, we

find

R '


− 5C6

64x8 +O (ε9) , x→∞,

−16x2

C4 +O (x4) , x→ 0,

K '


127C12

4096x16 +O (ε19) , x→∞,

2816x4

C8 +O (x6) , x→ 0.

(3.134)
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Table 3.2: The main properties of the solutions given by Eqs.(3.10)-(3.13) with
∆ = 0, for which we have x±H = 0, and the white and black hole horizons always

coincide. Here bhH ≡ black hole horizon, whH ≡ white hole horizon, ECs ≡ energy
conditions, SAF ≡ spacetime is asymptotical flat, and SCS ≡ spacetime curvature
singularity. In addition, “X” means yes, “×” means no, while “N/A” means not

applicable.

Properties ∆ = 0
D > 0 D = 0 D < 0

C 6= 0 C = 0 C 6= 0 C = 0 C 6= 0 C = 0
bhH/whH exists? X X X (Minkowski) × ×
ECs at bhH/whH X X × N/A N/A N/A
Throat exists? X × X N/A X ×
ECs at throat Eq.(3.109) N/A × N/A × N/A
ECs at x =∞ × × × N/A × ×
Mass at x =∞ D D 0 0 D D
ECs at x = −∞ × × N/A(x ≥ 0) N/A × ×
Mass at x = −∞ C2

D SCS(b(−∞) = 0) SAF(x = 0) N/A C2

D SCS(b(−∞) = 0)

3.5.2.2 C = 0.

From Eq.(3.12) we find

Y = x+ |x| =


2x, x ≥ 0,

0, x < 0.

(3.135)

Therefore, the spacetime must be restricted to the region x ≥ 0, in which we have

a(x) =
1

4
, b(x) = (x+

√
x2) = 2x, (3.136)

and

ρ(x) = pr = pθ(x) = 0. (3.137)

In fact, this is precisely the Minkowski solution, and will take its standard form, by

setting r = 2x and rescaling t.

3.5.3 D < 0

Similar to the last subcase, now we also need to consider the cases C 6= 0 and

C = 0 separately.
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3.5.3.1 C 6= 0.

When D < 0, we find that

b(x) =



∞, x =∞,

21/3C, x = xm,

∞, x = −∞,

(3.138)

where xm ≡ (C2 − D2)/(2C) [cf. Fig. 3.1(a)]. On the other hand, a(x) = 0 has no

real roots, thus in the current case no black/white hole horizons exist.

But, as shown by Eq.(3.138), a throat still exists at x = xm, at which the

effective energy density ρ and pressures pr and pθ are still given by Eq.(3.108), from

which we find that none of the three energy conditions is satisfied at this point.

At the spatial infinities x → ±∞, we find that the effective energy density ρ

and pressures pr and pθ are still given by Eqs.(3.110), (3.113), and(3.114), from which

we can see that none of the three energy conditions is satisfied at both x = −∞ and

x = ∞. In addition, the asymptotic expression of a(x) and b(x) are still given by

Eq.(3.111). Therefore, the total mass at x→∞ is given by

M+ = D < 0, (3.139)

while the total mass at x→ −∞ is given by

M− =
C2

D
< 0. (3.140)

It can be shown that in the present case the quantum gravitational effects are

also concentrated in the region near the throat, and are vanishing rapidly when away

from it in each side of the throat.

3.5.3.2 C = 0.
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In this case, we have

a(x) =
(X + |D|)X

Y 2
, b(x) = Y. (3.141)

Thus, a(x) = 0 has no real roots, and b(x) becomes a monotonically increasing

function with b(−∞) = 0 and b(∞) = ∞ [cf. Fig. 3.1(c)]. Therefore, in this case a

throat does not exist.

At the spatial infinities x → ±∞, we find that the effective energy density ρ

and pressures pr and pθ are still given by Eq.(3.119), from which we find that none of

the three energy conditions, WEC, SEC and DEC, is satisfied at the spatial infinity.

In addition, the asymptotic expressions of a(x) and b(x) are still given by Eq.(3.120).

Therefore, the total mass at x→∞ is given by

M+ = D < 0. (3.142)

However, at x = −∞ we have b(−∞) = 0, and the physical quantities, ρ, pr

and pθ, all become unbounded, so a spacetime curvature singularity appears at x =

−∞. Since no horizon exists, such a singularity is also naked.

This completes our analysis for the case ∆ = 0, and the main properties of

these solutions are summarized in Table 3.2.

3.6 Spacetimes with ∆ < 0

In this case we have

a(x) =
(x2 + |∆|)XY 2

(X +D)Z2
, b(x) =

Z

Y
, (3.143)

where X, Y, Z are given by Eq.(3.12), while ∆ is given by Eq.(3.13), from which we

find ∆ < 0 implies

|D| < |x0| . (3.144)
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Then, we find that

b(x) =



∞, x =∞,

21/3C, x = xm,

∞, x = −∞,

(3.145)

where xm ≡ (C2 − x2
0)/(2C) [cf. Fig. 3.1(a)].

To study the solutions further, as what we did in the last case, let us consider

the solutions with D > 0, D = 0 and D < 0, separately.

3.6.1 D > 0

Then, we find a(x) is nonzero for any x ∈ (−∞,∞), and in particular we have

a(x) =


1
4
, x =∞,

x4
0

4C2 , x = −∞.
(3.146)

Thus, in the current case horizons do not exist. But, a throat does exist, as shown

by Eq.(3.145). At the throat, the effective energy density ρ and pressures pr and pθ

are still given by Eq.(3.54), from which we find that WEC, SEC and DEC are still

satisfied, provided that

|x0| ≤
√
C(2D − C) , 0 < C ≤ 2D. (3.147)

In addition, we also have the constraint |D| < |x0|, as now we are considering the

case ∆ < 0.

At the spatial infinities x → ±∞, we find that the effective energy density ρ

and pressures pr and pθ can be also written in the forms of Eq.(3.42), from which

we can see that none of the three energy conditions is satisfied at both x = −∞ and

x =∞.
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The asymptotic expressions of a(x) and b(x) are still given by Eq.(3.43). There-

fore, the total mass at x→∞ is given by

M+ = D, (3.148)

while the total mass at x→ −∞ is given by

M− =
DC2

x2
0

. (3.149)

It can be shown that the quantum gravitational effects are concentrated in the

region near the throat, and are rapidly vanishing as away from the throat in each side

of it only by proper choice of the free parameters involved in the solutions, as in the

corresponding case ∆ > 0, D > 0 and x0C 6= 0.

Although no horizons exist in the present case, the corresponding solution is

very interesting on its own rights: it represents a wormhole spacetime, in which all

the three energy conditions, WEC, SEC, and DEC, are satisfied in the neighborhood

of the throat, provided that Eq.(3.147) holds, while none of them is satisfied at the

asymptotically flat regions (spatial infinities) x→ ±∞.

It should be also noted that the above analysis does not cover the limit cases

x0 → 0 and C → 0. However, since now |D| < |x0|, the cases x0 = 0, C 6= 0 and

x0 = C = 0 do not exist. So, only the limiting case, C = 0, x0 6= 0, exists.

• C = 0, x0 6= 0: In this case, we have

a(x) =
(x2 + |∆|)X
(X +D)Y 2

, b(x) = Y. (3.150)

Clearly, a(x) = 0 does not have real solutions, while b(x) is a monotonically increasing

function with b(x = −∞) = 0, as shown in Fig. 3.1(c).
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At the spatial infinities x → ±∞, we find that the effective energy density ρ

and pressures pr and pθ are still given by Eq.(3.84), from which we can see that none

of the three energy conditions is satisfied at both x = −∞ and x =∞.

The asymptotic expression of a(x) and b(x) are still given by Eq.(3.85). There-

fore, the total mass at x→∞ is given by

M+ = D. (3.151)

However, at x = −∞ we have b(−∞) = 0, and the physical quantities, ρ, pr and pθ,

all become unbounded, so a spacetime curvature singularity appears at x = −∞.

3.6.2 D = 0

From Eq.(3.11) we find that

a(x) =
X2Y 2

Z2
, b(x) =

Z

Y
, (3.152)

where X, Y , and Z are given by Eq.(3.12). From the above expressions, it can be

shown that there are two asymptotically flat regions, corresponding to x → ±∞,

respectively. They are still connected by a throat located at xm given by Eq.(3.26)

[cf. Fig. 3.1(a)]. But since a(x) 6= 0 for any given x ∈ (−∞,∞), as it can be seen

from the above expression, horizons, either WHs or BHs, do not exist.

At the throat, the effective energy density ρ and pressures pr and pθ are given

by

ρ = − 5

28/3Ĉ2
, pr = −pθ = − 1

28/3Ĉ2
, (3.153)

so none of the WEC, SEC, and DEC is satisfied.
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At the spatial infinities x → ±∞, we find that the effective energy density ρ

and pressures pr and pθ take the forms,

ρ(x) =


− 5C6

64x8 +O (ε9) , x→∞,

− 5x16
0

64x8C10 +O (ε9) , x→ −∞,

pr(x) =


− x2

0

4x4 +O (ε6) , x→∞,

− x6
0

4x4C4 +O (ε6) , x→ −∞,

pθ(x) =


x2

0

4x4 +O (ε6) , x→∞,

x6
0

4x4C4 +O (ε6) , x→ −∞,
(3.154)

from which we can see that none of the three energy conditions is satisfied at both

x = −∞ and x =∞.

In addition, we also have

a(x) =


1
4

(
1 +

2x2
0

b2

)
+O (ε3) , x→∞,

x4
0

4C4

(
1 + 2C4

x2
0b

2

)
+O (ε2) , x→ −∞,

b(x) '


2x+O (ε) , x→∞,

−2xC2

x2
0

+O (ε) . x→ −∞,
(3.155)

from which we can see that the space-time is asymptotically flat as x→ ±∞.

Similar to the last subcase, the quantum gravitational effects are concentrated

in the region near the throat, and are rapidly vanishing as away from the throat in

each side of it for the proper choice of the free parameters, as in the corresponding

case ∆ > 0, D = 0 and x0C 6= 0.

In addition, the above analysis is valid only for x0C 6= 0. Otherwise, we have

the following limiting case.
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• x0 6= 0, C = 0: Then, we have

a(x) =
X2

Y 2
, b(x) = Y. (3.156)

Since a(x) 6= 0 for any given real value of x, as it can be seen from the above

expression, horizons, either WHs or BHs, do not exist, but b(x) is still a monotonically

increasing function with b(x = −∞) = 0, as shown in Fig. 3.1(c).

At the spatial infinities x → ±∞, we find that the effective energy density ρ

and pressures pr and pθ are given by

ρ(x) =


0, x→∞,

0, x→ −∞,

pr(x) =


− x2

0

4x4 +O (ε6) , x→∞,

−16x2

x4
0
− 4

x2
0

+
x2

0

4x4 +O (ε6) , x→ −∞,

pθ(x) =


x2

0

4x4 +O (ε6) , x→∞,

16x2

x4
0

+ 4
x2

0
− x2

0

4x4 +O (ε6) , x→ −∞,

(3.157)

from which we can see that none of the three energy conditions is satisfied to the

leading order of (1/x) at both x = −∞ and x =∞.

In addition, we also have

a(x) =


1
4

(
1 +

2x2
0

b2

)
+O (ε3) , x→∞,

4x4

x4
0

+ 6x2

x2
0

+ 7
4

+O (ε2) , x→ −∞,

b(x) '


2x+O (ε) , x→∞,

−x2
0

2x
+O (ε3) , x→ −∞,

(3.158)
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from which we can see that the space-time is asymptotically flat as x → +∞, but a

spacetime curvature singularity appears at x = −∞, where b(x = −∞) = 0, as it can

be seen from the above expressions.

3.6.3 D < 0

From Eq.(3.11) we find that

a(x) =
(X + |D|)XY 2

Z2
, b(x) =

Z

Y
, (3.159)

where X, Y , and Z are given by Eq.(3.12). From the above expressions, it can be

shown that there are two asymptotically flat regions, corresponding to x → ±∞,

respectively. They are still connected by a throat located at xm given by Eq.(3.26)

[cf. Fig. 3.1(a)]. But since a(x) 6= 0 for any given x, horizons, either WHs or BHs,

do not exist.

At the throat, the effective energy density ρ and pressures pr and pθ are given

by Eq.(3.54). Then, it can be easily shown that none of the three energy conditions,

WEC, SEC, and DEC, can be satisfied in the current case.

Similarly, the quantum gravitational effects are concentrated in the region near

the throat for only when the free parameters are properly chosen, and are rapidly

vanishing as away from the throat in each side of it.

At the spatial infinities x → ±∞, we find that the expression of ρ, pr, pθ are

still given by Eq.(3.42), from which we can see that none of the three energy conditions

is satisfied to the leading order of (1/x).

The asymptotic expressions of a(x) and b(x) are given by Eq.(3.43), and the

total mass at x→ ±∞ is still given by Eq.(3.44), but since we now have D < 0, the

total mass becomes negative.
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Similar to the last case, the above analysis holds only for x0C 6= 0. When

x0C = 0, we find that only the possibility, x0 6= 0, C = 0, is allowed.

• x0 6= 0, C = 0: From Eq.(3.11) we find that

a(x) =
(X + |D|)X

Y 2
, b(x) = Y, (3.160)

where X, Y , and Z are given by Eq.(3.12). Clearly, a(x) = 0 has no real roots, thus

no horizons exist. On the other hand, b(x) is still a monotonically increasing function

with b(x = −∞) = 0, as shown in Fig. 3.1(c).

At the spatial infinities x→ ±∞, we find that the effective energy density and

pressures are still given by Eq.(3.84), from which we find that none of the three energy

conditions, WEC, SEC, and DEC, is satisfied at the spatial infinities. In addition,

the asymptotic behaviors of a(x) and b(x) are still given by Eq.(3.85). Therefore, the

total mass at x =∞ is still given by Eq.(3.71), which is always negative.

However, at x = −∞ we have b(−∞) = 0, and the physical quantities, ρ, pr,

and pθ, all become unbounded, so a spacetime curvature singularity appears at x =

−∞.

This completes our analysis for the solutions with ∆ < 0, and the main prop-

erties of these solutions are summarized in Table 3.3.

3.7 Conclusions

In this chapter, we have studied in detail the main properties of spherically

symmetric black/white hole solutions, found recently by Bodendorfer, Mele, and

Münch [17], inspired by the effective loop quantum gravity, and paid particular at-

tention to their local and global properties, as well as to the energy conditions of the
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Table 3.3: The main properties of the solutions given by Eqs.(3.10)-(3.13) with
∆ < 0, for which no horizons exist in all these solutions. Here bhH ≡ black hole

horizon, whH ≡ white hole horizon, ECs ≡ energy conditions, SAF ≡ spacetime is
asymptotical flat, and SCS ≡ spacetime curvature singularity. In addition, “X”

means yes, “×” means no, while “N/A” means not applicable.

Properties ∆ < 0
D > 0 D = 0 D < 0

Cx0 6= 0 C = 0, x0 6= 0 x0C 6= 0 C = 0, x0 6= 0 Cx0 6= 0, C = 0, x0 6= 0
bhH/whH exists? × × × × × ×
Throat exists? X × X × X ×
ECs at throat Eq.(3.147) N/A × N/A × N/A
ECs at x =∞ × × × × × ×
Mass at x =∞ D D −x2

0 −x2
0 (SAF) D D

ECs at x = −∞ × × × × × ×
Mass at x = −∞ DC2

x2
0

SCS −C4

x2
0

SCS DC2

x2
0

SCS

effective energy-momentum tensor of the spacetimes. Although this effective energy-

momentum tensor is purely due to the quantum geometric effects, and is not related

to any real matter fields, it does provide important information on how the spacetime

singularity is avoided, and the deviations of the spacetimes from the classical one

(the Schwarzschild solution). In particular, spacetime singularities inevitably occur

in general relativity, as longer as matter fields satisfy some energy conditions, as fol-

lows directly from the Hawking-Penrose singularity theorems [20]. In addition, due to

the Birkhoff theorem, the spacetime is uniquely described by the Schwarzschild black

hole solution in general relativity. Therefore, the presence of this effective energy-

momentum tensor also characterizes the deviations of the quantum solutions from

the classical one.

The most general metric for static spherically symmetric spacetimes, without

loss of the generality, can be always cast in the form,

ds2 = −a(x)dt2 +
dx2

a(x)
+ b2(x)

(
d2θ + sin2 θd2φ

)
,
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subjected to the following additional gauge transformations (gauge residuals),

t = αt̃+ t0, x = ξ(x̃), (3.161)

where α and t0 are constant, and ξ(x̃) is an arbitrary function of x̃. Therefore, in

general the phase space are four-dimensional, spanned by (a, b, pa, pb), but with one

constraint, the Hamiltonian constraint, Heff = 0. So, the phase space is actually

three-dimensional, and the trajectories of the system are uniquely determined once

the three “initial” conditions are given. However, due to the polymerization (3.3), two

new parameters are introduced, so the phase space is enlarged to five-dimensional, due

to the polymerization quantizations. Nevertheless, the trajectories of the system are

also gauge-invariant under the transformations (3.161), which reduce the dimensions

of the phase space from five to three again. Therefore, the phase space in this model

is generically three-dimensional.

The above general arguments can be seen clearly from the particular solutions

considered in this chapter, and the three physically independent free parameters now

can be chosen as (C, D, x0), defined explicitly by Eq.(3.9),

D ≡ 3CD

2
√
n
, C ≡

(
16C2λ2

1

)1/6
, x0 ≡

λ2√
n
, (3.162)

out of the five parameters, λ1, λ2, n, C, and D, introduced in [17]. Thus, in

comparison with the relativistic case, the polymerizations introduce two more free

parameters, and only when they vanish, i.e., λ1 = λ2 = 0 (or C = x0 = 0), can the

solutions reduce to the Schwarzschild one with its mass MBH = D, and a spacetime

curvature singularity located at the center (b = 0) appears. If any of them vanishes,

the corresponding moment conjugate, P1 or P2, can become unbounded at some points

(or in some regions) of the spacetime. As a result, spacetime curvature singularities
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will appear. From Tables II - IV it can be seen that in the current model the condition

for such singularities to appear is indeed λ1 = 0 (or C = 0), the cases corresponding

to Fig. 1(c).

