
ABSTRACT

Topics in Bayesian Adaptive Clinical Trial Design Using Dynamic Linear Models
and Missing Data Imputation in Logistic Regression

Yuanyuan Guo, Ph.D.

Chairperson: Dean M. Young, Ph.D.

Conventional Phase II clinical trial designs usually employ a logistic regression

model to analyze the efficacy of a new drug and, therefore, assumes a monotone dose-

response relationship. Also, the logistic regression model requires the response to be

categorical and, thus, is not applicable for continuous data. The traditional design in

Phase II determines if a new drug will be further tested in Phase III based on only

drug efficacy and allocates an equal number of patients to each dosage, ignoring dose

efficacy. Because of the limitations of conventional clinical trial designs, new adaptive

designs have been proposed by researchers to improve the flexibility and adaptability

of conventional designs.

In Chapter Two we propose an adaptive Bayesian design that uses a bivariate

normal dynamic linear model for a Phase II clinical trial, and we compare its perfor-

mance to a Bayesian fixed or non-adaptive design. The proposed Bayesian adaptive

design can be utilized for continuous data and can model various dose-response rela-

tionships. We remark that for many dose-response relationships, our proposed adap-

tive Bayesian design can use fewer patients to obtain a correct decision concerning a

drug’s efficacy than the Bayesian fixed design.



Missing data arises in almost all research; that is, part of the data are missing

for a subject. A data analyst must decide how to cope with the missing data from

among the numerous imputation methods that can be used. However, one might not

know which imputation method is best. The objective of this study is to evaluate the

efficacy of five imputation methods.

In Chapter Four, we have compared the performance of complete-data-only,

single-mean imputation, conditional-mean imputation, multiple imputation by chained

equations and hotdeck imputation methods for prediction of a logistic regression

model, for the missing-completely-at-random and missing-at-random mechanisms.

These five imputation methods yield different results for small sample sizes, and the

difference decreases with an increasing sample size. Surprisingly, a single-mean impu-

tation method performs as well as the multiple imputation methods compared here.
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CHAPTER ONE

Introduction

1.1 An Introduction to Clinical Trial Design

A clinical trial is the process of testing safety and efficacy when a company is

developing a new drug and is usually very expensive and time-consuming to conduct.

Clinical trials are generally divided into four phases (I to IV). However, a new phase,

0, has been established by Food and Drug Administration (FDA). The five phases

are:

• Phase 0: Determine if a drug will behave in a human as the pre-clinical

testing indicated.

• Phase I: Determine the toxicity and side effects, and find the safe dosage

levels of the drug using a small cohort of patients.

• Phase II: Study the drug’s efficacy and safety with a larger cohort of pa-

tients.

• Phase III: Confirm the drug’s efficacy and side effects with a large cohort of

patients.

• Phase IV: Understand the drug’s mechanism of action, such as the interac-

tion with other drugs and long-term side effects.

Here, we are interested in Phase II of a clinical trial. Phase II studies introduce

the new drug into patients having the disease for which the drug is being developed.

Phase II contains the initial efficacy study in a clinical trial with the primary purpose

of determining the dosage needed to successfully treat patients. Historically, the

determination of the dosage in Phase II relies on only the efficacy. One usually
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assumes that the dose-response relationship is monotonically increasing such that

a higher dosage causes a higher efficacy response. However, this monotone, non-

decreasing assumption for efficacy might not hold. For example, at first the response

may increase when the dosage is increased, but after reaching a certain point, the

response could begin to decrease and become toxic.

The dose-response model for a traditional Phase II clinical trial study is usually

the logistic function, which describes the relationship between treatment effects and

dosage level. The logistic model requires categorical responses while, in some cases,

we have continuous responses to the new drug. For example, in some situations the

treatment effect is not measured as failure (0) or success (1) but as a continuous

variable. In the following chapter, we expand the binary dose-response curve to a

possible non-monotone continuous curve that is more flexible. Also, we incorporate

both efficacy and toxicity in the model. This modeling approach makes a Phase II

study more similar to a combination of traditional Phase I and Phase II studies.

Thus, our approach allows for a non-monotone dose-response relationship.

In traditional clinical trial design, an equal number of subjects or patients is

assigned to each treatment arm to statistically determine the best dose. Moreover,

subjects are assigned to each treatment arm throughout the length of the study,

even if they are assigned to an arm with a toxic dosage. However, an adaptive design

allows sample-size modification as data accumulates in the study. That is, an adaptive

design provides flexibility and efficiency with a smaller total sample size and increases

the probability of correctly answering the clinical question of interest. Thus, more

researchers have an increased interest in adaptive designs (Kairalla, Coffey, Thomann

and Muller, 2012). The Food and Drug Administration (FDA, 2010) has shared

the following motivations of drug developers for using adaptive design rather than

traditional trial design:
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• Adaptive design provides the same information with fewer subjects or patients

and, hence, is more efficient.

• Adaptive design increases the likelihood of success of the study objective.

• Adaptive design provides better estimates of the dose-response relationship,

which, in turn, improves one’s understanding of the treatment’s effect.

The Bayesian dynamic linear model that we propose in Chapter Two allows

for a feasible adaptive design. For the Bayesian approach, the posterior distributions

for each parameter are updated for each treatment. Also, based on the information

collected during the clinical trial, we can readily decide if the trial should continue or

be terminated. In an adaptive design, additional patients are assigned to the treat-

ments proportional to the probability of the treatment’s efficacy, and the trial can be

stopped once sufficient evidence for ceasing that trial is attained. In this dissertation,

we present our proposed adaptive Bayesian design simultaneously incorporating the

detection of both efficacy and toxicity as an alternate to the conventional fixed-patient

trial design. Thus, our Bayesian adaptive design can save substantive money, time,

and resources by assigning the patients to a more effective treatment and can also

stop the trial early once conclusive evidence has been obtained. We conduct a Monte

Carlo simulation in Chapter Three to study the performance of our proposed Phase

II Bayesian adaptive approach and compare it to a traditional Bayesian fixed-patient

allocation method.

1.2 An Introduction to Markov Chain Monte Carlo Simulation

The Metropolis Monte Carlo algorithm (Metropolis, Rosenbluth, Rosenbluth,

Teller and Teller, 1953) has been widely used by chemists and physicists after com-

puters became popular and made extensive computation feasible. Simulation became

a major tool among statisticians after about 1990. The Metropolis algorithm was gen-

eralized by Hastings (1970) and is now called the Metropolis-Hastings algorithm. The
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Gibbs sampler is a special case of the Metropolis-Hastings algorithm introduced by

Geman and Geman (1984). Currently, the majority of Bayesian MCMC computing

is accomplished through iterative Monte Carlo methods, including the Metropolis-

Hastings algorithm and Gibbs sampler.

The Metropolis-Hastings algorithm can become very difficult to apply for high

dimensional problems. Thus, the Gibbs sampler, a simplified case of the Metropolis-

Hastings algorithm, is the method we utilize to simplify our simulation slightly. The

Gibbs sampler is more practical when the complete set of full conditional distributions

for all unknown parameters can be achieved. Observations can be generated from each

full conditional distribution, and those observations determine the joint distribution

of all parameters, assuming only mild conditions. Tanner (1993) states that “if the

joint density is positive over its entire domain then it is uniquely determined by the

full conditionals.” In Chapter three, we employ a Gibbs sampler in the simulation,

given that the full conditional distribution for each parameter is achievable. The

Bayesian framework allows us to incorporate information as additional patients are

involved in the trial and to make decisions in real time during the trial by updating

the posterior parameter distributions.

1.3 An Introduction to the Missing Data Problem for Logistic Regression

Missing data is a common problem in statistical data analysis that can signifi-

cantly affect a data-analysis result. We generally consider four missing-data mecha-

nisms. From the simplest to the most general (Gelman and Hill, 2006), they are as

follows.

Missing-Completely-at-Random: For this mechanism, the probability of missingness

is the same for all the observations. For example, each patient decides whether or

not to tell his/her age by rolling a die and refuses to tell if a “3” shows up.

Missing-at-Random: Missing-at-random is a more general missingness mechanism in

which the probability that a variable is missing depends only on available information.
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Thus, a variable is missing-at-random if the probability of missingness of this variable

depends only on the other fully recorded variables.

Missingness That Depends on Unobserved Predictors: This type of missingness de-

pends on the values that have not been recorded so that the missingness is no longer

“at random.” Gelman and Hill (2006) have given an illustrated medical example that

a patient is more likely to drop out of the study if a particular treatment causes dis-

comfort. This missingness can only be random if the “discomfort” is measured and

observed for all patients.

Missingness That Depends on the Missing Value Itself: When the probability of miss-

ingness depends on the variable itself, the data analysis is difficult. For example,

people with higher earnings are less likely to reveal their salaries.

A well-performing course of action for analyzing missing data should be sought.

Numerous methods exist for dealing with this issue. In Chapter Four we study vari-

ous imputation methods based on the missing-completely-at-random and missing-at-

random mechanisms by Monte Carlo simulation. We calculate several performance

measurements of each imputation method and compare the efficacy for all of the

considered imputation methods.
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CHAPTER TWO

Bayesian Adaptive Design Using a Dynamic Linear Model Incorporating Toxicity
and Efficacy in Phase II Clinical Trials

2.1 Motivation

Statistical adaptive clinical designs have been developed during the past few

decades to evaluate the safety and efficacy of a new drug to treat patients in clinical

practice. The new adaptive designs, both frequentist and Bayesian, are motivated

by limitations of the traditional four-phase clinical design, which considers only the

efficacy in a single-arm Phase II trial in the form of categorized binary outcomes. Here,

we propose an adaptive Bayesian clinical trial design for Phase II to assign patient

cohorts to treatments adaptively based on both efficacy and toxicity, and to utilize

continuous outcomes directly without losing information because of categorization.

The remainder of this chapter is organized as follows. In Section 2.2 we give

the background of previous studies related to clinical trial design. In Section 2.3

we describe the dynamic linear model and a Bayesian framework of the proposed

adaptive design.

2.2 Previous Studies

Historically, the statistical design of a Phase I clinical trial has attempted to

determine the maximum tolerable dose (MTD) by relying only on toxicity and ig-

noring efficacy. After the MTD of the treatment has been determined in Phase I, a

Phase II clinical trial studies the drug’s efficacy, assuming that a dose with acceptable

toxicity has been determined and that higher dosage causes a higher response (Korn,

Midthun, Chen, Rubinstein, Christian and Simon, 1994; Goodman, Zahurak, and Pi-

antadosi, 1995). However, in some situations the optimal treatment benefit might be

achieved at a dosage less than the MTD. Thus, the term Phase I/II trials usually refer

to clinical trials incorporating efficacy and toxicity simultaneously. Gooley, Martin,
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Fisher and Pettinger (1994) have designed a Phase I/II study to evaluate the number

of T cells needed in an allogeneic marrow graft in order to avoid rejection while not

causing an unacceptable risk of graft-versus-host disease. This design considered two

dose-response curves and showed that benefits exist when both efficacy and toxicity

are incorporated in the study.

Similarly, a strategy for dose-finding in clinical trials using two dose-response

curves and incorporating both efficacy and toxicity was designed by Thall and Russell

(1998). They proposed a design for conducting single-arm clinical trials to determine

the treatment that satisfies both efficacy and toxicity requirements and that stops

the trial early once sufficient evidence of efficacy has been obtained. This design can

be considered as a combination of traditional Phase I and Phase II trials because it

involves both dose-finding and evaluation of efficacy and toxicity. This strategy was

further explained in dose-finding studies with a donor lymphocyte infusion (DLI) trial

for acute leukemia by Thall, Estey, and Sung (1999).

