
 
 

 
 
 
 
 

 
 

ABSTRACT 
 

Development of Chemical Classification and Annotation Tools  
for Metabolomics and Lipidomics MS Analyses 

 
Luke T. Richardson, Ph.D. 

 
Mentor: Touradj Solouki, Ph.D. 

 
 
Within the context of mass spectrometry (MS), chemical annotation is the 

process of assigning elements of chemical identity such as structure, 

stereochemistry, elemental composition (EC), and class to previously unknown 

features detected by MS. Annotation in metabolomics and lipidomics (i.e., the 

study of metabolite and lipid populations in biological samples, respectively) 

allows investigators to analyze samples in terms of relevant labels and infer 

about the biological and/or chemical significance of the sample based on the 

character of the data to which the labels are attached.  

Annotation strategies vary significantly with respect to the level of 

specificity with which they describe a feature. A highly specific annotation 

would account for all structural and stereochemical elements that describe a 

unique molecule, and a less specific annotation would use terms that describe a 

group of related molecules (i.e., class) in which the annotated feature resides. 



 
 

The former is preferable but also often inaccessible in exploratory, untargeted 

MS workflows; however, class information is readily accessible and can help 

investigators to make global inferences about their data. 

Most MS instrumental classification strategies are dependent on previous 

assignment of EC to some degree prior to determination of analyte class; often, 

this process is made trivial using metabolomics or lipidomics databases that 

contain chemical ontology data about all entries. However, this dissertation 

documents a classification approach that operates orthogonally to conventional 

identification workflows and is thus independent of identity assignment by 

instrumental methods, allowing classification to provide sample information 

and guide feature identification. Additionally, this dissertation details an 

instrumental annotation method for MS imaging of lipids that integrates class-

based annotation and image filtering for intuitive interrogations of lipid 

populations. 

Chapter two and three discuss the development and application of In 

Silico Fractionation (iSF), a feedforward neural network (FFNN)-based tool that 

uses neural decision trees (NDT) to classify biological analytes detected by MS. 

Chapter two demonstrates an application to a wide variety of biomolecules, and 

Chapter three details a focused application of iSF toward lipid subclassification 

in lipidomics workflows. 

Chapter four details a referenced Kendrick mass defect (RKMD)-based 

tool developed for integrated annotation and class-based image filtering of lipids 



 
 

in MS imaging data. This method enables intuitive examination of lipid spatial 

distributions in MS imaging data via a class data-driven approach. 

Chapter five summarizes the work detailed in this dissertation and 

explores potential future directions to follow this work, including application of 

iSF to classification in whole x-ome analysis and application of the RKMD-based 

annotation method to larger scale between-sample MS imaging analyses. 
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CHAPTER ONE 
 

Introduction 
 

  
1.1 Topic History, Research Agenda, and Impact 

 
Advances in exploratory mass spectrometry (MS) metabolomics and 

lipidomics have greatly enhanced our understanding of cellular metabolic 

pathways1, 2. The goal of untargeted, exploratory MS approaches is to determine, 

with the greatest level of specificity possible, the identity and abundance of each 

detected analyte3, 4. The process of assigning structural identity, class, or other 

chemical information to analyte features in MS is often referred to as 

“annotation” and is indispensable for characterization of unknown analyte 

populations in biological samples3, 5-9.  Annotation by chemical classification of 

analytes in MS has proved invaluable in cases where identification of discrete 

structures is hindered by sample complexity and instrumental limitations; 

analyzing data in terms of class labels can elucidate broad changes in sample 

populations10-12. Additionally, if a chemical classification method is orthogonal to 

an employed identification method, it can refine lists of putative identifications 

to produce high confidence identifications13, 14. The research presented in 

Chapters two and three demonstrates an In Silico Fractionation (iSF) method15 

for classification and annotation of varied classes of biological analytes and an 

application of iSF for classification of lipid analytes. Chapter four describes a 
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lipid annotation method tailored for class-based image filtering in MS images of 

lipids in tissues. In short, this dissertation aims to provide helpful chemical 

classification and annotation tools to enhance metabolomics and lipidomics 

analysis workflows. 

Chemical classification workflows for MS data were first utilized in 

application to highly complex sample analyses of natural organic matter (e.g., 

coal, bitumen, petroleum, etc.) with ultrahigh resolving power MS 

instrumentation10-12, 16, 17. The high mass resolving power and mass measurement 

accuracy of such high-end instruments enabled determination of elemental 

composition (EC) and then visualization and discrimination of classes of 

molecules based on stoichiometric ratios in van Krevelen diagrams10. 

Additionally, accurate measurement of mass defect (i.e., the decimal value of 

exact mass measurements) allowed for identification of chemically related 

families of compounds in Kendrick mass defect (KMD) visualization where 

related compounds cluster in linear series of data points18-20. KMD was 

particularly useful for families of polymers with repeating structural elements 

but has also been extended to analyses of biological molecules18, 21-23. Notably, 

classification in van Krevelen-based workflows is dependent on correct EC 

assignment and conventional KMD workflows require structural identification 

of one element of a family cluster to classify each data point. The quality of 

chemical classifications produced by these methods are determined by the 

quality of the EC assignment made by mass accuracy. 
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The scope of this research is to explore development of annotation and 

orthogonal chemical classification workflows. In its usage here, “orthogonal” 

describes the independence of the chemical classification workflow from other 

conventional identification workflows, namely EC determination by mass 

accuracy or fragmentation spectral matching by tandem MS (MS/MS). For 

instance, Chapter two discusses the use of a supervised feedforward neural 

network (FFNN) tool that allows for classification of features in MS spectra 

utilizing the feature’s m/z, isotopic ratios, and KMD information. Because 

chemical classification is independent of identification workflows in this 

application, the information that iSF provides is available to refine compound 

identifications made by mass accuracy or tandem MS fragmentation spectral 

matching and describe sample composition from a “bird’s eye” view. Chapter 

three demonstrates an application of iSF to a liquid chromatography (LC) 

MS/MS dataset for analysis of lipids from several different biological sources; it 

is shown that iSF can be used to differentiate those biological sources by their 

observed differential lipid class compositions. However, some MS analyses, 

namely those that do not incorporate pre-MS separations (e.g., LC and ion 

mobility (IM)), are incompatible with iSF because significant convolution of 

isotopologue peaks in the m/z domain severely degrades iSF performance. This 

challenge is particularly present in MS imaging of lipids in cells and tissues as 

most MS imaging instruments lack pre-MS IM separation. To address this 

challenge, Chapter four discusses an enhanced implementation of a KMD 
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chemical classification workflow, called referenced KMD (RKMD)23, that 

provides complete sum composition annotation of lipids and integrates class-

based image filtering to give investigators an intuitive analytical workflow 

progressing from lesser to greater specificity. 

The importance of this research is twofold. First, orthogonal chemical 

classification methods such as iSF will improve exploratory metabolomics and 

lipidomics workflows by providing more comprehensive sample annotation at 

varying levels of specificity. Second, analyses at the class-level of specificity 

allow investigators access to global inferences about their data. This is especially 

useful when assessing large scale differences between sample conditions, 

organisms, and tissue structures to mention just a few applicable cases. 

The remainder of Chapter one is devoted to introducing and discussing 

topics that are helpful to understanding the research that follows. Although the 

research presented in this dissertation focuses on novel chemical classification, 

annotation, and data handling methods, these methods were tested and 

demonstrated on MS data acquired from a variety of different MS instrumental 

configurations that incorporated electrospray ionization and matrix-assisted 

laser desorption/ionization using Orbitrap and time-of-flight (TOF) mass 

analyzers equipped with LC pre-separation. Background for each ionization 

method and mass analyzer as well separation methods is provided to assist the 

reader in understanding the data types used for developing the chemical 

classification and annotation tools discussed in this dissertation. 
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1.2 Ionization in Mass Spectrometry: Electrospray and Matrix-assisted Laser 

Desorption/Ionization 
 
 
1.2.1 Introduction to Mass Spectrometry 
 

Mass spectrometry (MS) is a powerful chemical characterization 

technique that utilizes electric and/or magnetic fields for separation of ionized 

molecules in gas phase. Ion separation is based on the mass-to-charge ratio 

(m/z) of ionized molecules and, hence, a mass spectrum provides m/z and ion 

abundance values in x and y axes, respectively24. Generally, all mass 

spectrometers include three major components (an ionization source, a mass 

analyzer, and a detector) that are housed in a vacuum chamber24. The ionization 

source is used to convert neutral analytes, either in the solid, liquid, or gas 

phase, to positively- or negatively-charged, gas-phase species that can then be 

separated in the mass analyzer24. The mass analyzer allows for temporal and/or 

spatial separation of the ionized molecules and determination of their m/z 

values in the gas-phase. Separation of the ions can be accomplished via ion 

acceleration and utilization of either an electric, a magnetic, or a combined 

electromagnetic field and subsequent measurement of ion’s physical properties 

such as natural frequency in a magnetic or electric fields, time-of-flight in a 

defined field-free space, and/or other complex ion trajectories. The detector 

indicates the presence of gas-phase ions via transduction of ion currents to 

electrical currents to yield information about ion abundances. Thus, primary 
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data output in MS is the mass spectrum which correlates the quantity of ion 

current (i.e., ion abundance on the y-axis) as a function of ion’s m/z value (on 

the x-axis). Mass spectrometers can also be used as gas-phase devices to carry 

out chemical reactions or monitor dissociation or fragmentation of ions. 

Therefore, mass spectrometry analysis can provide a wealth of information 

about ion’s identity (e.g., m/z value, ionization energy, appearance energies of its 

unimolecular dissociation products or fragments, fragmentation pathways), 

affinity for adduct formation (e.g., protons, electrons, etc.), and abundances. 

The work described in this dissertation utilizes data acquired from MS 

characterization of biological tissue samples employing both liquid- and solid-

phase ionization methods. Specifically, electrospray ionization (ESI) was utilized 

for characterization of rat brain samples in solution (data presented in Chapters 

two and three) and matrix-assisted laser desorption ionization (MALDI) was 

employed to acquire data from solid-phase kidney tissue samples (data 

presented in Chapter four). Mass spectrometers utilized in this work included 

TOF and Fourier transform (FT) MS instruments. The following section provides 

a brief survey of the MS field and currently utilized modern ionization sources, 

mass analyzers, and detectors that are relevant to the work presented in this 

dissertation. 
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1.2.2 Introduction to MS Ionization Sources 
 

MS analytes that originate in biological samples are introduced to MS 

ionization sources predominantly in the liquid- or solid-phases. Ionization 

sources have two primary functions: 1) conversion of molecules in the liquid- or 

solid-phase to gas-phase species and 2) conversion of neutrally charged 

molecules into an ionized form25. Ionization sources can generally be classified 

as “hard” or “soft”. Hard ionization techniques are characterized by a propensity 

to generate molecular fragment ions in the ionization source prior to MS 

measurement and detection.24 An exemplary hard ionization technique is 

electron ionization (often also referred to as electron impact ionization (EI) 

which uses high energy electrons to abstract electrons from vaporized 

analytes24. EI produces both radical cations (termed “M+•”) and fragment ions as 

some portion of radical molecular ions undergo molecular dissociation within 

the ionization source. However, EI has limited applications to large analytes (> 

1000 Da) and to biological compounds which are generally thermally unstable, 

polar, and thus difficult to vaporize in the high temperatures at which EI 

operates24, 26. Conversely, soft ionization techniques are characterized by their 

predominant generation and conservation of molecular ion species in a wide 

range of  ionization source conditions (e.g., under large pressure ranges, from 

gas-, liquid-, or solid-phase sources) and in application to a wide variety of polar 

and thermally unstable biological analytes27, 28. 
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Several different types of soft ionization sources have been developed for 

the ionization of liquid-phase analytes under ambient pressure conditions, 

including ESI29, atmospheric pressure chemical ionization (APCI)30, and 

atmospheric pressure photoionization (APPI)31. In general, ambient pressure 

liquid-phase ionization sources operate via rapid aerosolization of analytes25, 32. 

In the process of aerosolization, such ionization techniques produce ionic 

species which are then selectively extracted into the MS system. Cationic analyte 

species are produced primarily via attachment of positively-charged chemical 

groups (e.g., H+, Na+, K+, NH4
+)33 whereas anionic analyte species are produced 

via abstraction of positively charged chemical groups or attachment of 

negatively charged chemical groups (e.g., Cl-, Li-)34, 35. ESI is a commonly used 

ionization source for MS analysis and is broadly suitable for a wide range of 

polar analytes; however, ESI is less suitable for ionization of non-polar organic 

molecules, such as steroids, non-polar lipids, and synthetic polymers (more 

details on ESI are provided in section 1.2.3). Alternatively, APCI and APPI are 

often utilized to ionize less polar compounds that are incompatible with ESI. 

APPI excels in ionization of highly non-polar molecules such as naphthalene 

and acridine31 that are incompatible with APCI. APCI involves a series of gas-

phase reactions that include: 1) ionization of nitrogen gas by corona discharge, 

2) charge transfer from charged nitrogen to solvent, and 3) charge transfer from 

the solvent to analyte (to produce cationic analyte forms) or from analyte to 

solvent (to produce anionic analyte forms)30. In the positive-ion mode, the 



9 
 

above-mentioned APCI reactions produce [M+H]+, and, in the negative-ion mode 

[M-H]- or [M+X]-, in which X is an attached anion species, are formed36. 

Ionization in APPI is driven by direct ultraviolet photon excitation of analytes to 

yield radical cation M+• ions or by excitation and ionization of dopant solvent 

additives (e.g., toluene) which can then transfer charges (i.e., predominantly in 

the form of H+) to analytes37. A combination of the direct and dopant-assisted 

APPI processes yield both M+• and [M+H]+ species37. 

Soft ionization sources purposed for ionization of analytes from solid-

phase samples have also been developed. Among these ionization sources, there 

are three primary means of sampling: 1) laser desorption as in MALDI [REF], 2) 

droplet-based desorption as in desorption ESI (DESI) [REF], and 3) ion beam 

desorption as in secondary ion MS (SIMS) [REF] using a primary ion beam. Laser 

irradiation ionizes analytes principally through electronic excitation of sigma 

bonds in the molecules of the substrate, resulting in the gain or loss of 

electrons38. To improve ionization efficiency of analytes specifically in MALDI 

experiments, a UV- or IR-absorbent matrix, depending on the incident laser 

wavelength, is used to mediate the transfer of charge from ionized matrix to 

analytes in the plume created by laser irradiation27, 39 (additional details on 

MALDI is provided in section 1.2.4). 
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1.2.3 Electrospray Ionization 
 

Electrospray ionization (ESI) was utilized to acquire data presented in 

Chapters two and three, and it is the most prevalent type of ionization for use 

with MS, given its wide compatibility with many types of polar and thermally 

labile biomolecules and operation at ambient pressure32. Additionally, ESI is 

easily coupled to the outlet of LC systems which enables MS analysis of LC 

separated analytes in real-time and from complex mixtures40. Generally, ESI 

generates ions by application of a high voltage to a solution fed into a capillary 

(usually made of steel or silica) that leads to the MS inlet; in this process, a 

charged aerosol is created. Typical solution flow rates depend on the application 

but range widely from tens of nL/min to several hundred µL/min40. At the tip of 

the charged capillary, the solution is deformed from a shape dependent on 

surface tension into a Taylor cone because of the effect of the electric field28, 41-43. 

At the end of the Taylor cone, a fine mist of charged droplets is produced; these 

initial droplets usually have radii in the order of micrometers28. Following 

emission from the Taylor cone, the charged droplets undergo a process of rapid 

evaporation and fission. As droplets evaporate and shrink in size, their charge 

density increases until the surface tension is matched by the Coulombic 

repulsion of the charges. This balanced state is achieved at the Rayleigh limit at 

which the number zR of charges e is given by 

 
𝑧 =

8𝜋

𝑒
𝜀 𝛾𝑅  1-1 
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where ε0 is the vacuum permittivity physical constant, γ is the surface tension, 

and R is the droplet radius28, 44. At the Rayleigh limit, droplets emit smaller 

highly charged droplets via a process called jet fission. The repeated process of 

evaporation and jet fission continues until the size of the droplets are reduced to 

a few nanometers. These highly charged nanodroplets generate the gas-phase 

ions detectable by MS29, 43, 45, 46. At this point, analytes contained in these highly 

charged nanodroplets undergo one of three theoretical ion release mechanisms 

that generate gas-phase analyte ions: the ion evaporation model (IEM), the 

charge residue model (CRM), and the chain-ejection model (CEM)28. 