The asymptotical properties of the spacetimes also depend on the choices of

the two parameters C and x0. In particular, when Cx0 6= 0, we have x ∈ (−∞,∞),

and a minimal point (throat) of b(x) always exists, with b(±∞) =∞ [cf. Fig. 3.1(a)].

When C 6= 0 but x0 = 0, the range of x is restricted to x ∈ (0,∞) with b(0) =∞ and

b(∞) =∞. In this case, a minimum of b(x) also exists [cf. Fig. 3.1(b)]. When C = 0

and x0 6= 0, the range of x is also x ∈ (−∞,∞), but now b(x) is a monotonically

increasing function of x with b(−∞) = 0 and b(∞) =∞ [cf. Fig. 3.1(c)].

In [17,18,24], the authors considered the case

∆ ≡ D2 − x2
0 > 0, D > 0, Cx0 6= 0, (3.163)

for which the black and white hole horizons always exist, located at

x±H = ±
√

∆,

respectively, as shown in Sec. 3.4.1 [See also Table 3.1]. The corresponding spacetime

has two asymptotically flat regions x→ ±∞, which are connected by a throat located

at

xm =
1

2C
(
C2 − x2

0

)
,

as can be seen from Eq.(3.26) and Fig. 3.1(a)]. It is remarkable to note that in this

case the surface gravity at the black hole horizon x = x+
H is always positive, while

at the white hole horizon x = x−H , it is always negative, as the latter represents an
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antitrapped surface. In the asymptotical region x→ +∞, the ADM mass reads

MBH = D, (3.164)

while in the asymptotical region x→ −∞, it reads

MWH =
DC2

x2
0

, (3.165)

as given explicitly in Eq.(3.44), which are all positive, too. All the above properties are

mainly due to the fact that the Komar energy density [21] (ρ+
∑

i pi) remains positive

over a large region of the spacetime, despite that all the three energy conditions are

violated in most part of the spacetime, including the regions near the throat and

horizons, as well as in the two asymptotically flat regions.

In addition, the quantum gravitational effects are mainly concentrated in the

neighborhood of the throat. However, in the current model, such effects can be still

large at the two horizons even for solar mass black/white hole spacetimes, depending

on the choice of the free parameters. They become negligible near the black/white

hole horizons only for some particular choices of these free parameters [cf. Eq.(3.50)].

Moreover, the ratio MBH/MWH can take in principle any value, MBH/MWH ∈

(0,∞), as the three parameters C, D, x0 now are all arbitrary (subjected only to the

constraint C ≥ 0 as can be seen from Eq.(3.162)) [18].

It should be also noted that the region defined by Eq.(3.163) is quite small in

the whole three-dimensional phase space, spanned by (C, D, x0), where

D, x0 ∈ (−∞,∞), C ∈ [0,∞), (3.166)

although the cases with D = 0, or C = 0, or x0 = 0 can be obtained only by taking

certain proper limits of the five free parameters, λ1, λ2, n, C, and D, as explained

explicitly in the content.
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With all the above in mind, we have explored the whole three-dimensional

phase space of the three free parameters (C, D, x0), and found that the solutions have

very rich physics. In particular, the existence of the black/white horizons crucially

depends on the values of ∆. When ∆ > 0, they always exist and are located at

x±H = ±
√

∆, respectively. The spacetime in the region x−H < x < x+
H becomes

trapped. When ∆ = 0, they also exist, but now become degenerate, x±H = 0, that is,

a(x) = 0 now has a double root, the trapped region (a(x) < 0) disappears, and the

surface gravity at the horizon is always zero now, quite similar to the extreme case

of the charged RN solution with |e| = m. When ∆ < 0, the equation a(x) = 0 has

no real roots, and, as a result, in this case no horizons exist at all, neither a trapped

region.

Thus, depending on the choices of the three free parameters, C, D, x0, there

are various cases that all have different (local and global) properties. In Secs. 3.4 -

3.6, we have studied the cases ∆ > 0, ∆ = 0, and ∆ < 0, separately, and in each of

which all the three possible choices of C and x0, as illustrated in Fig. 3.1, raise and

have been studied in detail. Their main properties are summarized in the three tables,

Tables 3.1 - 3.3. From these tables, the following interested cases are worthwhile of

particularly mentioning:

• ∆ > 0, D > 0, Cx0 6= 0: As mentioned above, in this case the solutions were

first studied in [17,18,24], and in the present chapter we have studied them in

detail, and found the remarkable features stated above. In particular, we have

shown explicitly that the quantum geometric efforts are mainly concentrated

in the region near the throat (transition surface). However, in the current

model such effects can be still large at the black/white hole horizons even
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for solar mass black/white holes. They become negligible only in a restricted

region of the 3D phase space, defined by Eq.(3.50).

• ∆ = 0, D > 0, Cx0 6= 0: In this case, the black/white horizons coincide and

all are located at x±H = 0, so the surface gravity at the horizon is zero, quite

similar to the extreme case |e| = m of the RN solution in general relativity.

But, it is fundamentally different from the RN solution, as now there are no

spacetime curvature singularities, and the spacetime becomes asymptotically

flat in both of the regions x→ ±∞.

In addition, all the three energy conditions are satisfied at the horizon, but at

the throat x = xm, they are satisfied only when D = C, for which the throat

coincides with the horizon, i.e., xm = x±H = 0.

Similar to the last case (in fact, in all the cases, including ∆ > 0 and

∆ < 0), none of the three energy conditions is satisfied at the spatial in-

finities b(±∞) = ∞, although the quantum gravitational effects are also

mainly concentrated at the throat, as shown in Fig. 3.15. In this case, the

black/white hole masses are also given by Eqs.(3.164) and (3.165) but now

with |x0| = D.

• ∆ < 0, D > 0, Cx0 6= 0: In this case, the function a(x) is always positive,

and no horizons exist, although a throat does exist, as shown in Fig. 3.1(a),

at which all the three energy conditions are satisfied, as long as the conditions

(3.147) hold. By properly choosing the free parameters, the quantum geo-

metric effects can be made to be mainly concentrated at the throat, and the

spacetime is asymptotically flat at both of the two limits, x→ ±∞, with the

ADM masses, given, respectively, by Eqs.(3.164) and (3.165), which can be

all positive. However, since no horizons exist, the spacetimes now represent
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wormholes without any spacetime curvature singularities. Again, this is not

in conflict to the Hawking-Penrose singularity theorems [20], as none of the

three energy conditions holds at the asymptotically flat regions, x = ±∞.

The main properties of other interesting cases can be found in Tables 3.1 - 3.3.

It should be noted that, although in this chapter we have studied only the solu-

tions found recently in [17], we expect that quantum black hole solutions share similar

properties. In particular, due to the quantum geometric effects, an effective energy-

momentum tensor inevitably appears, which generically violates the weak/strong en-

ergy conditions at the throat, so the spacetime is opened up by such repulsive forces.

As a result, the throat will connect two asymptotically flat regions. For spherical

spacetimes [26], such effects are uniquely characterized by the two quantum parame-

ters λ1 and λ2. The classical limit is obtained by setting λ1 = λ2 = 0. Therefore, the

singularities inside the classical black holes are resolved by the polymerization [4],

given by Eq.(3.3), provided that

λ1λ2 6= 0. (3.167)

If any of these two parameters vanishes, a spacetime curvature singularity can appear,

as it is shown explicitly by the current model.

Therefore, spherically quantum black holes should generically also contain

three free parameters, which uniquely determine the location of the throat and the

two masses, measured by observers located in the two asymptotically flat regions.

Here we use “black holes” to emphasize the fact that in such resultant spacetimes

white/black hole horizons are not necessarily always present, and spacetimes with

wormhole structures (without horizons) can be equally possible, unless the two free
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parameters λ1 and λ2 are fixed by some physical considerations [9, 23, 26]. It is

also equally true that the two (Komar) masses are independent and can be assigned

arbitrary values, unless additional physics is taken into account [9,17,18,23]. To un-

derstand these issues further, one way is to consider the formation of such spacetimes

from gravitational collapse of realistic matter fields [27–34].

Finally, we would like to mention that to get a universal curvature upper

bound in these polymer black holes, we need to impose specific relations between

black and white hole masses [17], which amounts to impose further constraint in the

parameter space. In this chapter, we did not impose this condition in order to study

properties in the whole parameter space. To overcome this problem, recently BMM

proposed another set of canonical variables in which one of the canonical momentum

is precisely the square root of the Kretschmann scalar [18]. In this new model, a

universal curvature upper bound can be obtained without any further constraint on

the relation between black and white hole masses.
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CHAPTER FOUR

Understanding quantum black holes from quantum reduced loop gravity

This chapter is published in [2]: W. C. Gan, G. Ongole, E. Alesci, Y. An, F. W. Shu

and A. Wang, Understanding quantum black holes from quantum reduced loop

gravity, Phys. Rev. D 106, no.12, 126013 (2022).

4.1 Abstract

In this chapter, we systematically study the top-down model of loop quantum

black holes (LQBHs), recently derived by Alesci, Bahrami and Pranzetti (ABP).

Starting from the full theory of loop quantum gravity, ABP constructed a model with

respect to coherent states peaked around spherically symmetric geometry, in which

both holonomy and inverse volume corrections are taken into account, and shown that

the classical singularity used to appear inside the Schwarzschild black hole is replaced

by a regular transition surface. To understand the structure of the model, we first

derive several well-known LQBH solutions by taking proper limits. These include the

Böhmer-Vandersloot and Ashtekar-Olmedo-Singh models, which were all obtained by

the so-called bottom-up polymerizations within the framework of the minisuperspace

quantizations. Then, we study the ABP model, and find that the inverse volume

corrections become important only when the radius of the two-sphere is of the Planck

size. For macroscopic black holes, the minimal radius obtained at the transition

surface is always much larger than the Planck scale, and hence these corrections

are always sub-leading. The transition surface divides the whole spacetime into two

regions, and in one of them the spacetime is asymptotically Schwarzschild-like, while

in the other region, the asymptotical behavior sensitively depends on the ratio of two
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spin numbers involved in the model, and can be divided into three different classes. In

one class, the spacetime in the 2-planes orthogonal to the two spheres is asymptotically

flat, and in the second one it is not even conformally flat, while in the third one it

can be asymptotically conformally flat by properly choosing the free parameters of

the model. In the latter, it is asymptotically de Sitter. However, in any of these three

classes, sharply in contrast to the models obtained by the bottom-up approach, the

spacetime is already geodesically complete, and no additional extensions are needed

in both sides of the transition surface. In particular, identical multiple black hole and

white hole structures do not exist.

4.2 Introduction

Recently, a new technique (Quantum Reduced Loop Gravity - QRLG) aimed to

disentangle those ambiguities was proposed by Alesci, Bahrami and Pranzetti (ABP),

the so-called top-down approach [35]. QRLG is based on the tentative of reverting

the reduction-quantization process to implement a quantum symmetry reduction.

Performing gauge fixing to adapt the full quantization to the symmetry compatible

coordinates, QRLG allows to study the homogeneous spacetimes as coherent states

of the full theory retaining all the quantum degrees of freedom of LQG. In this sense,

QRLG doesn’t need an external area gap or an ad-hoc Hilbert space, because it

just uses the full LQG Hilbert space. QRLG program has been successfully applied

to cosmology [36] and a direct link to LQC has been unveiled [37]. However, the

inclusion of new degrees of freedom also opens the possibility for new scenarios as the

replacement of the big bounce scenario [38] with the emergent bouncing one [39]. The

application of QRLG to the interior of a black hole [40,41] has been recently performed
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and showed a completely new possibility. The black hole singularity is replaced by a

bounce followed by an expanding Universe that could be asymptotically de Sitter [42].

In this chapter, we shall study the ABP model in detail and confirm several

major conclusions obtained in [41, 42], and meanwhile clarify some silent points. In

particular, the article is organized as follows. In Sec. 4.3, we provide a brief review

of the ABP model [40–42], by paying particular attention to its semi-classical limit

conditions, which are essential in order to understand the physical implications of

the model. In Sec. 4.4, we first consider its classical limit, whereby the physical

interpretation of quantities of the ABP model become clear, and then obtain the

Böhmer-Vandersloot (BV) [15] and Ashtekar-Olmedo-Singh (AOS) models [9, 23] by

taking proper limits and replacements. In doing so, we look for the possible relation

among these models. Although formally we can obtain all these models, they all fall to

the case where the semi-classical limit conditions of the ABP model are not satisfied.

As a result, these models cannot be embedded properly into the ABP model. However,

we do find that such derivation is helpful in understanding the structure of the ABP

model. In Sec. 4.5, we study the ABP model without the inverse volume corrections

in detail, by first showing that such corrections become important only when the

curvature becomes the order of the Planck scale. The subsequent detailed analysis

shows that the minimal radius of the two-sphere obtained at the transition surface is

always much larger than the Planck scale for macroscopic black holes. As a result,

the inverse volume corrections should be always sub-leading for such black holes. In

Sec. 4.6, we confirm this by focusing only on the cases with γ = 0.274 obtained by

the considerations of black hole entropy [43], and jx and j given by Eq.(4.21) below,

obtained by demanding that the spatial manifold triangulation remain consistent on
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both sides of the black hole horizons [42]. Our main results are summarized in Sec.

4.7, while in Appendix B, we provide some properties of the Struve functions.

In this chapter, we shall use `p,mp, τp to denote, respectively, the Planck

length, mass and time. In all the numerical plots, we shall use them as the units. For

example, when plotting a figure with m = 1 we always mean m/mp = 1, and so on.

4.3 Effective Hamiltonian of Internal spherical Black Hole Spacetimes

Spherically symmetric spacetimes inside black holes can be written in the form

ds2 = −N(τ)2dτ 2 + Λ(τ)2dx2 +R(τ)2dΩ2, (4.1)

where N(τ) is the lapse function and dΩ2 ≡ dθ2 +sin2 θdφ2. Clearly, the above metric

is invariant under the following transformations

τ = ξ(τ ′), x = a0x
′ + b0, (4.2)

where ξ(τ ′) is an arbitrary function of τ ′ and a0 and b0 are arbitrary constants.

4.3.1 Classical Spherical Spacetimes and Canonical Variables

It should be noted that, instead of using the canonic variables (Λ, R) and

their momentum conjugates (PΛ, PR), one often uses (pb, b, pc, c) [23], which can be

obtained by comparing the gravitational connection Aiaτidx
a and the spatial triads

Ea
i τ

i∂a, given in [23,42], and yield

pc = R2, pb = L0RΛ, b = −γG
R
PΛ,

c = −γGL0

R

(
PR −

ΛPΛ

R

)
, (4.3)

where L0 is a constant, and related to L0 introduced in [42] by L0 = 2L0. Note that

in writing down the above expressions we assumed pc > 0. With the choice of the
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lapse function [9, 23]

Ncl = γb−1sgn(pc) |pc|1/2 = − R2

GPΛ

, (4.4)

we find that the metric (4.1) takes the form

ds2 = −γ
2pc(T )

b2(T )
dT 2 +

p2
b(T )

L2
0pc(T )

dx2 + pc(T )dΩ2, (4.5)

where 1

T ≡ τ

2Gm
+ log(2Gm). (4.6)

Then, the corresponding classical Hamiltonian is given by

Hcl[Ncl] ≡ NclHc

= − 1

2Gγ

(
2c pc +

(
b+

γ2

b

)
pb

)
=

L0R
2

GPΛ

(
GPΛPR
R

− GP 2
ΛΛ

2R2
+

Λ

2G

)
. (4.7)

4.3.2 Quantum Black Holes in QRLG

Within the framework of QRLG, starting from a partial gauge fixing of the full

LQG Hilbert space, ABP [40–42] studied the interior of a Schwarzschild black hole,

and derived an effective Hamiltonian by including the inverse volume and coherent

state sub-leading corrections, which differs crucially from the ones introduced previ-

ously in the minisuperspace models. In particular, by fixing the quantum parameters

associated with the structure of coherent states through geometrical considerations,

the authors found that the post-bounce interior geometry sensitively depends on the

value of the Barbero-Immirzi parameter γ, and that the value γ ' 0.274, deduced

1 It should be noted that the parameter m used in [9,15,23] corresponds to Gm introduced
in this chapter.
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from the SU(2) black hole entropy calculations in LQG [43,44], gives rise to an asymp-

totically de Sitter geometry in the interior region 2.

Introducing the following parameters

A ≡ 2`p
2

(
`p

2γ2

β2
− 4γ2

δx
+

4(3− ν)γ2

δ

)
,

B ≡ `p
2

(
`p

2γ2

β2
− 8γ2

δx
+

8(3ν − 1)γ2

δ

)
,

C ≡ 2`p
2

(
`p

2γ2

α2
+

12γ2

δx
− 4(1 + ν)γ2

δ

)
, (4.8)

and the functions

X ≡ αγG

(
PΛ

R2

)
, Y ≡ βγG

(
PR
RΛ
− PΛ

R2

)
,

Z ≡ 8γ2 cos
(α
R

)
sin2

( α

2R

)
, (4.9)

we find that the effective Hamiltonian of the ABP model can be cast in the form

HIV+CS
int = − L0R

2Λ

2α2γ2G
C(τ), (4.10)

where

C(τ) ≡ α

β
sin[Y ]

{(
1 +

A

R2

)
πh0[X]

+ 2

(
1 +

B

R2

)
sin[X]

}

+ Z +

(
1 +

C

R2

)
π sin[X]h0[X], (4.11)

and L0 denotes the length of the fiducial cell with x ∈ [−L0,L0], and `p is the Planck

length with `p ≡
√
~G/c3, while G and c are the Newton’s constant and the speed

of light, respectively. The super indices “IV” and “CS” stand for, respectively, the

inverse volume and coherent state, while the dimensionless parameters δ, δx and ν are

2 Note that, instead of using the SU(2) black hole entropy as done in [43, 44], if one uses
the U(1) black hole entropy arguments, the parameter γ was found to be γ ' 0.2375 [11].
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the spread parameters, characterizing the coherent state corrections. The terms pro-

portional to the constants A,B and C characterize the inverse volume corrections and

are subdominant [42]. The function h0[X] denotes the zeroth-order Struve function

and its series expansion reads [45]

h0[z] =
2

π

(
z − z3

12 · 32
+

z5

12 · 32 · 52
− ...