Based on Thall and Russell’s (1998) Bayesian adaptive design for trinomial

outcomes, Zhang, Sargent, and Mandrekar (2006) have described an approach in-

corporating both efficacy and toxicity for dose-finding for a treatment in a Phase I

trial. Also, Zhang et al. (2006) have used a continuation-ratio model rather than a

proportional-odds model and, hence, they have used different dose-selection criteria

and stopping rules.

One question that must be answered before the Phase I/ II trial design is

applied in drug development is, “What rules should one apply for dose-finding when

both efficacy and toxicity are incorporated in the trial?” Traditional clinical trial

design determines the optimal dosage based only on toxicity (Phase I) or efficacy

(Phase II). Thall and Cook (2004) have presented a model-based Bayesian method

for dose-finding in Phase I/II clinical trials based on efficacy-toxicity trade-offs. Their

method accommodates trials with trinary outcomes, where efficacy and toxicity are

7



disjoint, and trials with bivariate binary outcomes where both events might occur.

The method constructs a family of contours characterizing the efficacy and toxicity

trade-off from the target probabilities of efficacy and toxicity provided by a physician,

and then evaluates the desirability of each dosage by using the contours. Thall, Cook,

and Estey (2007) have illustrated this outcome-adaptive Bayesian procedure with a

trial of a biologic agent for acute myelogenous leukemia to demonstrate that the

method works in practice. These researchers also have conducted a simulation study

to assess the design’s average behavior.

The interest in clinical trial designs that simultaneously involves both efficacy

and toxicity has increased because they can save substantial resources during a study.

Hoering, LeBlanc, and Crowley (2011) have proposed a two-step dose-finding trial

with both efficacy and toxicity assessed to determine the optimal dosage for a targeted

agent. The steps consisted of the following: 1) Traditional Phase I trial design to

estimate the MTD by assessing toxicity only; and 2) A proposed design with dosages

set at and below the MTD to evaluate each dosage level for both efficacy and toxicity.

This two-step design using a logistic model was compared to a traditional trial design,

and the authors concluded that the proposed trial design provided greater certainty

for correctly determining the optimal dosage level.

Adaptive clinical trial designs also provide more flexibility and efficiency includ-

ing a smaller total sample size, a more efficient treatment development process, and

an increased chance of correctly answering the clinical question of interest (Kairalla

et al., 2012). The FDA Center for Drug Evaluation and Research (CDER) and Cen-

ter for Biologics Evaluation and Research (CBER) (2010) has released guidelines for

adaptive design clinical trials in industry. This paper discussed the aspects of adaptive

design that need special consideration and the information that should be included

in the design for FDA review.
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Leininger (2010) has proposed a Bayesian dynamic linear model to estimate the

efficacy at each dosage level in Phase II of a clinical trial. His method incorporated

an adaptive approach in the clinical trial design that allows for a non-monotone dose-

response relationship, assigned the patients to more efficacious dosages, and stopped

the trial early for success or futility. He also has compared an adaptive design to the

traditional logistic model and found that the adaptive design significantly reduced

the number of patients needed to detect effective drugs.

With the goal of jointly modeling efficacy and toxicity and finding the dosage

based on the efficacy and toxicity trade-off, Koopmeiners (2013) has proposed a Phase

I/II dose escalation study with delayed outcomes. He jointly modeled efficacy and

toxicity as time-to-event outcomes, and applied the design to a Phase I/II clinical trial

of a targeted toxin. The proposed adaptive design determined the optimal dosage at a

rate similar to a study with binary efficacy and toxicity outcomes, but with substantial

savings in cost and time.

Lewis, Viele, Broglio, Berry, and Jones (2013) have applied adaptive design in

Phase II trials, which is similar to Leininger’s (2010) design, to evaluate the addition

of L-carnitine to the treatment of vasopressor-dependent septic shock. The design

involved a dynamic dose-response model to improve the efficiency, allocated subjects

adaptively, and stopped the trial early for success or futility. The authors demon-

strated that the resulting trial determined the best dosage of L-carnitine efficiently

and provided guidance concerning whether to continue development into Phase III.

2.3 A Dynamic Linear Model for Modeling the Dose-Response Curve

We next describe our proposed dynamic linear model (DLM) which provides

flexibility in dose-response modeling that incorporates an adaptive design allowing

adaptive subjects’ allocation to treatments and early stopping rules for success or

futility.
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Generally DLMs are defined by two pdfs:

f(Yt|θt) and g(θt|θt−1),

where Yt is the observation at point t, θt is the vector of parameters at point t, and t

is the dosage level. The evolution of g(θt|θt−1) allows smooth changes of the parameter

in a DLM. In the dose-response case, g(θt|θt−1) indicates that the mean response to

one dosage is related in some way to the means for its neighboring dosage levels.

Rather than assuming monotonicity for the dose-response relationship and forc-

ing the response to be categorical, we allow the response to be continuous and expand

the dose-response relationship to possible be non-monotone, thus incorporating more

flexibility into our dose-response model. The dose-response curves presented in Fig-

ure 2.1 display types of dose-response relationships commonly encountered in clinical

trials. The null response curve shows that the drug has no effect, regardless of the

dosage. The slowly increasing curve illustrates an increasing effect as the dosage in-

creases. The quickly increasing curve shows a dose-response relationship where the

effect increases sharply when the dosage is increased at first, then holds constant

at some maximum effect once the dosage is greater than a certain value. The non-

monotone curve exhibits the non-monotonicity dose-response relationship where the

drug effect increases as the dosage increases before a certain point and then decreases

when the dosage is increased, thus indicating that the drug might become toxic to

patients after a certain dosage point. We use these dose-response scenarios as possible

dose-response relationships for efficacy in our study. For toxicity, we consider only the

monotone relationship for simplification. That is, we assume that increasing dosage

levels past a certain dosage level increases toxicity.
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Figure 2.1: Possible dose-response scenarios for different drugs. The null response
case is the control, while the slowly increasing, quickly increasing, and non-monotone
curves represent effective drugs with varying dose-response relationships.

Generally, a dose-response model should relate the expected response at a given

dosage to a set of parameters and covariates. An important class of models in the dose-

response realm is the DLM, which is a simplified Gaussian process. The DLM does

not restrict one to a monotone dose-response relationship like many other models, and

it can easily handle a variety of possible dose-response relationships including non-

monotone curves. Another advantage of the DLM is that one can easily implement

it in a Bayesian framework.

2.3.1 The Likelihood Function

We use a bivariate normal DLM to incorporate both efficacy (X) and toxicity

(Y ). In the two-dimensional nonsingular case (K = rank(Σ) = 2), the pdf of the

vector (x, y)′ is

f(xij, yij) = 1

2πσxσy
√

1−ρ2
exp

(
− 1

2(1−ρ2)

[
(xij−µxi )

2

σ2
x

+
(yij−µyi )

2

σ2
y

− 2ρ(xij−µxi )(yij−µyi )
σxσy

])
,
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where ρ is the correlation between X and Y , σx > 0 and σy > 0 and

µ ≡

(
µxi

µyi

)
and Σ ≡

(
σ2
x ρσxσy

ρσxσy σ2
y

)
. (2.1)

The likelihood function is

f(x,y) = (2π)−N |Σ|−
N
2 exp

{1

2

t∑
i=0

ni∑
j=1

[(xij, yij)
′ − (µxi , µyi)

′]
′

×Σ−1 [(xij, yij)
′ − (µxi , µyi)

′]
}
,

where Σ is given in (2.1). Also, we have

xij ≡ toxicity of the jth individual at the ith dosage level;

yij ≡ response of the jth individual at the ith dosage level;

ni ≡ number of patients who received the ith treatment;

t ≡ total number of treatments;

N ≡ total number of patients tested;

µxi ≡ the mean toxicity for the ith treatment;

µx0 represents the mean toxicity of the placebo

µyi ≡ the mean response for the ith treatment;

µy0 represents the mean response of the placebo

σ2
x ≡ the variance of individuals about the mean toxicity

at each dosage level

and

σ2
y ≡ the variance of individuals about the mean response

at each dosage level.

2.3.2 Prior Distributions

To complete our Bayesian DLM, we next specify prior distributions on the

parameters. Our Bayesian DLM assumes that the mean response at each dosage
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has a normal distribution with its own mean but common variance. The conditional

posterior distributions are updated as more information from additional patients that

join in the trial becomes available.

Our prior set-up is similar to that of Leininger (2010) except that we use a

bivariate model. The distribution of (µxi , µyi)
′ is a function of (µxi−1

, µyi−1
), and

the prior distribution of (µx0 , µy0) must be specified with initial parameter values

because (µx−1 , µy−1) does not exist. Also, di is included in the prior distribution so

that the strength borrowed across dosages can be appropriately adjusted because

the larger the value of di, the less the information borrowed. The support of these

prior distributions matches that of the model parameters and allows us to determine

closed-form conditional distributions for each unknown parameter.

We specify the prior distributions as

(µx0 , µy0)
′ ∼ N [(0, 0)′,B] ,

(µxi , µyi)
′ ∼ N

[
(µxi−1

, µyi−1
)′, diΣτ

]
,

Σ ∼ IW (R, ν),

and

Στ ∼ IW (Rτ , ντ ),

where ν, ντ > 0, and

si ≡ dosage for the ith treatment;

di ≡
√
si − si−1 = square root of the Euclidean distance between

the current and previous dosage levels;

and

ν = 2,

ντ = 2,
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R =

(
1 0

0 1

)
,

Rτ =

(
1 0

0 1

)
,

and

B =

(
1 0

0 1

)

to make the priors relatively non-informative. The notation IW represents the Inverse-

Wishart distribution. We can see that the response at each dosage centers on the mean

response of the previous dosage with no assumption of a monotonic dose-response

relationship.

2.3.3 The Bayesian Adaptive Design

Our Bayesian adaptive design framework improves the flexibility and efficiency

by adaptively assigning patients to dosages and by stopping the trial early for success

or for futility. We describe the rationale of adaptive patient-treatment allocation and

trial-stopping rules in the following subsections.

2.3.3.1 An Adaptive Patient-Allocation Procedure. An adaptive clinical trial

design allows planned trial modifications based on data accumulated as additional

patients are enrolled into the study. First, an initial group of patients is assigned to

each dosage and to a control (placebo). Also, a preliminary dose-response curve is

calculated and fit to the patients’ measured responses. Next, all dosages are eval-

uated, and a new group of patients is assigned with a higher probability to those

treatment arms with increased efficacy and non-increasing toxicity. Then the dose-

response curve is recalculated using all of the available information. All dosages are

reevaluated, and an additional group of patients is assigned to the dosages with a
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higher probability of increased efficacy and decreased toxicity. In the trial, we con-

tinue to examine patients’ responses and assign new groups of patients to dosages

adaptively until a stopping rule is achieved.

Obviously, the dosages with large posterior-mean efficacy and small posterior-

mean toxicity are typically assigned more patients. However, the variance of the

posterior means of efficacy and toxicity also affects patient allocation because a large

posterior variance indicates that we are highly uncertain about the location of the

posterior mean. Thus, both the posterior means and posterior variances of efficacy

and toxicity are considered in the allocation probability calculation for each dosage.

A fixed portion of each new cohort of patients is automatically allocated to the

placebo arm so that the information concerning the placebo effect can be updated. For

the non-placebo dosages, we calculate the probability of receiving additional patients

as

Pi ≡
√
D2
Ei +D2

T i∑t
i=1

√
D2
Ei +D2

T i

, for i = 1, 2, . . . , t,

where

DEi ≡ P (µEi > ED95)σµEi ,

DT i ≡ P (µT i < TD05)σµTi ,

and

ED95 ≡ µE0 + 0.95(max{µEi} − µE0),

TD05 ≡ µT0 + 0.05(max{µT i} − µT0).