Most gas-phase ion production of small molecules in ESI can be 

explained by IEM. IEM is theorized to occur as low MW ionic species evaporate 

from the nanodroplet; the prevailing hypothesis is that the IEM process is driven 

by the electric field produced by surface charge accumulation on the surface of 

the nanodroplet. When at a sufficiently small radius (R < 10 nm), the electric 

field of the charged droplet (i.e., at the Rayleigh limit) causes the ejection of ions 

along with a small solvation sphere. The ejection rate constant k can be 

expressed as 

 
𝑘 =

𝑘 𝑇

ℎ
𝑒𝑥𝑝

−𝛥𝐺∗

𝑘 𝑇
 1-2 

 

where kB is the Boltzmann constant, T is the temperature, h is Planck’s constant, 

and -ΔG* is the height of the activation free energy barrier28. Molecular 

dynamics (MD) simulations of this process have shown that the ejecting solvated 
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ion remains “tethered” to the droplet by a string of solvent molecules, which 

elongates until it ruptures and releases the solvated ion. The energy barrier 

required for the ejection of the solvated ion is ~32 kJ/mol, and MD simulations 

have shown that ions do not always adopt a trajectory that overcomes this 

barrier and results in ejection28. However, Fenn et al. showed that the enthalpy 

of condensation released from the bonding of solvent vapor molecules to the 

Rayleigh-charged droplet surface can greatly assist this process via 1) drastically 

raising the droplet temperature and/or 2) providing the necessary energy for 

evaporation of nearby molecules. In the first case, the adsorption of the incident 

vapor molecule causes a localized “hot spot” as the vapor molecules bond 

noncovalently with the droplet solvent molecules (i.e., in an exothermic 

reaction)43. The enthalpy of condensation is then conducted through the entire 

droplet. In the second case, the condensation enthalpy is absorbed locally and 

results in the evaporation of a nearby molecule, molecules, or the incident 

vapor molecule itself. Fenn et al. conclude that, whether either of the two 

processes are predominant, the condensation enthalpy of incident vapor 

molecules increases the flux of ions from the droplet surface into the 

surrounding gas43. After release and extraction into the MS inlet, the solvated ion 

sheds the remaining solvent clusters through successive collisions with gasses42. 

The CRM is widely accepted as the model for the release of large globular 

proteins from charged ESI droplets. In CRM, single analytes are retained in the 

Rayleigh-charged nanodroplets that evaporate over time, and, as the last 
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solvation shell evaporates, the solvent charges transfer to the analyte47-49. 

Throughout the process, the droplet sheds small ions as well as solvated protons 

via IEM ejection to remain close to the Rayleigh limit as the nanodroplet radius 

shrinks47, 49. Although evidence from MD simulations is lacking due to the long (> 

1 µs) timescales and computational demands, there is strong experimental 

evidence for CRM protein ion formation in that observed protein charge states 

are close in composition to [𝑀 + 𝑧 𝐻] , where zR is the Rayleigh charge28, 29, 50-

52. CRM also accounts for the attachment of non-proton charge carriers such as 

Na+ or K+ when they are present in the nanodroplet. Formation of sodium and/or 

potassium adducts occur when the protein terminal or residue carboxylates or 

other high affinity functional groups bind Na+ or K+ just prior to complete 

solvent evaporation. If the population of adducted charge carriers is 

heterogeneous, the protein ion count is spread over multiple adduct peaks (e.g., 

[𝑀 + (𝑧 − 𝑖 − 𝑗)𝐻 + 𝑖𝑁𝑎 + 𝑗𝐾] ) with reduced signal-to-noise ratio (S/N) as 

opposed to a single [𝑀 + 𝑛𝑋]  peak where X is any single charge carrier with 

maximum possible S/N28, 53. 

Proteins that unfold during or before the ESI process are desolvated and 

ionized according to the CEM. Protein folding and adoption of protein 

conformations are mediated by pH-dependent electrostatic interactions; when 

subject to acidic solvent conditions commonly used for ESI of proteins, 

electrostatic interactions are disrupted via protonation of basic amino acid 

residues28, 54. These proteins then adopt a highly disordered structure, and the 
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hydrophobic amino acid residues that reside in the hydrophobic core of 

physiological protein conformers are exposed to the charged solvent 

environment of the ESI nanodroplet55. Due to their hydrophobic character, 

unfolded protein (or perhaps any partly nonpolar polymer) chains are pushed to 

the surface of a Rayleigh-charged nanodroplet as indicated by MD simulations28. 

Starting with one terminus, the polymer chain is ejected from the nanodroplet 

to the gas-phase until the chain is completely expelled. The unfolded and 

disordered polymer chain can carry many charges, protons, and other charge 

carriers as each amino acid residue is ejected. On a residue-by-residue basis, the 

CEM resembles the IEM for charge-attachment and ejection of small organic 

molecules28. The short timescale of CEM is also similar to that of IEM (i.e., on 

the scale of ns) rather than the longer timescale of CRM (i.e., on the scale of 

µs)28, 54, 56, 57. The faster kinetics of CEM results in better desolvation, ionization 

efficiency, and extraction of protein molecular ions into the MS inlet result in 

greater detected ion intensity, as compared to signals from MS experiments that 

constrain ionization mechanisms to CRM28, 56.  Given the kinetics and timescale 

of CRM, many proteins remain trapped in the ESI nanodroplet when they reach 

the interface region of the MS inlet resulting in poor extraction into the MS inlet. 

However, the analytes that were analyzed in this work (e.g., polypeptides, lipids, 

and metabolites) were likely generated by the IEM (for lipids, metabolites, and 

polar peptides) and CRM (for nonpolar peptides). 
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1.2.4 Ultraviolet Matrix-Assisted Laser Desorption/Ionization 
 

UV-MALDI is a common method for MS surface sampling and imaging of 

biological substrates as it has been well-adapted for analysis of a wide range of 

biological analytes, including proteins58-60, lipids61-63, and polar metabolites64, 65. 

As the name denotes, MALDI utilizes an added matrix compound to assist in the 

ionization of analytes upon irradiation by a UV or IR laser. Several models for 

ionization have been proposed and defended39, 66-71, but there is a general 

consensus that the ionization process occurs in two steps: primary ion 

formation followed by secondary reactions in the expanding plume39, 66, 72. The 

first step begins with the absorption of laser radiation by the matrix and 

conversion of the laser energy to heat; this rapid heating causes for gas-phase 

phase expansion and disintegration of the sample into a rapidly expanding and 

cooling plume72. The primary ion formation step occurs on the nanosecond 

timescale; this process begins with the irradiation of a laser that, depending on 

the laser system, has a pulse width of ~3-7 ns. Following the laser irradiation 

event photons are absorbed to initiate the condense phase ionization of the 

matrix molecules, which is followed by relaxation of the matrix molecules’ 

excited states over the course of tens of nanoseconds39, 73-76. Following primary 

ionization in the condensed phase, the expansion of the irradiated matrix into 

the gas phase occurs over a much longer period (i.e., over tens of 

microseconds)39, 77-81. Ion pair generation stops during this phase as the energy 

density of the system is decreased by physical expansion and heat release39. 



16 
 

Several models describe the process of primary ion formation in UV 

MALDI, and they can generally be divided into two categories: excited and 

ground electronic state models66, 67, 76. Among the excited electronic state models, 

there are the exciton pooling (EP), multiphoton ionization (MPI), and excited-

state proton transfer (ESPT) models66, 67, 76. The cluster model, 

autoprotolysis/polar fluid (PF) model, and preformed ion emission constitute 

the ground electronic state models66, 67.  

In the MPI model, primary ions are generated through, as the name 

denotes, multiple photon absorption events that raise the molecular energy state 

above its ionization threshold. Generally, molecules used as matrix have 

ionization energies of ~8 eV or higher (e.g., ionization energy of dihydroxy 

benzoic acid (DHB), a commonly used MALDI matrix, is 8.054 eV39, 71), requiring 

3 UV photons for photoionization. However, given the generally low laser pulse 

energies and ns laser pulse widths used in MALDI, this event has a relatively low 

chance of occurring82. Although matrix-matrix interactions do not significantly 

lower ionization potentials, analyte-matrix interactions have been demonstrated 

to lower ionization potentials significantly, especially if proton or electron 

accepting groups are present83, 84. For example, the interaction between DHB 

and proline lowered the ionization potential of DHB to 7 eV83. In most of such 

cases, favorable interactions reduce the photon absorption requirement to 2 UV 

photons; however, the generally large matrix:analyte ratio (~1000:1) necessitates 

that the majority of laser light is absorbed through matrix-only mechanisms and 
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that these mechanisms are responsible for the generation of the majority of 

ions39. Moreover, Knochenmuss asserts that the MPI model is incompatible with 

the fact that most analyte ions are formed through secondary reactions with 

ionized matrix molecules and not direct ionization of matrix-analyte 

complexes39. 

The EP model overcomes some of the shortcomings of the MPI model. 

The EP model asserts that photon energy, once absorbed by the matrix-rich 

solid, migrates within the solid as transferred excitation energy in the form of 

pseudo-particles called excitons85. Following a period of migration, excitons 

concentrate or “pool” in which electronic excited state energy is redistributed 

between two molecules. Three or more localized excitons in a molecule—

presumably matrix—can pool energy to make a transition to an excited-state 

quantum level above its ionization energy threshold81. The migration and 

pooling effect remove the need for direct 2 or 3 photon photoionization events to 

generate primary matrix ions. However, upon ionization, radical matrix cations 

(M+•) are generated thus necessitating a downstream mechanism for generation 

of protonated [M+H]+ and deprotonated [M-H]- matrix ions observed by positive 

and negative polarity MS modes, respectively86. 

The ESPT model describes proton transfer from excited-state matrix M* 

to analyte (A) and then to matrix molecules (M) to produce [A+H]+ and [M+H]+, 

respectively39, 67, 87. However attractive ESPT might be given its 1 UV photon 

absorption requirement and the large increase in acidity of some molecules 
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upon excitation88, Knochenmuss disapproves of the model primarily because 

molecules that engage in ESPT efficiently serve poorly as MALDI matrixes39. 

Secondarily, ESPT systems are usually only active in solvating water or amine 

environments, and the MALDI plume, though it does adopt some properties of a 

polar fluid, likely does not equally solvate39. 

Among the ground electronic state models, the autoprotolysis model 

asserts the simultaneous production of [M+H]+ and [M-H]- via proton 

abstraction between M + M67. The polar fluid model expanded on this model to 

include dielectric stabilization of cations and anions; this is theorized to occur 

through the generation of a MALDI plume that acts as a dense polar fluid that 

has solvating properties89, 90. However, Knochenmuss contends that the plume 

fluid is not polar enough to cause significant separation of counterions, 

especially in the hot plume environment in which dielectric constants would 

decrease39. Lastly, the pKa of matrix autoionization (M + M → [M+H]+ + [M-H]-) 

should determine ion yield, but does not39, 89. 

Preformed ion emission assumes that some of both matrix and analyte 

molecules exist as ionic species in the solid and that both are emitted upon laser 

irradiation and desorption/ablation67, 91-93. It also assumes some degree of 

autoprotolysis for generation of [M-H]- in the solution phase66. 

Under laser ablation conditions, the cluster model describes generation 

of large gas-phase aggregates comprised of analyte and matrix molecules either 

in neutral or ionic forms68-70. In this case, charge separation occurs by 
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mechanical disruption and rapid disintegration of the solid; it is possible then 

that large amounts of positive or negative charges can accumulate on the 

aggregates. Following aggregate ejection, free ions must either be generated by 

evaporation of neutral matrix or by ion ejection from the aggregate. As a note, 

analyte ions may also be generated by intra-cluster charge transfer from matrix, 

but that process falls under secondary reactions. Using a variable repulsive 

potential before extraction to the MS, the Tabet group detected large aggregates 

comprised of mostly matrix molecules up to 50 kDa in mass94, 95. Further 

evidence has also given support for “hard” and “soft” evaporative pathways74. 

Hard pathways are characterized by evaporation of matrix ions resulting in only 

low charge state analytes. Soft pathways are characterized by loss of neutral 

matrix molecules, often resulting in high charge state analytes. 

 
1.3 Mass Analyzers in Mass Spectrometry: Time-of-flight and Orbitrap 

 
Following ionization, the next two major components of MS instruments 

are the mass analyzer and detector. Mass analyzers separate ions in space and 

time such that ion populations of different mass-to-charge ratios (m/z) can be 

detected distinctly from one another. A requirement for all mass analyzers is 

high vacuum to varying degrees depending on the analyzer. Lower pressures are 

required in systems that require longer ion flight trajectories from which ions 

might deviate if colliding with gaseous species. Currently, some of the 

commonly used mass analyzers include transmission quadrupoles, quadrupole 
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ion traps, Fourier transform ion cyclotron resonance (FT-ICR), time-of-flight 

(TOF), and Orbitrap devices. In general, transmission quadrupoles separate ions 

by scanning through radiofrequency (RF) and direct current offset voltages 

applied to metal rods that allow for selection of m/z ranges with stable ion flight 

trajectories through the analyzer to the detector.96, 97 Ions with unstable 

trajectories collide with the metal rods and are lost. Quadrupole ion traps 

operate in a similar manner; ions are confined in 2 or 3 dimensions (in linear 

and 3D ion traps, respectively) with combined RF and DC fields that can be 

selectively ejected from the ion trap based on the m/z dependent ion trajectory 

stabilities.96, 97 Linear quadrupole ion traps confine ions in the 3rd dimension in a 

voltage well by applied DC voltages to each end of the trap. Quadrupole-based 

mass analyzers are high throughput due to rapid scan rates but are limited in 

their mass resolution (measured as m/m50%, the peak width at 50% of peak 

height divided by the m/z) and mass accuracy. Quadrupole mass analyzers are 

often coupled with higher resolution mass analyzers and operate as ion guides 

or mass filters; however, if quadrupoles are the primary mass analyzer in a 

system, they are often paired with discrete-dynode or continuous-dynode 

electron multiplier detectors97.  

FT-ICR confines and measures ions in a Penning trap which utilizes a 

strong homogenous magnetic field to radially confine ions in a cyclotron motion 

via the exertion of the Lorentz Force on the ions in a cubic or cylindrical cell 

comprised of two excitation and two detection plates98. The frequency of the 
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cyclotron motion is directly related to the charge and inversely related to the 

mass of the ion, and, following an RF excitation that increases the radii of the 

ions flight trajectory at resonant frequencies, the “coherent” cyclotron motion is 

detected by image current detection98. Therefore, in FT-ICR cells, lower mass 

ions have higher cyclotron frequencies than that the higher mass ions. Finally, 

the detected complex time-domain waveform signal, often called the transient 

or free induction decay, is converted to frequency domain via Fourier transform 

conversion of the data followed by conversion to m/z98 values that represent 

these ICR frequencies. As the two specific types of mass analyzers used in this 

work, details of TOF and Orbitrap instruments are provided in the following 

section. 