)
. (4.12)

In Fig. 4.1, we plot out the Struve function h0 together with h−1, as the latter will

appear in the dynamical equations. In general, the ν-th order Struve functions are

defined by Eq.(B.1) in Appendix A, in which some of their properties are also given.

For more details, we refer readers to [45].
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Figure 4.1: The Struve functions h0[X] and h−1[X].

In terms of the spin numbers j and jx, the parameters α and β are given by

α ≡ 2π
√
γjx `p, β ≡ 4

√
8πγ

jx
j `p, (4.13)

where jx denotes the averaged spin number of all plaquettes that tessellate the 2-

sphere S2 spanned by (θ, φ), while j is the averaged spin number associated with the

links dual to the plaquettes in both (θ, x) and (φ, x) planes. It must be noted that
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this effective Hamiltonian is valid only in the semi-classical limits [42]

j, jx � 1. (4.14)

To understand further the geometrical meaning of j and jx, we introduce the coordi-

nate lengths along x, θ, φ directions by εx, εθ, εφ, respectively. Due to the spherical

symmetry, we have εθ = εφ ≡ ε. Then, we introduce two new quantities N and Nx,

in terms of which ε and εx can be written as

ε ≡ 2π

N
, εx ≡

L0

Nx
, (4.15)

where N 2/2 is the total number of the plaquettes on S2, and Nx denotes the total

number of plaquettes in the x direction for a given fiducial length L0. The effective

Hamiltonian (4.10) was obtained under the assumption

N , Nx � 1 or ε, εx � 1. (4.16)

To find the relations between (N , Nx) and (j, jx), we can calculate the area of a

given S2 and the volume of a given spatial three-surface spanned by x, θ, φ, which are

given, respectively, by

A(R) = 4πR2 = 8πγ`2
p

∑
p∈S2

j̃px ' 8πγ`2
p

(
N 2

2
jx

)
, (4.17)

V (Σ) = 8πL0ΛR2 ' 4
(
8πγ`2

p

)3/2
j
√
jxNxN 2, (4.18)

where j̃px is the spin number associated with the link dual to the given plaquettes p

on S2. In the limit N � 1, the sum of j̃px in Eq.(4.17) was approximated by the

average spin jx of a single cell times the total number of the plaquettes in S2. In the

last step of Eq.(4.18), the average spin number j is associated with the links dual to

the plaquettes in both (x, θ)- and (x, φ)-planes. Therefore, we find

N =
R√
γ`2

p

(
1√
jx

)
, Nx =

L0Λ

4
√

8πγ`2
p

(√
jx
j

)
. (4.19)
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Inserting Eq.(4.19) into Eq.(4.15), we obtain

ε =
α

R
, εx =

β

Λ
, (4.20)

where α and β are defined by Eq.(4.13).

It should be noted that the understanding of the geometrical meaning of

N ,Nx, j and jx is important for our following discussions, especially when we con-

sider some specific models within the framework of QRLG. As to be seen below, both

of the semi-classical limit conditions (4.14) and (4.16) must be fulfilled, in order to

have the effective Hamiltonian (4.10) valid. These also provide the keys for us to

understand the semi-classical structures of black holes in the framework of LQG.

We further note that, by demanding that the spatial manifold triangulation

remain consistent on both sides of the black hole horizons, ABP found [42]

j = γjx, (4.21)

for which we have

η ≡ α

β
=

√
2π

8γ
, (4.22)

as can be seen from Eq.(4.13). Then, in the effective Hamiltonian (4.10) five new

parameters

(γ, j; ν, δ, δx) or (γ, α; ν, δ, δx),

are present in addition to G, c, ~, where (ν, δ, δx) are related to the inverse volume

corrections. One of the purposes of this chapter is to understand their effects on the

local and global properties of the spacetimes.

It should be noted that the two spin numbers j and jx used in this chap-

ter, which are consistent with those used in [42], are different from the ones (ĵ, ĵ0)
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introduced in [41] 3. In particular, we have

ĵ =
√

8π j, ĵ0 =
π

2
jx. (4.23)

To write down the corresponding dynamic equations for the effective Hamil-

tonian (4.10), using the gauge freedom (4.2), ABP chose the lapse function N(τ)

as

N(τ) = − 2αγ

mGW
, (4.24)

where m is a mass parameter, and W is defined as

W = πh0[X] + 2 sin[X]. (4.25)

Taking ~→ 0, it reduces to

Nc ≡ lim
~→0

N = − R2

2mG2PΛ

, (4.26)

which corresponds to the classical limit, andm represents the mass of the Schwarzschild

black hole. Taking Eq.(4.6) into account, we find that

N2
c dτ

2 = N2
cldT

2, Ncl = 2GmNc, (4.27)

where Ncl and Nc are given, respectively, by Eqs.(4.4) and (4.26).

Then, the smeared effective Hamiltonian of Eq.(4.10) with the choice of the

lapse function (4.24) is given by

HIV+CS
int [N ] ≡ N(τ)HIV+CS

int =
L0R

2Λ

αγmG2W
C(τ). (4.28)

Hence, the corresponding dynamical equations can be cast in the form

−2Gm
z

`
R′ =

R cos[Y ]

W
D, (4.29)

−2Gm
z

`
P ′Λ =

RPR cos[Y ]

ΛW
D, (4.30)

3 Note that, instead of using (j, j0) as those adopted in [41], here we use the symbols with
hats, in order to distinguish them from the ones used in this chapter.
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−2Gm
z

`

Λ′

Λ
= −cos[Y ]

W
D +

1

W 2

{
πh−1[X]

[
2

(
1 +

C

R2

)
sin2[X]− Z

]

+ cos[X]

[(
1 +

C

R2

)
π2h2

0[X]− 2Z

]

+
2πα(A−B)

βR2
sin[Y ]

(
sin[X]h−1[X]− cos[X]h0[X]

)}
, (4.31)

−2Gm
z

`
P ′R =

RPR − 2ΛPΛ

RW
cos[Y ]D +

2πΛPΛ

RW
sin[X]h−1[X]

(
1 +

C

R2

)
+

2πΛ

RW
h0[X]

{(
C

αγG

)
sin[X] + PΛ cos[X]

(
1 +

C

R2

)}

+
2Λ sin[Y ]

RW

{
απ

β
PΛh−1[X]

(
1 +

A

R2

)
+

A

βγG
πh0[X] +

2B

βγG
sin[X]

+
2α

β
PΛ cos[X]

(
1 +

B

R2

)}
− 4γΛ

GW

{
sin
(α
R

)
− sin

(
2α

R

)}
,

(4.32)

where

D(X) ≡
(

1 +
A

R2

)
πh0[X] + 2

(
1 +

B

R2

)
sin[X], (4.33)

and a prime denotes the ordinary derivative with respect to z, with z ≡ exp(−τ/`),

where ` is a constant and has the length dimension. The function h−1[X] (≡ dh0[X]/dX)

denotes the Struve function of order −1. In Appendix A, we present some basic prop-

erties of these functions, and for other properties of them, we refer readers to [45].

4.4 Some Known Loop Quantum Black Holes as Particular Limits of the ABP

Model

To understand the quantum reduced loop black hole (QRLBH) spacetimes

with both of the holonomy and inverse volume corrections, in this section let us

first consider some limits of the parameters involved, and derive several well-known
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spacetimes. In doing so, we can gain a better understanding of the QRLBH spacetimes

and their relation with other models.

4.4.1 Classical Limit

The classical limit is obtained by taking ~ → 0, that is, by setting `p = 0,

which leads to

A = B = C = 0,

D 'W ' 4X, Z ' 2γ2α2

R2
. (4.34)

Then, Eqs.(4.29) - (4.32) reduce respectively to

−2Gm
z

`
R′ = R, (4.35)

−2Gm
z

`
P ′Λ =

RPR
Λ

, (4.36)

−2Gm
z

`

Λ′

Λ
= −G

2P 2
Λ +R2

2G2P 2
Λ

, (4.37)

−2Gm
z

`
P ′R = 3PR −

2ΛPΛ

R
+

ΛR

G2PΛ

, (4.38)

while the effective Hamiltonian (4.10) reduces to (4.7) with L0 = 2L0. Then, from

the Hamiltonian constraint Hc = 0, we find the following two useful expressions

RPR
Λ

=
G2P 2

Λ −R2

2G2PΛ

, (4.39)

ΛPΛ

R
= 2PR +

RΛ

G2PΛ

. (4.40)
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Inserting them into Eqs.(4.36) and (4.38), respectively, we obtain two new equations

for P ′Λ and P ′R, and together with the other two, they can be cast in the forms

−2Gm
z

`
R′ = R, (4.41)

−2Gm
z

`
P ′Λ =

G2P 2
Λ −R2

2G2PΛ

, (4.42)

−2Gm
z

`

Λ′

Λ
= −G

2P 2
Λ +R2

2G2P 2
Λ

, (4.43)

−2Gm
z

`
P ′R = −G

2PΛPR + ΛR

G2PΛ

. (4.44)

Now, the above equations can be solved in sequence, that is, we first solve Eq.(4.41)

to find R(z), and then substituting it into Eq.(4.42), we can find PΛ(z). Once R(z)

and PΛ(z) are given, we can substitute them into Eq.(4.43) to find Λ(z). Then, we

can find PR(z) either by integrating Eq.(4.44) explicitly or by using the Hamiltonian

constraint Hc = 0. In the first approach, we shall have four integration constants,

but only three of them are independent, as the Hamiltonian constraint Hc = 0 must

be satisfied, which will relate one of the four constants to the other three. Therefore,

a simpler way is to solve Hc = 0 directly to find PR, once R,PΛ and Λ are found

from Eqs.(4.41)-(4.43). However, to illustrate what we mentioned above, let us first

integrate the above four equations directly to get

R = c0e
τ

2Gm , (4.45)

PΛ = ∓
√
c1G2e

τ
2Gm − c0

2e
τ
Gm

G
,

Λ = c2e
− τ

4Gm

√
c1G2 − c2

0e
τ

2Gm , (4.46)

PR = c3e
− τ

2Gm ± c0c2

G
, (4.47)

where cn’s are the four integration constants. As noticed above, only three of them

are independent. In fact, substituting the above expressions into the Hamiltonian
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constraint Hc = 0 we find that

c1c2G = ∓2c0c3. (4.48)

On the other hand, from Eq.(4.24), we find

N = − R2

2mG2PΛ

= ± c2
0e

τ
Gm

2Gm
√
c1G2e

τ
2Gm − c2

0e
τ
Gm

. (4.49)

Thus, we finally obtain

ds2
c = −N2dτ 2 + Λ2dx2 +R2dΩ2

= − dR2

G2c1
c0R
− 1

+ c2
0c

2
2

(
G2c1

c0R
− 1

)
dx2 +R2dΩ2.

(4.50)

Clearly, using the gauge residual (4.2), we can always absorb the factor c2
0c

2
2 into x by

setting a0 ≡ (c0c2)−1. Then, the metric essentially depends only on one independent

combination, G2c1/c0, of the parameters, which is related to the mass of the black

hole via the relation

m ≡ c1G

2c0

. (4.51)

It should be noted that the integration constants cn’s can be also determined

by the boundary conditions

R = 2Gm, Λ = 0, PΛ = 0, (τ = 0), (4.52)

and the Hamiltonian constraint at the horizon τ = 0, which will be elaborated in

more detail below, when we try to solve the field equations (4.29) - (4.32) numerically

for the general case. In the current case, it can be shown that the above conditions
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together with the Hamiltonian constraint lead to

c0 = 2Gm, c1 =
c2

0

G2
, c2 =

1

c0

, c3 = ∓ 1

2G
, (4.53)

so the classical metric finally takes its standard form

ds2
c =

(
1− 2Gm

R

)−1

dR2 −
(

1− 2Gm

R

)
dx2

+R2dΩ2. (4.54)

4.4.2 Böhmer-Vandersloot Limit

Following the so-called µ̄ scheme in LQC [14], Böhmer-Vandersloot (BV) [15]

considered the case in which the physical area of the closed loop is equal to the

minimum area gap predicted by LQG

∆ = 2
√

3πγ`2
p. (4.55)

For example, the holonomy loop in the (x, θ)-plane leads to

Axθ = δbδcpb, (4.56)

while the one in the (θ, φ)-plane leads to

Aθφ = δ2
bpc, (4.57)

where the new variable b, c and their moment conjugates pb, pc are related to the

ABP variables through Eq.(4.3), which can be written in the form

pb = L0ΛR, b = −α−1RX,

pc = R2, c = −β−1L0ΛY, (4.58)

where X and Y are defined in Eq.(4.9). Then, setting

Axθ = ∆ = Aθφ, (4.59)
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will lead to

δb =

√
∆

pc
, δc =

√
∆pc
pb

. (4.60)

Making the replacements

b→ sin(δbb)

δb
, c→ sin(δcc)

δc
, (4.61)

in the classical lapse function Ncl (4.4) and Hamiltonian Hcl (4.7), we obtain

NBV =
γδb
√
pc

sin(δbb)
, (4.62)

Heff
BV[N ] = − 1

2γG

[
2

sin(δcc)

δc
pc

+

(
sin(δbb)

δb
+

γ2δb
sin(δbb)

)
pb

]
. (4.63)

It is remarkable to note that the above effective Hamiltonian can be obtained

from the ABP Hamiltonian without the inverse volume corrections presented in the

last subsection. In fact, making the following approximation

h0[X]→ 2

π
sin[X], cos[ε] sin2

[ ε
2

]
→ ε2

4
, (4.64)

where ε is defined in Eq.(4.20), we find that 4

A = B = C = 0,

W ' 4 sin[X], D ' 4 sin[X],

D
W
' 1, Z ' 2γ2

(α
R

)2

,

h−1 '
2

π
cos[X]. (4.65)

4 It should be noted that Eq.(4.8) tells that physically the conditions A = B = C = 0 imply
that: (a) the parameters α and β defined in terms of the spin numbers j and jx [cf. Eq.(4.13)]
must satisfy the condition α, β � `p; and (b) the spread dimensionless parameters δx and δ
appearing in the quantum reduced coherent states [42] must satisfy the condition δ, δx � γ2. Both
conditions are consistent with the semi-classical approximation of the effective Hamiltonian [42].
Further considerations of these conditions are presented in Section 4.5 given below.
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Then, substituting the above into the effective Hamiltonian (4.10), we shall obtain

precisely the BV Hamiltonian (4.63) with

δb =
α

R
=

α
√
pc
, δc =

β

ΛL0

=
β
√
pc

pb
. (4.66)

Comparing them with those given by Eq.(4.60), we find that

α(BV) = β(BV) =
√

∆, (4.67)

which immediately leads to

j(BV) =

√
3

128π
' 0.0864 ' 0.313j(BV)

x > γj(BV)
x ,

j(BV)
x =

√
3

2π
' 0.275. (4.68)

Therefore, the BV Hamiltonian is precisely the limit of the effective ABP Hamilto-

nian,5 provided that:

• the inverse volume corrections vanish, A = B = C = 0;

• the Struve functions h0[X] and h−1[X] are replaced respectively by (2/π) sin[X]

and (2/π) cos[X]; and

• the spin parameters jx and j are chosen as those given by Eq.(4.68).

It is clear that the last condition is in sharp conflict with the semi-classical limit

requirement of Eq.(4.14).

In addition, as T → −∞, BV found the following asymptotic behaviors

b ' b̄, pb ' p̄be
−ᾱT ,

c ' c̄e−ᾱT , pc ' p̄c, (4.69)

5 In the BV limit, N(τ) → NBV

2Gm because dτ = 2GmdT . Thus, we have HIV+CS
int [N ] →

Heff
BV[N ]
2Gm .
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where b̄, p̄b, c̄, p̄c and ᾱ > 0 are constants, given by [cf. Eqs.(64) - (69) in [15]]

2 sin(δ̄bb̄)− sin(δ̄bb̄)
2 =

∆γ2

p̄c
, (4.70)

ᾱ = − cos(δ̄bb̄) + cot(δ̄bb̄), (4.71)

sin(δ̄bb̄)−
(
δ̄bb̄+

π

2

) [
cos(δ̄bb̄)− cot(δ̄bb̄)

]
− 2 = 0,

(4.72)

with

δ̄b =

√
∆√
p̄c
, δ̄c =

√
∆ p̄c
p̄b

, δ̄cc̄ = −π
2
. (4.73)

Then, from Eqs.(4.60) and (4.62) we find that asymptotically

NBV ' N̄ ≡ γ
√

∆

sin(δ̄bb̄)
. (4.74)

Hence, the spacetime is asymptotically described by the metric

ds2 = −N2
BVdT

2 +
p2
b

L2
0pc

dx2 + pcdΩ2

'
(
t̄0
t̄

)2 (
−dt̄2 + dx̄2

)
+ p̄cdΩ2, (4.75)

where

dt̄ = eᾱTdT, x̄ =
p̄b

N̄L0

√
p̄c
x, t̄0 ≡

N̄

ᾱ
. (4.76)

Loop quantum black holes do not satisfy the classical Einstein’s equations. However,

in order to study the loop quantum gravitational effects (with respect to GR), we

introduce the effective energy-momentum tensor T eff
µν by T eff

µν ≡ Gµν
6, which takes

the form

T eff
µν ' ρuµuν + px̄x̄µx̄ν + p⊥ (θµθν + φµφν) , (4.77)

6 It should be noted that the Einstein field equations usually read as Gµν = (8πG/c4)Tµν ,
while in this chapter we drop the factor 8πG/c4, as this will not affect our analysis and conclusions.
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in the current case, where uµ = (t̄0/t̄)δ
t̄
µ, x̄µ = (t̄0/t̄)δ

x̄
µ, θµ =

√
pcδ

θ
µ, φµ =

√
pc sin θδφµ,

and

ρ ' 1

p̄c
, px̄ ' −

1

p̄c
, p⊥ ' −

1

t̄20
. (4.78)

From the above it is clear that the spacetime corresponds to a spacetime with a

homogeneous and isotropic perfect fluid only when t̄0 =
√
p̄c. When t̄0 6=

√
p̄c, the

radial pressure is different from the tangential one, despite the fact that they are

all constants. The latter (with t̄0 6=
√
p̄c) can be interpreted as the charged Nariai

solution [46]. In addition, we also have

R ' 2

(
1

p̄c
+

1

t̄20

)
,

RµνR
µν ' 2

(
1

p̄2
c

+
1

t̄40

)
,

RµναβR
µναβ ' 4

(
1

p̄2
c

+
1

t̄40

)
,

CµναβC
µναβ ' 4 (p̄c + t̄20) 2

3t̄40p̄
2
c

. (4.79)

It is remarkable to note that, even when t̄0 =
√
p̄c, the spacetime is still not confor-

mally flat. So, it must not be the de Sitter space. In fact, as noticed by BV [15], it

is the Nariai space [47,48].