We use σµTi = 1 because we do not want toxicity to dominate efficacy in a Phase II

trial when allocating patients.

We then randomly allocate patients to each dosage using the corresponding

allocation probabilities, and the conditional posterior distributions are updated after

the responses of each new cohort of patients are observed. The allocation probability

Pi is also recalculated to reflect the latest information, and then the clinical trial

continues.
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2.3.3.2 Trial-Stopping Rules. Patients are assigned to each dosage sequen-

tially and adaptively depending on the dosage efficacy and toxicity. However, we also

need stopping rules to decide when to stop the trial. These guidelines allow us to stop

the trial early once sufficient information has been collected to draw a conclusion. For

example, the collected data might strongly indicate that a dosage is not effective even

though its toxicity is low. We might stop the trial at this point if we have enough ev-

idence to conclude that this dosage is not effective. This stopping decision could save

us substantive resources and cost for the clinical trial, and these subsequent patients

can be assigned to a more effective treatment instead of an ineffective treatment.

To begin the trial, we first randomly assign a cohort of patients equally to each

of the dosages arms and the placebo arm. We then use MCMC simulation to estimate

the dose-response curve using the observed responses from the first cohort of patients.

We then check our stopping rules described in Table 2.1.

Table 2.1: Adaptive design-stopping rules considered after each cohort of patients

Decision Condition

Stop for success Stop if P (µED95
E ≥ µE0, µ

TD05
T ≤ µT0) ≥ U for any µEi and µT i

Stop for futility Stop if P (µEi ≥ µE0) ≤ L for any µEi

Stop for cap N ≥ S

Continue None of the above conditions are met

The most likely average ED95 dosage, µED95
E , is the dosage that has the highest

posterior probability of having a mean efficacy above the ED95 level; The most likely

average TD05 dosage, µTD05
T , is the one with the highest posterior probability of

having a mean toxicity below the TD05 level. The ED95 and TD05 levels were

defined in the last section. That is, µED95
E ≡ µEj such that

P (µEj > ED95) = max{P (µEi > ED95)} for i = 1, 2, . . . , t,
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and µTD05
T ≡ µTj such that

P (µTj < TD05) = max{P (µT i < TD05)} for i = 1, 2, . . . , t.

We stop a trial for success if P (µED95
E ≥ µE0, µ

TD05
T ≤ µT0) ≥ U for some U where

0 < U < 1.

The trial is stopped for futility if P (µEi ≥ µE0) ≤ L for some L where 0 < L < 1.

This criterion implies that no efficacious dosages were found, and we will not test those

treatments. The toxicity is not of concern because the dosages with high toxicity have

already been eliminated in Phase I, and the toxicity is irrelevant if the treatment is

ineffective.

If at some point in the trial no dosages have either shown significant efficacy or

been proved to be futile, we stop the trial because the maximum number of patients

has been allocated. Stopping the trial for this reason is called stopping for cap. If

none of the above conditions are met, the trial continues, and a new cohort of patients

is allocated to the considered dosages as described in the previous section.

2.3.4 The Proposed Bayesian Adaptive Trial Using a Dynamic Linear Model

We start the trial with the first cohort of patients being assigned in equal number

to the placebo and to six non-placebo dosage arms. The posterior distributions are

updated using MCMC computation once the patient responses have been measured.

Then, we check the stopping rules to determine if the trial will be stopped or will

be continued. If none of the stopping rules are satisfied, the trial continues, and we

allocate a new cohort of patients to the placebo and six dosage levels. The placebo

automatically receives a fixed portion of the new cohort, and the remainder of the

patients will be randomly allocated to one of the six dosage levels with probability

proportional to the efficacy responses. Once the responses of the newest cohort of

patients are processed, we then update the posterior distributions of the mean efficacy

and mean toxicity again with all the available information. We next analyze the
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stopping rules to decide if the trial will be continued. The trial continues in this

pattern until a stopping rule has been satisfied. The proposed trial procedure can be

summarized with the following algorithm:

Start of Trial: Allocate ns patients to the placebo and non-placebo dosages.

(1) Measure the responses and use MCMC to update posterior distributions

for unknown parameters (µxi , µyi)
′, Σ and Στ .

(2) Analyze the stopping rules.

• If none of the stopping rules are met, then

(a) Calculate pi, the probability of the ith dosage getting new

patients for each dosage level.

(b) Randomly assign np patients from the new cohort to the placebo

and the remaining patients to the non-placebo dosages with

probability pi, i = 1, 2, . . . , 6.

(c) Repeat steps 1 and 2.

• If one of the stopping rules is met, proceed to the end of the trial.

End of Trial: Make a decision based on the stopping rules.
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CHAPTER THREE

Monte Carlo Simulation

3.1 Simulation Design

We performed a simulation study using R and WinBUGS to evaluate the per-

formance of a Bayesian adaptive DLM (BADLM) clinical trial design. A Monte Carlo

simulation was conducted to compare the performance of BADLM clinical trial design

with that of the Bayesian fixed patient-allocation DLM (BFPADLM) design. We also

examined the dose-response curves estimated by our model to see if each curve is well

estimated. The purpose of the chapter is to determine whether or not our DLM can

capture the considered four types of dose-response curves and if the BADLM design

performs better than the BFPADLM design.

We generated the data with normal random variables for each dose-response

curve specified in Figure 2.1. We chose the four dose-response curves given in Fig-

ure 2.1 because they represent common dose-response relationships encountered in

clinical trials. For toxicity, we considered only the monotone increasing dose-toxicity

relationship. We examined two scenarios in terms of the correlation between efficacy

and toxicity. The first scenario had a relatively small efficacy-toxicity correlation of

ρ = 0.2, and the second scenario had a large efficacy-toxicity correlation of ρ = 0.8.

The prior distributions are specified as ν = 2, ντ = 2,

R =

(
1 0

0 1

)
,

Rτ =

(
1 0

0 1

)
,

B =

(
1 0

0 1

)
.

19



In each simulated clinical trial, 52 maximum batches of patients can be used,

which lets us reach a cap of 600 patients. The clinical trials with a BADLM design

and a BFPADLM design are conducted as follows:

a) a dynamic linear model with adaptive patient allocation

We began our simulated trial by assigning the first cohort of 84 patients to the

placebo and to six non-placebo dosages with 12 patients assigned to each dosage. We

then updated the posterior distributions of each dosage efficacy and toxicity parameter

using the observed responses with MCMC computation. Next, we evaluated the

stopping rules. If none of the stopping rules were satisfied, the trial continued with

a new cohort of 10 patients allocated to the placebo and to the non-placebo dosages;

3 patients were automatically assigned to the placebo. For non-placebo dosages, we

calculated Pi, the probability of receiving more patients of ith dosage, and allocated

patients to each non-placebo dosage with the corresponding allocation probability

Pi, i = 1, 2, . . . , 6. This process continued until a stopping rule was satisfied. The

number of patients for each dosage and the standard deviation of the mean patients

number for each dosage were also recorded.

b) a dynamic linear model with fixed patient-allocation

Rather than allocating patients to non-placebo dosages adaptively as in the

BADLM clinical trial design, the simulation of BFPADLM assigned a fixed number

of patients, 50, to each dosage. That is, all of the treatments including the placebo

received only one cohort of patients in the trial with which to make a decision con-

cerning whether or not the drug is effective.

We first determined the stopping rules via simulation under the scenario of

small efficacy-toxicity and a BADLM design with 200 trials. Then, we simulated

1000 clinical trials using the determined stopping rules. The number of patients used

at each dosage level and the standard deviation of the mean number of patients for

each dosage level were reported and compared for the two competing designs. In
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addition, we recorded the posterior mean response for each dosage and plotted the

average 95% credible interval for each dose-response curve using 10000 iterations with

a 1000-iteration burn-in period.

3.2 Conditional Distributions of Unknown Parameters

To estimate the DLM model proposed in section 2.3.1, we must solve for the

conditional distributions of the unknown parameters. A detailed derivation of the

conditional distributions of the unknown parameters are given in the Appendix. The

conditional distributions are

(µx0 , µy0)′ ∼ N
{

[n0Σ
−1 +B−1 + (d1Στ )−1]−1[n0(X̄0)

′Σ−1 + µ′1(d1Στ )−1],

[n0Σ
−1 +B−1 + (d1Στ )−1]−1

}
,

(µxt , µyt)
′ ∼ N

{
[(dtΣτ )−1 + ntΣ

−1]−1[Σ−1nt(X̄t) + (dtΣτ )−1µt−1],

[(dtΣτ )−1 + ntΣ
−1]−1

}
,

(µxi , µyi)
′ ∼ N

{
[niΣ

−1 + (diΣτ )−1 + (di+1Στ )−1]−1
[
µ′i−1(diΣτ )−1 + ni(X̄i)

′Σ−1

+µ′i+1(di+1Στ )−1
]
, [niΣ

−1 + (diΣτ )−1 + (di+1Στ )−1]−1
}
,

Σ ∼ IW
{
N + ν,R+

t∑
i=0

ni∑
j=1

[
(xij , yij)

′ − (µxi , µyi)
′] [(xij , yij)′ − (µxi , µyi)

′]′ },

and

Στ ∼ IW
{ t

2
+ ντ ,Rτ +

t∑
i=1

[
(µxi , µyi)

′ − (µxi−1 , µyi−1)′
] [

(µxi , µyi)
′ − (µxi−1 , µyi−1)′

]′ }
.

Because all of the conditional distributions are in closed form, we can utilize

a Gibbs sampling procedure to sample from the marginal posterior distribution of

each parameter. Notice that the conditional distribution of (µxi , µyi)
′ is a function of

(µxi−1
, µyi−1

)′ and (µxi+1
, µyi+1

)′, which implies that our Bayesian DLM allows one to

borrow information from neighboring dosages. Also, (µx0 , µy0)
′ and (µxt , µyt)

′ have
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their own conditional distributions that are distinct from that of (µxi , µyi)
′ because

(µx0−1 , µy0−1)
′ and (µxt+1 , µyt+1)

′ do not exist. This fact illustrates that (µx0 , µy0)
′ and

(µxt , µyt)
′ should have larger variances than (µxi , µyi)

′ because they borrow informa-

tion from fewer neighboring dosages.

In our simulation study, we sampled from each conditional distribution in the

order shown above. However, the ordering of the conditional distributions did not

affect the simulation.

3.3 Determine Stopping Thresholds U and L

For stopping rules, we stop the trial early for success if

P (µED95
E ≥ µE0, µ

TD05
T ≤ µT0) ≥ U for any µEi and µT i,

and we stop the trial early for futility if

P (µEi ≥ µE0) ≤ L for any µEi where i = 1, 2, . . . , t.

Under the scenario of a low efficacy-toxicity correlation of ρ = 0.2, we determine ap-

propriate values for U and L by controlling Type I and Type II errors as in Leiningner

(2010).

Assuming the tested drug was ineffective, i.e. none of the dosages were effective,

we used an efficacy dose-response curve that was completely flat. We controlled the

Type I error, which is the probability of concluding that the drug is effective when it

is actually ineffective, to be no more than α = 0.05 by choosing an appropriate value

of L. The decisions of 200 trial simulations with different values of L are summarized

in Table 3.1. We set U = 0.0001 for the determination of L and determined an

appropriate value for U later.
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Table 3.1: The effect of different values of L on Type I error for an ineffective
efficacy dose-response curve. The Type I error rate of α ≤ 0.05 was achieved when

L = 0.999.

L Stopped for Success / Futility / Cap

0.999 0.020 /0.980 /0.000

0.99 0.085 /0.915 /0.000

0.95 0.230 /0.770 /0.000

0.90 0.360 /0.640 /0.000

0.80 0.605 /0.395 /0.000

The Type I error was less than 0.05 when L = 0.999 in Table 3.1, which satisfied

the small Type I error requirement. Also, the trial length was reduced compared to

the trial lengths of smaller values of L.