 
1.3.1 Time-of-flight and Microchannel Plate Detectors 
 

For this work, several TOF-based systems were used for LC/ESI-MS 

analysis of lipid and peptide mixtures extracted from rat brain and MALDI-MS 

imaging analysis of lipids from a human kidney section; a brief review of TOF 

development and theory is discussed below. In TOF-MS analysis, ions are 

separated by accelerating them across a distance, or field-free region, to a 

detector. The time required for ions to traverse the field-free region is directly 

related to square root of its mass and inversely related to square root of its 

charge. After the ion extraction from the source, ions are accelerated through a 
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potential difference, and their m/z dependent potential energies are converted 

to kinetic energies according to the equation 1-3: 

 1

2
𝑚𝑣 = 𝑧𝑒𝑉 1-3 

 

where m is the mass of an ion in kg, v is its velocity in m/s, e is the charge of an 

electron, z is the number of charges, and V is the ion acceleration potential. Ions 

entering the field-free region have different velocities (v) 

 
𝑣 =

2𝑧𝑒𝑉

𝑚
 1-4 

 

that depend on their mass. Hence, the time (t) required for ions to traverse the 

field-free region 

 
𝑡 =

𝑑

2𝑧𝑒𝑉
𝑚

 1-5 

 

(where d is the length of the field-free drift region) is dependent on the mass of 

the ion and can be used to calculate ions’ m/z values by the rearranged equation 

1-6: 

 𝑚

𝑧
= 2𝑒𝑉

𝑡

𝑑
 1-6 

 

Early TOF instruments were linear and ions generally flew in a straight 

path from ion source to detector. In competition with other early magnetic 

sector, quadrupole, and FT-ICR instruments, TOF offered a number of 
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advantages that still remain as compelling rationale for their use today: 1) fast 

acquisition rates at 10s of microseconds per spectrum, 2) theoretically infinite 

mass range, 3) capacity for broadband m/z detection in the same period, and 4) 

mass-independent resolving power99. The early TOF instruments used pulsed 

ion sources such as laser desorption, 252Cf plasma desorption, and field 

desorption to generate discrete ion packets that were immediately extracted by 

application of a large potential (25-30 kV). Under these high ion acceleration 

fields,  ion packets with high velocities and relatively small kinetic energy 

distributions were produced to yield high ion detection efficiencies that 

minimized adverse effects on mass resolution100. Further efforts to reduce initial 

velocity, temporal, and spatial distributions of ions led to implementation of 

reflectron ion mirrors which improved mass resolution by lengthening the ion 

flight path (and thus separation time) and narrowing ion packet widths at the 

detector101. Additionally, methods for delayed source extraction were 

implemented to the same effect; instead of applying a static potential that would 

immediately and continuously accelerate ions into the field-free region, a 

delayed potential pulse would follow ~200-500 ns after desorption to extract 

ions. Delayed extraction compensates for differences in initial velocities of ion 

packets from the source and accelerates them differentially based on their 

position relative to the extraction plate. A detector placed at certain place in the 

flight path would detect simultaneous ion impacts as faster ions traverse a 

greater distance to catch up with the slower ions at the detector plane. 
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Reflectrons compensate for these distributions in initial velocities in a similar 

way; ions with greater initial velocities travel further into the reflectron field 

than slower ions and the packet of ions coalesces at the detector plane for 

simultaneous detection. 

TOF instrumentation were designed first with pulsed ion sources in mind; 

early implementations utilized very short laser pulses100 (1-5 ns) or simultaneous 

detection events (252Cf plasma desorption102) as a start time after which ion’s time 

of flight was recorded. However, continuous ion sources such as ESI were less 

compatible and required gating of ion beams103. The implementation orthogonal 

acceleration (oa) demonstrated by Guilhaus and Dawson marked a departure 

from previous methods in ways that increased mass resolution, sensitivity, and 

compatibility with continuous ion sources104. Generally, oa-TOF-MS instruments 

utilize ion optics to focus and transmit an ion beam from the ion source to the oa 

region. Once full, the oa, which is usually a series of conducting electrodes, 

rapidly pushes the ion beam orthogonally to its velocity into the field-free 

region. The “push” is applied by rapidly generating a potential between one or 

more pairs of electrodes in the oa. One large advantage of the orthogonal 

geometry was its capability to reduce the average initial velocity component of 

the ion beam in the TOF direction to zero and, therefore, narrow the 

distribution of initial velocities in the TOF direction105. Additionally, the kinetic 

energies of the ion beam form the source and the drift ions could be controlled 

independently such that the oa region of the TOF could be filled in roughly the 
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same time as was necessary for the largest m/z ions to traverse the field-free 

region105. The accumulating ion beam was therefore made as parallel as possible 

to narrow and reduce the average velocity in the TOF direction. For continuous 

ion sources in ambient conditions, this was best achieved via collisional cooling 

of the ion beam with inert gas molecules in RF-only ion guides, which reduced 

the average energy of the ion beam to that of the inert gas105. 

The oa-TOF design has been implemented in many hybrid MS systems in 

which two or more mass analyzers are coupled in series. In each, the ion beam 

passes through multiple stages of mass analyzers and ion optics that can 

perform collisional cooling, m/z filtering, and/or ion fragmentation. In 

particular, the quadrupole TOF (Q-TOF) configuration has found use in many 

analyses of biological molecules due to its high sensitivity and mass accuracy. 

The most common Q-TOF configuration utilizes two transmission quadrupoles 

in series followed by the oa-TOF mass analyzer (QqTOF). In general, the first 

transmission quadrupole collisionally cools ions extracted from the ion source 

acting as ion guide or an m/z filter, and the second quadrupole acts as a collision 

cell for collision-induced dissociation of precursor ions to collect fragmentation 

data in the subsequent oa-TOF analyzer. One of the TOF instruments utilized in 

this work is a Waters Synapt G2-S HDMS which is a variant of Q-TOF and 

includes a resolving quadrupole and a series of stacked ring ion guides (SRIG) 

that are used to trap, transmit, and fragment ions as well as perform ion 

mobility separations. SRIG consist of stacks of ring electrode pairs on which 
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radially confining RF voltages are applied with DC offsets to push or trap ions106. 

The first SRIG following the resolving quadrupole is the trap cell which guides 

and accumulates ions before periodically gating them into the ion mobility cell 

by modulating a superimposed DC voltage on the final electrode. The second 

SRIG is the travelling wave ion mobility cell that, when in operation, separates 

ions by ion collisional cross section as they are periodically pushed by a 

“travelling” half-sinusoidal DC offset potential against a drag force produced by 

collisions with inert gas molecules. The third SRIG is the transfer cell which 

transmits ions from the ion mobility cell to the oa region of the TOF. However, 

for this work, the resolving quadrupole and all SRIGs were operating as ion 

guides with no ion mobility separation or collisional activation. Additionally, MS 

data from a Waters Xevo G2 Q-TOF was used; the Xevo G2 Q-TOF is very similar 

in configuration to the Waters Synapt G2-S except without the travelling wave 

ion mobility cell and transfer cell. Instead, one travelling wave ion guide 

extends from a resolving quadrupole to the entrance of the TOF analyzer. 

The most common type of detector used in TOF instrumentation is the 

microchannel plate (MCP) detector. In principle, it acts much like an electron 

multiplier which transduces ion current to electric current via secondary 

emission of electrons. However, MCPs have many small tubes or microchannels 

that traverse the plate at a small angle from the normal of the surface that each 

act like electron multipliers when a large potential is applied across the plate. 

The microchannel offset angle guarantees that ions that enter the channel 
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impact on the walls. When a large potential is applied across the plate, ion 

impact in a channel causes a cascade of emitted electrons that cause 

multiplication of electrons with each subsequent impact through the channel 

until they reach the detector anode. The multiplication effect causes a large 

amount of signal gain that allows sensitive detection of low numbers of ions in 

MS. Following ion impact and electron cascade, MCPs require a rest period for 

charge replenishment from an external voltage source107. Furthermore, the 

detector gain can be increased by stacking two (or more) MCP and rotating the 

second 180° from the first such that aligned microchannels form a chevron (or 

zig zag) pattern. So called “Chevron MCP” are commonly used in TOF 

instruments today. Importantly for oa-TOF instruments, MCP detectors can be 

made large enough to detect the full width of the ion beam on the axis 

orthogonal to the oa-TOF acceleration, which spreads after acceleration into the 

field-free region proportionately to the distribution of kinetic energies in the ion 

packet105. Notably, some arrival time spread can be introduced by variable 

degrees of penetration into MCP microchannels, and therefore the smallest 

diameter microchannels should be used108. 

Following ion impact, the electrical current collected by the anode is 

converted to digital signal in one of two ways in TOF system: 1) analog-to-digital 

converters (ADC) or 2) time-to-digital converters (TDC). TOF systems with 

pulsed ion sources such as MALDI typically use ADC to digitize signal for their 

wide dynamic range as pulsed ion sources produce a large number of ions per 
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pulse108. ADC are not generally used with oa-TOF systems due to the background 

noise produced by analog signal detection. Alternatively, oa-TOF systems use 

TDC which have a smaller dynamic range but are much more sensitive and can 

be used to record single ion impact events. This increased sensitivity is 

important in ion fragmentation experiments conducted with hybrid oa-TOF 

systems as ion counts of fragment ions can often be very low. When an ion 

strikes the MCP, a pulse of electrons is generated and subsequently amplified 

and used to generate a timing pulse to the TDC. The TDC registers the arrival 

time of the pulse relative to the initial time point when the ions were accelerated 

into the field-free region, producing a series of triggered arrival times. Over the 

course of many TOF detection events in an acquisition (or scan) period, the 

triggered arrival times are summed in memory to produce a mass spectrum. 

Following a TDC timing pulse, there is a certain deadtime that follows over 

several nanoseconds in which no ion impacts can be registered. The length of 

TDC deadtime defines the dynamic range of TDC detectors; for example, if two 

ions that follow each other in rapid succession, the first ion impact event will 

register on the TDC, but the second will not if it arrives during the deadtime. 

TDC detectors have been improved over time by decreasing detector deadtime 

and by using MCP with multiple collection anodes connected to separate TDC 

channels. 
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1.3.2 Orbitrap and Image Current Detection 
 

Beyond TOF data, this work also utilized data from an Orbitrap Q-Exactive 

HF MS system for acquisition of LC/MS lipidomics data. A brief review of the 

theory behind Orbitrap mass analyzers and detection systems is provided below. 

Similar to FT-ICR, Orbitrap mass spectrometers trap ions and measure the m/z 

of ions based on their ion motions frequencies in the trap. Orbitrap utilize an 

improved implementation of the Kingdon trap which was an early ion storage 

device that trapped ions in a pure electrostatic fields (as opposed to Penning 

traps that utilize magnetic fields as well)109. The early Kingdon trap used a thin 

wire cathode run through the center of a cylindrical anode with two electrodes 

capping the volume on both ends of the cylinder. DC voltage were applied 

between the wire and cylinder to generate a radial logarithmic potential () 

given by  

 𝛷 = 𝐴 𝑙𝑛 𝑟 + 𝐵 1-7 
 

(where A and B are voltage-dependent constants110 and r is the radial 

coordinate), and ions, when injected into the volume with a sufficient velocity 

perpendicular to the wire electrode, adopted a stable orbit around the wire if the 

potential difference between the wire and cylinder electrodes is great that the 

value given by  

 
𝑞𝑉 =

1

2
𝑚𝑣

𝑅

𝑟
 1-8 
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(where R is the radius of the cylinder anode, r is the radius of the wire cathode, 

m is the mass of the ion, q is the charge of the ion, and v is the initial velocity of 

the injected ion). Application of DC voltages on the end-cap electrodes confined 

the ions in the axial direction. Later, Knight modified the outer cylinder 

electrode of the Kingdon trap to produce a quadratic axial potential given by  

 
𝛷 = 𝐴 𝑧 −

𝑟

2
 1-9 

 

(where r is the radial coordinate, z is the axial coordinate, and A is a voltage and 

geometry dependent constant) which produced harmonic oscillations of ions 

along central electrode. The combination of the quadratic axial potential and the 

logarithmic radial potential produced a cylindrically symmetric electrostatic 

potential given by  

 𝛷 = 𝐴 𝑧 −
𝑟

2
+ 𝐵 𝑙𝑛(𝑟)  

 
1-10 

(where B is an additional geometry and voltage dependent constant)109. The 

radial logarithmic potential provided radial confinement of ions, and the 

quadratic axial potential provided the harmonic oscillation of ions along the 

inner electrode; however, Knight observed that resonances were weaker and 

frequency shifted from expected values for quadrupolar fields and surmised 

that they may be distorted by the logarithmic radial field109. These distortions 

were confirmed by simulation experiments, and ideal Kingdon trap was 

demonstrated to have spindle-shaped equipotential lines in order to achieve a 
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harmonic potential field111. The ideal Kingdon trap was demonstrated 

experimentally first by setting voltages on a system of electrodes to match the 

equipotential lines produced from equation 1-10 by the Russel group where m/z 

ratio was determined by ICR frequency111, 112. Makarov then demonstrated an 

ideal Kingdon trap by shaping the central electrode to match the equipotential 

lines to create the orbitrap mass spectrometer113. 

In summary, the orbitrap mass analyzer is a Knight-style Kingdon trap 

with a central spindle-shaped electrode inside of a barrel-shaped outer 

electrode. A DC potential is generated between to the two electrodes to produce 

a potential field gradient (U) given by  

 
𝑈(𝑟, 𝑧) =

𝑘

2
𝑧 −

𝑟

2
+

𝑘

2
(𝑅 ) 𝑙𝑛

𝑟

𝑅
+ 𝐶 1-11 

 

(where r is the radial coordinate, z is the axial coordinate, k is the axial restoring 

force, Rm is the characteristic radius, and C is a constant). Only ions with orbital 

radii less than Rm will enter stable trapping trajectories. Notably, the stability of 

ion trajectories is dependent on both orbital motion around the central spindle 

electrode and on the harmonic oscillations in the axial direction113, and, given 

the lack of cross terms in equation 1-11, orbital motion and harmonic 

oscillations are independent of each other114. Although it was initially thought 

that m/z of ions might be measured by the frequency of orbital motion, these 

measurements were sensitive to small changes in ion properties upon injection 
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into the trap113. Orbitrap, however, uses the axial harmonic frequency of ion 

motion along the z-direction given by  

 
𝑧(𝑡) = 𝑧 𝑐𝑜𝑠

𝑘𝑞

𝑚
𝑡 +

2𝐸

𝑘
𝑠𝑖𝑛

𝑘𝑞

𝑚
𝑡  1-12 

 

(where z0 is the initial axial amplitude, Ez is the initial ion kinetic energy,  and m 

and q are the mass and charge, respectively) to determine the m/z of ions 

because it is independent of the initial injection velocity and radius113.  

In contrast to TOF and similarly to FT-ICR, mass resolution is dependent 

on m/z. However, compared to FT-ICR, the resolving power of orbitrap 

decreases more slowly given the inverse proportionality of the frequency of 

axial oscillations with (m/q)1/2 in orbitrap and the inverse proportionality of ICR 

frequency with m/q. Mass resolution and resolving power are primarily affected 

by the length of the transient but are also impacted by instability of voltage 

supplies, machining imperfections, and necessary concessions in orbitrap cell 

design which include the gap between the two outer electrodes and the injection 

slot114, 115. Additionally, mass resolution can decrease as a function of molecular 

collisional cross section; ion impacts with inert gas molecules can cause 

fragmentation, loss of ion packet coherence, or ejection from the trap and thus 

necessitate the use of ultrahigh vacuum to minimize such events115.  

Ions are detected by image current at the outer electrodes, which are 

divided at the center of axial plane (z = 0). The image current from each half of 
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the outer electrodes are differentially amplified and sampled by a digitizer to 

convert it to a time-domain digital signal transient. The time-domain signal is 

converted to a frequency spectrum by fast Fourier-transform116 and then to m/z. 

More recently, Makarov et al. introduced enhanced Fourier transform that 

utilizes the phase information of the Fourier transform (specifically the 

“absorption” spectrum from the real component), the magnitude spectrum (i.e., 

the root sum squared of real and imaginary components), and finite-impulse-

response filtering to increase Orbitrap mass resolution up to two-fold over 

significantly shorter detection periods117. 

 
1.4 Ultra-Performance Liquid Chromatography Coupled to Mass Spectrometry 

 
The total peak capacity of MS analyses of complex mixtures has been 

greatly improved via the coupling of MS with in-line chemical separation 

devices. In this context, “in-line” is describing the connection of the 

chromatography outlet directly to the MS ion source interface. Chemical species 

in mixtures that are separated in-line with the MS are sampled continuously, 

and individual fractions are not collected. Ultra-performance liquid 

chromatography (UPLC) is a common chemical separation method that is 

coupled with MS systems for detection40, 118, 119. Given that chemical separations 

with UPLC occur in solution phase, the outlet of UPLC systems is coupled to a 

liquid phase MS ionization source that operates at ambient pressure such as 

those described in Chapter 2.2 and 2.330, 31, 36, 37, 120. ESI is the most common 
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ionization interface used for its wide compatibility with various UPLC flowrate 

regimes (e.g., ~0.2 µL/min – 500 µL/min) and with medium polar to polar 

biological analytes33, 40, 118, 119. 