On the other hand, from Eqs.(4.70)-(4.72), BV found the following solutions

b̄ ' 0.156, p̄c ' 0.182`2
p, ᾱ ' 0.670,

c̄

p̄b
' −2.290m2

p, N̄ ' 0.689`p, (4.80)

from which we find that

t̄0 =
N̄

ᾱ
≈ 1.029`p 6=

√
p̄c (≈ 0.427`p) . (4.81)

Therefore, the solution is asymptotically approaching to the charged Nariai solu-

tion [46], instead of the Nariai solution [47].
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It should be noted that in the above calculations, BV took γ ≈ 0.2375 in the

expression ∆ = 2
√

3πγ`2
p. Instead, if we take γ ≈ 0.274 [42] we find

N̄ ≈ 0.854`p, p̄c ≈ 0.279`2
p, (γ ≈ 0.274),

t̄0 ≡
N̄

α
≈ 1.275`p 6=

√
p̄c (≈ 0.529`p) , (4.82)

that is, even in this case the spacetime is still not asymptotically Nariai, but the

charged Nariai [46].

4.4.3 Ashtekar-Olmedo-Singh Limit

From the analysis of the BV limit, it becomes clear that from the general ABP

model, the AOS limit [9, 23] can be obtained by the replacements

h0[X]→ 2

π
sin[X], h−1[x]→ 2

π
cos[X],

cos[ε] sin2
[ ε

2

]
→ ε2

4
, (4.83)

so that

W ' 4 sin[X], D ' 4 sin[X],

D
W
' 1, Z ' 2γ2

(α
R

)2

. (4.84)

In addition, we must also set

A = B = C = 0,

δb, δc = Constant. (4.85)

Then, the resultant lapse function and effective Hamiltonian will be precisely given

by the same form as Eqs.(4.62) and (4.63) but with different δb, δc. With the above
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in mind, AOS found the following solutions [9]

sin (δcc) =
2a0e

2T

a2
0 + e4T

,

cos (δbb) = b0
b+e

b0T − b−
b+eb0T + b−

,

pb = −GmL0e
−b0T

2b2
0

(
b+e

b0T + b−
)
A,

pc = 4(Gm)2
(
a2

0 + e4T
)
e−2T , (4.86)

where m is an integration constant, related to the mass parameter as noticed previ-

ously, and

A ≡
[
2
(
b2

0 + 1
)
eb0T − b2

− − b2
+e

2b0T
]1/2

,

a0 ≡
γδcL0

8Gm
, b0 ≡

(
1 + γ2δ2

b

)1/2
,

b± ≡ b0 ± 1, (4.87)

with

δbb ∈ (0, π) , δcc ∈ (0, π) ,

pb ≤ 0, pc ≥ 0, −∞ < T < 0. (4.88)

In terms of pb and pc, the metric takes the form

ds2 = −N2
AOSdT

2 +
p2
b

|pc|L2
0

dx2 + |pc|dΩ2, (4.89)

where 7

NAOS =
γδb sgn (pc) |pc|1/2

sin (δbb)

=
2Gm

A
e−T

(
b+e

b0T + b−
) (
a2

0 + e4T
)1/2

.

(4.90)

7 In the AOS limit, N(τ) → NAOS

2Gm because dτ = 2GmdT . Thus, we have HIV+CS
int [N ] →

Heff
AOS[N ]
2Gm .
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From Eq.(4.86), it can be seen that the transition surface is located at ∂pc (T ) /∂T =

0, which yields

T =
1

2
ln

(
γδcL0

8Gm

)
< 0. (4.91)

There exist two horizons, located respectively at

TBH = 0, TWH = − 2

b0

ln

(
b0 + 1

b0 − 1

)
, (4.92)

at which we have A(T ) = 0, where T = TBH is the location of the black hole horizon,

while T = TWH is the location of the white hole horizon. In the region T < T < 0, the

2-spheres are all trapped, while in the one TWH < T < T , they are all anti-trapped.

Therefore, the region T < T < 0 behaves like the internal of a black hole, while the

one TWH < T < T behaves like the internal of a white hole.

The extension across the black hole horizon can be obtained by the following

replacements [9, 23]

b→ ib, pb → ipb,

c→ c, pc → pc. (4.93)

Then, AOS found that the corresponding Penrose diagram consists of infinite dia-

monds along the vertical direction, alternating between black holes and white holes,

but the spacetime singularity used appearing at pc = 0 now is replaced by a non-zero

minimal surface with

pmin
c = pc(T ) > 0, (4.94)

where T is given by Eq.(4.91).
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To completely fix the values of δb and δc, AOS required that on the transition

surface T , the physical areas of Axθ and Aθφ be equal to the area gap ∆ [9,23]

2πδcδb |pb(T )| = ∆, (4.95)

4πδ2
bpc(T ) = ∆. (4.96)

It is interesting to note that, substituting Eq.(4.66) into the above equations,

we find that

2παβ = ∆, 4πα2 = ∆, (4.97)

which are all independent of pb and pc and given by

α =
1

2
β =

√
∆

4π
=

√
2
√

2 γ `p. (4.98)

Comparing it with Eq.(4.13) we find that

j(AOS) =
1

4π3/2
<

1

2
, j(AOS)

x =
1√
2 π2

<
1

2
,

j(AOS) =

√
π

8
j(AOS)
x ' 0.6265j(AOS)

x > γj(AOS)
x , (4.99)

from which we find that such given j and jx do not satisfy the semi-classical limit

conditions (4.14) either. Therefore, the AOS model cannot be realized in the frame-

work of QRLG either, although it can be obtained formally by the approximations

(4.84) and (4.85) from the ABP model.

4.5 Quantum Reduced Loop Black Holes without Inverse Volume Correction Terms

Setting the three constants A,B and C to zero, the effective Hamiltonian

(4.10) reduces to the one given in [41], but with the replacement of the constants α

and β by

α ≡
√

8πγ `p

√
ĵ0, β =

√
8πγ `p ĵ√

ĵ0

, (4.100)
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where now ĵ0 and ĵ denote the quantum numbers associated respectively with the

longitudinal and angular links of the coherent states, as mentioned in Section II. The

relations between (j, jx) and (ĵ, ĵ0) are given explicitly by Eq.(4.23). Without causing

any confusion, in the rest of this section we shall drop the hats from (ĵ, ĵ0):

(ĵ, ĵ0) → (j, j0),

unless some specific statements are given.

It is interesting to note that dropping the terms that are proportional to the

constants A, B and C defined in Eq.(4.8) is physically equivalent to assuming that

A

R2
,
B

R2
,
C

R2
� 1, (4.101)

as can be seen from the effective Hamiltonian given by Eq.(4.10). Before proceeding

further, let us first pause here for a while and consider the above limits. In particular,

from Eqs.(4.13) and (4.21), we find α ∼ β ∼
√
j`p, where “∼” means “being the same

order”. On the other hand, introducing the spread parameters δi via the relations [42]

δr =
π2`2

pR
2

α4(sin θ)2
δx , δθ =

π2`2
pR

2

α2β2(sin θ)2
δ ,

δϕ =
π2`2

pR
2

α2β2

δ

ν
, (4.102)

we find that the terms appearing in the expressions of A, B and C behave, respec-

tively, as

`2
p

(
`2
pγ

2

β2

)
∼
`2
pγ

2

j
, `2

p

(
γ2

δx

)
∼ γ2π2R2

j2 sin2(θ)δr
,

`2
p

(
(3− ν)γ2

δ

)
∼ π2γ2R2

j2 sin2(θ)δθ
− π2γ2R2

j2δϕ
. (4.103)

Thus, the conditions (4.101) imply

(i)
`p
R
� 1, (ii) jδi � 1, (i = r, θ, ϕ). (4.104)
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Condition (ii) is required by the effective Hamiltonian approach [42], while condition

(i) tells us that the effects of the inverse volume corrections are negligible when the

geometric radius of the two-spheres (with τ, x = Constant) is much large than the

Planck length.

With the above in mind, let us now turn to consider the effective Hamiltonian

given by Eq.(4.10) with

A = B = C = 0. (4.105)

It was shown [41] that the classical singularity of the Schwarzschild black hole now is

replaced by a quantum bounce at R = Rmin > 0, at which all the physical quantities,

such as the Ricci scalar R, Ricci squared RµνR
µν , Kretschmann scalar RµναβR

µναβ,

and Weyl squared CµναβC
µναβ, remain finite. In addition, at the black hole horizons,

the quantum effects become negligible for macroscopic black holes.

A remarkable feature of this class of spacetimes is that the spacetime on the

other side of the bounce is not asymptotically a white hole, as normally expected

from the minisuperspace considerations [26]. Instead, depending on the values of η,

defined by

η ≡ α

β
=
j0

j
, (4.106)

the spacetime has three different asymptotical limits, as τ → −∞.

In this section, we shall provide a more detailed study over the whole parameter

space. To this goal, let us consider the three cases η = 1, η < 1 and η > 1, separately.
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Figure 4.2: The Penrose diagram for the loop quantum spacetimes without the inverse
volume corrections in the case η = 1. The curved lines denoted by τb are the transition
surfaces (throats), and the straight lines AD and CB are the locations of the black hole
horizons. The dashed lines AB and CD are the locations of the classical singularities
of the Schwarzschild black and white holes, which now are all free of singularities.

4.5.1 η = 1

In this case from Eq.(4.106) we find that j = j0. Then, as τ → −∞, we have

X ' −π, Y ' −π, W ' −πh0[π],

PΛ

R2
' − π

αγG
,

PR
RΛ
' − 2π

αγG
. (4.107)

122



Hence, the metric coefficients have the following asymptotical behavior [41] 8

N(τ) ' −2γ
√

8πγ `p
√
j0

mG (−πh0[π])
' 0.886

√
j `p
mG

,

Λ(τ) ' 31.49

(
mG√
j `p

)1/3

,

R(τ) ' 0.0504

(
j2`4

p

mG

)1/3

exp
(
− τ

2mG

)
. (4.108)

Thus, the metric takes the following asymptotical form

ds2 ' −dτ̄ 2 + dx̄2 +R2dΩ2, (4.109)

which has a topology R2×S2, and the (τ̄ , x̄)-plane is flat, where τ̄ ≡ −N(τ → −∞)τ

and x̄ ≡ Λ(τ → −∞)x. Then, the low half plane −∞ < τ < 0 and −∞ < x <∞ is

mapped to the upper half plane 0 < τ̄ <∞ and −∞ < x̄ <∞, and the corresponding

Penrose diagram is given by Fig. 4.2.

It should be noted that the spacetime is not vacuum as τ → −∞, despite the

fact that the (τ̄ , x̄)-plane is asymptotically flat. This can be seen clearly by writing

the metric (4.109) in terms of the timelike coordinate R

ds2 ' −
(
R0

R

)2

dR2 + dx̄2 +R2dΩ2, (4.110)

where R0 ≡ 2
√
j `p. For the metric (4.110), we find that the corresponding effective

energy-momentum tensor can still be cast in the form of Eq.(4.77), but with uµ =

8 We found that the numerical factor, 31.49, of Λ weakly depends on the mass parameter
m. For example, it is respectively 31.55, 31.77, 32.63 for m/mp = 106, 105, 104. On the other hand,
the numerical factors of N(τ) and R(τ) are very insensitive to m. In particular, they are the same
up to the third digital for m/mp = 1012, 106, 105, 104.
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(R0/R)δRµ , x̄µ = δx̄µ, θµ = Rδθµ, φµ = R sin θδφµ, and

ρ ' 1

R2
+

1

R2
0

,

px̄ ' − 1

R2
− 3

R2
0

,

p⊥ ' − 1

R2
0

. (4.111)

The commonly used three energy conditions are the weak, dominant and strong

energy conditions [20]. For T eff
µν given by Eq.(4.77), they can be expressed respectively

as

• the weak energy condition (WEC):

ρ ≥ 0, ρ+ px̄ ≥ 0, ρ+ p⊥ ≥ 0, (4.112)

• the dominant energy condition (DEC):

ρ ≥ 0, −ρ ≤ px̄ ≤ ρ, −ρ ≤ p⊥ ≤ ρ, (4.113)

• the strong energy condition (SEC):

ρ+ px̄ ≥ 0, ρ+ p⊥ ≥ 0, ρ+ px̄ + 2p⊥ ≥ 0. (4.114)

Clearly, Eq.(4.111) does not satisfy any of these conditions, but the energy density

and the two principal pressures do approach constant values that are inversely pro-

portional to R2
0 ∝ `2

p, that is, the spacetime curvature approaches to the Planck scale.

On the other hand, we also find

R ' 2

R2
+

6

R2
0

,

RµνR
µν ' 2

(
1

R4
+

4

R2R2
0

+
6

R4
0

)
,

RµναβR
µναβ ' 4

(
1

R4
+

2

R2R2
0

+
3

R4
0

)
,

CµναβC
µναβ ' 4

3R4
. (4.115)
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Table 4.1: The initial values PR(τi) obtained from the effective Hamiltonian
constraint (4.117) and the choice of the initial values of the other three variables
given by Eq.(4.116), and its corresponding relativistic values PRc(τi), for different

choices of τi. Results are calculated with m = 1012mp, j = j0 = 10.

τi/τp -0.01 -0.02 -0.05 -0.1 -1 -10 -100 −103 −104

PRc 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PR 0.506 0.500 0.501 0.500 0.500 0.500 0.500 0.500 0.500

Table 4.2: The initial values PR(τi) obtained from the effective Hamiltonian
constraint (4.117) and the choice of the initial values of the other three variables
given by Eq.(4.116), and its corresponding relativistic values PRc(τi), for different

choices of j with j0 = j (or η = 1). Results are calculated with
m = 1012mp, τi = −10 τp.

j 10 103 105 107 108 109 1010 1011 1012

PRc 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500
PR 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.501

It is interesting to note that the last expression of the above equation shows that

asymptotically the spacetime is conformally flat, while the Ricci, Ricci squared and

Kretschmann scalars are approaching to their Planck values.

To study this class of solutions in more details, we need first to specify the

initial conditions, which are often imposed near the black hole horizons [9,15,23,41],

as normally it is expected that the quantum effects for macroscopic black holes should

be negligible [26], and the spacetime can be well-described by the Schwarzschild black

hole spacetime. So, near the horizon, say, τ = τi ' τH , we can take the initial values of

Table 4.3: The initial values PR(τi) obtained from the effective Hamiltonian
constraint (4.117) and the choice of the initial values of the other three variables
given by Eq.(4.116), and its corresponding relativistic values PRc(τi), for different

choices of m. Results are calculated with j = 10, τi = −10 τp.

m/mp 10 102 103 105 1010 1012 1014

PRc 0.176 0.474 0.497 0.500 0.500 0.500 0.500
PR 0.051 0.474 0.497 0.500 0.500 0.500 0.500
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(Λ, PΛ) and (R,PR) as their corresponding relativistic values, (Λc, PΛc) and (Rc, PRc).

However, there is a caveat with the above prescription of the initial conditions, that is,

before carrying out the integrations of the effective Hamiltonian equations, we do not

know if the corresponding model indeed has negligible quantum gravitational effects

near the black hole horizons even for macroscopic black holes. Therefore, a consistent

way to choose the initial conditions should be: First choose the initial conditions for

any three of the four variables, (R,Λ, PR, PΛ), and then obtain the initial condition

for the fourth variable through the Hamiltonian constraint HIV+CS
int = 0. The choice of

the initial conditions for the first three variables clearly are arbitrary, which form the

complete phase space D of the initial conditions of the theory. However, in order to

study quantum effects, one can choose them as their corresponding relativistic values.

For the ABP model, we shall choose these three variables as (R,Λ, PΛ), so

that

Λ(τi) = Λc(τi), PΛ(τi) = PΛc(τi),

R(τi) = Rc(τi), (4.116)

while PR(τi) is obtained from the effective Hamiltonian constraint

HIV+CS
int (τi) = 0, or C(τi) = 0, (4.117)

where C(τ) is defined by Eq.(4.11). This reduced parameter space will be referred

to as D̂. It is clear that this reduced space is much smaller than the whole phase

space D. However, for our current purpose, this is enough. With such chosen initial

conditions, the Hamiltonian equations will uniquely determine the evolutions of the

four variables (Λ, PΛ) and (R,PR) at any other time τ . Once these four variables are

known, from Eq.(4.24) we can find the lapse function N(τ).
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Figure 4.3: Plots of the physical variables (R,Λ, PR, PΛ) and their classical correspon-
dences (Rc,Λc, PRc , PΛc). Particular attention are paid to the region near the throat
τ = −3.91× 1013. Graphs are plotted with m = 1012mp, j = j0 = 10.