Next, we simulated to determine U by controlling the Type II error. Again

we assumed an effective drug or a range of dosages and chose U to determine how

often the drug dosages were declared ineffective when they were actually effective. We

increased the values of U with L = 0.999 for slowly increasing efficacy dose-response

curve. The results are summarized in Table 3.2.

Table 3.2: The effect of different values of U on Type II error for effective efficacy
dose-response curves. The Type II error rate of β = 0 was achieved for all U ’s and

attained the smallest cap when U = 0.0001.

U Stopped for Success / Futility / Cap

0.2 0.075 / 0.000 / 0.925

0.1 0.165 / 0.000 / 0.835

0.01 0.555 / 0.000 / 0.445

0.001 0.820 / 0.000 / 0.180

0.0001 0.960 / 0.000 / 0.040
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With L = 0.999, the Type II error rate of β = 0 was achieved for all considered

values of U but with various caps. When U = 0.2, we stopped the trial for the cap as

much as 0.925, which was undesirable. The caps decreased as U became smaller and

reached 0.04 when U = 0.0001 without changing the Type II error rate. Therefore,

we used U = 0.0001 and L = 0.999 throughout this paper because the desired Type

I and Type II error rates were both achieved with this combination.

3.4 An Example Trial of Quickly Increasing Dose-Response Curve

To better understand the proposed BADLM clinical trial design, we first present

an example of how a trial evolves for the quickly increasing dose-response curve where

the drug becomes increasingly effective as the dosage increases in this section.

Figure 3.1 displays the estimated dose-response curve with 95% credible inter-

vals of the trial in the first four stages. Each dose-response curve shows the estimated

mean response of the patients at each dosage level with its 95% credible interval.

Each dot above a dosage level represents that a patient has been randomly assigned

to that dosage. For example, three dots are above 120 mg in Stage 1, thus indicating

that three patients have been assigned to dosage 120 mg at that stage. The estimated

dose-response curves in the first four stages show an increasing trend and that the

credible intervals are getting more narrow as the stage number increases, especially

for the dosage levels receiving the most patients. We also see that the dosage 200

mg was more effective than the competing dosages and, hence, that dosage received

more patients in further stages of the trial. However, not enough evidence existed for

us to make a decision through the first four stages.

Stages 5-8 in Figure 3.2 demonstrate the same quickly increasing dose-response

curve as in the previous stages. The dosage of 200 mg received all of the patients in

Stages 5 and 6, most of the patients in Stage 7, and all of the patients again in Stage

8. Obviously, the credible interval for a dosage of 200 mg is more narrow because it

received more patients as the trial continued.
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Figure 3.1: Stages 1-4 of a BADLM trial for a quickly increasing dose-response curve.
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Figure 3.2: Stages 5-8 of a BADLM trial for a quickly increasing dose-response curve.
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Figure 3.3: Stages 9-12 of a BADLM trial for a quickly increasing dose-response curve.

Figure 3.3 displays Stages 9-12 of the trial that are very similar to Stages 5-8

in Figure 3.2. The mean response at 200 mg was greater than the other dosages

indicating that the dosage of 200 mg was more effective and, hence, the dose of 200

mg received more patients at each stage. The credible intervals continued to shrink

as the trial advanced, especially for the dosage of 200 mg.
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Figure 3.4: Stage 13 of a BADLM trial for a quickly increasing dose-response curve.

Stage 12, the last stage of the quickly increasing dose-response curve example

trial, is shown in Figure 3.4. The 200 mg dosage level showed better efficacy than those

of the other levels. The estimated dose-response curve appeared to be similar to the

actual quickly increasing dose-response curve. This fact implied that the relationship

between the dosage levels and response was correctly identified by our BADLM. Thus,

the trial was stopped because sufficient evidence was collected to conclude that the

drug was effective.

3.5 An Example Trial of Slowly Increasing Dose-Response Curve

We now examine a Phase II clinical trial having a slowly increasing dose-

response curve for efficacy and a monotone increasing curve for toxicity. The example

trial with three stages is shown in Figure 3.5. Again, each dose-response curve shows

the estimated mean response of the patients at each dosage level with 95% credi-

ble intervals. Each dot above a dosage level represents that a patient was randomly

assigned to that dosage.
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From Figure 3.5 we see that our BADLM began to identify the slowly increasing

trend in the dose-response at Stage 1 and our design allowed the dosage with a greater

mean response to be assigned more patients. Notice that the dosage levels 160 mg

and 200 mg received a large proportion of the patients as the trial continued because

of their greater mean response. The credible intervals became more narrow as the

trial continued, especially at the dosages with greater mean responses (160 mg and

200 mg). This trial took only four stages (the initial Stage and Stage 1-3) to conclude.

We used 114 patients to stop the trial and make a correct decision that the drug was

effective. Although the dosage level of 200 mg is the known ED95, our model detected

that 160 mg and 200 mg are both effective and, hence, further analysis of the drug

should be conducted for those two dosage levels.

3.6 An Example Trial of Non-monotone Dose-Response Curve

A non-monotone dose-response relationship describes an increasing drug effect

as the dosage increases to a certain point, and then the dose-response curve decreases

when the dosage is increased. Our BADLM was able to identify this type of dose-

response relationship in early stages, as shown in Figure 3.6.

This example trial of Non-monotone dose-response curve took only four stages

using 124 patients to stop the trial for success. As the dose-response curves in Figure

3.6 show, the response increased first as the dosage increased and then started to

decrease after the dosage 40 mg. Hence, the dosage 40 mg received a larger proportion

of patients at each stage. The adjacent dosages, 20 mg and 80 mg, were also assigned

some patients to verify that they really were less efficacious than the dosage of 40

mg. Also, the credible intervals shrank as the trial evolved, especially at the dosage

40 mg.
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Figure 3.5: Stages 1-3 of a BADLM trial for a slowly increasing dose-response curve.
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Figure 3.6: Stages 1-4 of a BADLM trial for the non-monotone dose-response curve.

3.7 Simulation Results

3.7.1 Stopping Decisions for a BADLM with Small Efficacy-Toxicity Correlation
Scenario

Table 3.3 gives the stopping decisions for 1000 simulated trials for the BADLM

for each dose-response curve under the scenario of small efficacy-toxicity correlation

of ρ = 0.2. The values U = 0.0001 and L = 0.999 were fixed to attain a maximum

of a 0.05 Type I error and a small Type II error. From Table 3.3, the Type I error

from 1000 trials was α = 0.007, which is less than our target value of α = 0.05. For

the three effective curves, the BADLM design was stopped for success for more than
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0.94 of the simulated trials with a maximum Type II error of β = 0.001, which was

the worst case for a non-monotone dose-response curve and caps under 0.06. So the

chosen values of U and L gave us Type I and Type II errors that were less than the

required upper bounds.

The stopping decisions for 1000 simulated trials for each of the four dose-

response curves with a small efficacy-toxicity correlation for the BFPADLM design

are summarized in Table 3.4. The BFPADLM design for the null dose-response curve

made correct decisions for 0.99 of the simulated trials, which is very similar to the

proportion of correct decisions for the BADLM design. However, for the three other

types of dose-response curves considered here, the BFPADLM design was able to be

stopped for correct decisions for approximately only half of the trials, and the pro-

portion of trials stopped for cap increased correspondingly. The probability of a Type

I error was α = 0.01, and the probability of a Type II error was β = 0. Thus, in

terms of the percentage of trials stopped for the correct decision, the BADLM design

showed a very obvious advantage over the BFPADLM design.

Table 3.3: The BADLM-stopping decisions for 1000 simulated trials for four
response curves under small efficacy-toxicity correlation scenario. The Type I error

rate was α = 0.007, and maximum Type II error rate was β = 0.001.

Dose-Response Curve Stopped for Success / Futility / Cap

Null Response 0.007 / 0.993 / 0.000

Slowly Increasing 0.944 / 0.000 / 0.056

Quickly Increasing 0.947 / 0.000 / 0.053

Non-monotone 0.952 / 0.001 / 0.047
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Table 3.4: The BFPADLM-stopping decisions for 1000 simulated trials for four
response curves under small efficacy-toxicity correlation scenario. The Type I error

rate was α = 0.01, and Type II error rate was β = 0.

Dose-Response Curve Stopped for Success / Futility / Cap

Null Response 0.010 / 0.990 / 0.000

Slowly Increasing 0.505 / 0.000 / 0.495

Quickly Increasing 0.509 / 0.000 / 0.491

Non-monotone 0.548 / 0.000 / 0.452

3.7.2 Patient Allocation for Small Efficacy-Toxicity Correlation Scenario

The number of patients used to make a decision for each trial is also an impor-

tant metric in revealing the performance of a Phase II clinical trial. We have tracked

the average number of patients at each dosage level, the total sample size per trial,

and the standard deviation of each average sample size for our new BADLM design

and the BFPADLM design summarized in Table 3.5.

Table 3.5 shows the average sample sizes per trial for each dose-response curve

with both the BADLM and the BFPADLM designs when the correlation between

efficacy and toxicity is small (ρ = 0.2). The BADLM design used a total number

of 84 of patients to reach a correct decision of an ineffective treatment (null dose-

response curve), while the BFPADLM design used a total number of 350 patients.

Therefore, the BADLM clinical trial design could save a significant number of patients

if we are experimenting with an ineffective drug treatment.

For an effective treatment, the adaptive design in Table 3.5 also showed a signif-

icant saving of patients by assigning more patients to the more effective treatments.

For example, the non-monotone curve had an average of 12.009 patients assigned to

dosage of 200 mg in the BADLM design, while a fixed number of 50 patients were used

for the same dosage in the BFPADLM design. For the other dose-response curves,
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the dosage of 20 mg for the slowly increasing dose-response curve received an average

of 12.001 patients in the BADLM design versus 50 patients in the BFPADLM design.

The sample-size difference in the two designs was also reflected in the average total

number of patients used for each dose-response curve. The BADLM design used an

average of 110.4 patients for the quickly increasing dose-response curve, while the

BFPADLM design used a total of 350 patients to reach an even higher proportion of

correct decision. We can also see the difference between the BFPADLM and BADLM

designs in terms of the average total number of patients used for the quickly increasing

curve as shown in Table 3.5.

In summary, considerably fewer patients were needed for each effective dose-

response curve under the BADLM design compared to the BFPADLM design. The

savings in terms of patients required were similar for the three effective (non-placebo)

dose-response curves, and the sample size used for the ineffective (placebo) dose-

response curve was even larger.

Table 3.5: Average sample sizes per trial for each curve for the BADLM and
BFPADLM designs and small correlation between efficacy and toxicity (ρ = 0.2).

(The known ED95 dosages are in blue).

Design Dose-Response Curve 0 mg 20 mg 40 mg 80 mg

BADLM

Null Response 12(0) 12(0) 12(0) 12(0)

Slowly Increasing 20.397(33.814) 12.001(0.032) 12.002(0.063) 12.065(0.887)

Quickly Increasing 19.920(32.962) 12.000(0) 12.818(10.713) 16.389(28.961)

Non-monotone 19.122(31.350) 15.801(26.715) 19.296(39.896) 17.497(34.141)

BFPADLM All Curves 50(0) 50(0) 50(0) 50(0)

Design Dose-Response Curve 120 mg 160 mg 200 mg Total

BADLM

Null Response 12(0) 12(0) 12(0) 84(0)

Slowly Increasing 14.111(19.975) 18.812(37.672) 22.602(51.247) 111.990(112.715)

Quickly Increasing 16.045(27.007) 17.060(31.606) 16.168(26.958) 110.400(109.874)

Non-monotone 12.008(0.134) 12.007(0.138) 12.009(0.285) 107.740(104.499)

BFPADLM All Curves 50(0) 50(0) 50(0) 350(0)
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3.7.3 Stopping Decisions of Dynamic Linear Model with Large Efficacy-Toxicity
Correlation

We also conducted a similar Monte Carlo simulation except that we increased

the efficacy-toxicity correlation from ρ = 0.2 to ρ = 0.8. Table 3.6 gives the stopping

decisions for 1000 simulated trials for BADLM for each of the four dose-response

curve under the scenario of a large efficacy-toxicity correlation of ρ = 0.8.