In UPLC separations, analytes are dissolved in a mobile phase liquid that 

is being forced through an immiscible stationary phase that is fixed within a 

column40. The mobile phase and stationary phase are specifically chosen to 

mediate interactions with analytes such that analytes will distribute between the 

mobile and stationary phases depending on some chemical property40. Analytes 

that distribute preferentially into the stationary phase will move through the 

column more slowly relative to the flow of the mobile phase40. Analytes that 

distribute preferentially into the mobile phase will travel quickly through the 

column. The differential retention of analytes on the stationary phase and 

migration rates through the column result separation of homogenous analyte 

mixtures into discrete migrating bands. Upon injection of a sample mixture, 

analytes distribute into the mobile and stationary phases, and, with introduction 

of fresh mobile phase into the column, the eluent—the part of the sample 

contained in the mobile phase—moves through the column and continually 

partitions between the mobile and stationary phase40. Given that analytes can 

only move through the column in the mobile phase, analyte migration rate 

depends on the average fraction of time spent in the mobile phase40. With 

continuous mobile phase flow, the eluent will eventually exit, or elute from, the 
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column. The goal of UPLC is to elute pure analyte bands for collection or 

detection by MS or some other suitable detector.  

 
1.4.1 Reversed-Phase Chromatography 
 

Many types of intermolecular interactions between analytes and mobile 

and stationary phases are utilized in UPLC applications, and various UPLC 

methods take advantage of a variety of mechanisms that mediate analyte 

partitioning between mobile and stationary phases. Most UPLC applications are 

conducted with a nonpolar reversed-phase (RP) stationary phase and a polar 

mobile phase; RP-UPLC is therefore most suitable for separation slightly polar to 

very polar and ionic chemicals40, 97, 118, 120. Some applications may use a static 

mobile phase, or isocratic, separation in which the composition of the mobile 

phase is not changed for the duration of the separation; however, it is far more 

common to use a gradient separation in which the composition of the mobile 

phase is changed as a function of time40, 97. For RP separations, the polarity of the 

mobile phase is adjusted by mixing solvents of different polarities to make the 

mobile phase more nonpolar with respect to time97. A common pair of solvents 

for gradient mobile phase separations are water and acetonitrile97. Changing the 

polarity of the mobile phase is useful to modulate the retention factor of 

analytes and increase the resolution of chromatographic separations40, 97. 
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1.4.2 Considerations for Coupling with ESI-MS 
 

The coupling of the UPLC outlet to MS for detection introduces several 

factors for consideration to prevent degradation of MS signal. Firstly, MS is 

sensitive to background contaminants and dissolved gasses that may not be an 

issue for other detectors; therefore, it is necessary to use ultrahigh purity 

solvents that have been degassed prior to use33, 40, 97. Secondly, depending on the 

ion source interface used, the mobile phase may have to be modified to allow 

efficient analyte ionization and detection33. For ESI, it is often necessary to add 

formic or acetic acid to small percentage (~0.1-1%, v/v%) to provide free protons 

for generation of protonated molecular ion species in positive-ion mode33. 

Thirdly, signal suppression by matrix effects can significantly decrease or even 

eliminate signal from analytes if UPLC or sample preparation parameters are 

not optimized120.  

 
1.5 Analyte Annotation in MS Lipidomics and Metabolomics 

 
 
1.5.1 Introduction to Analyte Annotation Strategies in MS 
 

Mass spectrometry has been proven a powerful tool for untargeted 

identification and quantitation of unknown chemical species in biological 

systems4. To date, MS has been broadly applied in characterizations of large 

populations of lipids and metabolites4, 6, 121. The process of assigning chemical 

information to detected MS features is called “annotation”. Annotations can vary 

in their level of detail and can include class, structure, stereochemistry, and/or 



37 
 

definitive identity information3, 5, 7. In order to acquire this information, MS 

systems are designed to operate in two general modes: 1) single-stage MS which 

measures the m/z and abundance of molecular ion species and 2) multi-stage, or 

tandem, MS which measures the m/z and abundance of fragment ions generated 

from precursor ions by some form of energetic activation.  

This dissertation describes two analytical tools that are purposed towards 

annotation of MS features, which are discussed at length in Chapters two, three, 

and four. To test the performance of these feature annotation tools, MS peaks in 

LC/ESI-MS and MALDI-MS acquisitions were assigned by mass accuracy, 

relative isotopic peak intensity, and tandem MS fragmentation spectra 

matching, which are discussed in the following section. 

 
1.5.2 Elemental Composition Determination by Mass Accuracy 
 

In untargeted metabolomics and lipidomics, single-stage MS provides 

chemical information primarily by measurement of mass accurate 

monoisotopologue peaks which is directly related to the elemental composition 

of the compound122. The term “monoisotopologue” refers to a molecule that 

contains in its elemental composition the most abundant naturally occurring 

isotopes of each element. Accurate mass measurements benefit greatly from 

low mass measurement error and high mass resolving power of the modern 

instruments. Much like percent error, mass measurement error (MME) in parts-

per-million (ppm) can be calculated dividing the difference between the 
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experimentally measured value and its theoretical value to theoretical values 

multiplied by one million: 

 
𝑀𝑀𝐸 =

𝑀 − 𝑀

𝑀
∗ 10  1-13 

 

where MT is the theoretical m/z of the putative identification and the ME value is 

the experimentally assigned m/z values for the detected feature. Although 

different conventions can be used to define mass resolving power (MRP)123, in 

this dissertation we will use the following definition for MRP: 

 

 𝑀𝑅𝑃 =  
𝑚

𝛥𝑚 %
 1-14 

 

where m is the m/z value of the peak maxima (or centroid) and m50% is the full 

width of the peak at half its maximum intensity.  

TOF and hybrid Q-TOF instruments are particularly well suited for 

untargeted metabolomics and lipidomics for their fast duty cycle with scan 

rates, that are generally between 1-5 Hz and therefore easy to couple with UPLC 

systems. However, the resolving power of hybrid Q-TOF systems used in LC/MS 

experiments is limited (generally < 40,000) and their achievable mass accuracy 

with internal calibration is usually within 5 ppm124. Although suitable in many 

applications, Q-TOF mass accuracy tends to produce ambiguous identifications 

in metabolomics and lipidomics because there are often many elemental 
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compositions that produce m/z within 5 ppm error125, 126. Additionally, 

insufficient mass resolving power can have deleterious effects on mass accuracy 

due to m/z convolution of isobaric species127. Isobaric species are those which 

have the same nominal mass (denoted by an m/z integer value) but have a 

different monoisotopic exact mass. With insufficient mass resolving power, MS 

peaks from isobaric ions can be convolved such that they cannot be 

discriminated in the m/z domain. However, due to the difference in exact mass, 

convolution of isobaric ions is likely to shift the peak centroid away from the 

exact mass of each convolved species, resulting in increased MME and 

ambiguity127-129.  

To address this problem, the MS community develops and employs ultra-

high MRP instrumentation. Orbitrap instruments now consistently achieve MRP 

greater that 60,000 up to 1,000,000, and FT-ICR has achieve greater than 

1,000,000 mass resolving power and will inevitably increase further as the field 

strengths of superconducting magnets continue to increase114, 117, 130-132. With this 

increase in MRP, FT-MS instruments can routinely produce mass accurate 

measurements below 1 ppm, and high field FT-ICR can achieve routine mass 

accuracy below 0.1 ppm; this is particularly advantageous in lipidomics in which 

mass differences between monoisotopic peaks of isobaric lipid molecular ions 

of less than 10 mDa are commonplace130.  

Accurate mass measurements are generally purposed towards 

determination of elemental composition (EC)133, 134. Of course, multiple 
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structurally distinct compounds may share the same EC, but its determination is 

an important step in definitively identifying a compound. In general, as MME 

decreases, the number of potential EC that have exact mass values within the 

error window also decrease, which increases the confidence associated with the 

best assignment126. Ultimately, the goal is to determine a unique EC. However, 

even with high mass accuracy (MME < 1 ppm), many conceivable EC can be 

possible matches for acquired m/z in mid to high mass regions (m/z > 300) 

assuming EC are limited to C, H, N, S, O, and P. EC assignment with 1 ppm MME 

becomes more unrealistic for molecules with complex ECs that include diverse 

heteroatoms125. In efforts to address this ambiguity in metabolomics and 

lipidomics analyses, it is common practice to search experimental m/z against 

metabolomics or lipidomics databases that include characterized or theorized 

metabolites or lipids, respectively135. Searching against more refined lists of 

compounds limits potential ECs but also increases the potential for discovering 

uncharacterized chemical species not included in chemical databases. 

Therefore, there is a compelling interest in providing additional orthogonal 

evidence for EC assignment in MS analyses. 

 
1.5.3 Isotopic Envelope Analysis 
 

In addition to accurate mass measurements, high resolution MS1 

measurements yield information about the abundance of different isotopes in a 

molecule134, 136-139. The degree to which the relative intensities of heavy 
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isotopologue MS peaks agree with the natural abundance of heavy isotopes in a 

molecule is referred to as “spectral accuracy”140. Similar to the exact 

monoisotopic mass of a molecule, the relative intensity of isotopologue peaks is 

directly related to elemental composition. For example, the relative abundance 

of carbon isotopes 12C and 13C are 98.94% and 1.08%, respectively. Therefore, 

each carbon position in a molecule has an independent probability of ~1.08% of 

being 13C. The probability of at least one carbon position containing 13C is 

determined by the addition rule of probability, and the relative intensity of the 

13C1 peak is ideally proportional to the sum of probabilities. For instance, C60 

“Buckyball” has a 13C1 isotopologue peak that is ~64.8% (1.08% x 60) of the 

intensity of the monoisotopic peak. Moreover, there is a lesser probability that 

two (13C2) or more (up to the number of carbons in the elemental composition) 

will be present in the compound; the 13C2 isotopologue peak would be two 

nominal m/z units heavier than the monoisotopologue peak for a singly charged 

ion. In this way, the natural isotopic abundance of each element in a compound 

is represented in the isotopic envelope.  

At Q-TOF and the low-end of Orbitrap MRPs (< 300,000), the isotopic 

envelopes of singly charged organic molecular ions (consisting of primarily C, 

H, N, O, P, and/or S) may be represented by a series of peaks at increasing 

nominal m/z units that are each convolutions of unique isotopologue peaks. At 

greater MRP (especially > 500,000) that can be attained with high-end Orbitrap 

and FT-ICR, distributions of individual isotopologues, or isotopic fine structures 
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(IFS), are resolved and can be attributed. Nominal m/z isotopic envelopes are 

useful in lipidomic and metabolomics workflows to refine potential 

identifications made by mass accuracy by, in general, comparing the simulated 

isotopic peaks of each potential identification to experimental isotopic 

envelopes125, 136, 139, 140. In fact, Feihn et al. suggested that, after a comprehensive 

treatment of potential metabolite structures, maintaining spectral accuracy of 

MS systems (i.e., limited spectral error < 2%) was of greater importance for 

determination of metabolite EC than decreasing MME < 0.1 ppm without regard 

for spectral accuracy125. Quantitative measurement of IFS greatly improves this 

method by allowing comparisons of individual isotopologue peaks (rather than 

convolved clusters) and especially those of low abundance heteroatoms133, 134, 137, 

138. Moreover, the work in this dissertation shows that the relative intensities of 

isotopologue peaks can be used to derive chemical class information about 

organic biological molecules even when isotopic fine structures are convoluted. 

The chemometric analysis tool presented in this dissertation that performs this 

function, In Silico Fractionation, harnesses the defined distributions of 

elemental compositions, and therefore relative isotopologue intensities, within 

classes of molecules to make class predictions about unknown analytes. The 

background and principles for In Silico Fractionation operation will be discussed 

in Chapters two and three. 
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1.5.4 Tandem Mass Spectrometry Fragment Spectral Matching 
 

Given the ambiguity that can be introduced to identification results in 

metabolomics and lipidomics by mass accuracy-based workflows, tandem MS 

methods are often employed to increase confidence in identifications141. The 

terms “Tandem MS” and “MS/MS” refer to a multi-stage MS acquisition mode in 

which molecular ions are fragmented by energetic ion activation mechanisms 

followed by separation and detection of fragment ions. Tandem MS applications 

in metabolomics and lipidomics can be conducted in targeted or untargeted 

modes. Targeted MS/MS strategies are useful for quantifying the abundance of 

known analytes and are therefore not suitable for annotation of unknown 

chemical features in LC/MS142. Untargeted MS/MS strategies are designed to 

determine the identity of unknowns principally through continuous acquisition 

of fragmentation spectra from LC eluting species. Acquired fragment ion 

spectra are compared to fragment ion spectra of standards in MS/MS spectral 

libraries to determine the identity of the precursor; the quality of match 

between experimental and library spectra are generally determined by 

calculation of a similarity score141, 142. In data-dependent analysis (DDA), 

fragment ions are associated with each other and their precursor via a scanning 

m/z window that targets the most abundant precursor ions for fragmentation143, 

144. In data-independent analysis (DIA), precursor ions are continuously 

fragmented often with no m/z selection and fragment ions are grouped by the 

correlation of their LC (and IM, if utilized) retention times 144, 145.  
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1.5.5 Class-based Annotation Strategies in Metabolomics and Lipidomics 
 
 

Introduction to class-based annotation. Although definitive compound 

identification is the goal in any untargeted MS metabolomics or lipidomics 

analysis, this is often precluded by instrumental limitations and sample 

complexity. For example, mass accuracy can discriminate between different 

ECs given a sufficiently small error tolerance; however, isobars with m/z values 

that fall within said error limit, including structural isomers, cannot be uniquely 

identified125. Additionally, tandem MS experiments yield fragment ion spectra of 

varying quality depending on the quality of pre-MS separations and the 

abundance of analytes, which can vary over orders of magnitude; low quality 

fragmentation spectra may result in incorrect assignments or compel 

assignment by precursor mass accuracy in lieu of fragmentation spectral 

matching144. Finally, many metabolite and lipid species may be completely 

uncharacterized (as members of the so-called “dark metabolome”146) or may not 

be included in tandem MS fragmentation spectral libraries. In cases that 

preclude definitive assignment, it is still worthwhile to characterize unknown 

compounds with the greatest level of specificity possible, usually by identifying 

the chemical classification to which they belong.  

Chemical classes describe groups of related compounds based on shared 

physical properties, structural homology, and/or bioactivity8, 9. Chemical 

classification systems are arrayed in hierarchical ontologies, which are similar 
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to taxonomies in other scientific disciplines (e.g., biology) in their hierarchical 

structure, but describe a more complex “web” of relationships9. Generally, 

higher levels in these structures hold groups with greater diversity and lower 

levels hold groups with less diversity and more homology between individual 

species. In lieu of definitive identification, chemical classification of unknowns 

is important because classification enables predictions about metabolic function 

and structure8.  

Including the work described in this dissertation, several chemical 

classification methods have been developed in the field of mass spectrometry to 

elucidate groups of chemically related molecules or directly classify them into 

ontological classification structures. The methods developed in this dissertation 

fall into two general categories: machine learning and instrumental. Machine 

learning classification methods use machine learning tools to make inferences 

about chemical class by describing patterns in instrumental measurements that 

are not apparent to the user. In contrast, instrumental classification methods 

utilize instrumental measurements followed by relatively simple mathematical 

transformations and user inferences to group molecules or assign 

classifications. Chapters two and three describe a machine learning 

classification tool, In Silico Fractionation, for classifying biomolecules in LC/MS 

data, and Chapter four describes an implementation of an instrumental 

classification tool for lipids in MS imaging data. The state of the field of 
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chemical classification in MS and relevant background for each tool presented 

in this dissertation will be discussed in Chapters two, three, and four.      

 
van Krevelen diagrams. EC determination useful for identity assignment 

and annotation in metabolomics and lipidomics especially when using 

databases that link ECs with metabolite and lipid structures. However, in cases 

that preclude structure assignment138, van Krevelen diagrams have utility in 

grouping analytes by the atomic ratios determined by their experimental EC. In 

its early implementation towards analysis of environmental samples, MS 

features from organic samples are visualized based on their H/C, O/C, and N/C 

ratios10, 147. In van Krevelen visualization, related compounds cluster in 

sometimes complex patterns with series of data points that are oriented linearly 

with different slopes; the orientation of these linear series are often due to 

reaction products of various chemical reactions10. It was found that various 

sources natural organic matter and fossil fuel samples could be differentiated 

based on their O/C and N/C ratios10, 147. In 2018, a more comprehensive 

implementation of the van Krevelen Diagram as a classification tool was 

demonstrated in which biological organic compounds were classified using a set 

of class-specific constraints on H/C, O/C, N/C, P/C, and N:P ratios148. 