With the above prescription, we can see that the initial values of the four

variables will depend not only on the choice of the initial moment τi but also on the

values of j0, j and m. In particular, if the quantum effects are not negligible at the
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Figure 4.4: Plots of C(τ) and the lapse function N(τ) for m = 1012mp, j = j0 = 10.

moment τi, it is expected that such obtained PR(τi) should be significantly different

from its corresponding relativistic value PRc(τi).

To see this clearly, in Tables 4.1 - 4.3 we show such differences. In particular, in

Table 4.1 we show the dependence of PR(τi) on the choice of the initial time τi for m =

1012mp, j = j0 = 10. From this table we can see that ∆PR(τi) ≡ PR(τi)−PRc(τi) ' 0

for τi/τp . −0.1. As τi → 0, the difference becomes larger.

In Table 4.2, we show the dependence of PR(τi) on the choices of j with

m = 1012mp and τi = −10.0 τp. Physically, the lager the parameter j is, the closer to

the relativistic value of PR should be. However, due to the accuracy of the numerical

computations, it is difficult to obtain precisely the values of PR from the effective

Hamiltonian constraint (4.117). So, in Table 4.2 we only consider the initial values

of PR(τi) for j . 1012.
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Figure 4.5: Plots of the relative differences of the functions (R,Λ, PR, PΛ, N) and C(τ)
near the black hole horizon with the same choice of the parameters m and j, as those
specified in Figs. 4.3 and 4.4, that is, m = 1012mp, j = j0 = 10.

In Table 4.3, we show the dependence of PR(τi) on the choices of m with

j = 10 and τi = −10.0 τp, from which it can be seen that the deviations becomes

larger for m . 103 mp. It should be also noted that for very large masses, the initial

time τi must be chosen very negative. Otherwise, the term eτ/(Gm), appearing in the

effective Hamiltonian constraint [cf. Eqs.(4.45) - 4.47)], becomes extremely small,

and numerical errors can be introduced. So, in Table 4.3 for the choice of τi = −10τp,

we only consider the cases where m is up to 1014 mp, although physically the larger

m is, the closer PR(τi) is to its relativistic values.
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Figure 4.6: Plots of the physical variables (R,Λ, PR, PΛ) and their classical correspon-
dences (Rc,Λc, PRc , PΛc). Particular attention is paid to the region near the throat
τmin = −1.148× 104. Graphs are plotted with m = 103mp, j = j0 = 10.

In Fig. 4.3, we plot the four functions (R,Λ, PR, PΛ), and their classical

correspondences for m = 1012mp, j = j0 = 10, τi = −10 τp. With such ini-

tial conditions, we find that the location of throat (transition surface) is around
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Figure 4.7: Plots of the lapse function N(τ) and C(τ) for m = 103mp and j = j0 = 10.

τmin ' −3.9108×1013τp, at which R(τ) reaches its minimum value, Rmin ' 7779.35 `p.

It is interesting to note that near the throat the four functions all change dramat-

ically, especially Λ(τ), which behaves like a step function. In addition, even at the

transition surface, we find that the conditions of Eq.(4.16) are well satisfied.

To closely monitor the numerical errors, we also plot out the effective Hamil-

tonian (C(τ) ' 0) in Fig. 4.4 together with the lapse function N(τ), from which we

can see that in the region near the throat the numerical errors indeed become large.

But out of this region, the numerical errors soon become negligible. From Fig. 4.3

and 4.4 we also find that our numerical solutions match well with their asymptotic

behaviors given by Eq.(4.108), as τ → −∞.

To consider the quantum effects near the horizons, in Fig. 4.5 we plot out the

relative differences between functions (R,Λ, PR, PΛ, N) and their classical value. To

monitor the numerical errors, we also plot out the effective Hamiltonian constraint
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Figure 4.8: Plots of the relative differences of the functions (R,Λ, PR, PΛ), the lapse
function N(τ) and C(τ) near the black hole horizon (τ = 0) with m = 103mp and
j = j0 = 10, the same choice as those specified in Figs. 4.6 and 4.7.

C(τ) ' 0. From these plots, we can see clearly that the quantum effects indeed

become negligible near the horizons 9.

On the other hand, when the mass of the black hole is near the Planck scale,

such effects are not negligible even near the horizon. To show this, in Figs. 4.6 - 4.8

we plot various physical variables for m = 103 mp, j = j0 = 10, for which we find

that the location of throat is around τmin ' −1.148×104τp, at which R(τ) reaches its

9 Note that at the horizon N(τ) diverges. So, in the region very near the horizon N(τ)
becomes extremely large, and the accurate numerical calculations become difficult, so it is unclear
whether the sudden growth of ∆N/Nc, as shown in Fig. 4.5 is due to numerical errors or not. In
fact, similar growths can be also noticed from the plots of ∆Λ/Λc and ∆PΛ/PΛc

. Such sudden
growths happen also in the cases η > 1 and η < 1, as to be seen below.
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minimum value, Rmin ' 7.76 `p. From these figures it is clear that now the quantum

effects become large near the horizons, and cannot be negligible. It should be noted

that for such small black hole, the semi-classical limit conditions (4.108) are not well

satisfied at the throat, and as a result, the corresponding effective Hamiltonian may

no longer describe the real quantum dynamics well. For more details, we refer readers

to [41,42].

4.5.2 η & 1

In this case, we find

X ' η0, Y ' η0

η
,

W ' πh0[η0] + 2 sin[η0],

PΛ

R2
' η0

αγG
,

PR
RΛ
' 2η0

αγG
,

(4.118)

as τ → −∞. Then, the metric coefficients have the following asymptotical behavior,

N(τ) ' N0 = − 2γ
√

8πγ `p
√
j0,

mG (πh0[η0] + 2 sin[η0])
,

Λ(τ) ' Λ0 exp

{
F(η)

2mG
τ

}
,

R(τ) ' R0 exp

cos
(
η0

η

)
2mG

τ

 , (4.119)

where Λ0 and R0 are constants, and

F(η) =
1

D(η0)2

[
2πh−1(η0) sin2(η0) + π2 cos(η0)h2

0(η0)
]

− cos

(
η0

η

)
, (4.120)
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where D(η0) is defined by Eq.(4.33) but now with A = B = 0, and the constant η0 is

implicitly determined by

η sin

(
η0

η

)
+

π

D(η0)
sin(η0)h0(η0) = 0. (4.121)

In [41], it was shown that F(η) < 0 and η0 < −π when η > 1, so that both R

and Λ grow exponentially as τ → −∞. Setting

a ≡ |F(η)|
2mG

> 0, d ≡

∣∣∣cos
(
η0

η

)∣∣∣
2mG

> 0, (4.122)

we find that

Λ = Λ0e
−aτ , R = R0e

−dτ . (4.123)

Then, the metric takes the following asymptotical form

ds2 ' −

(
N̂0

R

)2

dR2 +R
2a
d dx̄2 +R2dΩ2, (4.124)

where N̂0 ≡ N0/d, but now with x̄ ≡
(

Λ0/R
a/d
0

)
x. Similar to the last case, the

corresponding spacetime is not vacuum, and the effective energy-momentum tensor

takes the same form as that given by Eq.(4.77), but now with uµ = (N̂0/R)δRµ ,

x̄µ = Ra/dδx̄µ, and

ρ ' 2a+ d

dN̂2
0

+
1

R2
,

px̄ ' − 3

N̂2
0

− 1

R2
,

p⊥ ' −a
2 + ad+ d2

d2N̂2
0

, (4.125)

from which we find that

ρ+ px̄ '
2(a− d)

dN̂2
0

+O
(

1

R2

)
,

ρ+ p⊥ ' −a(a− d)

d2N̂2
0

+O
(

1

R2

)
. (4.126)
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Therefore, in this case none of the three energy conditions is satisfied either, provided

that a 6= d. When a = d, the spacetime is asymptotically de Sitter, as shown below.

In particular, we find that

R ' 2

(
a2 + 2ad+ 3d2

d2N̂2
0

+
1

R2

)
,

RµνR
µν ' 2

a4 + 2a3d+ 5a2d2 + 4ad3 + 6d4

d4N̂4
0

+
4(a+ 2d)

dN̂2
0R

2
+

2

R4
,

RµναβR
µναβ ' 4

a4 + 2a2d2 + 3d4

d4N̂4
0

+
8

N̂2
0R

2
+

4

R4
,

CµναβC
µναβ '

4
(
aR2(a− d) + d2N̂2

0

)
2

3d4N̂4
0R

4
. (4.127)

Therefore, different from the last case, asymptotically the spacetime is conformally

flat only when a = d. Otherwise, we have CµναβC
µναβ ' 4a2(a − d)2/(3d4N̂4

0 ) +

O (1/R2).

On the other hand, introducing the quantity t̄ via the relation

t̄ = − dN̂0

aR
a/d
0

(
R0

R

)a/d
≡ −t̄0

(
R0

R

)a/d
, (4.128)

we find that the metric (4.124) takes the form

ds2 ' R
2a/d
0

(
t̄0
t̄

)2 (
−dt̄2 + dx̄2

)
+R2dΩ2. (4.129)

When a = d, Eq.(4.129) reduces to

ds2 ' R2
0

(
t̄0
t̄

)2 (
−dt̄2 + dx̄2 + dΩ2

)
, (a = d), (4.130)

135



which is the same as the de Sitter spacetime for R � RΛ, where RΛ is the de Sitter

radius. In fact, when R� RΛ we have that the de Sitter spacetime is given by

ds2
Λ = −

(
1−

(
R

RΛ

)2
)
dx̄2 +

(
1−

(
R

RΛ

)2
)−1

dR2

+R2dΩ2

'
(
RΛ

t̄

)2 (
− dt̄2 + dx̄2 + dΩ2

)
, (4.131)

but now with the rescaling x̄→ x̄/RΛ and

t̄ ≡ −RΛ

R
. (4.132)

Note that the angular sectors of the two metrics (4.129) and (4.131) are differ-

ent in terms of t̄. In particular, in the metric (4.129) we have R2 ∝ (−t̄)−2d/a, while

in the de Sitter spacetime we have R2 ∝ (−t̄)−2. Therefore, they are equal only when

a = d. However, the sectors of the (t̄, x̄)-planes are quite similar even when a 6= d. As

a result, in both cases the surfaces t̄ = 0 represent spacelike hypersurfaces and form

the boundaries of the spacetimes. Then, the corresponding Penrose diagram in the

current case is given by Fig. 4.9.

When a = d, since F(η) < 0 and cos
(
η0

η

)
< 0, from Eq.(4.122) we find

F(η) = cos

(
η0

η

)
. (4.133)

On the other hand, η and η0 must satisfy Eq.(4.121), too. So, these two equations

uniquely determine η and η0. For η0 . −π, we find that Eqs.(4.121) and (4.133) have

the solution,

(η, η0) ≈ (1.142,−3.329) , (4.134)

for which, from Eqs.(4.13) and (4.22) we find that

γ =

√
2π

8η
' 0.274. (4.135)
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Figure 4.9: The Penrose diagram for the loop quantum spacetimes without the inverse
volume corrections in the case η > 1 (As to be shown below, the corresponding
Penrose diagram for the case η < 1 is also given by this figure). The curved lines
denoted by τb are the transition surfaces (throats), and the straight lines AD and BC
are the locations of the black hole horizons, while the straight lines AB and CD are the
spacelike infinities, which correspond to t̄ = 0 and form the future/past boundaries.
The whole spacetime is free of singularities.

It is remarkable to note that this value is precisely the one found from the analysis

of black hole entropy [43]. It should be also noted that Eqs.(4.121) and (4.133) have

multi-valued solutions, as these two equations are involved with periodic functions.

In this chapter, we consider only the case η0 . −π [41].

In Figs. 4.10 - 4.12, we plot various physical quantities for m = 1012mp, j0 =

11.42, j = 10, so that η ≡ j0/j = 1.142. This corresponds to the case studied in [42],

which will be analyzed in more detail in the next section with ABC 6= 0. Then, we

find that the transition surface is located at τmin/τp ' −3.896×1013, at which we have

R(τmin) ' 8059.95. Note that with these choices of m, j and jx, the semiclassical

limit conditions (4.14) and (4.16) are well satisfied. Then, from Figs. 4.10 and 4.11

we find that the asymptotical behavior of the metric coefficients given by Eq.(4.116)

is well justified, while Fig. 4.12 shows that the quantum effects near the black hole
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Figure 4.10: Plots of the physical variables (R,Λ, PR, PΛ) and their classical cor-
respondences (Rc,Λc, PRc , PΛc). Particular attention is paid to the region near the
throat τmin = −3.896 × 1013, at which R(τ) = 8059.95. Graphs are plotted with
m = 1012mp, j0 = 11.42, j = 10, η = 1.142.

horizon (τ ' 0) are negligible even for m/mp = 1012. For the cases with solar mass

m/mp & 1038, it is expected that such effects are even smaller.
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Figure 4.11: Plots of C(τ) and the lapse function N(τ) for m = 1012mp, j0 =
11.42, j = 10, η = 1.142.

Table 4.4: The dependence of the constants N0, R0, Λ0 of Eq.(4.116) on m with
η ≈ 1.142, γ ≈ 0.274, jx = 105. The corresponding transition times τmin and radii

Rmin are also given.

m
mp

τmin

τp

Rmin

`p
N0 R0 Λ0

1012 −3.260×1013 193114 5.706× 10−10 0.0226 0.00725
1010 −2.646×1011 41605.1 5.706× 10−8 0.0968 0.0311
106 −1.418× 107 1929.73 5.706× 10−4 1.787 0.631

It should be noted that the specific values of the factors N0, R0 and Λ0 ap-

pearing in Eq.(4.116) depend on the choice of m, although the asymptotic behavior

of N,R and Λ all take the form of Eq.(4.116). As a result, the corresponding Penrose

diagram is the same and given by Fig. 4.9 for any given η > 1. In Table 4.4 we

present their values for several choices of m.
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Figure 4.12: Plots of the relative differences of the functions (R,Λ, PR, PΛ, N(τ)) and
C(τ) near the black hole horizon with the same choice of the parameters m and j, as
those specified in Figs. 4.10 and 4.11, that is, m = 1012mp, j0 = 11.42, j = 10, η =
1.142.

We also study the effects of η, and find that the quality behaviors of the

spacetimes are quite similar to the above even when η = 2, as long as the semiclassical

limit conditions (4.14) and (4.16) are satisfied and m is not too small (m/mp & 106).

4.5.3 η . 1

When η . 1, the metric coefficients take the same asymptotical forms as

those given by Eqs.(4.116) - (4.121), but now with F(η) > 0 and η0 > −π [41].

Therefore, now Λ decreases exponentially as τ → −∞, while R still keeps increasing
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Figure 4.13: Plots of the physical variables (R,Λ, PR, PΛ) and their classical cor-
respondences (Rc,Λc, PRc , PΛc). Particular attention is paid to the region near the
throat τmin = −3.918 × 1013, at which R(τmin) = 7676.1. Graphs are plotted with
m = 1012mp, j0 = 9.5, j = 10, η = 0.95.

exponentially, i.e.

N ' − 2γ
√

8πγ `p
√
j0,

mG (πh0[η0] + 2 sin[η0])
,

Λ = Λ0e
aτ , R = R0e

−dτ . (4.136)
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Figure 4.14: Plots of C(τ) and the lapse function N(τ) for m = 1012mp, j0 = 9.5, j =
10, η = 0.95.

Then, the metric takes the following asymptotical form

ds2 ' −

(
N̂0

R

)2

dR2 +
dx̄2

R2a/d
+R2dΩ2. (4.137)

The corresponding effective energy-momentum tensor also takes the same form as

that given by Eq.(4.77), but now with uµ = (N̂0/R)δRµ , x̄µ = R−a/bδx̄µ, and

ρ ' d− 2a

dN̂2
0

− 1

R2
,

px̄ ' − 3

N̂2
0

− 1

R2
,

p⊥ ' −a
2 − ad+ d2

d2N̂2
0

, (4.138)

from which we can see that none of the three energy conditions are satisfied for any

given a and d. In particular, when a = d we have ρ ' px̄/3 ' p⊥ < 0. In addition,
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Figure 4.15: Plots of the relative differences of the functions (R,Λ, PR, PΛ, N(τ)) and
C(τ) near the black hole horizon with the same choice of the parameters m and j, as
those specified in Figs. 4.13 and 4.14, that is, m = 1012mp, j0 = 9.5, j = 10, η =
0.95.

we also have

R ' 2

(
a2 − 2ad+ 3d2

d2N̂2
0

+
1

R2

)
,

RµνR
µν ' 2

a4 − 2a3d+ 5a2d2 − 4ad3 + 6d4

d4N̂4
0

− 4(a− 2d)

dN̂2
0R

2
+

2

R4
,

RµναβR
µναβ ' 4

(
a4 + 2a2d2 + 3d4

d4N̂4
0

+
2

N̂2
0R

2
+

1

R4

)
,

CµναβC
µναβ '

4
(
aR2(a+ d) + d2N̂2

0

)
2

3d4N̂4
0R

4
, (4.139)

which can be obtained from Eq.(4.115) by the replacement a→ −a, as expected.
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To consider the corresponding Penrose diagram, we first write the metric

(4.137) in the form

ds2 ' −R−2a/d
0

(
t̄0
t̄

)2 (
−dt̄2 + dx̄2

)
+R2dΩ2, (4.140)

where

t̄ = t̄0

(
R

R0

)a/d
, x̄ ≡

(
Λ0R

a/d
0

)
x,

R = R0

(
t̄

t̄0

)d/a
, t̄0 ≡

dN̂0R
a/d
0

a
. (4.141)

Comparing Eq.(4.140) with Eq.(4.129), we find that the (t̄, x̄)-planes in both space-

times have the same structure, and the only difference is to replace a by −a. Thus,

the corresponding Penrose diagram is also given by Fig. 4.9. It is interesting to note

that now the spacetime is not asymptotically de Sitter, even when a = d. In fact,

now it is even not asymptotically conformally flat as can be seen from Eq.(4.139). In

addition, in the current case none of the three energy conditions are satisfied.