We can see from Table 3.6 that the Type I error from 1000 simulated trials was

0.005, which is somewhat less than the small efficacy-toxicity correlation scenario, and

the Type II error was approximately zero. Hence, both Type I and Type II errors were

sufficiently controlled. Compared to the small efficacy-toxicity correlation scenario,

the percentage of correct decisions for a non-monotone curve slightly increased while

the percentage of correct decisions of the slowly and quickly increasing dose-response

curves decreased. The percentage of correct decisions for a slowly increasing dose-

response curve dropped below 0.9 while stopping for cap increased correspondingly.

We also conducted a BFPADLM design simulation under large efficacy-toxicity

correlation scenario (ρ = 0.8). Table 3.7 summarizes the results. The Type I and

Type II error rates were α = 0.012 and β = 0, respectively, which are less than

the targeted error probabilities. However, the percentage of correct decisions for the

slowly increasing dose-response curve dropped from 0.825 to 0.117, and the percentage

of stopping for cap increased from 0.175 to 0.883 compared to the BADLM design.

Similarly, for the quickly increasing dose-response curve, the percentage of correct

decisions decreased to 0.446 compared to 0.914 for the BADLM design, and stopping

for cap increased correspondingly. The percentage of correct decisions for the non-

monotone dose-response curve also decreased to 0.524 with the proportion of cap

of 0.476. This result is understandable because the stopping rules were determined

with the small efficacy-toxicity correlation scenario and, therefore, the stopping rules

might not be optimal when the efficacy-toxicity correlation is large.
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Table 3.6: The BADLM-stopping decisions for 1000 trials for each response curve
under large efficacy-toxicity correlation scenario. Type I error rate was α = 0.005,

and Type II error rate of β = 0 was achieved.

Dose-Response Curve Stopped for Success / Futility / Cap

Null Response 0.005 / 0.995 / 0.000

Slowly Increasing 0.825 / 0.000 / 0.175

Quickly Increasing 0.914 / 0.000 / 0.086

Non-monotone 0.961 / 0.000 / 0.039

Table 3.7: The BFPADLM-stopping decisions for 1000 trials for each response curve
under large efficacy-toxicity correlation scenario. A Type I error rate was α = 0.012,

and a Type II error rate of β = 0 was achieved.

Dose-Response Curve Stopped for Success / Futility / Cap

Null Response 0.012 / 0.988 / 0.000

Slowly Increasing 0.117 / 0.000 / 0.883

Quickly Increasing 0.446 / 0.000 / 0.554

Non-monotone 0.524 / 0.000 / 0.476

3.7.4 Patient Allocation for Large Efficacy-Toxicity Correlation Scenario

Similar to the small efficacy-toxicity correlation scenario, a significant saving

of patients was attained for the large efficacy-toxicity correlation scenario. Table 3.8

shows the average sample sizes per trial and the standard deviations of the mean

number of patients for each type of dose-response curve for both the BADLM and

BFPADLM designs when the correlation between efficacy and toxicity was large (ρ =

0.8).

The BADLM design and BFPADLM design showed large differences for all of

the dose-response curves in terms of the number of patients used for each dosage. For

the null dose-response curve, we found that we used an average of only 84 patients
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with the BADLM design to reach a decision while the BFPADLM design used an

average of 350 patients. For the non-monotone dose-response curve, the BADLM

used an average of 103.470 patients, which is also considerably fewer than the 350

patients used for the BFPADLM design. For the quickly and slowly increasing dose-

response curves, the BADLM also used fewer patients on average than the BFPADLM

design. For the slowly increasing dose-response curve, the 200 mg dosage used the

most patients with an average of 49.744, compared to all other dosages for which

the average total number of patients used was 173.490 for the BADLM design. The

BFPADLM design used an average of 350 patients for the slowly increasing dose-

response curve, which is considerably more than the BADLM design required. Notice

in Table 3.6 and Table 3.7 that even with many more patients used for a slowly

increasing curve, the BFPADLM design obtained only 0.117 correct decisions out of

1000 trials, while the BADLM design obtained 0.825 correct decisions. Thus, the

BFPADLM design performed worse than the BADLM design in terms of the percent

of correct decisions made, although it used many more patients. Similarly, for the

quickly increasing dose-response curve, the BFPADLM design used an average of 350

patients and obtained 0.446 correct decisions out of 1000 trials, while the BADLM

used an average of 127.64 patients with 0.914 correct decisions. The difference in

terms of the total number of patients used between two designs for a non-monotone

curve was as significant as for the other dose-response curves. The percentage of

correct decisions was 0.961 for the BADLM and 0.524 for the BFPADLM design.

As in the last section, the more effective dosages received more patients in the

BADLM design. For example, the 200 mg treatment with the slowly increasing curve

received an average of 49.74 patients, while the 20 mg treatment was assigned an

average of only 12.14 patients under the BADLM design. The BFPADLM design

assigned an equal number of patients to each treatment regardless of the efficacy of

each treatment. For the small efficacy-toxicity correlation scenario in the last section,
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the BADLM design used a smaller number of patients for each effective dose-response

curve than the BFPADLM design and also reached more correct decisions result for

a larger proportion of 1000 simulated trials.

Table 3.8: Average sample sizes per trial for each curve for the BADLM and the
BFPADLM designs with large correlation between efficacy and toxicity (ρ = 0.8).

(The known ED95 dosages are in blue).

Design Dose-Response Curve 0 mg 20 mg 40 mg 80 mg

BADLM

Null Response 12(0) 12(0) 12(0) 12(0)

Slowly Increasing 38.847(55.922) 12.144(1.995) 12.001(0.032) 12.202(1.890)

Quickly Increasing 25.092(41.291) 10.002(0.045) 13.115(11.399) 18.802(35.208)

Non-monotone 17.841(28.508) 18.107(37.326) 16.414(28.734) 15.097(322.245)

BFPADLM All Curves 50(0) 50(0) 50(0) 50(0)

Design Dose-Response Curve 120 mg 160 mg 200 mg Total

BADLM

Null Response 12(0) 12(0) 12(0) 84(0)

Slowly Increasing 16.470(22.323) 32.082(62.530) 49.744(92.703) 173.490(186.407)

Quickly Increasing 17.809(30.410) 19.690(37.644) 21.130(41.806) 127.64(137.638)

Non-monotone 12.010(0.190) 12.001(0.032) 12(0) 103.470(95.027)

BFPADLM All Curves 50(0) 50(0) 50(0) 350(0)

3.7.5 Dose-Response Curve Estimation Comparison for Small Efficacy-Toxicity Cor-
relation Scenario

We now compare the dose-response curves estimated under the BADLM and

BFPADLM design. The four dose-response curves are plotted in Figure 3.7-3.10.

Figure 3.7 shows two similarly shaped null dose-response curves with 95% credible

intervals for the BADLM and BFPADLM designs. The smoothness of the two curves

varies. We can see that for the dose-response curve under the BFPADLM design, the

95% credible intervals are narrower than those for the BADLM design. However, the

BADLM design correctly identified futility with only 84 patients while the BFPADLM

design used 350.
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Figure 3.7: Estimated null dose-response curves with 95% credible intervals under the
BADLM and the BFPADLM clinical trial designs.

We also considered an effective treatment dose-response curve. Figure 3.8 shows

the comparison of two slowly increasing dose-response curves under the BADLM and

BFPADLM design with 95% credible intervals for each. The two curves are similarly

shaped with varying widths and degrees of smoothness for the credible intervals.

The BFPADLM design has narrower 95% credible intervals than the BADLM design

because it used more patients. However, the BADLM design chose correctly with

considerably fewer patients.

Figure 3.9 shows two quickly increasing, estimated dose-response curves with

95% credible intervals. Similar to the null and slowly increasing dose-response curves

above, the two estimated dose-response curves have the correct shape with varying

levels of smoothness. Also, the BFPADLM design yielded narrower gave more nar-

row 95% credible intervals than the BADLM design because it used more patients.

However, the adaptive design again chose correctly with fewer patients.
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Figure 3.8: Estimated slowly increasing dose-response curves with 95% credible inter-
vals under the BADLM and the BFPADLM clinical trial designs.
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Figure 3.9: Estimated quickly increasing dose-response curves with 95% credible in-
tervals under the BADLM and the BFPADLM clinical trial designs.
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For the non-monotone dose-response curve, we see a pattern similar to the plot

in Figure 3.10. The plot shows that the width of the 95% credible interval for the

BFPADLM design is more narrow than that of the BADLM design. Also, the shape of

the non-monotone curve is well captured under both designs. However, the BADLM

design used considerably fewer patients than the BFPADLM design to model the

dose-response curve correctly.

In summary, the four dose-response curves all were well estimated using both

the BADLM and BFPADLM clinical trial designs, and the BFPADLM design yielded

a narrower 95% credible interval while the adaptive design chose correctly with fewer

patients. Therefore, our BADLM captured the four different shapes of the dose-

response curves and, hence, provided a more flexible Phase II method.
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Figure 3.10: Estimated non-monotone dose-response curves with 95% credible intervals
under the BADLM and the BFPADLM clinical trial designs.
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3.8 Discussion

A Phase II study was performed to determine whether or not a new treatment

will be further tested in Phase III with a relatively larger number of patients. The

conventional design used in Phase II usually uses a logistic regression model to de-

termine the efficacy of a new treatment with a cohort of patients that requires the

response to be categorized. Also, the conventional design considers only efficacy and

assumes a monotone dose-response relationship such that a higher dosage indicates a

higher response. In a conventional design one simultaneously assigns an equal number

of patients to each dosage without considering the dosage’s effectiveness. Thus, in

order to improve a Phase II trial, researchers have developed some statistical designs

in the last twenty years that analyze the drug efficacy. However, many designs are

for categorical data and, thus, a Phase II clinical trial design with continuous data

can be difficult to utilize.

In this study, we have proposed a BADLM that is similar to a model proposed

by Leininger (2010) that does not require categorical data, but bases the decision in

the Phase II study on both the efficacy and the toxicity of the treatment. Instead of

assuming a monotone dose-response curve for efficacy, we have considered four types

of dose-response relationships that are commonly encountered in clinical trials. We

have also designed a Bayesian approach for patients to be allocated to more effective

treatments proportional to the efficacy and toxicity of the treatments. Our approach

provides an alternative to the present Phase II clinical trial designs and is useful for

the determination of drug efficacy when the response is continuous.

We have compared our proposed BADLM clinical trial design to a BFPADLM

design with an equal number of patients allocated to each dosage. We have found that

the bivariate normal DLM can satisfactorily estimate the four different dose-response

curves. Also, the patients were used more efficiently because we assigned them to

more effective dosages. Although the BFPADLM design provides a more smoothly
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estimated dose-response curve with shorter credible intervals, the BADLM design

used fewer patients than the BFPADLM design to reach the same decision, especially

for the null dose-response relationship. For the null dose-response relationship, the

adaptive design chose correctly with only 84 patients while the BFPADLM design

used 350 patients. Moreover, the adaptive design chose correct decisions for the 1000

simulated trials more often than the BFPADLM design did.