 
Kendrick mass defect methods. Like van Krevelen diagrams, Kendrick mass 

defect (KMD) was first implemented as a high-resolution MS data visualization 

method19. In KMD visualization, the atomic mass unit reference is converted 



47 
 

from 12C to 12C1H2 or a different group that is repeated in polymer chain 

elongation and thus eliminates mass defect contributions from that group19. The 

conversion from the measured mass (M) on the 12C reference to the Kendrick 

mass (KM) on the 12C1H2 reference is given by  

 

 
𝐾𝑀 = 𝑀 ∗ 

14.00000

14.01565
 1-15 

 

(where 14.00000 is the newly defined mass of 12C1H2 and 14.01565 is the 12C 

reference mass of 12C1H2). The calculation of KMD is then given by 

 𝐾𝑀𝐷 = 𝑅𝑜𝑢𝑛𝑑𝐹𝑢𝑛𝑐(𝐾𝑀) − 𝐾𝑀 1-16 
 

where the “RoundFunc” function can be a round, floor, or ceiling function. The 

work in this dissertation employs a floor function to return the KMD value based 

on subtracting the KM value from its corresponding integer value (less than or 

equal KM value). Molecules that differ by numbers of repeating units that define 

the mass scale have the same KMD as a function of mass, which is shown by 

conventional KMD visualization that plots KMD as a function of nominal KM18. 

Series of “horizontal” data points in KMD visualization are indicative of 

chemically related polymer series that only differ with respect to the number of 

repeated units18. KMD analysis is therefore very effective in indicating groups of 

closely related organic molecules such as lipids that are often differentiated 

within classes by numbers of fatty acid chain carbons and degrees of 
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unsaturation21, 23. Notably, differences in degrees of unsaturation are readily 

apparent as they exhibit KMD differences of 0.01335 per unsaturation, which 

corresponds to the KMD of H2. Clusters of data points can be intuitively defined 

by KMD and to allow users infer classifications about the whole cluster if only a 

fraction could be identified. In the work discussed in Chapters two and three, 

KMD was determined to be a relevant feature of MS peaks for the In Silico 

Fractionation neural networks to discriminate classes of biomolecules. 

Chapter four of this work demonstrates an enhanced implementation of a 

KMD method that was adapted specifically for direct lipid classification (as 

opposed to analyte grouping/clustering) called “referenced KMD” (RKMD)23. 

Lipids are amenable to the RKMD workflow because most lipids are 

differentiated by the composition of their headgroups (e.g., 

phosphatidylcholine, phosphatidylethanolamine, glycerol, etc.). In RKMD 

analysis, the KMD of a specified lipid headgroup (i.e., the reference KMD) is 

subtracted from the KMD of the experimental MS peak, and the difference is 

divided by 0.0134; the RKMD for a given feature is given by 

 
𝑅𝐾𝑀𝐷 =  

𝐾𝑀𝐷 − 𝐾𝑀𝐷

0.0134
 1-17 

 

(where KMDm is the KMD of an MS peak and KMDhg is the reference KMD of a 

lipid headgroup)23. In a theoretical case, if the experimental feature has the 

same headgroup as the reference KMD, the RKMD value will be equal to 0 or a 
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negative integer value that corresponds to the degree of unsaturation of the 

lipid. However, MME often precludes this theoretical case, and RKMD values 

approach integer values as a function of decreasing MME23. In cases where the 

class of the experimental feature does not match the reference headgroup class, 

RKMD values can deviate greatly from integer values, produce positive integer 

values, or produce negative integer values that do not correspond with degrees 

of unsaturation. The latter possibility introduced a non-negligible possibility for 

false-positive classifications, and, therefore, Lerno et al. implemented a 

heuristic bound on the degrees of unsaturation that would be accepted. Chapter 

four discusses techniques that were implemented in this work that greatly 

reduced the false- positive rate and increased the specificity of the presented 

RKMD-based method.  

 
Supervised machine learning. Machine learning methods are designed to 

build models for complex and usually high dimensional patterns in data149, 150. In 

a limited number of dimensions, the human “eye” can effectively discern 

patterns and attribute group labels to associated data points; however, this task 

is made much more difficult when the dimensionality of the data exceeds those 

that we are able to graphically represent. Supervised machine learning methods 

use external help, a set of class labels associated with predictive features, to 

model the distribution of class labels in terms of those features150. The resulting 

model then receives the predictive feature values as input and outputs the class 
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label. The predictive features that a supervised machine learning model receives 

for training is called the “training set”.151 As the model trains, the performance 

of the model is tested on a separate dataset called the “test set”; performance is 

determined by a function that calculates the cumulative error of the model in its 

current state. It is important that machine learning models, including 

supervised types, are generalized. A generalized model approximates 

relationships between predictive features in the training set but does not fit 

them perfectly. A model that fits the training set data too well is said to be 

“overfit”. 

Chapters two and three utilize artificial feedforward neural networks 

(FFNN) to make predictions about analyte biological class. In general, neural 

networks are computational devices that mimic the structure and learning 

capacity of neural structures in the brain151, 152. FFNN are based on the early 

perceptron model that consists of an input layer, hidden layer, and output layer. 

The input and output layers receive inputs and give outputs, respectively. The 

hidden layer processes the inputs by weighing, summing, and submitting input 

values to an activation function that then produces an output152. The error of the 

output is then calculated by comparison to a target value indicating a class label, 

which is then used to adjust the weights applied to the inputs in the next 

iteration. This iterative training process continues until the error is minimized 

between predicted and target values. However, the FFNNs utilized in Chapters 

two and three utilize a multi-layer perceptron architecture with multiple inputs, 
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more than one hidden layer, and a variable number of nodes in each hidden 

layer. The more complex architecture operates with the same basic principles as 

the simple perceptron but is capable of modelling more complex non-linear 

relationships and is resistant to input outliers and noise151. 
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CHAPTER TWO 
 

Using Isotopic Envelopes and Neural Decision Tree-based In Silico Fractionation 
for Biomolecule Classification 

 
This chapter is published as: Richardson, L. T.; Brantley, M. R.; Solouki, T., 

Using isotopic envelopes and neural decision tree-based in silico fractionation 
for biomolecule classification. Analytica Chimica Acta 2020, 1112, 34-45. 

 
  

2.1 Abstract 
 
Untargeted mass spectrometry (MS) workflows are more suitable than 

targeted workflows for high throughput characterization of complex biological 

samples. However, analysis workflows for untargeted methods are inadequate 

for characterization of complex samples that contain multiple classes of 

compounds as each chemical class might require a different type of data 

processing approach. To increase the feasibility of analyzing MS data for multi-

class/component complex mixtures (i.e., mixtures containing more than one 

major class of biomolecules), we developed a neural network-based approach 

for classification of MS data. In our In Silico Fractionation (iSF) approach, we 

utilize a neural decision tree to sequentially classify biomolecules based on their 

MS-detected isotopic patterns. In the presented demonstration, the neural 

decision tree consisted of two supervised binary classifiers utilized to positively 

classify polypeptides and lipids, respectively, and a third supervised network 

trained to classify lipids into the eight main sub-categories of lipids. The two 

binary classifiers assigned polypeptide and lipid experimental components with 
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100% sensitivity and 100% specificity; however, the 8-target classifier assigned 

lipids into their respective subclasses with 95% sensitivity and 99% specificity. 

Here, we discuss important relationships between class-specific chemical 

properties and MS isotopic envelopes that enable analyte classification. 

Moreover, we evaluate the performance characteristics of the utilized networks. 

 
2.2 Introduction 

 
Mass spectrometry (MS)-based profiling strategies have been developed 

to handle increased throughput153-155 and sample complexity156-158. Combined 

analysis of multiple classes of biomolecule (i.e., integrated/multiomics) can be 

advantageous and enable evaluation of correlations between different, but 

related, biological systems (e.g., the proteome and lipidome)159-161. 

Conventionally, each class of compounds in biological samples are interrogated 

separately and then the results from multiple MS analyses are integrated. 

However, these approaches are not ideal for high throughput workflows as they 

often require time-intensive, off-line (as opposed to “in-line” with MS injection) 

sample fractionation methods. Off-line fractionation methods reduce sample 

complexity, prior to MS analysis, by isolating classes or groups of compounds 

based on their polarity, size, charge, or other physicochemical properties. In 

conventional analysis of biological samples, off-line sample fractionation allows 

researchers to make reasonable assumptions about classes of analytes to be 
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detected and, hence, determine the most appropriate MS operational modes and 

sample-specific post-acquisition data analysis workflows.  

In contrast to conventional class-specific characterization of multi-

component samples, simultaneous characterization of these complex samples 

can increase throughput and reduce biases associated with targeted sample 

fractionation techniques. Currently, combined sampling is complicated by 

biases inherent to ionization methods (e.g., basicity and proton transfer kinetics 

162, solvent types and ionization efficiency/proton affinity differences based on 

analyte polarity in electrospray ionization (ESI)163 and matrix dependent 

ionization efficiencies of different classes of molecules in matrix assisted laser 

desorption ionization (MALDI)76, 164-166) and by a historical lack of in-line physical 

separation and sample preparation methods compatible with multi-class 

analyses in the literature. Recently introduced “integrated” liquid-, gas-, and 

solid-phase ion source technologies seek to eliminate ionization biases and 

accommodate samples of greater biological diversity157, 158, 167-175. Numerous MS-

based techniques, focused on the increasingly popular field of multi-omics 

analyses176-180, could directly benefit from the presented In Silico Fractionation 

(iSF) approach herein which employs a post-data acquisition tactic for analyte 

classifications of multi-class component samples. Despite matrix dependent 

ionization biases for different classes of biomolecule exhibited by MALDI 

matrixes, MALDI surface sampling coupled with ion mobility (IM)-MS has been 

used for simultaneous analysis of multi-class mixtures of small biomolecules 
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directly from tissue181-183; iSF could be applied to such MALDI generated complex 

data sets. Moreover, a preliminary demonstration of Omni-MS showed a sample 

preparation and separation strategy for concurrent LC-MS analysis of 

electrolytes, small molecules, lipids, polypeptides, nucleic acids, and 

polysaccharides184. We expect that technologies for simultaneous, multi-omics 

analyses will continue to develop in pursuit of higher throughput and 

information density per data acquisition. However, downstream analysis of such 

multi-class acquisitions will remain a challenge given that: (a) assumptions 

regarding the class of detected ions may not be reliable, and (b) different classes 

may have different requisite MS operational modes and/or analytical workflows. 

Thus, multi-omics MS analyses require some method for discriminating 

between (and identifying) classes of analytes. We have previously shown that 

MS isotopic envelope of molecular ion signals contain sufficient information to 

discriminate between compounds containing different functional groups or 

specific elements 185; here, we aim to demonstrate the strength of combining 

neural networks and isotopic pattern-based biomolecule class designation for 

multi-omics characterization of multi-class sample mixtures. 

The isotopic envelope (i.e., m/z range containing all isotopologues of a 

specific compound) is a readily observed feature in high resolution mass 

spectra186. In theory, each elemental composition has a unique MS isotopic fine 

structure187 that is dependent on the mass contributions of each element and 

relative abundances of heavy isotopes. Given that chemical homology is 



56 
 

conserved (often to different degrees) within classes of biomolecules, the 

elemental compositions, and thus the MS isotopic envelopes, of biomolecules 

reflect this similarity. This idea of intra-class chemical homology is at least 

tacitly understood in untargeted MS experiments that utilize a combination of 

sub-ppm error (exact mass measurement assignments for presumably resolved 

peaks with > 30,000 mass resolving power (MRP) and isotopic envelope 

information to generate compound elemental compositions and cluster analytes 

roughly by class in van Krevelen visualization (though without means for 

definitive classification)10, 188. However, high (H) and ultrahigh (UH) MRP MS 

instruments often lack the necessary MRP and mass measurement accuracy to 

consistently yield accurate elemental compositions for large molecules 

(molecular weight (MW) > 500 Da) containing elements beyond carbon, 

hydrogen, nitrogen, and oxygen188, 189. Moreover, UHMRP FT-MS instruments (> 

250,000) are unfavorable for high throughput applications in which high scan 

rate, HMRP instruments (i.e., time-of-flight (TOF) instruments with ~10,000-

100,000 MRP) are preferred. A priori knowledge of analyte class is often 

necessary to determine the elements allowed for use in the generation of 

elemental compositions in order to shorten the often-lengthy list of possible 

elemental compositions produced within a margin of experimental error190. 

Without a priori knowledge, determination of the elemental composition 

becomes exponentially more difficult due to the possibility of having myriad 

different elemental compositions that can yield the measured mass and isotopic 
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envelope126. As expected, the length of the produced “list” of elemental 

compositions generally decreases with increased MRP, resulting in higher 

confidence compound identifications and/or classifications; however, it is often 

impossible to reduce the number of possibilities to a single, high confidence 

determination126. Elemental composition, and therefore compound class, could 

theoretically be determined via computationally intensive solutions to the 

polynomial model that describes the summation of elemental contributions191 to 

isotopologue peaks given error-free conditions. In general, the effect of non-

ideal experimental conditions on exact mass determinations of elemental 

composition, and inapplicability of UHMRP MS instrumentation in high 

throughput applications necessitate an automated approach for definitive 

analyte classification in multi-omics analyses that is less dependent on MRP 

through utilization of other features in the isotopic envelope. 

Feedforward neural networks (FFNNs, described by Bishop192) offer a 

potential solution to this problem. Trained FFNNs excel in estimating non-

linear, high dimensional relationships to discern hidden patterns and classify 

network inputs. FFNNs are based on the early perceptron model in which 

network inputs are recursively weighted, summed, and submitted to an 

activation function; in this simple scenario, training stops once the output of an 

activation function exceeds a specified value, producing a linear function that 

serves as a binary classifier193. FFNNs utilize an expanded hidden perceptron 

layer architecture to more effectively map complex systems and solve problems 
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with high dimensionality (i.e., those with large sets of inputs and multiple output 

functions)194. We hypothesized that FFNNs could effectively estimate the non-

linear relationships that describe the features of the MS isotopic envelope to 

discriminate between classes of biomolecules in MS data (without the 

painstaking task of mathematically accounting for the discrete contributions of 

each element). To test our hypothesis, we examined both theoretical and 

experimentally acquired MS data. Additionally, given a sufficiently large and 

varied training set and an appropriate network architecture, we hypothesized 

that FFNNs could be sufficiently generalized such that experimental error and 

noise sources present in mass spectral data would not pose a serious concern195. 

In this paper, we confirm the effectiveness of FFNNs for biomolecule class 

identification in multi-omics analyses and its tolerance for handling 

experimental measurement errors, common in HMRP MS data, that can impede 

compound identification, elemental composition determination, and/or 

classification by exact mass measurement. 

Specifically, we present an FFNN-based chemometric analysis tool for 

classification of small biomolecules (e.g., lipids, polypeptides, nucleic acids, 

glycans) by utilizing their commonly acquired soft ionization MS data produced 

from TOF instrumentation. We show that a series of FFNNs can be trained using 

features extracted from the centroided isotopic envelopes (i.e., the mass-to-

charge (m/z) and relative isotopologue peak intensities/ratios) to classify 

individual sample components into a selection of biomolecular class targets. 
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Using these trained FFNNs, we show that a neural decision tree (NDT)196 can be 

constructed to utilize MS data sets and sequentially classify analytes in a 

representative multi-class component sample containing polypeptides, 

metabolites, and lipids. Moreover, we show that classified lipids can be assigned 

to their respective subclasses and demonstrate how this technique can provide 

simple, qualitative results that can be interpreted by non-MS experts. In 

addition to classification of theoretically generated MS data, we confirm the 

validity of In Silico Fractionation (iSF) by using experimental data and 

successfully identifying its components. We also show  that  network 

classification operations can be rapid and comparable to time-of-flight (TOF) MS 

detection event time scales197. We provide an analysis and a discussion of the 

chemical basis for the iSF technique and its adaptability to various types of MS 

methodologies. 