In Figs. 4.13 - 4.15, we plot various physical quantities for m/mp = 1012, j0 =

9.5, j = 10 so that η ≡ j0/j = 0.95 < 1. In this case, the transition surface is

located at τmin = −3.918 × 1013, at which we find R(τmin) = 7676.1. Then, it can

be shown that both of the conditions (4.14) and (4.16) are satisfied. Therefore, the

corresponding semiclassical description of the quantum black holes is well justified.

In particular, from Figs. 4.13 and 4.14 we find that the asymptotic behavior of the

metric coefficients are well approximated by Eq.(4.136), while Fig. 4.15 shows that

near the horizon (τ ' 0) the quantum geometric effects become negligible, possibly

except the region very near to the horizon [cf. Fig. 4.15].

It is interesting to note that the asymptotic behavior in the current case is

very sensitive to the choice of η. In particular, we find that when η = 0.5 the
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asymptotic behavior of the spacetime is already quite different from the one described

by Eq.(4.136), although the semiclassical conditions (4.14) and (4.16) are still well

justified.
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Figure 4.16: Plots of the functions
(
X, Y,W, PΛ

R2 ,
PR
RΛ

)
. The throat is lcated at τmin =

−3.260× 1013, at which R(τmin) = 193115. Curves are plotted with γ ≈ 0.274, m =
1012mp, jx = 105, η ≈ 1.142.

4.6 Main Properties of the quantum reduced loop Black Holes with the Inverse

Volume Corrections

As shown in [42], the inverse volume corrections, represented by terms propor-

tional to the constants A,B and C in the effective Hamiltonian given by Eqs.(4.10)
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Figure 4.17: Plots of the functions
(
X, Y,W, PΛ

R2 ,
PR
RΛ

)
. The throat is at τmin =

−2.646× 1011, at which R(τmin) = 41609.4. Graphs are plotted with γ ≈ 0.274, m =
1010mp, jx = 105, η ≈ 1.142.

and (4.11), are sub-leading. This can be also seen clearly from the analysis given in

the beginning of the last section. Therefore, the inverse volume corrections should

not change the main properties of the solutions with η = 1, η > 1, η < 1, respec-

tively. However, demanding that the spatial manifold triangulation remain consistent

on both sides of the black hole horizons, ABP found [42]

j = γjx, (4.142)
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Figure 4.18: Plots of the functions
(
X, Y,W, PΛ

R2 ,
PR
RΛ

)
. The throat is at τmin =

−1.416× 107, at which R(τmin) = 2012.19. Graphs are plotted with γ ≈ 0.274, m =
106mp, jx = 105, η ≈ 1.142.

which immediately leads to

η ≡ α

β
=

√
2π

8γ
, (4.143)

as can be seen from Eq.(4.13). On the other hand, the considerations of black hole

entropy in LQG showed that [43]

γ ' 0.274, (4.144)

which is precisely the solution obtained by requiring a = d in Section 4.5.2 for the

case η > 1, in order to have the spacetime on the other side of the transition surface to
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be de Sitter, where a and b are the constants defined in Eq.(4.122). This “surprising

coincidence” was first noted in [42] with a different approach, but in this chapter we

obtained it simply by requiring that the transition surface connect two regions, one is

asymptotically the Schwarzschild and the other is de Sitter. Therefore, following [42]

in this section we consider only the case γ ' 0.274 10, for which we have η ' 1.142.

Once γ and η are fixed, the five-parameter solutions of ABP are uniquely

determined, after the inverse value correction parameters ν, δ and δx are given. In

the following, we adopt the values given by ABP [42],

ν = 1.802, δ =
1.458

β2
+O

(
β−6
)
,

δx =
0.729

β2
+O

(
β−6
)
. (4.145)

In Figs. 4.16 - 4.18, we plot out the functions
(
X, Y, W, PΛ

R2 ,
PR
RΛ

)
, for different

m. From these figures we find

X ' −ι ≈ −3.329, Y ' − ι
η
≈ −2.915,

W ' −(πh0[ι] + 2 sin[ι]) ≈ −1.001,

PΛ

R2
' − ι

αγG
≈ −0.012,

PR
RΛ

' − 2ι

αγG
≈ −0.023, (4.146)

as τ → −∞, where ι ≡ −η0 ' 3.329 [42]. With the above expressions, we find that

the asymptotical behavior of N(τ), R(τ) and Λ(τ) is precisely given by Eq.(4.119),

with the dependence of the three constants N0, R0 and Λ0 being given by Table 4.4.

As shown in Sec. 4.5.2 for the case η > 1, the inverse volume corrections

become important only when the geometric radiusR is in the order of the Planck scale,

10 It should be noted that a second solution in [42] was also found with γ ' 0.227. However,

we find that this solution does not satisfy the Hamiltonian constraint HIV+CS
int ' 0, so it must be

discarded.
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R ' `p. However, for macroscopic black holes, the radius of the transition surface

Rmin is always much larger than `p. For example, when m/mp = 1012, Rmin/`p '

8059.95� 1 [cf. Fig. 4.10]. Therefore, for macroscopic black holes the inverse volume

corrections can be safely neglected. This is true not only for the case η = 1.142, but

also true for all the cases considered in Sec. 4.5 for macroscopic black holes. Therefore,

in this section we shall not repeat our analyses carried out in that section.

4.7 Concluding Remarks

In this chapter, we systematically study quantum black holes in the framework

of QRLG, proposed recently by ABP [40–42]. Starting from the full theory of LQG,

ABP derived the effective Hamiltonian with respect to coherent states peaked around

spherically symmetric geometry, by including both the holonomy and inverse volume

corrections. Then, they showed that the classical singularity used to appear inside

the Schwarzschild black hole is replaced by a regular transition surface with a finite

and non-zero radius.

To understand such obtained effective Hamiltonian well and shed light on the

relations to models obtained by the bottom-up approach, in Sec. 4.4.1 we first con-

sider its classical limit, and obtained the desired Schwarzschild black hole solution,

whereby the physical and geometric interpretation of the quantities used in the ef-

fective Hamiltonian are made clear. Then, in Sec. 4.4.2 and Sec. 4.4.3 by taking

proper limits we re-derive respectively the BV [15] and AOS [9, 23, 25] solutions, all

obtained by the bottom-up approach. In doing so, we can see clearly the relation

between models obtained by the two different approaches, top-down and bottom-up.
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In particular, the BV effective Hamiltonian was originally obtained from the

classical Hamiltonian (4.7) with the polymerization,

b→ sin(δbb)

δb
, c→ sin(δcc)

δc
. (4.147)

However, instead of taking the parameters δb and δc as constants, following the µ̄-

scheme first proposed in LQC [14] 11, BV took them as

δ
(BV)
b =

√
∆

pc
, δ(BV)

c =

√
∆pc
pb

. (4.148)

In Sec. 4.4.2, we show explicitly that the BV effective Hamiltonian can be obtained

from the ABP Hamiltonian by taking the following replacement and limit,

(i) h0[X]→ 2

π
sin[X], h−1[X]→ 2

π
cos[X], (4.149)

(ii)
A

R2
,
B

R2
,
C

R2
� 1. (4.150)

It should be noted that with the choice of Eq.(4.148), the corresponding values of jx

and j are given by Eq.(4.68), from which we can see that they all violate the semi-

classical limit (4.14), with which the ABP effective Hamiltonian (4.10) was derived.

As a result, the BV model cannot be physically realized in the framework of QRLG,

although formally they can be obtained from the ABP effective Hamiltonian by the

above replacement and limit.

On the other hand, in addition to the replacement and limit given respectively

by Eqs.(4.149) and (4.150), if we further assume that

δ
(AOS)
b , δ(AOS)

c = Constants, (4.151)

11 This is known to be the only possible choice in LQC, and results in physics that is in-
dependent from underlying fiducial structures used during quantization, and meanwhile yields a
consistent infrared behavior for all matter obeying the weak energy condition [49].
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and are determined by Eqs.(4.95) and (4.96), the ABP effective Hamiltonian (4.10)

reduces precisely to the AOS one [9,23,25]. However, as shown explicitly by Eq.(4.99),

such choices are also out of the semi-classical limit (4.68). Therefore, the AOS model

cannot be realized in the framework of QRLG either.

It must be noted that the above conclusions do not imply that the BV and

AOS models are unphysical, but rather than the fact that they must be realized in a

different top-down approach.

With the above in mind, in Sec. 4.5 we study the ABP effective Hamiltonian

without the inverse volume corrections, represented by the A,B,C terms in Eq.(4.10)

in detail, by first confirming the main conclusions obtained in [41] and then clarifying

some silent points. In particular, we find that the spacetime on the other side of the

transition surface (throat) indeed sensitively depends on the ratio η ≡ α/β, where α

and β are defined by Eq.(4.13) in terms of (jx, j), or Eq.(4.100) in terms of (ĵ0, ĵ),

where the parameters (jx, j) were introduced in [42], while (ĵ0, ĵ) were used in [41],

and related one to the other through Eq.(4.23). As noticed previously, in Sec. 4.5 we

drop the hats from (ĵ0, ĵ)→ (j0, j), for the sake of simplicity.

When η = 1, the spacetime on the other side of the transition surface is

conformally flat, and the non-vanishing curvatures are all of the order of the Planck

scale, as can be seen from Eq.(4.115). Then, the corresponding Penrose diagram is

given by Fig. 4.2. At this point, we find that it is very helpful to make a closer

comparison of the ABP model with the BV one, as for the BV choice of Eq.(4.67),

we have η(BV) = 1. In particular, we find the following:

• In both models, the spacetime singularity used to appear at the center is

replaced by a transition surface with a finite non-zero radius.

151



• In both models, the spacetime on one side of the transition surface is quite

similar to the internal region of a Schwarzschild black hole with a black hole

like horizon located at a finite distance from the transition surface (but with

the removal of the black hole singularity used to occur at the center).

• In both models, the spacetime is asymmetric with respect to the transition

surface, and model-dependent. In particular, in the BV model, the spacetime

on the other side of the black hole like internal region approaches asymp-

totically to a charged Nariai space [46–48], of which the radius of the two-

sphere S2 approaches to a Planck scale constant, R → R0 ' O(`p). In

contrast, in the ABP model the radius grows exponentially without limits,

R → exp
(
− τ

2mG

)
as τ → −∞, and a macroscopic universe is obtained. The

corresponding global structure can be seen clearly from its Penrose diagram

given by Fig. 4.2.

• In the BV model, there exists multiple transition surfaces at which we have

dpc/dτ = 0. When passing each transition surface, pc decreases. As a result,

pc will soon decreases to a value at which the two-spheres S2 have areas

smaller than ∆, whereby the effective Hamiltonian is no longer valid. On the

other hand, in the ABP model, only one such transition surface exists, and

the above mentioned problem is absent. As a matter of fact, the two-planes

spanned by τ and x are asymptotically flat, as shown explicitly by Eq.(4.109),

although the four-dimensional spacetime is not [cf. Eq.(4.115)].

When η & 1, the spacetime in general does not become conformally flat, as

can seen from Eq.(4.127), unless a = d, where a and d are two constants defined by
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Eq.(4.122). Then, the corresponding Penrose diagram is given by Fig. 4.9. When

a = d, (4.152)

the spacetime is conformally flat and asymptotically de Sitter. It is remarkable that

the condition (4.152) together with the one (4.21) leads to

γ =

√
2π

8η
' 0.274, (4.153)

which is precisely the value obtained from the consideration of loop quantum black

hole entropy obtained in [43]. As emphasized in [42], this coincidence should not be

underestimated, and may provide some profound physics. In particular, the above

picture is also consistent with the recently emerging picture in modified LQC mod-

els [50], in which the quantum bounce, which corresponds to the current transition

surface, connects two regions, one is asymptotically de Sitter, and the other is asymp-

totically relativistic, after considering the expectation values of the Hamiltonian oper-

ator in LQG [51–53], by using complexifier coherent states [54–56], as shown explicitly

in [57–59]. In addition, a similar structure of the spacetime of a spherical black hole

also emerges in the framework of string [60], but now the transition surface is replaced

by an S-Brane.

When η . 1, the spacetime cannot be conformally flat for any given values

of a and d, as it can be seen from Eq.(4.139). However, the corresponding Penrose

diagram is the same as that of the case with η & 1, and given precisely by Fig. 4.9.

In review of all the above three cases, it is clear that the spacetime on the other

side of the transition surface is no longer a white hole structure without spacetime

singularities, as obtained from most of the bottom-up models [26, 61, 62], so that

the corresponding Penrose diagram is extended repeatedly along the vertical line to
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include infinite identical universes of black holes and white holes (without spacetime

singularities). Instead, the white hole region is replaced by either a conformally flat

spacetime or a non-conformally flat one, given respectively by Figs. 4.2 and 4.9.

But, in any case the spacetime is already geodesically complete, and no extensions

are needed beyond their boundaries, so that in this framework multiple identical

universes do not exist.

In addition, the undesirable feature in the BV model that multiple horizons

exist on the other side of the transition surface disappears in the ABP model. In this

model, the large quantum gravitational effects near the black hole horizons seem-

ingly do not exist either, despite the fact that our numerical computations show that

deviations may exist when very near to the black hole horizons, as shown explic-

itly in Figs. 4.5, 4.12, and 4.15. However, more careful analysis is required, as the

metric becomes singular when crossing the horizons, and our numerical simulations

may become unreliable. We wish to come back to this important question in another

occasion.

When inverse volume corrections, represented by terms proportional to the

constants A,B,C in the effective Hamiltonian (4.10), are taken into account, the

effects are always sub-leading, as these terms become important only when the radius

of the two-sphere τ, x = Constant is of the order of the Planck scale. For macroscopic

black holes, we find that the corresponding radii of the transition surfaces are always

much larger than the Planck scale, so their effects will be always sub-leading even

when across the transition surface. Such analysis was carried out in Sec. 4.6, in which

we mainly focus on the case in which the conditions (4.152) and (4.153) hold. In [42]

it was shown that these sub-leading terms precisely make up all the requirement for
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a spacetime to be asymptotically de Sitter, defined in [63], even to the sub-leading

order.
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CHAPTER FIVE

Non-existence of quantum black hole horizons in the improved dynamics approach

This chapter has been submitted as [3]: W. C. Gan, X. M. Kuang, Z. H. Yang,

Y. Gong, A. Wang and B. Wang, Non-existence of quantum black hole horizons in

the improved dynamics approach, [arXiv:2212.14535 [gr-qc]].

5.1 Abstract

In this chapter, we study the quantum geometric effects near the locations that

black hole horizons used to appear in Einstein’s classical theory within the framework

of the improved dynamic approach, in which the two polymerization parameters of the

Kantowski-Sachs spacetime are functions of the phase space variables. Our detailed

analysis shows that the effects are so strong that black hole horizons of the effective

quantum theory do not exist any longer, and the corresponding Kantowski-Sachs

model now describes the entire spacetime of the trapped region, instead of being only

the internal region of a black hole, as it is usually expected in loop quantum gravity.

5.2 Introduction

In LQC, there exist two different quantization schemes, the so-called µo and

µ̄ schemes, which give different representations of quantum Hamiltonian constraints

and lead to different effective dynamics [64]. The fundamental difference of these two

approaches rises in the implementation of the minimal area gap mentioned above. In

the µo scheme, each holonomy h
(µ)
k is considered as an eigenstate of the area operator,

associated with the face of the elementary cell orthogonal to the k-th direction. The

parameter µ is fixed by requiring the corresponding eigenvalue be the minimal area
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gap. As a result, µ is a constant in this approach [65]. However, it has been shown [66]

that this quantization does not have a proper semiclassical limit, and suffers from the

dependence on the length of the fiducial cell. It also lacks of consistent identified

curvature scales. On the other hand, in the µ̄ scheme [14], the quantization of areas

is referred to the physical geometries, and when shrinking a loop until the minimal

area enclosed by it, one should use the physical geometry. Since the latter depends

on the phase space variables, now when calculating the holonomy h
(µ)
k , one finds that

the parameter µ depends on the phase space variables, too. In the literature, this

improved dynamical approach is often referred to as the µ̄ scheme, and has been

shown to be the only scheme discovered so far that overcomes the limitations of the

µo scheme and is consistent with observations [64].

In parallel to the studies of LQC, loop quantum black holes (LQBHs) have

been also intensively studied in the past decade or so (See, for example, [9,26,67–69]

and references therein). In particular, since the Schwarzschild black hole interior can

be treated as the Kantowski-Sachs cosmological model, in which the spacetime is ho-

mogeneous and the metric is only time-dependent, some of the LQC techniques can

be borrowed to study the black hole interiors directly. Along this line of thinking,

LQBHs were initially studied within the µo scheme [10,13,70]. However, this LQBH

model also suffers from similar limitations as the µo scheme in LQC [8, 9, 71]. Soon

the µ̄ scheme was applied to the Schwarzschild black hole interior by Böhmer and

Vandersloot (BV) [15] (See also [72, 73] for a similar prescription in the Kantowski-

Sachs universe, and [62,74–78] in the Painlevé-Gullstrand-like coordinates that cover
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both of the internal and external regions of the classical Schwarzschild black hole.1).

Later, the µ̄ quantization scheme was shown to be the unique quantization scheme

that is free from the dependence on the fiducial length and has consistent ultravi-

olet and infrared behavior [84]. It was also shown that it has universally bounded

curvature scales and energy density, and that the expansion and shear scalars are

all finite, in addition to the geodesic completeness and generic resolution of strong

singularities [85].

Despite of these attractive features, the BV model suffers a severe drawback:

there are large departures from the classical theory very near the classical black hole

horizon even for massive black holes, for which the curvatures at the horizon become

very low [8, 9, 15, 71]. In addition, when the curvature reaches the Planck scale, the

geometric radius of the round 2-spheres researches a minimum and then bounces,

giving rise to a transition surface T , whereby the original singularity is replaced by a

quantum bounce. The transition surface T naturally divides the spacetime into two

regions. To the past of T we have a trapped region, and to its future an anti-trapped

region appears, in which the geometric radius of the 2-spheres increases. However, in

contrast to other LQBH models, this anti-trapped region is not bounded by a white-

hole-like horizon, instead it is followed by another bounce, across which the region

becomes trapped again, and the radius of the 2-spheres starts to decrease [15,72,73].