We have also found that when the correlation between efficacy and toxicity

was increased, the percentages of making correct decisions out of 1000 trials de-

creased from over 94% to over 80% for the adaptive clinical trial design. This phe-

nomenon may have occurred because the stopping rules were determined under the

small efficacy-toxicity correlation scenario so they might not be the best to use when

the efficacy-toxicity correlation increases.

Our BADLM approach provides researchers with a direct way to handle contin-

uous data rather than categorize it. Furthermore, our proposed BADLM can identify

different types of dose-response curves, and, hence, provides a more flexible Phase II

study.
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CHAPTER FOUR

Validation of Prediction Using Logistic Regression Models in the Presence of
Missing Data

4.1 Motivation

This study was motivated by the presence of missing data in logistic regression

analysis. Researchers employ many methods to deal with missing data, including

simple methods such as excluding all the missingness and using complicated methods

such as multiple imputation. Here, we are interested in determining which missing

data method that should be used when some of the variables in a data set are not

fully recorded. Hence, we study various imputation methods under both missing-

completely-at-random (MCAR) and missing-at-random (MAR) mechanisms for lo-

gistic regression, we validate the logistic regression prediction models, and compare

imputation methods using Monte Carlo simulation.

The remainder of this chapter is organized as follows: We provide some back-

ground information concerning the research of missing data and imputation in Section

4.2. Section 4.3 introduces the imputation methods we consider, and Section 4.4.3

describes the metrics that one can use to determine the performance of each imputa-

tion method. In Sections 4.5 and 4.6, we present the design of our simulation study

and the results we attained respectively. Section 4.7 concludes with a discussion of

the applied methods.

4.2 Previous Logistic Regression Studies

Ambler, Omar, and Royston (2007) have investigated various imputation meth-

ods to evaluate their effect on risk-model estimation and on prediction accuracy.

Specifically, they investigated Hotdeck and multiple imputation by chained equations

(MICE), along with several single imputation methods. Their results suggest that
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the prediction with complete-data-only analysis was poor and should be avoided;

mean/mode imputation outperformed the complete-data-only method but performed

worse than other considered methods; conditional-mean imputation outperformed the

mean/mode method; and hotdeck imputation was the worst considered MI method

and performed worse than the single imputation methods. MICE performed the best

among all the imputation methods investigated. Hence, MICE was recommended for

use in practice.

Steyerberg, Vickers, Cook, Gerds, Gonen, Obuchowski, Pencina, and Kattan

(2010) have aimed to define the role of a list of traditional measures, such as the Brier

score, concordance statistic, receiver operating characteristic (ROC) curve, and sev-

eral new measures, including net reclassification improvement (NRI) and integrated

discrimination improvement (IDI). For illustration, they have presented a case study

that predicts the presence of residual tumor versus benign tissue in patients with tes-

ticular cancer. They have also suggested that one should always report discrimination

and calibration for a prediction model and that decision-analytic measures should be

reported if the predictive model is to be used for clinical decisions.

4.3 Imputation Methods and Logistic Regression

4.3.1 Imputation Methods

Complete-data-only Analysis The complete-data-only approach to the missing-data

problem is to remove all observations with missing elements. That is, we exclude all

the units for which the outcome of any of the covariates is missing. However, two

problems arise with this approach (Gelman and Hill, 2006):

1) This action could bias the analysis if the units with missing values differ system-

atically from the completely observed cases, or

2) Most of the data could be excluded for the sake of a simple statistical analysis if

many variables are initially included in a model.
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Single-Mean Imputation Rather than excluding observations with missing values, one

can use single-mean imputation, which is one of the simplest approaches to imputing

the missing values in a dataset. The advantage of this method is that all information

is kept in the data. However, by employing single-value imputation, we are essentially

pretending that the imputed missing values are known with certainty. Thus, single-

mean imputation can yield a different type of bias from that of the complete-data-only

analysis.

Conditional-Mean Imputation Conditional-mean imputation is a model-based im-

putation method. Here, we apply the univariate regression model iteratively to the

variables with missing values in the data with the following steps:

1. Obtain preliminary imputations for each predictor.

2. Fit the regression model relating the predictor with missing values to all other

predictors.

3. Use least squares/logistic regression for continuous/categorical predictors.

4. Iteration is required when several predictors have missing values.

5. Stop the procedure when the regression coefficients become stable to four decimal

places.

The regression model allows interactions to be considered if necessary, and the

set of separate regression models makes this method easy to understand. Thus, people

should be able to fit a reasonable model at each step.

On the other hand, Gelman (2006) suggested caution to ensure that the sepa-

rate regression models are consistent with each other when one is using an iterative

approach. For instance, imputing blood pressure on age but then ignoring blood

pressure when imputing age would be impractical.

Multiple Imputation by Chained Equations Instead of imputing with a single value,

multiple imputation creates more than one (say, 5) imputed value for each missing

value, thus creating multiple data sets. A standard analysis can be performed on each
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completed dataset, and then the inferences are combined across datasets. Multiple

imputation reflects uncertainty about the imputation model, which is an advantage

compared to the methods described above.

The process of Multiple Imputation by Chained Equations (MICE) is conducted

as follows:

1. Obtain preliminary imputations for each predictor.

2. Fit a regression model relating the predictor containing missing values to all

other predictors.

3. Use least squares/logistic regression for a continuous/categorical predictor.

4. Estimate coefficients and covariance matrices.

5. Generate coefficients from a multivariate normal distribution.

6. Impute the missing data.

7. Cycle over all predictors with missing values.

Hotdeck Imputation Hotdeck imputation employs observed values from the same data

set to replace the missing points. It can be viewed as a nonparametric imputation

method. Two basic steps are involved in Hotdeck imputation:

1. Draw nmiss with replacement from the nobs observed data, where nmiss is the

number of missing values and nobs is the number of observed values

2. Draw nmiss values with replacement from these nmiss values to use as imputed

values.

4.3.2 Logistic Regression

At times the dependent variable of interest is binary. For example, a person is

male or female; a person votes in the presidential election or does not; a home loan

was paid back or was not. Additionally, we have independent variables that are either

discrete or continuous, which motivates the problem of identifying which category a

new observation belongs to. The basic idea of statistical classification is to determine

the membership of a new observation based on the data in which each observation is
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truly categorized. To do so, we consider probabilities, and, hence, we need a model

(Agresti, 2012).

Assume we have a dependent variable Y with two outcomes, 1 and 0, and

an independent variable X. We want to model the conditional probability Pr(Y =

0|X = x) as a linear function of x. However, we must have 0 ≤ Pr(Y = 0|X = x) ≤ 1

while a linear function of x is not bounded. To address this issue, we first transform

Pr(Y = 0|X = x) so that it is unbounded and then model it as a linear function of

x. One such transformation is called the logit function, where

logitPr(Y = 0|X = x) = log
(

Pr(Y=0|X=x)
1−Pr(Y=0|X=x)

)
.

Modeling the logistic transformation of Pr(Y = 0|X = x) as a linear function of x is

called logistic regression. The form of the logistic regression model is

log
(

Pr(Y=0|X=x)
1−Pr(Y=0|X=x)

)
= β0 + β1x,

and, therefore,

Pr(Y = 0|X = x) = 1
1+e−(β0+β1x)

.

We predict Y = 0 if Pr(Y = 0|X = x) ≥ 0.5 and Y = 1 if Pr(Y = 0|X = x) ≤ 0.5.

Logistic regression is widely used for classification of multivariate unlabeled

data. We usually estimate the coefficients in the model by using maximum likelihood.

For one data point (xi, yi), the likelihood is

L(β0, β1) =
n

Π
i=1

p(xi)
yi(1− p(xi))1−yi .

However, one cannot derive a closed-form expression for the coefficient that

maximizes the likelihood function as one can with linear regression. Instead, we

can obtain MLEs numerically with iterative processes, such as Newton’s (Newton-

Raphson) method (Kaw and Kalu, 2011).

The interpretation of the logistic regression coefficients is also different from a

simple linear regression. The coefficients of the logistic model describe the change
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in the probability of observing Y = 0 expressed on the logistic scale instead of the

change in the Y value directly, as in the simple linear regression.

The dependent variable Y can take on more than two categories, and logistic

regression will also be suitable with more than two parameters, β0 and β1. The

parameter estimation proceeds as before with maximum likelihood (Agresti, 2012).

Our study is concentrated on binary discrete dependent variables.

4.4 Performance Measurements

4.4.1 Prediction Measurement

Mean absolute error (MAE) measures how close predictions are to actual out-

comes. The MAE is

MAE ≡ 1

n

n∑
i=1

|fi − yi|,

where fi is the ith prediction value, yi is the ith true value, n is the total number of

observations, and i = 1, . . . , n.

4.4.2 Discrimination

Discrimination is a measure of how well the subjects with and without an

outcome of interest are separated by a logistic regression model. For binary outcomes,

the area under the receiver operating characteristic (ROC) curve, which is a plot of

the sensitivity (the true positive rate) against 1-specificity (false positive rate) for

consecutive cutoffs for the probability of an outcome, is the AUC. The AUC is the

most commonly used measurement for discrimination of a binary regression model.

An alternative measure to the full AUC is the partial AUC, which is the area

under the ROC curve where data have been observed. Walter (2005) has suggested

several disadvantages of the partial AUC measurement. In contrast to the full AUC,

the partial AUC is not as robust to heterogeneity and thus can obscure the result of

comparisons between tests.

49



4.4.3 A Goodness-of-Fit Statistic

The Hosmer-Lemeshow statistic measures the goodness-of-fit for logistic regres-

sion models. The hypotheses of the test statistic are as follows:

H0: the model fits well.

HA: the model does not fit well.

The Hosmer-Lemeshow statistic is

H ≡
∑n

i=1
(Oi−Ei)2

Ei(1−Ei/ni) ∼ χ2
n−2,

where

n ≡ Number of groups,

ni ≡ Number of observations in the ithgroup,

Oi ≡ Observed number of cases in the ithgroup,

and

Ei = Expected number of cases in the ithgroup.

4.5 A Monte Carlo Simulation for Imputation Efficacy in Logistic Regression

4.5.1 Data Simulation

The Monte Carlo simulation is based on the testicular cancer dataset from

Steyerberg et al. (2010). The training dataset (544 patients) includes five predictors

for model development, and the test dataset (273 patients) with the same five predic-

tors is for the evaluation of the developed logistic regression prediction model. Table

4.1 gives the data description.
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Table 4.1: Description of testicular cancer dataset.

Name Description (no/yes is coded as 0/1)

nec Necrosis at resection (0-1)

preafp Prechemotherapy AFP normal? (0-1)

prehcg Prechemotherapy HCG normal? (0-1)

lnldhst Ln of standardised prechemotherapy LDH

sqpost Square root of postchemotherapy mass size

reduc10 Reduction in mass size per 10%: (pre-pos)/pre*10

Instead of using the real data, we used the testicular cancer data to parameterize

the simulation data, and we used R for our simulation software. For continuous

variables, we generate data from a Beta distribution estimated from the real data. For

categorical variables, 0/1 (no/yes) were generated from a Bernoulli distribution with

probability of success p estimated from the real data. For continuous variables, the

data was shifted and transformed so that the data has a similar mean and covariance

structure to that of the real data. The estimated Beta distributions for the modeled

data from that we sampled are shown in Figure 4.1.

To create a dataset with MCAR missing values, we first generated 0/1 (no/yes)

data from a Bernoulli(p) distribution with p = 0.1, 0.2, 0.3. Next, we formed a matrix

with the generated binary data with the same dimension as the full data. Last, we

performed a Hadamard product of the formed matrix of 0’s and 1’s and the full data

matrix while the outcome was excluded. The missingness exists only in the predictor

variables, and none of the outcome data was missing.