 
2.3 Materials and Methods 

 
 
2.3.1 Neural Network Input Preprocessing 
 

To generate theoretical m/z values and isotopic patterns for selected 

classes of biomolecules (viz., lipids, glycans, non-lipid metabolites, 

polypeptides, DNA, and RNA), elemental compositions of a total of 36,973 

molecules were acquired from four different sources as indicated in the 

following text. Elemental compositions for these 36,973 molecules were sourced 

from (1) the LIPID MAPS Structural Database (lipids, n = 7,473) 198, (2) the 
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Consortium of Functional Glycomics (glycans, n = 1,750), and (3) the Human 

Metabolome Database (organic, non-lipid metabolites, n = 7,454) 199. Lastly, 

polypeptide (n = 7,465), deoxyribonucleic acid (DNA, n = 7,140), and ribonucleic 

acid (RNA, n = 5,691) elemental compositions were generated by (4) an in-house 

written python (CPython 3.6.2; Python Software Foundation, DE) script that 

pseudo-randomly generated heteropolymer sequences corresponding to 

expected ESI charge states based on biopolymer chain lengths 200 and converted 

them to elemental compositions (see Appendix A.1). For example, polypeptides 

in the +1 charge state result from a gaussian-like distribution of polymer chain 

lengths between about 5 and 17 residues as demonstrated by Xie et al. 200. 

Therefore, the chain lengths for singly-charged, protonated polypeptides were 

generated by a gaussian probability function with bounds to match the 

experimentally observed distribution. The centroided isotopic distribution 

profiles for some protonated, deprotonated, and sodiated ESI adducts and 

charge states (respective to the class of biomolecule) were calculated in the 

enviPat 2.2 package 201 in R (ver. 3.4.3; R Foundation for Statistical Computing). 

The molecular adduct forms and charge states included in the training set were 

not inclusive of all commonly observed types; the training set was limited in this 

regard due to deteriorating network training performance as the inclusion of 

multiple forms presumably added extraneous dimensionality to the FFNN 

training set. Isotopic profiles were generated considering respective physical 

realities of ion production in ESI for each class as follows: polypeptides as 
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protonated ions ranging from [M+H]+ to [M+6H]6+, glycans as positively charged, 

sodiated ions [M+Na]+ and [M+2Na]2+ and as negatively charged, deprotonated 

ions ranging from [M-H]- to [M-3H]3-, lipids as positively charged, protonated 

ions [M+H]+, and oligonucleotides as negatively charged, deprotonated ions 

ranging from [M-H]- to [M-6H]6-. 

 
2.3.2 Neural Network Training 
 

FFNNs were constructed with a custom script (see Appendix A.2) written 

in M (MATLAB R2018a; The MathWorks Inc., Natick, MA). Three FFNNs, 

denoted as PEPNET, LIPNET, and LIPSUBNET, were used in this study. PEPNET 

was a binary classifier to assign network inputs into the peptide (TP) or non-

peptide (TNP) target class. Whereas LIPNET was a binary classifier to assign 

network inputs into the lipid (TL) or non-lipid (TNL) target class; for lipid subclass 

categorization, LIPSUBNET (an 8-target classifier) was used to assign previously 

classified TL inputs into class targets corresponding to lipid subclasses. 

Designated lipid subclasses in LIPSUBNET included: fatty acyls (TFA), 

glycerolipids (TGL), glycerophospholipids (TGP), polyketides (TPK), prenol lipids 

(TPR), saccharolipids (TSL), sphingolipids (TSP), and sterol lipids (TST). 

The hidden layer architecture (i.e., number of hidden layers and number 

of nodes per hidden layer) for each type of FFNN was chosen such that 

classification accuracy for the input data set used for training would be 

maximized. For FFNNs with more than one hidden layer, the number of nodes 
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per layer were kept the same across layers as networks already exhibited high 

performance and further optimization was unnecessary. Training times were 

short enough that they were not considered in determining network 

architecture. 10 FFNNs were trained for each tested network architecture, and 

performance was evaluated by the mean percent error (percent of false positive 

and false negative classifications over all classifications). Network architectures 

were chosen for the minimization of mean percent error (for more information 

regarding network architecture optimization, see Appendix A.3 and A.4). When 

training the PEPNET and LIPNET binary classifiers, it became apparent that 

small changes in hidden layer sizes had notable effects on performance; 

therefore, hidden layer neurons were increased by 10 during optimization tests. 

The optimized hidden layer architecture of LIPNET and PEPNET was constituted 

by 2 layers with 30 perceptrons each. For the 8-target classifier (LIPSUBNET), 

network performance was relatively insensitive to small changes in hidden layer 

neurons; thus, hidden layer neurons were increased by the power function 2n to 

evaluate a large range of hidden layer neurons. The optimized hidden layer 

architecture was constituted by 2 layers with 64 perceptrons each. Training bias 

due to uneven class representation was accounted for by using the “growth 

method” (Brantley et al. 202) such that each class had equal numbers of 

representations in the dataset. The input data set was then randomly divided 

(i.e., MATLAB function “dividerand”) for network training as follows: 70% in the 

training set, 15% in the validation set, and 15% in the test set. Networks were 
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trained using scaled conjugate gradient backpropagation (i.e., MATLAB function 

“trainscg”) with an early stopping method 203 to avoid overfitting. Performance 

during training was monitored using cross-entropy as an error metric (MATLAB 

function “crossentropy”). Network inputs were 7 numbers (henceforth referred 

to as “input vectors”) in the following order: (1) the exact mass monoisotopic m/z 

value to four decimal places (to be consistent with TOF data utilized in this 

demonstration) corresponding to the first isotopic peak or “A”  (where “A” 

notation is based on the designation introduced by McLafferty et al. 186), (2) the 

intensity of “A” normalized to the most abundant isotopologue (i.e., normalized 

to the highest peak within the isotopic envelope for the molecular ion 

designated as 100% relative abundance), (3) the relative intensity for the second 

isotopologue or A+1 186 , (4) the relative intensity for the third isotopologue or 

A+2,  (5) the ratio of A/A+1, (6) the ratio of A+1/A+2, and (7) the Kendrick mass 

defect 204 (KMD, relative to CH2 integer mass scale) of the monoisotopic m/z. The 

output layers were limited to two (for PEPNET and LIPNET) or eight (for 

LIPSUBNET) nodes corresponding to the classification targets of each neural 

network. The PEPNET output layer nodes correspond to: 1) polypeptide and 2) 

non-polypeptide. The LIPNET output layer nodes correspond to: 1) lipid and 2) 

non-lipid. The LIPSUBNET output layer nodes correspond to: 1) fatty acyl, 2) 

glycerolipid, 3) glycerophospholipid, 4) polyketide, 5) prenol lipid, 6) 

saccharolipid, 7) sphingolipid, and 8) sterol lipid.  
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Supervised training target outputs were provided such that the presence 

of a class of biological molecules was indicated by a value of 1.0 and absence by 

a value of 0.0. The same network inputs were used for each FFNN, but the 

supervised training target outputs were changed depending on FFNN being 

trained (e.g., in PEPNET, polypeptide components had target outputs of 1.0 and 

lipid/metabolite/glycan/DNA components had target outputs of 0.0; the same 

components were used in LIPNET, but polypeptide component target outputs 

were changed to 0.0, and lipid component target outputs were changed to 1.0). 

Additionally, LIPSUBNET was trained with only lipid components. For each 

scored component (in either the training set or an experimental test set), the 

maximum predicted value from the set of values corresponding with each class 

predicted by the network is taken as the predicted class. Ten FFNNs were 

trained for each type of network (i.e., PEPNET, LIPNET, and LIPSUBNET) with 

the optimal hidden layer architectures, and the network with the minimum 

mean percent error across the training, validation, and test datasets was 

selected as the best performing network for further analyses. All networks were 

trained using a desktop computer (OptiPlex 7050 Tower; Dell Computer, Round 

Rock, TX) equipped with a 4-core processor (Intel® Core™ i5-7500) and 16 GB of 

RAM.  
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2.3.3 Mass Spectrometry Methods and Multi-Class Component Test Set Generation 
 

To test the iSF approach on experimental data, a multi-class component 

test set was generated. Firstly, an LC-MS output matrix (rows and columns 

corresponding to LC scan numbers and m/z axis data points, respectively) from 

a rat brain tryptic protein digest analysis (collected in-house for m/z range 50 to 

2000; see below for MS methodology) was added to LC-MS output matrix (also, 

50 to 2000 m/z range) from a lipidomics LC-MS output. The lipidomics data was 

downloaded from the Chorus Project (Stratus Biosciences, Seattle, WA) mass 

spectrometry file sharing database 205. Available lipidomics data from Chorus 205 

included a limited range of LC elution time and hence, only scans 

corresponding to ~15 minutes (scan numbers up to ~900, at an acquisition rate of 

1 Hz for both lipidomics and proteomics) was included for further analysis (e.g., 

Figure 5 shows analysis results for scan range of ~400 to 900). Matrix addition 

was performed by the MassLynx (V4.1, Waters, Milford, MA) “Combine all 

functions” tool. Secondly, LC eluting components were found in the combined 

data set and manually (on a random order) were selected for inclusion in the test 

set. The data features necessary for the neural network were exported from the 

MassLynx mass spectrum data viewer. Thirdly, only the eluting components that 

could be identified were include so that their true chemical classes would be 

known for the evaluation of FFNN. Components that were identified as peptides 

were sequenced and identified in ProteinLynx Global Server (PLGS, Waters 

Corp., Milford, MA); the LC retention time recorded by PLGS was confirmed for 
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each peptide. Components that were identified as lipids and metabolites were 

identified in Progenesis QI (Nonlinear Dynamics, Durham, NC) by exact mass 

matching (< 5 ppm mass measurement error) in the LIPID MAPS and Metlin 

databases, respectively. Because it was necessary to confirm to which group 

(lipidomics or proteomics data set) each component belonged, identified lipid 

components were confirmed to be absent in the original proteomics data set. 

Likewise, identified peptide components were confirmed to be absent in the 

original lipidomics data set. 

The downloaded LC-MS lipidomics data set was acquired using a Waters 

Xevo-G2 QToF (Waters Corp., Milford, MA) in positive-ion mode 205. To collect 

the rat brain protein tryptic digest data, ultra-performance liquid 

chromatography (UPLC)-ion mobility-enhanced MSE (HDMSE) on a Synapt G2-S 

HDMS (Waters Corp., Milford, MA) operating in positive-ion mode was used. 

Pettit et al. previously described the procedure for rat brain tissue sample 

preparation 206. A 10 mg rat brain cortex tissue section was homogenized via 

ultrasonication probe in lysis solution (100 mM ammonium bicarbonate, 1% 

(w/v%) sodium dodecyl sulfate, 10 mM tris(2-carboxyethyl) phosphine 

hydrochloride, and 40 mM 2-chloroacetamide; all chemicals from Fisher 

Scientific, NH). Bottom-up proteomics samples were prepared according to the 

filter-aided sample preparation protocol 207, which involves sequential wash and 

high mass (> 3 kDa) filtration (MilliporeSigma, MA) that washes lipids and 

detergents from the sample. Samples were digested with sequencing-grade 
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trypsin (Promega, Madison, WI) overnight at 37°C. PLGS was employed for 

peptide identification of the tryptic protein digests. The lipidomics and 

proteomics MS data were both acquired at a mass resolution of ~22,000 (see 

Appendix A.5 for exemplary peptide and lipid isotopic envelopes from the 

combined dataset with mass resolution calculations).  

HeLa digest peptides and a rat brain lipid extract were mixed and 

analyzed via UPLC-IM-MS on a Synapt G2-S HMDS operating in positive-ion 

mode. The HeLa digest peptides were purchased as a standard from Thermo 

Fisher Scientific (Waltham, MA). A 10 mg rat brain tissue section was 

homogenized via ultrasonication in ice-cold 0.1% ammonium acetate and 

prepared as described by Matyash et al. 208 The HeLa digest peptide mixture was 

reconstituted to a concentration of 60 ng/µL in 0.1% formic acid in water, and 

the lipid extract was reconstituted to a final volume of 100 µL in an 

isopropanol/acetonitrile/water (4:3:1, v/v/v) solution. Equivalent volumes of 

each mixture were mixed, and a volume of 5 µL was injected on column (150 ng 

of peptides and lipids extracted from 250 µg of rat brain tissue). The mixture was 

separated by reversed-phase chromatography on the NanoAquity UPLC using a 

Symmetry C18 trap column (5 µm, 180 µm x 20 mm, Waters Corp., Milford, MA) 

and a BEH130 C18 analytical column (1.8 µm, 100 µm x 100 mm, Waters Corp., 

Milford, MA). Analytes were separated with a binary solvent gradient with 10 

mM ammonium formate and 0.1% formic acid in water (mobile phase A) and 

isopropanol/acetonitrile (90:10, v/v) with 10 mM ammonium formate and 0.1% 
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formic acid. The gradient ramped linearly from 5% to 99% B over 70 minutes 

with an isocratic hold at 99% B for 4 minutes at 0.4 µL/min. Capillary voltage was 

set at 2.7 kV, and the source temperature was set at 100 °C. Travelling wave ion 

mobility conditions were set at default settings. Analytes for classification were 

selected from three time periods of the chromatogram: peptides from 10-30 

minutes, lipids from 55-80 minutes, and unknowns from 30-55 minutes. The 

time periods were selected based on an understanding peptide and lipid elution 

behavior in reversed-phase separations. The 10-30 minute period roughly 

corresponds to 13-40% organic solvent composition, which is used for reversed-

phase peptide separations 206. The 55-80 minute period roughly corresponds to 

70-99% organic solvent composition, which is common for reversed-phase lipid 

separations 209. Selected analytes were limited to those with monoisotopic m/z 

values between 500-1200 m/z. Before 10 minutes, only unretained components 

and background signal were observed, and, between 80-90 minutes, only strong 

polymer signal was detected, and therefore these periods were excluded.  

 
2.4 Results and Discussion 

 
The following sections describe the generation and implementation of 

the iSF workflow; a neural decision tree-based method is introduced that utilizes 

MS data for the classification of small molecules. The physical and MS 

principles that constitute the basis for iSF as well as feature selections for neural 

network training are discussed in detail. Additionally, examples of iSF analyses 
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of an experimental LC-MS datasets containing multiple biological classes of 

molecule is provided. 

 
2.4.1 MS Isotopic Envelope Feature Selection 
 

Classes of biomolecules, such as polypeptides and nucleic acids, consist 

of biopolymers that are composed of monomeric subunits and are limited in 

elemental diversity for a given polymer length by the number of possible 

monomers. Contrarily, biomolecules such as lipids are predominantly non-

polymeric and are more structurally diverse. Figure 2.1 displays the histogram 

distributions for elemental compositions of nucleic acids (purple), glycans 

(green), polypeptides (blue), and lipids (red) as a function of their respective 

mass percent composition (w/w%) values for hydrogen (Fig. 2.1a), carbon (Fig. 

2.1b), nitrogen (Fig. 2.1c), and oxygen (Fig. 2.1d). For example, lipids are 

hydrocarbon-rich and thus the mass percent compositions for carbon and 

hydrogen are in the ranges of ~35-90% (Fig 2.1b) and ~3-14% (Fig. 2.1a), 

respectively.  Additionally, lipids are substituted with a wide variety of polar 

functional groups and hence they are composed of ~0-14% nitrogen (w/w%, Fig. 