This process will be repeating indefinitely, and after each bounce the geometric radius

of the 2-spheres will get smaller. So, soon the area of the 2-spheres will become smaller

than the minimal area gap, whereby the model becomes self-inconsistent [9].

1 For rigorous mathematical development of Ashtekar’s formalism for spherically symmetric
general minisperspaces and its loop quantization, see, for example, [76,79–83] and references therein.
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In this chapter, we shall mainly focus our attention to the past of T , as the

spacetimes in the pre-transition phase were already studied in detail first in the vac-

uum case [15, 72, 73] and then in the case filled with matter [84] or a cosmological

constant [86]. In all the cases, the spacetimes approach to the classical “charged” Nar-

iai solutions, in which the radii of the two-spheres become constants asymptotically,

but with values smaller than the Planck scale. So, the validity of this asymptotic be-

havior is questionable [9]. In this chapter, we shall put this question aside, and study

in detail the spacetimes to the past of T by focusing ourselves onto the quantum

geometric effects near the location that the classical black horizon used to appear, es-

pecially the possible development of black hole horizons [9,87–90]. To our surprising,

we find that such a horizon is never developed within a finite time. Thus, in the BV

model the quantum geometric effects are so strong that the black hole horizon used

to appear classically at TH ≡ ln(2m) now disappears, and the resultant Kantowski-

Sachs model covers already the entire spacetime to the past of the transition surface

T [85]. As a result, the external region of a quantum black hole in this model does

not exist.

Specifically, this chapter is organized as follows: In Sec. 5.3, we consider

the BV model by first introducing the BV prescription of the two polymerization

parameters δb and δc given by Eq.(2.61), and then write down the corresponding

dynamical equations, given explicitly by Eqs.(2.64) - (2.67). To estimate the region

where the quantum effects near the classical black hole horizon become important, we

first introduce a parameter ε via the relation Tε = TH(1− ε) at which |δcc|Tε ' O(1),

from which we find that such effects become important only very closed to TH for

massive black holes. To study such effects explicitly, the choice of initial time and
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conditions are crucial. In this chapter we choose the initial time Ti that is far from

both the transition surface and the classical black horizon, TT � Ti � TH , so that

the initial conditions are as closed to those of classical theory as possible [cf. Table

5.1]. With these initial conditions we study the evolution of the dynamical equations,

and find that the metric coefficients remain finite and non-singular within any given

finite time. These results are strongly supported by the analytical studies carried

out in [85]. In particular, it was shown explicitly that 0 < pb(τ), pc(τ) < ∞ at any

given finite time τ , where pb and pc are the metric coefficients defined in Eq.(2.10),

and τ denotes the proper time, obtained by setting the lapse function to be unity.

Then, we turn to study the existence of marginally trapped surfaces by analyzing the

expansions of the in-going and out-going radially-moving light rays, as well as the

normal vector to the two-spheres, and find that such surfaces indeed exist. However,

they represent neither black hole horizons nor white hole ones, as they always separate

trapped regions from anti-trapped ones, or vice versa, instead of separating trapped

(anti-trapped) regions from untrapped ones, as a black (white) hole horizon usually

does [9, 87–90]. Finally, in Sec. 5.4, we present our main conclusions.

Before proceeding to the next section, we note the following: In this chapter

the Planck length `pl and mass Mpl are defined, respectively, by `pl ≡
√
G~/c3 and

Mpl ≡
√

~c/G, where G denotes the Newtonian constant, ~ is the Planck constant

divided by 2π, and c is the speed of light (Note that in the main text, c will be used

to denote a phase space variable, and only in this paragraph we use it to denote the

speed of light, without causing any confusion.). Thus, in terms of the fundamental

units, M , L and T , the units of ~ and c are [~] = ML2T−1, [c] = LT−1, where M ,

L and T denote the units of mass, length and time, respectively. In this chapter we
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shall adopt the natural units, so that ~ = c = 1. Then, we find L = T, M = L−1,

[G] = L3M−1T−2 = L2. In addition, all the figures will be plotted in the units of `pl

and Mpl, whenever the length and mass parameters are involved.

5.3 Böhmer-Vandersloot Model

5.3.1 Quantum Effects Near the Classical Black Hole Horizon

Table 5.1: Initial values of c(Ti) calculated from Eq.(5.7) at different times Ti and
the corresponding classical values cGR(Ti) for m = M/G = `pl, for which we have

TT ' −1.49 and TH ' 0.693.

Ti -1.45 0.3 0.643 0.685
c(Ti) 2.68044 - 2.09266 I -0.13272 -0.0682837 -0.0883704 + 0.0213373 I
cGR(Ti) -4.31636 -0.130343 -0.0656195 -0.0603504

The classical black hole horizon is located at

TH = ln(2m), (5.1)

as can be seen clearly from Eq.(2.30), at which we have pGR
b = 0. Before solving

the EoMs, let us first estimate the quantum effects near T = TH . Substituting the

classical Schwarzschild black hole solution given by Eqs.(2.20)-(2.23) into Eq.(2.61),

we find

|δbb| =
√

∆

eT
γ
√

2me−T − 1→ 0, T → TH , (5.2)

but

|δcc| =
√

∆γme−2T

√
2me−T − 1

→∞, T → TH . (5.3)

Eq.(5.3) indicates that the BV solution has large quantum effects near T ' TH . To

characterize these effects, in the vicinity of TH let us introduce ε through T = Tε ≡
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TH(1− ε) with ε� 1. Then, assuming that at Tε we have |δcc (Tε) | ' O(1), so that

|δcc|T=Tε
=

√
∆γme−2Tε

√
2me−Tε − 1

≈
√

∆γme−2TH

√
2me−Tε − 1

≈
√

∆γ

4m
√

(2m)ε − 1
∼ O(1), (5.4)

which leads to

ε '
ln( ∆γ2

16m2 + 1)

ln(2m)
. (5.5)

From this expression we can see that as m increases, ε decreases sharply, that is, we

need to get very close to TH in order to see the quantum effects for massive black

holes. In fact, in the following we shall show that such quantum effects are so large

that the horizon is never formed within a finite time T . Recall that the geometric

radius r of the two spheres T, x = constant now is given by r = eT . This in turn

implies that in the BV approach quantum black hole horizons do not exist in the

whole trapped region, T > T , with the only exception: it might be possible to exist

at r =∞ (or T =∞).

5.3.2 Initial Conditions

To show our above claim, let us first consider the initial conditions. Since

Eqs.(2.64) - (2.67) are four first-order ordinary differential equations, four initial con-

ditions in general are needed. However, these initial conditions must also satisfy the

Hamiltonian constraint Heff = 0, so only three of them are independent. As a result,

the phase space of the initial conditions is three-dimensional (3D). Without loss of the

generality, we can first choose the initial conditions for pb(Ti), pc(Ti) and b(Ti) at the

initial time T = Ti, and then solve the effective Hamiltonian constraint to find c(Ti).

It is clear that such obtained 3D phase space includes all the possible real values of
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pb(Ti), pc(Ti) and b(Ti). However, to compare the resultant BV spacetimes with the

Schwarzschild one, we choose them as their corresponding values of GR, that is

pb(Ti) = pGR
b (Ti), pc(Ti) = pGR

c (Ti),

b(Ti) = bGR(Ti), (5.6)

and

Heff(Ti) = 0 ⇒ c(Ti) = ceff(Ti). (5.7)

Once the initial conditions are chosen at a chosen initial time Ti, the EoMs Eqs.(2.64)-

(2.67) will uniquely determine the four physical variables (pb, b; pc, c) at any given later

time T .

Due to the large quantum effects near TH as estimated in the last subsection,

normally we choose Ti far from TH , that is, Ti � TH
2. On the other hand, near

the throat T = TT it is expected that the spacetime geometry will be dramatically

different from that of GR, so the conditions given by Eq.(5.6) near TT might not hold.

Therefore, in general we choose Ti so that

TT � Ti � TH . (5.8)

To understand the above arguments further, we consider the initial conditions at

different times Ti’s. We compare the effective value of c(Ti) = ceff(Ti) obtained from

Eq.(5.7) with its corresponding classical value cGR(Ti) at different times Ti’s in Table

5.1 for m = `pl, for which we have TT ' −1.49, and TH ' 0.693. From the Table

2 It should be noted that c(Ti) = ceff(Ti) obtained from Heff(Ti) = 0 can still be significantly
different from cGR(Ti), even Ti ' TH and pb(Ti), pc(Ti) and b(Ti) are chosen as their corresponding
values of GR, as given by Eq.(5.6), because now Heff(Ti) 6= HGR(Ti). In fact, from Eq.(5.3) we
find that |δcc| is still very large near TH , precisely because the fact that now c(Ti) still deviates
from its classical value significantly. Then, the solution cannot be approximated by the classical
Schwarzschild black hole at TH .
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we can see that Eq.(5.7) has no real-value solutions for c(Ti) when Ti is very closed

to either the transition surface TT or to the classical horizon TH , which means that

the quantum effects are so large near these points, so that the effective Hamiltonian

constraint Eq.(5.7) has no physical solutions for such chosen pb(Ti), pc(Ti) and b(Ti).

On the other hand, when far away from these points, the difference between c(Ti) and

cGR(Ti) is small. Therefore, in the following, we shall choose Ti so that the condition

(5.8) is always satisfied.

5.3.3 Numerical Results

Once the initial time and conditions are specified, we are ready to solve EoMs

(2.64) - (2.67) numerically. To monitor the numerical errors, we shall closely pay

attention to the effective Hamiltonian given by Eq.(2.71), which is required to vanish

identically

Heff ' 0, (5.9)

along any of physical trajectories. However, numerically this is true only up to certain

accuracy. To make sure that such numerical calculations are reliable, and our physical

conclusions will not depend on these numerical errors, we run our Mathematica code in

supercomputers with high precisions. In particular, in all calculations we require that

the Working Precision and Precision Goal be respectively 250 and 245, where Working

Precision specifies how many digits of precisions should be maintained in internal

computations of Mathematica, and Precision Goal specifies how many effective digits

of precisions should be sought in the final result.

5.3.3.1 Asymptotic Behavior of the Spacetimes as T � TT.
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With the above in mind, let first consider the case m = `pl. In this case, we

have TT ' −1.49 and TH ' 0.693. The initial point is chosen at Ti = 0.3, which

satisfies Eq.(5.8). From Table 5.1 we can also see that at this point c(Ti) is very

closed to its corresponding classical value cGR(Ti). In Fig. 5.1 we plot all the four

variables b, c, pb and pc, together with Heff, the corresponding Kretchmann scalar K

and the metric components N2 and gxx, where the Kretchmann scalar K is defined as

K(T ) ≡ RαβµνR
αβµν . From Fig. 5.1 (h) we can see that the maximal errors happen

near T ' 10 at which
∣∣Heff

∣∣ ≤ 2.0× 10−8. Before or after it, we have
∣∣Heff

∣∣� 10−8.

Therefore, our numerical computations are reliable.

On the other hand, from Fig. 5.1 (d) we can see that the geometric radius

r =
√
pc is exponentially increasing. As a result, the metric coefficient gxx decreases

exponentially, but never be zero precisely for any given finite time T , as shown by

Fig. 5.1 (f). In addition, the lapse function square N2 is also oscillating with a

similar period as that of pb, but after each circle of oscillations it is getting larger

and larger [cf. Fig. 5.1 (e)]. However, it always remains finite. Moreover, in Fig. 5.1

(g) we plot out the Kretchmann scalar K(T ) together with its classical counterpart

KGR(T ) ≡ 48m2/p3
c , from which we can see clearly that the quantum geometric

effects indeed become very large near the location of the classical black hole horizon

T ' ln(2m). This deviation lasts for a quite while [T ∈ (TH , 160) for m = `pl], but

finally K(T ) will be decreasing as p−3
c , the same as KGR(T ), that is,

K(T ) ' K0

p3
c

, K0 > 48m2, (5.10)

as T →∞. But, we always have K0 > 48m2.

165



100 200 300 400

50

100

150

Log(b(T))

100 200 300 400

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

c(T)

(a) (b)

100 200 300 400

-150

-100

-50

Log(pb(T))

100 200 300 400

200

400

600

800

Log(pc(T))

(c) (d)

100 200 300 400

200

400

600

800

Log(N2(T))

100 200 300 400

-800

-600

-400

-200

Log(gxx(T))

(e) (f)

100 200 300 400

-2500

-2000

-1500

-1000

-500

Log(K)(T)

Log(KGR )(T)

100 200 300 400

-2.×10-8

-1.5×10-8

-1.×10-8

-5.×10-9

Heff(T)

(g) (h)

Figure 5.1: Plots of the four physical variables (b, c, pb, pc) and the effective Hamil-
tonian defined by Eq.(2.71), together with the metric components N2, gxx and the
Kretchmann scalar K, as well as the classical counterpart KGR(T ) ≡ 48m2/p3

c of
K(T ). The mass parameter m is chosen as m/`pl = 1, for which we have TT ' −1.49
and TH ≈ 0.693. The initial time is chosen at Ti = 0.3.
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Figure 5.2: Plots of the four physical variables (b, c, pb, pc) and Heff, together with the
metric components N2, gxx, the Kretchmann scalar K, and the classical counterpart
KGR(T ) ≡ 48m2/p3

c with m/`pl = 103, for which we have TT ' 0.8327 and TH ≈
7.6009. The initial time is chosen at Ti = 7.0.
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The above results are sharply in contrast to the classical case, in which N2|GR =

e2T/(2me−T − 1) → ∞ at the black hole horizon, TH = ln 2 ' 0.693, while pGR
b be-

comes zero precisely at TH , so is gGR
xx , as can be seen from Eqs.(2.23) and (2.24).

It should be also noted that similar results can be obtained when the initial

time is chosen to be at Ti = ln(2m)− 0.05 ' 0.643, which is also a point at which the

difference between c(Ti) and cGR(Ti) is negligible, as shown in Table 5.1. In addition,

we also consider the case m = 103`pl. The corresponding physical quantities are

plotted out in Fig. 5.2. From these figures we can see that the metric coefficients,

(N2, gxx, pc) are all finite and non-zero for any given finite time T .

It is remarkable to note that our above conclusions that the metric coefficients

gµν and gµν are not singular at any given finite time T are strongly supported by the

analytical results obtained in [85], in which it was shown explicitly that

0 < pb(τ), pc(τ) <∞, (5.11)

for any given finite time τ , where τ denotes the proper time obtained by choosing

the lapse function to be unity, N(τ) = 1. Note that in [85] the authors considered

spacetimes filled with matter. However, their results for pb(τ) and pc(τ) equally hold

in the vacuum case. The above results can be understood as follows: From the

condition (2.59), we find

δcpb =
√

∆pc. (5.12)

Thus, for any given finite time T , the right-hand side is always finite and non-zero.

Then, if pb = 0 at a time, say, TH , we must have δc(TH) =∞, which in turn implies

that the quantum geometric effects become numerous. As a result, in the reality pb
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will be never zero within a finite time. The above arguments are valid not only for the

choice N(τ) = 1 adopted in [85], but also for the current choice of the lapse function.

To study further the asymptotic behaviors of the spacetimes, let us first notice

that log (N2) and log (gxx) change periodically, but during each period log (N2) in-

creases almost linearly, while log (gxx) decreases almost linearly. In contrast, log (pc)

increases almost linearly all the time [See the analysis to be given below]. So, during

each period we can approximate each of them as F = F0T
α, where we find that

N2 ' A0e
3T , gxx ' B0e

−T , pc = p(0)
c e2T , (5.13)

where A0, B0 and p
(0)
c are constants, usually depending on which period we consider,

but the slopes remain almost constant. Then, we find that the effective energy-

momentum tensor calculated from κ2Tµν ≡ Gµν can be written in the form

κ2Tµν = ρuµuν + pxxµxν + p⊥ (θµθν + φµφν) , (5.14)

with

ρ ' px '
1

pc
+O

(
e−3T

)
, p⊥ ' O

(
e−3T

)
, (5.15)

where (uµ, xµ, θµ, φµ) are the unit vectors along, respectively, the (dT, dx, dθ, dφ)-

directions. In addition, we also have

R ' 2

pc
, K ' 4

p2
c

, CαβµνCαβµν '
4

3p2
c

, (5.16)

where Cαβµν denotes the Weyl tensor. Thus, the spacetime becomes asymptotically

flat, but with the Kretchmann scalar decreasing as p−2
c , quite similar to the case

studied in [9, 91], instead of p−3
c as in the classical case.

5.3.3.2 Non-existence of Black/White Hole Like Horizons.
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To see if a black or white hole like horizon exists, let us first consider if a

marginally trapped surface will be developed in the BV model as T (or pc) increases.

To this goal, we can calculate the expansions of the in-going and out-going radially

moving light rays [9,87–89]. Introducing the unit vectors, uµ ≡ NδTµ and sµ ≡
√
gxxδ

x
µ,

we construct two null vectors `±µ = (uµ ± sµ) /
√

2, which define, respectively, the in-

going and out-going radially-moving light rays. Then, the expansions of these light

rays are given by

Θ± ≡ mµν∇µ`
±
ν = − pc,T√

2Npc
, (5.17)

where mµν ≡ gµν + uµuν − sµsν .

Note that the existence of a marginally trapped surface can be equally charac-

terized by the vanishing of the norm of the normal vector to the two-spheres, T, x =

Constant [90]. In fact, introducing the normal vector to the surface
√
pc = r0

Nµ ≡
∂(
√
pc − r0)

∂xµ
=

pc,T
2
√
pc
δTµ , (5.18)

where r0 is a constant, we find

NλN
λ = −

p2
c,T

4N2pc
. (5.19)

A marginally trapped surface will be developed when NλN
λ = 0, or equiv-

alently Θ± = 0 [9, 87–90]. However, as shown above, the lapse function N always

remains finite within a finite time (Recall that classically we have NGR(TH) = ∞].