To simulate an MAR dataset, we made the initial process the same as that for

MCAR data. According to the definition of MAR, the probability of an observation

being missing depends only on the observed variables. Two of the five variables are

fully recorded while the remaining three variables were simulated with missingness
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where the probability of missingness depended on the two fully-recorded variables

(Ambler and Omar, 2007).
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Figure 4.1: A Histogram of continuous variables with beta distributions fitted.

4.5.2 Simulation Design

The training-data sample sizes considered here were 30, 50, and 100. The test-

data size was 1000. Three levels of POM were used: 0.1, 0.2, and 0.3. We compared

the following imputation methods for each dataset:

• Complete-data-only analysis

• Single-mean imputation

• Conditional-mean imputation

• MICE (m = 5)

• Hotdeck (m = 5)
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wherem is the number of imputed values for each missing value. After the imputation,

we then fit a logistic regression model to the completed training data and estimated

the covariate coefficients. We then predicted the outcomes using the test data, the

estimated logistic model, and

• MAE

• AUC

• HL p-value,

which are measurements for prediction comparison.

We set the number of iterations to be k = 1000. We also conducted the logistic

regression prediction with the full training data (no missingness) for comparison pur-

poses. In addition, we remark that the simulations were conducted for both MCAR

and MAR mechanisms.

4.6 The Monte Carlo Simulation Results

4.6.1 Missing-Completely-at-Random (MCAR)

4.6.1.1 Prediction measurement. In the simulation we had three levels of

percent of missingness (POM)—0.1, 0.2, 0.3—for each training sample size, N =

30, 50, 100. The MAE was computed for each combination of POM and sample

size. Note that the complete-data-only analysis was not conducted for N = 30 with

POM = 0.3 and N = 50 with POM = 0.3 because a high POM with small sample

sizes causes exclusion of most of the data and, hence, a singularity problem. A small

MAE suggests a small error rate and, thus, better prediction. In Figures 4.2-4.4 we

display a boxplot of the MAE for each sample size with three levels of POM.

The prediction MAE for the full data was 0.2485. Compared with the other

methods, for the complete-data-only analysis, we had MAE = 0.3072 for N = 30 with
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POM = 0.1 and MAE = 0.4031 for N = 30 with POM = 0.2. These results indicated

poor prediction properties. Moreover, the complete-data-only MAE was greater than

the MAE for the other imputation method as we can see from Figure 4.2. We can also

see that the MAE for the single-value and multiple imputation methods all increased

as the level of POM increased. The conditional-mean imputation had the highest

MAE when the POM = 0.3. Also, the MAE of single-mean and hotdeck imputation

was close to that of the full data. The single-mean imputation method performed

surprisingly well since it is generally considered the worst imputation method the

researcher should use.

Figure 4.2: Boxplots of the MAE for five imputation methods and for the full data
with N = 30, POM = 0.1, 0.2, 0.3, when the data is MCAR.
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Figure 4.3: Boxplots of the MAE for five imputation methods and for the full data
with N = 50, POM = 0.1, 0.2, 0.3, when the data is MCAR.
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Figure 4.3 displays similar results for N = 50 with the three levels of POM.

Compared to the case when N = 30, the MAE for all five imputation methods and the

full data slightly decreased because of the larger sample size. The complete-data-only

analysis had a larger MAE than did the other imputation methods. The MAE for

the hotdeck and single-mean imputation methods was less than the other considered

imputation methods for POM = 0.1 and POM = 0.2. Also, the differences between

the MAE for the hotdeck and the competing imputation methods were even greater for

the POM = 0.3. Surprisingly, the single-mean imputation performed approximately

as well as the hotdeck imputation method when N = 30.

Figure 4.4: Boxplots of the MAE for five imputation methods and for the full data
with N = 100, POM = 0.1, 0.2, 0.3, when the data is MCAR.

When the training-sample size was increased to N = 100, the MAEs were very

similar aside from the complete-data-only analysis. The complete-data-only analysis
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gave an MAE = 0.2204, which was close to the full-data prediction (MAE = 0.2125)

when the POM = 0.1 and increased to MAE = 0.2438 and MAE = 0.3226 with

POM = 0.2 and POM = 0.3, respectively. Thus, the complete-data-only imputation

method yielded very poor prediction results for higher levels of POM. The MAE for

the other imputation methods increased as the level of POM increased but was still

close to the full data MAE. The hotdeck imputation method had the smallest MAE

indicating the best performance among all considered imputation methods in terms

of MAE.

4.6.1.2 Discrimination utility. In this section, we compare the discrimination

utility of the five imputation methods for logistic regression using the AUC as our

criterion for prediction ability.

The AUC was reported for N = 30, 50, 100, with levels of POM = 0.1, 0.2,

and POM = 0.3 in Figures 4.5-4.7. For N = 30, the AUCs were all above 0.5, and

the complete-data-only analysis had a smaller AUC than the other four imputation

methods, thus indicating that the other imputation methods yielded superior discrim-

ination. The AUCs of the single-mean imputation, MICE, and hotdeck imputation

were close to that of the full data when POM = 0.1, 0.2. When we increased to

POM = 0.3, the single-mean imputation procedure was the closest to the full data in

terms of AUC. Also, the AUC for the conditional-mean regression method decreased

slightly.

For N = 50, the results were similar to the results for N = 30. The complete-

data-only analysis had the smallest AUC for N = 30 and 50, while the AUCs of the

other four imputation methods were close to the AUC for the full data prediction.

For the POM = 0.3, the hotdeck imputation yielded the smallest AUC than the other

considered imputation methods.

Figure 4.7 shows the AUC value for N = 100. The AUCs of all considered

imputation methods were close to the full-data AUC with POM = 0.1, 0.2. The
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complete-data-only AUC and hotdeck imputation AUC were less than the other con-

sidered imputation methods. All of the AUCs were close to or above 0.6 for N = 100

with the complete-data-only having the smallest AUC when POM = 0.3.

Figure 4.7: Boxplots of the AUC for five imputation methods and for the full data
with N = 100, POM = 0.1, 0.2, 0.3, when the data is MCAR.

4.6.1.3 A Goodness-of-Fit statistic. Figures 4.8-4.10 show the Hosmer Lemeshow

statistic results in terms of the p-value. For N = 30 with POM = 0.1, 0.2, 0.3, all p-

values were above 0.6; for N = 50 and 100, with the three levels of POM, all p-values

were above 0.5. These results indicated that the prediction model fit well for each

imputation method. However, we remark that a well-fitting model does not imply a

model that predicts well.
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Figure 4.5: Boxplots of the AUC for five imputation methods and for the full data
with N = 30, POM = 0.1, 0.2, 0.3, when the data is MCAR.
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Figure 4.6: Boxplots of the AUC for five imputation methods and for the full data
with N = 50, POM = 0.1, 0.2, 0.3, when the data is MCAR.
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Figure 4.8: Boxplots of the Hosmer-Lemeshow p-value for five imputation methods
and for the full data with N = 30, POM = 0.1, 0.2, 0.3, when data is MCAR.
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Figure 4.9: Boxplots of the Hosmer-Lemeshow p-value for five imputation methods
and for the full data with N = 50, POM = 0.1, 0.2, 0.3, when the data is MCAR.
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Figure 4.10: Boxplots of the Hosmer-Lemeshow p-values for five imputation methods
and for the full data with N = 100, POM = 0.1, 0.2, 0.3, when the data is MCAR.

4.6.2 Missing-at-Random (MAR)

The analysis performed on MCAR data was also applied to MAR data. The

simulation results with the MAR mechanism were similar to that of MCAR in the

previous section. The levels of POM and sample sizes were also set to be POM =

0.1, 0.2, 0.3, and N = 30, 50, 100, respectively.

4.6.2.1 Prediction measurement. Figures 4.11-4.13 show the boxplots of the

MAE for MAR data for each considered sample size with the three considered levels

of POM. Also, the complete-data-only analysis was not conducted for N = 30 with

POM = 0.3 and N = 50 due to a singularity problem.
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Figure 4.11: Boxplots of the MAE for five imputation methods and for the full data
with N = 30, POM = 0.1, 0.2, 0.3, when the data is MAR.

The results in Figure 4.11 are similar to the results in Figure 4.2. We remark

that complete-data-only analysis is inferior to the considered imputation methods

because for N = 30, the MAEs for the complete-data-only analysis with POM = 0.1,

0.2 are MAE = 0.3445 and MAE = 0.5589, respectively, which are greater than the

MAEs for the other imputation methods. The MAEs of all considered imputation

methods increased when we increased the sample size from N = 30 to N = 100. The

single-mean and hotdeck imputation method outperformed the competing imputation

methods for a large sample size.
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Figure 4.12: Boxplots of the MAE for five imputation methods and for the full data
with N = 50, POM = 0.1, 0.2, 0.3, when the data is MAR.

For N = 50, the complete-data-only analysis yielded the largest MAE for POM

= 0.1, 0.2, indicating that it had the worst prediction performance among the con-

sidered imputation methods. Excluding the complete-data-only imputation method,

the MAEs of the remaining methods differed only slightly until the single-mean and

hotdeck imputation began to perform better with a slightly lower MAE with POM

= 0.3.
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Figure 4.13: Boxplots of the MAE for five imputation methods and for the full data
with N = 100, POM = 0.1, 0.2, 0.3, when the data is MAR.

The MAEs of all considered imputation methods were close to one another when

we increased the sample size to N = 100 except for the complete-data-only analysis.

The MAEs of complete-data-only analysis increased from 0.2280 to 0.3609 for an

increase of POM = 0.1 to POM = 0.2, and to 0.5303 for a POM = 0.3. Similar to the

results shown in Figure 4.4, the MAE of the other imputations slightly increased as

the level of POM increased but still remained close to the full data, and the hotdeck

imputation performed the best with the smallest MAE.

4.6.2.2 Discrimination. Here, the AUC was also reported for the MAR

mechanism with N = 30, 50, 100, and the three levels of POM provided in Figures

4.14-4.16.
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Figure 4.14: Boxplots of the AUC for five imputation methods and for the full data
with N = 30, POM = 0.1, 0.2, 0.3, when the data is MAR.

From Figure 4.14 we can see that, for N = 30, 50, the AUCs were all greater

than 0.5, and the complete-data-only analysis yielded the smallest AUC, which implies

that it did not perform well in terms of discrimination. As the POM approached POM

= 0.3, the AUC of the conditional-mean regression yielded the minimum AUC.

As in Figure 4.6, Figure 4.15 implies that the complete-data-only analysis

yielded the lowest AUC for N = 30, 50, while the other considered methods yielded

AUCs that were close to the full data prediction AUC. However, the conditional mean

regression yielded the lowest AUC when POM = 0.3.
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Figure 4.15: Boxplots of the AUC for five imputation methods and for the full data
with N = 50, POM = 0.1, 0.2, 0.3, when the data is MAR.
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Figure 4.16: Boxplots of the AUC for five imputation methods and for the full data
with N = 100, POM = 0.1, 0.2, 0.3, when the data is MAR.

In Figure 4.16, the AUCs of all of the considered imputation methods were

around 0.6, which is close to the full data prediction with POM = 0.1. For POM

= 0.2 and POM = 0.3, the AUC of the complete-data-only analysis decreased to

approximately 0.5.