2.1c) and ~4-52% oxygen (w/w%, Fig. 2.1d), respectively. 
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Conversely, due to the constrained modes of elongation and incorporation of a 

limited number of possible monomers into their structures, polypeptides, 

nucleic acids, and glycans have narrower distributions of carbon (w/w%) and 

nitrogen (w/w%) contents; additionally, the distribution of oxygen composition 

in glycans is also very confined (green histogram in Fig. 2.1d). In fact, both 

nucleic acids and glycans have two distributions that are near completely 

Figure 2.1. Histograms of nucleic acid (purple), glycan (green), polypeptide (blue), and lipid 
(red) compositions as a function of mass percent composition of (a) hydrogen, (b) carbon, (c) 
nitrogen, and (d) oxygen overlaid with a kernel density estimation line plot. The nucleic acid, 
polypeptide, and glycan class distributions are generally gaussian-like and overlap 
minimally, except for those for nitrogen mass percent composition in which there is 
significant overlap. Lipid species are generally distributed over a wide range of elemental 
mass compositions. Elemental composition of a significant number of the selected lipids 
lacked nitrogen (~37%), and hence the nitrogen histogram for lipids (which includes 
contributions from 63% of all lipids) does not display contributions from those species that 
contained no nitrogen (i.e., 37% of the lipids used to generate (c) contained 0% nitrogen). 
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unconvolved with any other distribution (for nucleic acids, hydrogen (purple 

histogram in Fig. 2.1a) and carbon (purple histogram in Fig. 2.1b) and, for 

glycans, carbon (green histogram in Fig. 2.1b) and oxygen (green histogram in 

Fig. 2.1d)). The carbon w/w% of polypeptides range from ~41-62% (blue 

histogram in Fig. 2.1a), though slightly overlapping with that of glycans, this 

range is completely distinguished from the range of carbon w/w% for nucleic 

acids (~37-39%). Interestingly, an analytical tool for classification tasks in 

UHMRP MS data, called van Krevelen diagram, visualizes and groups detected 

compounds using molar ratios (e.g., the ratio of H/C and O/C atoms) derived 

from their calculated elemental compositions 10. Given that elemental molar 

composition and mass composition are immediately related by elemental molar 

mass, classifications made by van Krevelen diagrams inherently utilize the 

described class distributions (Fig. 2.1). Given that van Krevelen diagram 

visualization requires ultrahigh mass resolving power FT-MS instruments 

(generally > 200,000 resolving power) to generate high confidence chemical 

compositions from exact mass measurements of monoisotopologue peaks, the 

technique is generally unviable for conventional HMRP instruments. However, 

the mass percent compositions of compounds also affect the MS isotopic 

pattern, which is readily resolved by conventional HMRP instrumentation and 

provides a wealth of class-specific information.  

Another important intrinsic property of molecules that has often been 

utilized in mass spectrometry, for both small 186 and large molecule 210 
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assignments, is the molecular isotopic pattern. Heavy isotopes of a given 

element uniquely contribute to heavy isotopologue peak intensities as molecular 

masses of analytes increase. For example, the second most abundant isotopes of 

carbon and nitrogen are 13C (1.1% natural abundance (NA)) and 15N (0.36% NA), 

respectively, which are ~1 Da heavier than their corresponding most abundant 

counterparts (12C and 14N). Hence, presence of either 13C or 15N increases the 

molecular mass of an ion by one atomic mass unit (i.e., designated as A+1 

elements that contribute to A+1 peak in a mass spectrum). Because of the larger 

NA contribution from 13C (i.e., 1.1%) than 15N (i.e., 0.36%) as well as greater mass 

proficiency (0.003355 for  13C and 0.000109 for 15N), contributions to average 

molecular weights are larger from 13C isotopes than 15N isotopes; moreover, 

biomolecules generally contain larger numbers of carbon atoms than nitrogen 

atoms and hence A+1 peaks (mostly contributions from 13C) are often informally 

referred to as 13C isotope peaks. It should be noted that, when present, several 

other isotopes can also contribute to A+1 peak (e.g., 2H, 17O, etc.); UHMRP 

required to resolve these “fine structures” within the observed isotopic 

envelopes is beyond the reach of conventional mass spectrometers 137, 187, 211. 

Therefore, observed A+1 peaks in mass spectra, that might be from a 

combination of various isotopes, are often unresolved.  Similar to A+1 elements 

(e.g., 13C, 14N, and 2H), the second most abundant isotopes contribute to the 

observed relative abundance of A+2 peaks. For instance, oxygen and sulfur (i.e., 

18O (0.21% NA) and 34S (4.3% NA)) are ~2 Da heavier (i.e., A+2 elements) than 
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their corresponding most abundant counterparts (16O and 32S) and thus 

contribute to A+2 peak. It should be noted that there are several other isotopes 

and numerous other combinations (e.g., 2H2, 13C2, 15N2, 
2H1 + 13C1, 2H1 + 15N1, 13C1 + 

15N1, etc.)  that can also contribute to A+2 and other higher mass isotopologues 

(e.g., A + 3, A + 4, …., A + n, where n is the number of observed peaks within an 

isotopic envelope for an analyte). Therefore, the relative contributions of each 

element to the mass of a compound affects isotopologue peak relative intensities 

in the mass spectrum. Figure 2.2 displays logarithmic plots of (A+1/A+2) peaks 

for nucleic acid, glycan, polypeptide, and lipid biomolecules as a function of 

their neutral monoisotopic molecular (or A) masses. Given the relative 

contributions of different heavy isotopes to A+1 and A+2, the ratio A+1/A+2 

indirectly relates the quantities of carbon, nitrogen, hydrogen, and other A+1 

elements to oxygen, sulfur, and other A+2 elements. 
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The isotopic ratio plot (i.e., A+1/A+2 as a function of neutral mass) presented in 

Figure 2.2 provides one example (of many possible ways) of how such visual 

displays can be used for biomolecule class differentiation; multidimensional 

raw data used to train FFNNs allow access to numerous other A+1/A+2 type plots 

(ratios of other isotopic peaks) and “hidden” relationships that are not easily 

discernable by using two-dimensional plots. For this discussion, the logarithmic 

plot of A+1/A+2 as a function of compounds’ neutral mass (Figure 2.2) is helpful 

in so far as A+1/A+2 is influenced by both A+1 and A+2 elements. As expected, 

amplitude of the A+1/A+2 ratio decreases with increasing neutral mass up to 

certain values for different compounds- or a chemical class-dependent value. 

Figure 2.2. Log-log plots for theoretical MS isotopologue peak ratio, A+1/A+2, as a function of 
compound neutral mass (Da), show high degrees of separation between classes of 
biomolecules. Predominantly linear trends for each class show general correlations between 
the isotope ratios and neutral masses. Polypeptide sulfur content is also distinguished 
between the 310 to 1260 Da mass range as A+1/A+2 decreases with each sulfur atom inclusion 
(shown by blue trendlines labeled S0-S4). For the sake of figure clarity, the lowest and highest 
mass compounds are omitted. 
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The initial decrease is due to the generally increased presence of A+2 elements 

(i.e., oxygen and sulfur) and the probability of larger molecules containing 

multiple A+1 element heavy isotopes (e.g., 2H2, 13C2, 15N2, 
2H1 + 13C1, 2H1 + 15N1, 13C1 + 

15N1, etc.). Observed biomolecule class-dependent trends vary as a function of 

elemental mass composition. The top right inset in Figure 2.2 shows the 

expanded region from ~2000-2500 Da; although the parallel trends for different 

compound classes are close to each other, they are fully separated and correlate 

to the differences in mass percent compositions observed in Figure 2.1 that can 

be used for class differentiation. For instance, the ribonucleic acid (RNA, 

yellow) trendline is slightly higher than deoxyribonucleic acid (DNA, purple) 

because of the loss of CH2 from ~25% of RNA residues (thymine exchanged with 

uracil). However, the magnitude of the RNA shift is reduced by the gain of 

oxygen at the ribose 2’ position. From ~310-1260 Da (indicated number labels on 

the x-axis of Figure 2.2), the sulfur content of the polypeptides (Figure 2.2, blue) 

can be visually distinguished by the divergent trendlines (labeled S0-S4) due to 

the major contribution of 34S (4.21% relative abundance) to A+2 185. The 

polypeptides along the S0 trend contain no sulfur, and each descending trend (S1-

S4) incorporates collections of polypeptides that contain an additional sulfur 

atom. Also, it should be noted that because of the polypeptide diversity (polymer 

growth possibilities to yield similar MW as compared to limited polymer growth 

possibilities for glycan, DNA, or RNA classes) and possibility of having various 

elemental compositions yielding similar polypeptide masses, the blue trendline 
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in the expanded region of Figure 2.2 is wider (in the y-axis, corresponding to 

(A+1/A+2) values) than the counterpart trendlines for glycans, DNAs, and RNAs. 

Such inter- and intra-class variations of isotopic patterns might be difficult to 

discern without the use of neural networks that often capitalize on “hidden” 

relationships for class discriminations.  

The applicability of isotopic envelope features in their use by FFNNs can 

be limited by both instrumental and analyte-specific constraints. Firstly, the 

isotopic envelope was centroided and each peak integrated to reduce the 

complexity of the FFNN input layer and eliminate the effects of variance of 

resolution across MS instrumentation.  The centroided monoisotopic m/z value 

(input 1) was chosen for the high correlation of m/z with isotopic ratios in 

organic compounds (Figure 2.1). However, with respect to macromolecules such 

as proteins that contain a large number of carbons, the monoisotopologue peak 

(12Call) relative intensity (input 2) is often very low (i.e., the probability of having 

a large protein molecule with all of its carbons as 12C) and often below the 

instrument detection limits. In our approach, the proper classification of 

biomolecules with FFNNs is dependent on successful identification and 

measurements of the monoisotopologue MS peak. Thus, application of the 

current approach to experimental data is limited to species with observable 

monoisotopologue peaks. Likewise, the measurement of the isotopologue peak 

relative intensity inputs, A (input 2), A+1 (input 3), and A+2 (input 4), and thus 

the calculated isotopic ratios, A/A+1 (input 5) and A+1/A+2 (input 6), are subject 
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to the same limitations of instrumental sensitivity and MRP. It could be argued 

that the calculated isotopic ratios (inputs 5 and 6) are unnecessary since the 

FFNN training could “discover” those relationships; however, the inclusion of 

these inputs improved FFNN training performance in all cases. As the fourth 

(and onwards) isotopologue peak(s) are often below instrument detection limits 

for low mass (and low abundance) analytes in ESI-MS experiments, these peak 

intensities were not included as inputs in our specific FFNN training sets. 

However, depending on the molecular weight (or m/z) ranges of interest, it is 

possible to utilize signals from other isotopologues (e.g., other relatively high 

abundance species) as inputs. In other words, two important criteria in 

considering a particular set of isotopologues to select for FFNN training sets is 

(a) relative abundance consideration (signal-to-noise consideration for MS 

detectability) and (b) computational cost (e.g., additional input may not 

necessarily improve the success rate sufficiently large but require unreasonably 

large computational times). The selection of three isotopologues in the 

presented study provided a good balance between the desired success rate and 

computational cost. The calculation of KMD (input 7) is also contingent on the 

detection and mass measurement accuracy of the monoisotopic m/z. The KMD 

input (7) was included for its ability to assist in MS ion classification challenges 

and for its contribution to network training performance improvements 18. 

Within the context of small molecule analysis (e.g., metabolomics, lipidomics, 
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and peptidomics), the above features are readily distinguished in most modern 

TOF-MS workflows.  

 
2.4.2 FFNN Training and Performance 
 

For PEPNET, the “non-polypeptide” portion of the supervised training set 

consisted of lipid, glycan, polar metabolite, and nucleic acid input vectors (i.e., 

one-dimensional data arrays containing network input values; NTotal = 23,816 

post-growth method; NTrain = 16,673 (70%); NTest = 3,543 (15%); NValidation = 3,600 

(15%)). The “polypeptide” portion of the supervised training set consisted of 

polypeptide input vectors (NTotal = 23,816 post-growth method; NTrain = 16,669 

(70%); NTest = 3,602 (15%); NValidation = 3,545 (15%)). PEPNET had a consistent mean 

percent error of 7.2% for each training, validation, and test datasets; in other 

words, PEPNET incorrectly classified 7.2% of inputs submitted in the training 

set. For the supervised training test set, TP and TNP had true positive rates (TPR, 

percentage of actual positives classified as such) of 94.2% and 91.4%, 

respectively, and positive predictive values (PPV, percentage of actual positives 

in all predicted positives) of 91.7% and 93.9%, respectively. For LIPNET, the 

“non-lipid” portion of the supervised training set consisted of polypeptide, 

glycan, polar metabolite, and nucleic acid input vectors (NTotal = 23,809 post-

growth method; NTrain = 16,712 (70%); NTest = 3,552 (15%); NValidation = 3,545 (15%)). 

The “lipid” portion of the supervised training set consisted of lipid input vectors 

(NTotal = 23,809 post-growth method; NTrain = 16,620 (70%); NTest = 3,591 (15%); 
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NValidation = 3,598 (15%)). The LIPNET training, validation, and test datasets had 

12.1%, 12.6%, and 12.1% overall percent errors, respectively. TL and TNL had 

TPRs of 92.1% and 83.7%, respectively, and PPVs of 85.1% and 91.3%, 

respectively, for the supervised training test set. The training and validation 

confusion matrices 212 for PEPNET and LIPNET varied by ≤ 1%, suggesting that 

the networks were not overfit (for more information regarding PEPNET and 

LIPNET training performance metrics, see Appendix A.6 and A.7). PEPNET 

performed slightly worse than LIPNET presumably to the narrower variety of 

possible peptide chemical compositions as a function of mass relative to lipids, 

which exhibit great structural and compositional variety. LIPSUBNET was an 8-

target classification network trained to classify previously-assigned TL input 

vectors into TFA, TGL, TGP, TPK, TPR, TSP, TSL, and TST target classes (i.e., a 

comprehensive set of targets corresponding to all lipid subclasses). The 

LIPSUBNET training, validation, and test datasets had 7.9%, 8.1%, and 8.2% 

overall percent error, respectively. Respective TPR and PPV values for each 

target and predicted class is provided in a confusion matrix diagram in 

Appendix A.8.  

Networks trained with multiple output nodes (e.g., LIPSUBNET) do not 

exhibit equal TPR and PPV values across each output node. Therefore, we 

utilized a parameter designated as “confidence threshold” to reduce variance in 

network performance characteristics (i.e., TPR and PPV) across network output 

nodes and improve the accuracy of the trained networks. Confidence threshold, 
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a user-defined scalar value from 0.0 to 1.0, constrained “confident” 

(unassociated with confidence interval) identifications to those that result from 

network scores higher than the confidence threshold value. Classifications with 

network scores less than the user-defined confidence threshold are removed 

from consideration in calculation of network performance characteristics. For 

example, with a defined confidence threshold of 0.7, a classification that 

resulted from a score of less than 0.7 would be excluded; conversely, a 

classification of that resulted from a score of 0.7 or higher would be included in 

calculation of network performance characteristics. Figure 2.3 displays the TPR 

of LIPSUBNET for all unique training set inputs as a function of confidence 

threshold. The TPR at a 0.0 confidence threshold is not uniform across class 

targets, ranging from 77.9% (prenol lipids, Figure 2.3, trace number 8 in blue-

green) to 98.6% (saccharolipids, Figure 2.3, trace number 1 in light green). 

The low performance of prenol lipid classification can be attributed to 

relatively high chemical structural similarity to the likes of sterol lipids (Figure 

2.3, trace number 7 in orange), both of which share a common biosynthetic 

pathway 213, and, to a lesser extent, fatty acyls (Figure 2.3, trace number 6 in red) 

that are likewise mostly comprised of minimally branched hydrocarbon 

chains213.  
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As confidence threshold is increased, the TPR generally increased for each class 

as more incorrect classifications with lower network output scores are removed 

than correct classifications (which resulted from generally higher network 

output scores). As shown in Figure 2.3, the lowest performing classes, prenol 

lipids (trace number 8 in turquoise), sterol lipids (trace number 7 in orange), 

and fatty acyls (trace number 6 in red), exhibit the largest improvements in TPR 

as a function of confidence threshold. By removing low scoring, incorrect 

predictions in these classes, the variance in performance between all classes is 

Figure 2.3. True positive rates for 8 trained networks (each aimed at a specific chemical class 
identification) for the computationally generated data at confidence thresholds (0 to 1.0) are 
shown. The true positive rate (TPR (%)) is defined as the percentage of actual positives that were 
classified as such. Increasing the confidence threshold value causes TPR to approach 100% for 
most classes. Sterol lipids (7, orange) exhibit a decrease in TPR in a rare case where more 
correct than incorrect classifications are removed by an increase in confidence threshold.  
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reduced. For example, at confidence threshold 0.80, all classes exhibit TPRs of 

greater than or equal to 95%. 