Thus, a marginally trapped surface can exist only if pc,T = 0. From the dynamical

equation (2.66), we can see that this is possible only when

δc(T )c(T )|T=Ttr
=
π

2
. (5.20)
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Figure 5.3: Plots of ln(−NλN
λ) defined by Eq.(5.19) and δcc(T ). The mass parameter

m is chosen as m/`pl = 1, for which we have TT ' −1.49 and TH ≈ 0.693. The initial
time is chosen at Ti = 0.3. (c) shows clearly that there exist two points at which Nµ

becomes a null vector, NλN
λ = 0 in the interval T ∈ (0, 2).

In Fig. 5.3 we plot out this quantity together with the norm, NλNλ, from which we

can see clearly that there indeed exist various points at which the above condition is

satisfied, so that pc(Ttr) = 0 at these points. In particular, in Figs. 5.3 (b) and (c)

we zoom in to the interval T ∈ (0, 2), which show clearly that two such points exist

in this interval, at which log
(
−NλNλ

)
becomes infinitely large, as Nλ becomes null.

On the other hand, in Fig. 5.4 we plot several physical quantities for T ∈ (0, 2)

including Heff, which shows
∣∣Heff

∣∣ ≤ 2.0×10−15. Therefore, our numerical results are

quite reliable in this interval. From this figure, we can see clearly that across these

marginally trapped surfaces the metric coefficients all remain finite and non-zero. As

a result, these surfaces represent neither black nor white hole horizons, but transition

surfaces that separate trapped regions from anti-trapped ones. In fact, across each of

these points, pc,T changes its signs. Then, from Eq.(5.17) we can see that both Θ+
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and Θ− change their signs simultaneously. Therefore, these surfaces always separate

trapped regions from anti-trapped ones, while a black (white) hole horizon always

separates a trapped region from an untrapped one [87–90]. Therefore, we conclude

that in the BV model, no black/white hole structure exists.

It should be noted that simply looking at Figs. 5.1 and 5.2, one cannot tell the

existence of these transition surfaces. This is because in these figures the quantities

are plotted out in such a large range, T ∈ (0, 600), in which the detailed changes of pc

were washed out, due to the fact that it has quite different values at different times.

In particular, the moment T = 600 corresponds to
√
pc
∣∣
T=600

' 10265 m, which is

much larger than the size of our current observational universe, Lob. ' 8.8× 1026 m.

5.3.3.3 Asymptotic Behavior of the Spacetimes as T � TT.

To see the connection of our current studies to the ones carried out in [15,72,73,84,86],

let us briefly consider the asymptotic behaviors of the spacetimes for T � TT , that

is, the asymptotic behaviors of the spacetimes in the pre-transition surface. This

can be shown by simply considering the case m = `pl. With the same initial time

and conditions as those chosen for Fig. 5.1, we plot the four variables (pb, b; c, pc) in

Fig. 5.5, from which we can see that they behave very much like the ones obtained

in [2, 15, 72, 73, 84, 86]. In particular, as T decreases, pc approaches to a constant p̄c,

which is smaller than the Planck area. Such a spacetime with a constant radius of the

two-spheres was first discussed by Nariai [92,93], and latter generalized to the charged

case by Bousso [46]. As shown in detail in [2], in the current case the corresponding
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Figure 5.4: Plots of the four physical variables (b, c, pb, pc), together with the metric
components N2, gxx the Kretchmann scalar K, as well as the classical counterpart
KGR(T ) ≡ 48m2/p3

c of K(T ) and Heff in the region T ∈ (0, 2). The mass parameter
m is chosen as m/`pl = 1, for which we have TT ' −1.49 and TH ≈ 0.693. The same
initial time and conditions are chosen as those of Fig. 5.1.
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solutions are the charged Nariai solutions

ds2 '
(
t̄0
t̄

)2 (
−dt̄2 + dx̄2

)
+ p̄cd

2Ω

= −dt̂2 + e2t̂/t̄0dx̂2 + p̄cd
2Ω, (5.21)

where dt̄ = eᾱTdT , x̄ = β̄x, and ᾱ, β̄ and t̄0 are all positive constants [2], and

t̂ ≡ −t̄0 log t̄, x̂ ≡ t̄ox̄. From the above asymptotic behavior of the metric, we can

see that it has a topology of dS2 × S2
(0), where S2

(0) denotes a two-spheres with a

finite radius. As shown explicitly in [87], the coordinates (t̂, x̂) cover only part of

the whole spacetime. After the extension, the corresponding Penrose diagram is that

given explicitly in [94].

On the other hand, the Kantowski-Sachs spacetime (2.10) is usually singular

in the classical theory, when filled with matter that satisfies certain energy condi-

tions [87]. Then, the corresponding Penrose diagram is given by Fig. 5.6 (a), in

which each point represents a two-sphere with the radius pc(T ) that is a function of

T , as shown in Figs. 5.1 and 5.2. Note that the horizontal line AB in Fig. 5.6 (a)

represents the spaceitme singularity. In the vacuum case, classically it corresponds to

pGR
c (T = −∞) = 0. However, after quantum geometric effects are taken into account,

this singularity is replaced by the transition surface T denoted by the curve APB,

and the Penrose diagram for the whole spacetime now is given by Fig. 5.6 (b). In

the past of T , where T > TT , there actually exist infinite number of such transition

surfaces, each of which separates a trapped region from an anti-trapped one. At each

transition surface the geometric radius
√
pc(T ) is different. As T increases,

√
pc(T )

is getting larger and larger as shown in Figs. 5.1 and 5.2. However, in the future of

T , that is, when T < TT , the geometric radius
√
pc(T ) first gets larger and then gets
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smaller and smaller, and asymptotically approaches a non-zero constant p̄c, as shown

in Fig. 5.4 (b).

It must be emphasized that each point in the diagram of Fig. 5.6 (b) represents

two-spheres with different radii. In particular, for T � TT , all the two-spheres have

the same radius p̄c, while for T > TT , the radius pc(T ) is time-dependent.
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Figure 5.5: Plots of the four physical variables (b, c, pb, pc) for T < TT and m/`pl = 1,
for which we have TT ' −1.49 and TH ≈ 0.693. The same initial time and conditions
are chosen as those of Fig. 5.1.

5.4 Conclusions

In this chapter, we have studied the quantum effects near the location T =

TH = ln(2m) at which the classical black hole horizon used to appear within the

framework of the improved dynamics approach, first considered by Böhmer and Van-

dersloot [15], in which the two polymerization parameters δb and δc are given by
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Figure 5.6: (a) The Penrose diagram for the Kantowski-Sachs spacetime in classical
Einstein’s gravity. The horizontal line AB represents the spacetime singularity. In
the Schwarzschild case, it corresponds to pGR

c (T = −∞) = 0. The curve APB
corresponds to a T = Constant surface with a non-zero radius. (b) The Penrose
diagram for the BV model. Due to the quantum geometric effects, the classical
singularity used to appear at T = −∞ now is replaced by the transition surface T
denoted by the curve APB, at which we have pc(TT ) > 0. The quantum geometric
effects are large in the region between the two curves AQB and APB. The 2D plane
with θ, φ = Constant is asymptotically approaching to a 2D de Sitter spacetime with
a fixed radius

√
p̄c as T → −∞. In the region T > TT the spaceitme is geodesically

complete, and a black (or white) hole like horizon is never developed.
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Eq.(2.61), where m is the classical black hole mass. To study such effects, we have

chosen the initial conditions as closed to the corresponding classical ones as possible.

We have found that this is always possible at a moment Ti, where Ti satisfies the

condition TT � Ti � TH [cf. Eqs.(5.6) - (5.8) and Table 5.1], where T = TT is the

location of the (first) transition surface.

To our surprising, we have found that a black hole (or white hole) horizon is

never developed within a finite time T to the past of the (first) transition surface

T > TT . Instead, only subsequent transition surfaces exist, which always separate

trapped regions from anti-trapped ones. The metric coefficients (N2, gxx, pc) and

their inverses (N−2, gxx, p−1
c ) are always finite and non-singular at any given finite

time T . As a matter of fact, the quantum geometric effects near the classically black

hole horizon T = ln(2m) (at which we have pGR
b (TH) = 0) are so strong so that

δc(T )|T→TH � 1, as can be seen from Eq.(5.12). Then, in reality pb never becomes

zero within a finite time [85].

These properties are sharply in contrast to those obtained in other models of

LQBHs studied so far in LQG [9, 26, 67–69], and put the BV model as a physically

viable one of LQBHs questionable.
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CHAPTER SIX

Conclusion

In chapter one, we briefly reviewed basic concepts in LQG. LQG is based

on canonical quantization of the Hamiltonian formalism of general relativity. In

Hamiltonian formalism, spacetime is decomposed into 1D time + 3D space. The

spatial metric and extrinsic curvature are then introduced as basic variables. The

spatial metric can be equivalently described by orthonormal triads eai (x). Ashtekar

introduced Ashtekar’s variable which has simple Poisson brackets with densitized

triads Ea
i =

√
qeai . The Ashtekar connection is smeared as the holonomy which is

defined as the path-ordered exponential of integral of the Ashtekar connection. The

fluxes of densitized triads are defined by their surface integral. LQG is the canonical

quantization of holonomy and flux of densitized triads. Hilbert spaces are composed

of wave functions which are functions of all holonomies on the graph.

In chapter two, we briefly reviewed some basic concepts on LQBH. The inte-

rior of the Schwarzschild black hole is isometric to the KS cosmological model with

symmetry group R× SO(3). Thus loop quantization techniques of LQC can be used

in loop quantization of black holes. The key point is that holonomies have exponential

terms like exp (iδbb), where δb corresponds to the edge length of holonomy. The lead-

ing order loop quantum effects are to replace classical b by sin(δbb)/δb. This procedure

is called polymerization. EoMs can then be derived from the effective Hamiltonian.

The solution describes the LQBH with leading order quantum corrections. Different
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choices of δb and δc will lead to different quantization schemes and have different solu-

tions. In this dissertation, we mainly focus on effective LQBH solutions with different

quantization schemes.

In chapter three, we have studied in detail the main properties of spheri-

cally symmetric black/white hole solutions, found recently by Bodendorfer, Mele,

and Münch [17]. This originates from polymerization of new phase space variables

which are canonical transformation of (b, c).

The BMM model has three physically independent free parameters (C, D, x0).

D is related to its ADM mass, while C, x0 are related to its quantum effects. We in-

vestigate its local and global properties by calculating its effective energy-momentum

tensor, which can be used to calculate the energy condition. We find that when

C = 0, x0 = 0, the solution reduces to a classical Schwarzschild black hole with mass

MBH = D. Different choices of parameters (C, D, x0) will lead to different properties

of the solution, which have been summarized in Tables 3.1 - 3.3.

In chapter four, we systematically study the ABP model which originates

from QRLG. QRLG is a top-down model of loop quantum gravity and the effective

Hamiltonian is derived with respect to coherent states peaked around spherically

symmetric geometry, by including both the holonomy and inverse volume corrections.

This is in contrast with BV model and AOS model which are based on polymerization

in mini-superspace. We find that the classical Schwarzschild black hole solution,

BV model and AOS model can be obtained by taking proper limit of ABP model.

Moreover, different choices of parameter η = α/β will lead to different asymptotic

behavior of ABP model. Specifically, when η & 1, and a = d, the spacetime is

conformally flat and asymptotically de Sitter. In this case γ =
√

2π
8η
' 0.274, which
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is precisely the value obtained from the consideration of loop quantum black hole

entropy obtained in [43].

In chapter five, we come back to investigate the properties of the BV model

in detail. The BV model is an important model as it utilizes the µ̄-scheme, which

is the unique quantization scheme that has proper semiclassical behavior in LQC.

However, it has large quantum effects near the location T = TH = ln(2m) at which

the classical black hole horizon used to appear. We find that the quantum effects are

so large that a BH/WH horizon never exits. These properties are sharply in contrast

to those obtained in other models of LQBHs studied so far in LQG [9,26,67–69], and

make the BV model as a physically viable solution of LQBHs questionable.

In the future, we will work on a) quantization of the exterior of the Schwarzschild

black hole in the µ̄-scheme, b) a new scheme that has no large quantum effects near

the horizon, and c) the covariant µ̄-scheme [78].
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APPENDIX A

THE GENERAL EXPRESSIONS OF THE ENERGY DENSITY AND
PRESSURES

Inserting the solutions given by Eq.(3.11) into Eq.(3.18), we find that

ρ(x) =
Y 3

X2Z8

[(
10Dx10

0 x+ 160Dx8
0x

3 − 20x6
0C6 + 672Dx6

0x
5 + 1024Dx4

0x
7

−260x4
0C6x2 + 110Dx4

0C6x+ 512Dx2
0x

9 − 560x2
0C6x4 + 440Dx2

0C6x3

−320C6x6 + 352DC6x5
)
X +DC12 +Dx12

0 + 50Dx10
0 x

2 + 400Dx8
0x

4

+22Dx6
0C6 + 1120Dx6

0x
6 − 100x6

0C6x+ 1280Dx4
0x

8 − 500x4
0C6x3

+286Dx4
0C6x2 + 512Dx2

0x
10 − 720x2

0C6x5 + 616Dx2
0C6x4 − 320C6x7

+352DC6x6

]
, (A.1)

pr(x) = − Y 3

X2Z8

[(
2x12

0 + 100x10
0 x

2 − 10Dx10
0 x+ 800x8

0x
4 − 160Dx8

0x
3

+2240x6
0x

6 − 672Dx6
0x

5 + 2560x4
0x

8 − 1024Dx4
0x

7 + 10Dx4
0C6x

+1024x2
0x

10 − 512Dx2
0x

9 + 40Dx2
0C6x3 + 2C12 + 32DC6x5

)
X

−DC12 −Dx12
0 + 20x12

0 x+ 340x10
0 x

3 − 50Dx10
0 x

2 + 1664x8
0x

5

−400Dx8
0x

4 + 2Dx6
0C6 + 3392x6

0x
7 − 1120Dx6

0x
6 + 3072x4

0x
9

−1280Dx4
0x

8 + 26Dx4
0C6x2 + 1024x2

0x
11 − 512Dx2

0x
10

+56Dx2
0C6x4 + 32DC6x6

]
, (A.2)
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and

pθ(x) =
Y 2

2X3Z8

[(
4x14

0 + 244x12
0 x

2 − 34Dx12
0 x+ 2480x10

0 x
4 − 720Dx10

0 x
3

+9408x8
0x

6 − 4256Dx8
0x

5 + 16384x6
0x

8 − 10240Dx6
0x

7 + 12Dx6
0C6x

+13312x4
0x

10 − 10752Dx4
0x

9 + 88Dx4
0C6x3 + 4x2

0C12 + 4096x2
0x

12

−4096Dx2
0x

11 + 192Dx2
0C6x5 + 128DC6x7 + 4C12x2 − 2DC12x

)
X

−3Dx14
0 + 44x14

0 x+ 924x12
0 x

3 − 194Dx12
0 x

2 + 5808x10
0 x

5 − 2080Dx10
0 x

4

+2Dx8
0C6 + 16192x8

0x
7 − 8288Dx8

0x
6 + 22528x6

0x
9 − 15104Dx6

0x
8

+40Dx6
0C6x2 + 15360x4

0x
11 − 12800Dx4

0x
10 + 168Dx4

0C6x4 − 3Dx2
0C12

+4096x2
0x

13 − 4096Dx2
0x

12 + 256Dx2
0C6x6 + 4x2

0C12x+ 128DC6x8

+4C12x3 − 2DC12x2

]
. (A.3)
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APPENDIX B

SOME PROPERTIES OF THE STRUVE FUNCTIONS

In general, the ν-th order Struve function hν [X] is defined as [45],

hν [z] ≡
(

1

2
z

)ν+1 ∞∑
k=0

(−1)k
(

1
2
z
)2k

Γ
(
k + 3

2

)
Γ
(
k + ν 3

2

) , (B.1)

which satisfies the differential equation,

z2d
2w

dz2
+ z

dw

dz
+
(
z2 − ν2

)
w =

4
(

1
2
z
)ν+1

√
π Γ

(
ν + 1

2

) . (B.2)

The general solution of the above equation is

w = aJν(z) + bYν(z) + hν(z), (B.3)

where a and b are two integration constants, Jν(z) and Yν(z) are the Bessel functions

of the first and second kind, respectively, and satisfy the associated homogeneous

differential equation.

Some useful properties of hν(z) are,

d (zνhν)

dz
= zνhν−1,

d (z−νhν)

dz
=

1
√
π 2ν Γ

(
ν + 3

2

) − z−νhν+1, (B.4)

while their asymptotic behaviors are given by

h0[X] '


2
πX

+ 1√
πX

(sinX − cosX) +O
(
X−3/2

)
, X →∞,

2X
π
− 2X3

9π
+O (X4) , X → 0,

(B.5)

and

h−1[X] '


2
πX

+ 1√
πX

(sinX + cosX) +O
(
X−3/2

)
, X →∞,

2
π
− 2X2

3π
+O (X4) , X → 0.

(B.6)

184



In Fig. 4.1, we plot out the Struve function h0 together with h−1. For other

properties of the Struve functions, we refer readers to [45].

185



BIBLIOGRAPHY

[1] W.-C. Gan, N. O. Santos, F.-W. Shu, and A. Wang, Properties of the spherically
symmetric polymer black holes, Phys. Rev. D 102, 124030 (2020).

[2] W.-C. Gan et al., Understanding quantum black holes from quantum reduced
loop gravity, Phys. Rev. D 106, 126013 (2022).

[3] W.-C. Gan et al., Non-existence of quantum black hole horizons in the improved
dynamics approach, (2022).

[4] T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge
Monographs on Mathematical Physics, Cambridge University Press, 2007.

[5] A. Ashtekar and J. Lewandowski, Background independent quantum gravity: A
Status report, Class. Quant. Grav. 21, R53 (2004).
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