4.6.2.3 A Goodness-of-Fit statistic. Figures 4.17-4.19 show the p-values of

the Hosmer-Lemeshow test. Similar to the result in Figure 4.8-4.10, all of the p-values

were above 0.6 for N = 30 and above 0.5 for N = 50 and N = 100 with all three

levels of POM. This result indicated that all of our methods fit well.
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Figure 4.17: Boxplots of the Hosmer-Lemeshow p-value for five imputation methods
and for the full data with N = 30, POM = 0.1, 0.2, 0.3, when the data is MAR.
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Figure 4.18: Boxplots of the Hosmer-Lemeshow p-value for five imputation methods
and for the full data with N = 50, POM = 0.1, 0.2, 0.3, when the data is MAR.
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Figure 4.19: Boxplots of the Hosmer-Lemeshow p-value for five imputation methods
and for the full data with N = 100, POM = 0.1, 0.2, 0.3, when the data is MAR.
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4.7 Discussion

Missing data often occurs in research with real data. We can either keep the

data as it is or replace the missing spots with imputed values. Hence, how we handle

missing data becomes the first question that we must answer when performing a

statistical analysis. In the presence of missing data, many imputation methods are

available for use. The relevant question becomes which imputation method should

one choose.

This study compared five imputation methods with various combinations of

sample size and percentage of missingness. The considered methods are the following:

• Complete-data-only analysis

• Single-mean imputation

• Conditional-mean imputation

• Multiple imputation by chained equations

• Hotdeck imputation

For the small-sample-size scenarios, the complete-data-only analysis performed

poorly compared to all other methods, reflected in terms of a higher MAE. This

result is not a surprise because discarding data means discarding information. A

common belief among researchers is that multiple imputation is preferable to single-

value imputation because multiple imputation has the advantage over single-value

imputation of considering the uncertainty of the imputation model. However, in this

simulation study, single-mean imputation outperformed other considered single-value

imputation methods and MICE.

As the POM increased for a fixed sample size, the MAEs for all considered

methods became similar to one another when the POM was small and varied when

POM increased. Hotdeck imputation performed the best for POM = 0.3. With a
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large sample size and a small POM, the performance of all considered imputation

methods we studied was close to one another, and the MAE of complete-data-only

analysis increased when the POM increased.

The single-mean imputation and hotdeck imputation methods both performed

well with higher levels of POM while the computation of the former is much simpler

and easier than that of the latter. Thus, the single-mean imputation might be pre-

ferred in practical application since hotdeck imputation is more time-consuming and

does not yield a significantly better performance.
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APPENDIX A

Derivation of The Complete Conditional Distributions for the Model Parameters

We use the bivariate normal model for the response (X) and toxicity (Y ) random

variables. In the two-dimensional nonsingular case, the pdf of the vector (xij, yij)
′ is

f(xij, yij) = 1

2πσxσy
√

1−ρ2
exp

(
− 1

2(1−ρ2)

[
(xij−µxi )

2

σ2
x

+
(yij−µyi )

2

σ2
y

− 2ρ(xij−µxi )(yij−µyi )
σxσy

])
,

where ρ is the correlation between X and Y , σx > 0, and σy > 0 and

µ ≡

(
µxi

µyi

)
with Σ ≡

(
σ2
x ρσxσy

ρσxσy σ2
y

)
.

The likelihood function is

f(x,y) = (2π)−N |Σ|−
N
2 exp

{1

2

t∑
i=0

ni∑
j=1

[(xij, yij)
′ − (µxi , µyi)

′]
′

×Σ−1 [(xij, yij)
′ − (µxi , µyi)

′]
}
,

where

xij ≡ toxicity of the jth individual at the ith dosage level;

yij ≡ response of the jth individual at the ith dosage level;

ni ≡ number of patients who received the ith treatment;

t ≡ total number of treatments;

N ≡ total number of patients tested;

µxi ≡ the mean toxicity for the ith treatment;

µx0 represents the mean toxicity of the placebo

µyi ≡ the mean response for the ith treatment;

µy0 represents the mean response of the placebo
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σ2
x ≡ the variance of individuals about the mean toxicity

at each dosage level;

σ2
y ≡ the variance of individuals about the mean response

at each dosage level.

The prior distributions are

(µx0 , µy0)
′ ∼ N [0,B] ,

(µxi , µyi)
′ ∼ N

[
(µxi−1

, µyi−1
)′, diΣτ

]
,

Σ ∼ IW (R, ν),

and

Στ ∼ IW (Rτ , ντ ).

where ν, ντ > 0. To develop a computational approach to estimate the model pa-

rameters, we first solve for the complete conditional distribution of each unknown

parameter. Hence,

p(θ|x,y) ∝ p(θ)p(x,y|θ)

= (2π)−NΣ−
N
n exp

{1

2

t∑
i=0

ni∑
j=1

[(xij, yij)
′ − (µxi , µyi)

′]
′
Σ−1

× [(xij, yij)
′ − (µxi , µyi)

′]
}

×N [(µx0 , µy0)
′|0,B]×N

[
(µxi , µyi)

′|(µxi−1
, µyi−1

)′, diΣτ

]
×N

[
(µxi−1

, µui−1
)′|(µxi−2

, µyi−2
)′, di−1Στ

]
× · · · · · ·

×N
[
(µxt , µyt)

′|(µxt−1 , µyt−1)
′, di−1Στ

]
× IW (Σ|R, ν)

× IW (Στ |Rτ , ντ )
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We first derive the conditional distribution for (µx0 , µy0)
′. We have

p [(µx0 , µy0)
′|x,y] ∝ exp

{
− 1

2

ni∑
1

[(x0j, y0j)
′ − (µx0 , µy0)

′]
′
Σ−1

× [(x0, y0)
′ − (µx0 , µy0)

′]
}

× exp
{
− 1

2
[(µx0 , µy0)

′ − (0, 0)′]
′
B−1 [(µx0 , µy0)

′ − (0, 0)′]
}

× exp
{
− 1

2
[(µx1 , µy1)

′ − (µx0 , µy0)
′]
′
(diΣτ )

−1

× [(µx1 , µy1)
′ − (µx0 , µy0)

′]
}

= exp
{ n0∑

j=1

[(x0j, y0j)
′ − (µx0 , µy0)

′]
′
Σ−1

× [(x0j, y0j)
′ − (µx0 , µy0)

′]

+ (µx0 , µy0)
′TB−1(µx0 , µy0)

′

+ [(µx1 , µy1)
′ − (µx0 , µy0)

′]
′
(diΣτ )

−1 [(µx1 , µy1)
′ − (µx0 , µy0)

′]
}

= exp
{ n0∑

j=1

[
(x0j, y0j)Σ

−1(x0j, y0j)
′ − (x0j, y0j)Σ

−1(µx0 , µy0)
′

− (µx0 , µy0)Σ
−1(x0j, y0j)

′ + (µx0 , µy0)Σ
−1(µx0 , µy0)

′

+ (µx0 , µy0)B
−1(µx0 , µy0)

′

+ (µx1 , µy1)(diΣτ )
−1(µx1 , µy1)− (µx0 , µy0)(diΣτ )

−1(µx1 , µy1)
′

−(µx1 , µy1)(diΣτ )
−1(µx0 , µy0)

′ + (µx0 , µy0)(diΣτ )
−1(µx0 , µy0)

′] }
∝ exp

{
(µx0 , µy0)

[
n0Σ

−1 +B−1 + (diΣτ )
−1] (µx0 , µy0)

′

−
[
n0(x̄0·, ȳ0·)Σ

−1 + (µx1 , µy1)(diΣτ )
−1] (µx0 , µy0)

′

− (µx0 , µy0)
[
n0Σ

−1(x̄0·, ȳ0·)
′ + (diΣτ )

−1(µx1 , µy1)
′] }.

Thus,

(µx0 , µy0)
′ ∼ N

{
[n0Σ

−1 +B−1 + (d1Στ )
−1]−1[n0(X̄0)

′Σ−1 + µ′1(d1Στ )
−1],

[n0Σ
−1 +B−1 + (d1Στ )

−1]−1
}
.
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Next, we derive the conditional distribution for (µxt , µyt)
′. We have

p [(µxt , µyt)
′|X, Y ] ∝ exp

{
− 1

2

ni∑
1

[(xtj, ytj)
′ − (µxt , µyt)

′]
′
Σ−1

× [(xtj, ytj)
′ − (µxt , µyt)

′]
}

× exp
{
− 1

2

[
(µxt , µyt)

′ − (µxt−1 , µyt−1)
′]′ (dtΣτ )

−1

×
[
(µxt , µyt)

′ − (µxt−1 , µyt−1)
′] }

= exp
{
− 1

2

nj∑
j=1

[(xtj, ytj)
′ − (µxt , µyt)

′]
′
Σ−1 [(xtj, ytj)

′

−(µxt , µyt)
′]−

[
(µxt , µyt)

′ − (µxt−1 , µyt−1)
′]′ dtΣτ

×
[
(µxt , µyt)

′ − (µxt−1 , µyt−1)
′] }

∝ (µxt , µyt)
[
(dtΣτ )

−1 + Σ−1
]

(µxt , µyt)
′ − (µxt , µyt)

×
[
Σ−1nt(x̄t, ȳt)

′ + (dtΣτ )
−1(µxt−1 , µyt−1)

′] .
Hence, the conditional distribution of (µxt , µyt)

′ is

(µxt , µyt)
′ ∼ N

{
[(dtΣτ )

−1 + ntΣ
−1]−1[Σ−1nt(X̄t) + (dtΣτ )

−1µt−1],

[(dtΣτ )
−1 + ntΣ

−1]−1
}
.

The derivation of the conditional distribution of (µxi , µyi)
′ is very similar to that of

(µxt , µyt)
′ and results in

(µxt , µyt)
′ ∼ N

{
[niΣ

−1 + (diΣτ )
−1 + (di+1Στ )

−1]−1

×
[
µ′i−1(diΣτ )

−1 + ni(X̄i)
′Σ−1 + µ′i+1(di+1Στ )

−1] ,
[niΣ

−1 + (diΣτ )
−1 + (di+1Στ )

−1]−1
}
.

Because the Inverse-Wishart is a conjugate prior for the normal likelihood, the con-

ditional distributions of Σ and Στ are

Σ ∼ IW
{
N + ν,R+

∑t
i=0

∑ni
j=1 [(xij , yij)

′ − (µxi , µyi)
′] [(xij , yij)

′ − (µxi , µyi)
′]′
}
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and

Στ ∼ IW
{
t
2 + ντ ,Rτ +

∑t
i=1

[
(µxi , µyi)

′ − (µxi−1 , µyi−1)′
] [

(µxi , µyi)
′ − (µxi−1 , µyi−1)′

]′ }
.

Thus, the complete conditional distributions of the parameters are

(µx0 , µy0)′ ∼ N
{

[n0Σ
−1 +B−1 + (d1Στ )−1]−1[n0(X̄0)

′Σ−1 + µ′1(d1Στ )−1],

[n0Σ
−1 +B−1 + (d1Στ )−1]−1

}
,

(µxt , µyt)
′ ∼ N

{
[(dtΣτ )−1 + ntΣ

−1]−1[Σ−1nt(X̄t) + (dtΣτ )−1µt−1],

[(dtΣτ )−1 + ntΣ
−1]−1

}
,

(µxi , µyi)
′ ∼ N

{
[niΣ

−1 + (diΣτ )−1 + (di+1Στ )−1]−1
[
µ′i−1(diΣτ )−1 + ni(X̄i)

′Σ−1

+µ′i+1(di+1Στ )−1
]
, [niΣ

−1 + (diΣτ )−1 + (di+1Στ )−1]−1
}
,

Σ ∼ IW
{
N + ν,R+

t∑
i=0

ni∑
j=1

[
(xij , yij)

′ − (µxi , µyi)
′] [(xij , yij)′ − (µxi , µyi)

′]′ },
and

Στ ∼ IW
{
t
2 + ντ ,Rτ +

∑t
i=1

[
(µxi , µyi)

′ − (µxi−1 , µyi−1)′
] [

(µxi , µyi)
′ − (µxi−1 , µyi−1)′

]′ }
.
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