At high confidence thresholds (i.e., > 0.95), it is possible for TPR to 

decrease; this is shown by the sterol lipid class that dropped by 2.56% TPR when 

the confidence threshold was increased from 0.95 to 0.99 (Figure 2.3, trace 

number 7 in orange). Decreases in TPR as a function of confidence threshold 

occur as more correct classifications than unconfident assignments are removed 

from the output. This behavior results from the networks’ occasional proclivity 

to make confident, incorrect assignments primarily in the case of highly similar 

classes; for example, the sterol lipid class (orange, trace number 7 in Figure 2.3) 

exhibited decreases in accuracy between confidence threshold 0.95 and 0.99 in 

8/10 trained networks due to high network output score (> 0.90), false positive 

classifications of prenol lipid inputs into the sterol lipid class. 

Additionally, it is important to note that each class loses coverage (i.e., the 

percentage of retained confident classifications of all classifications) as a 

function of confidence threshold as unconfident classifications are removed. As 

a rule, increased TPR as a consequence of higher confidence threshold selection 

results in some loss of coverage. The degree of coverage loss depends on the 

number of classifications removed; therefore, large increases in TPR result in 

large losses in coverage. The variance in class coverage is reported as estimated 

standard error of the mean (SEM % =
√

× 100%). Based on the LIPSUBNET 
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results, fatty acyls, sterol lipids, and prenol lipids lost coverage (and gained TPR; 

Figure 2.3 traces 6, 7, and 8, respectively) at greater rates, causing high variance 

in coverage (76.6 ± 6.9%) between classes’ TPR at a confidence threshold of 0.90. 

The relationships between class coverage and confidence threshold for each 

class in LIPSUBNET is displayed in Appendix A.9. The inverse relationship 

between TPR and coverage constitutes a “trade-off” that the user must manage 

depending on the user’s specific needs for increased classification accuracy or 

higher coverage of all detected analytes. For general use of LIPSUBNET in this 

demonstration, the authors suggest use of a confidence threshold of 0.70 that 

balances TPR (96.3 ± 1.3%), total percent coverage (88.7 ± 3.9%), and uniformity 

of class representation.
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The general positive trends for observed TPR values as a function of 

confidence threshold (after a confidence threshold of ~0.30; Figure 2.3) suggests 

a relationship between the magnitude of network output score and the 

probability that an actual positive is classified as such. To visualize the 

relationship between network output score and TPR without the influence of 

high scoring outputs at every threshold (as in Figure 2.3), the TPR of network 

output scores binned at confidence threshold intervals of 0.1 (e.g., [0.0, 0.1], (0.1, 

0.2], …, (0.9, 1.0] bins for the 0.4 to 1.0 confidence threshold range) are 

displayed in Figure 2.4 (where only sufficiently populated bins with n ≥ 10 inputs 

Figure 2.4. Visualization of the true positive rate (TPR) of LIPSUBNET network outputs 
binned at confidence threshold intervals of 0.1 (e.g., (0.1, 0.2], (0.2,0.3],…(0.9, 1.0], where 
each plotted point represents the TPR of the outputs which scored in the binned interval 
range; only bin intervals that contained at least 10 outputs were plotted. Subclasses are 
represented in the legend as follows: saccharolipids (SL, 1), glycerolipids (GL,2), 
glycerophospholipids (GP, 3), polyketides (PK, 4), sphingolipids (SP, 5), fatty acyls (FA, 6), 
sterol lipids (ST, 7), and prenol lipids (PR, 8). The “All” category (inset, with the identical x 
and y axis ranges of 0.4 to 1.0 binned intervals and 0 to 100% TPR) represents the combined 
lipid classification accuracy by LIPSUBNET. 
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have been included). The raw network outputs of all lipid subclasses (x values in 

Figure 2.4) exhibit an appreciable linear correlation (positive m values from 0.38 

to 1.39, Figure 2.4) with TPR; the mean R2 value for all classes (excluding 

saccharolipids, SL with R2 = 0.01, trace number 7 of Figure 2.4 in light green) is 

0.85 ± 0.06 (± SEM). The exceptionally low R2 of 0.01 and high TPR (of 98% as 

seen in Figure 2.3, trace 1 in light green) for SL indicate that LIPSUBNET may 

have been overfit for characterization of the SL target class. However, when all 

(binned) lipid outputs were considered together, a high linear correlation 

between accuracy and network output score was observed (R2 = 0.99, Figure 2.4 

inset). The slope (m) of the combined linear regression trend line (inset, Figure 

2.4) was 1.20, suggesting a near 1:1 relationship between the magnitude of 

output score and the probability that a classification is correct; as such, the 

magnitude of raw network outputs may be useful for determining classification 

confidence levels.  

 
2.4.3 In Silico Fractionation of Multi-Class Component Mixtures 
 

The supervised training sets of PEPNET, LIPNET, and LIPSUBNET were 

constructed to demonstrate the In Silico Fractionation (iSF) approach. In this 

case, we present an application of the iSF approach that utilizes a NDT structure 

to parse a sample dataset containing lipid, polypeptide, and polar metabolite 

components (Scheme 2.1). 
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Scheme 2.1. Representative In Silico Fractionation neural decision tree workflow diagram of a 
biological sample dataset containing polypeptide, lipid, and polar metabolite components.  
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A visual representation of the iSF approach to an artificially combined, 

representative multi-class component experimental LC-MS data is presented in 

Figure 2.5. The analyzed LC-MS dataset (represented in Figure 2.5) is not 

intended to reflect realistic sample preparation or chromatographic conditions 

as all analytes were initially prepared, separated, and detected in ideal 

conditions. However, it was prepared to demonstrate a use case for iSF in which 

analyte signal could not be assumed to originate from a single class. It should 

also be noted that, with exception to enhancements to detection sensitivity, 

sample preparation and chromatographic conditions do not uniquely affect the 

spectral features of the MS isotopic envelope utilized by iSF. 
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Figure 2.5. A visual representation of the In Silico Fractionation approach to a randomly 
selected portion of an LC-MS dataset that included a total of 106 unknown analytes. The 
original input data (106 gray LC peaks) in top row was created by adding a portion of an 
experimentally acquired LC-MS output from a rat brain tryptic digest analysis to lipidomics 
LC-MS data downloaded from Chorus) [43]. Unclassified components (gray LC peaks) were 
submitted to PEPNET which classified inputs as 60 polypeptides (TP, LC peaks in second row 
from the top) or 46 non-polypeptides (TNP, gray LC peaks). TP inputs were removed, and the 
remaining TNP inputs (46 species) were submitted to LIPNET for a second chemical class 
identification, which classified inputs as 39 lipids (TL, red LC peaks in third row from the top) 
and 7 non-lipids (TNL, gray LC peaks in the third row from the top). TNL inputs were removed, 
and TL inputs were submitted to LIPSUBNET, which classified TL inputs into narrower lipid 
subclasses. PEPNET, LIPNET, and LIPSUBNET had true positive rates of 100%, 100%, and 
95%, respectively. The * and ** symbols represent a prenol lipid component and a sterol 
component that were erroneously predicted as fatty acyl and glycerolipid, respectively. 
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Additionally, as Scheme 2.1 and Figure 2.5 suggest, the end goal of this work is 

to guide fractionation of the full MS dataset in state amenable for separate 

downstream analyses for classes of molecules in a multi-class mixture that have 

unique data processing requirements. However, the challenges associated with 

full integration of iSF into a multi-omics workflow will be addressed in a future 

study.  

Raw network output scores for PEPNET, LIPNET, and LIPSUBNET related 

to Figure 2.5 are provided in Appendix A.10. Figure 2.5 demonstrates the 

application of iSF to the classification of multiple types of eluting compounds in 

a standard LC-ESI-MS analysis using experimentally gathered data. Each eluting 

compound is pictorially represented by its detected LC peak profile. Peaks that 

have yet to be positively classified (i.e., classified into a discrete category of 

biomolecule) were shown in gray and were assigned a color once positively 

classified. The iSF approach begins with generating an input vector for each of 

the unclassified compounds in a LC-MS dataset (Figure 2.5, top, gray). As the 

first step in Figure 2.5, PEPNET proceeds to classify network inputs (second row, 

Figure 2.5) as polypeptides (TP, green) or non-polypeptides (TNP, gray). In the 

dataset presented in Figure 2.5 (i.e., the combined dataset discussed at the end 

of the Experimental section comprised of an eluting mixture of brain peptides, 

lipids, and polar metabolites detected by ESI-MS), polypeptides were classified 

by PEPNET with 100% TPR.  
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For the second step (row 3, Fig. 2.5) LIPNET classified the input vectors 

that PEPNET classified as TNP (gray peaks in row 2 of Fig. 2.5) as either lipids (TL, 

red) or non-lipids (TNL, gray) as shown in row 3 of Figure 2.5 with 100% TPR. The 

vector inputs classified as TL by LIPNET were then submitted to LIPSUBNET for 

classification into lipid subclasses (i.e., subclasses listed by LipidMaps). 

LIPSUBNET classified 37 out of 39 inputs correctly (95% TPR for all class 

targets).  

See Table 2.1 for statistical metrics for each class; FA, GL, GPL, PK, PR, 

SL, SP, and ST acronyms in Table 2.1 (column headers) are used for fatty acyl, 

glycerolipid, glycerophospholipid, polyketide, prenol lipid, saccharolipid, 

sphingolipid, and sterol lipid, respectively, where row headers TPR, TNR, FPR, 

and FNR stand for true positive rate, true negative rate, false positive rate, and 

false negative rate, respectively. One sterol lipid input vector was incorrectly 

classified as a glycerolipid with a network score of 0.597 and one prenol lipid 

input vector was incorrectly classified as a fatty acyl with a network score of 

0.622. However, for both the sterol and prenol misclassifications, the true class 

targets received the second highest network scores of 0.323 and 0.217, 

respectively. If the previously suggested confidence threshold (of 0.70) is 

applied to the results of the iSF workflow reported herein, 5 classifications, 

including both incorrect classifications, are removed, resulting in 100% TPR 

with 87% (i.e., 34 out of 39 input) coverage. Additionally, input vectors 

previously classified by PEPNET or LIPNET may be resubmitted to the other 
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(e.g., input vector classified as TP by PEPNET can be reclassified by LIPNET) for 

secondary confirmation. All positively classified input vectors resubmitted to 

either PEPNET or LIPNET (respective to their previous classification) were 

classified with 100% TPR. 

Table 2.1. LIPSUBNET statistical metrics for classification of experimental data 
Metric FA GL GPL PK PR SL SP ST 
TPR - 94.7% 100.0% - 0.0% - 100.0% 80.0% 
TNR 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
FPR 2.6% 4.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
FNR 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 20.0% 

Overall Accuracy 98.7%   TPR 94.9%   TNR 99.3% 

 
To demonstrate an example of iSF’s application to a real-world multi-class 

separation, PEPNET and LIPNET were used to analyze a separated mixture of 

trypsin digest peptides and lipids. The total ion LC chromatogram of the 

combined lipid and peptide separation is shown in Figure 2.6. The dotted lines 

mark the LC retention time boundaries between which, from left to right, 

peptides, unknowns, and lipids eluted. In this demonstration, the true classes of 

each of analyte signals were determined by their respective reverse-phase 

chromatographic elution times. 
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As indicated in Figure 2.6, LC eluting analytes between 10 and 30 minutes were 

determined to be peptides, and those that eluted between 55 and 80 minutes 

were determined to be lipids. The classification of each analyte was confirmed 

by independent LC-MS analyses of the peptide and lipid mixtures. Polypeptide 

analytes were classified by PEPNET as TP with 98% TPR (181 out of 185 inputs). 

Of the 185 polypeptide components, 4 polypeptides were incorrectly classified 

by PEPNET as TNP. Each of the 4 polypeptides were small (MW < 1000 Da), singly-

Figure 2.6. A visual representation of the In Silico Fractionation approach to a portion of a 
reversed-phase LC-MS dataset in which a mixture of HeLa digest peptides (total of 150 ng) 
and rat brain-extract lipids (from 250 g rat brain) were separated and analyzed in the same 
acquisition. Known peptide data were extracted from between 10-30 minutes, lipid data from 
between 55-80 minutes, and unknowns from the middle region where both hydrophobic 
peptides and hydrophilic lipids were expected to elute. Regarding the classification of known 
components, PEPNET had a 98% TPR and 100% TNR, and LIPNET had a 100% TPR and 99% 
TNR. In the middle region, 4 unknowns were classified as peptides, 10 were classified as 
lipids, and 1 was classified as a non-lipid and non-peptide. No conflicting classifications were 
made for any unknown component. The period before 10 minutes was excluded as it 
contained only unretained components and background signal. The period after 80 minutes 
was excluded as it contained only a strong contaminate/polymer signal.  
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charged ions; however, it should be noted that most other small, singly-charged 

polypeptide components were classified correctly (12 out of 16 inputs). Lipid 

inputs were classified by LIPNET as TL with 100% TPR (85 out of 85 inputs). Also, 

these lipid inputs submitted to PEPNET were classified as TNP with 100% TNR. 

Peptide inputs submitted to LIPNET were classified as TNL with 99% TNR (183 out 

of 185 inputs). The two polypeptide inputs that were misclassified by LIPNET as 

TL were 2 of the 4 small, singly-charged polypeptide inputs misclassified by 

PEPNET. In the mixed elution region from 30 to 55 minutes, 15 unknown 

components were classified by both PEPNET and LIPNET. In this group of 

inputs, iSF classifications were self-consistent as 4 inputs were classified as TP 

and TNL (designated as “TP/TNL”), 10 inputs as TL/TNP, and 1 input that was 

classified as neither a peptide nor lipid (both TNP and TNL or TNP/TNL). No 

conflicting classifications (i.e., belonging to both TP and TL classifications) were 

made for any unknown input. Raw network output scores for PEPNET and 

LIPNET related to Figure 2.6 are provided in Appendix A.11. 

 
2.4.4 Considerations for Future Applications 
 

The generalization capabilities of FFNNs enabled PEPNET, LIPNET, and 

LIPSUBNET to accommodate non-trivial variance in the m/z domain. The 

supervised training sets for each class were constructed with elemental 

compositions corresponding to the commonly observed adduct ions in ESI (e.g., 

[M+H]+ for most polypeptides, [M+Na]+ for glycans, [M-H]- for oligonucleotides, 
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etc.). However, there were a variety of detected lipid adduct forms (e.g., [M+ 

NH4]+, [M+ ACN+H]+, [M+ Na]+, etc.) that were successfully classified by 

LIPSUBNET and LIPNET, even though the training set of lipids for LIPSUBNET 

and LIPNET was restricted to protonated adduct lipid forms. Given the easy-to-

obtain nature of the selected mass spectral vector inputs (i.e., isotopologue peak 

relative intensity, exact mass, and KMD information) and the insensitivity of iSF 

to potential interferences from adduct ions, iSF could be applied to most 

broadband MS workflows in which analytes’ molecular ion isotopic envelopes 

are preserved. Given its robustness, iSF can be applied as a pre-processing step 

in conceivably any concurrent multi-omics analysis (in which MS1 spectra are 

acquired) to provide crucial information about analyte class and guide future 

data processing. Such capabilities should be useful for characterization of 

complex biological systems such as bacterial differentiation in microbiome 

studies 214, class identification in biological MS imaging, and pictorial 

representation of biomarker panels (healthy controls vs disease states) in 

clinical studies. Although the presented work here has focused on positive-ion 

mode experiments and classification of intact molecular species, iSF can be 

applied to other complementary types of data. For example, in future 

contributions, we plan to evaluate the performance of iSF for utilizing data 

acquired under negative-ion mode and classification of fragments and other 

modified structures (such as metal adducts). 
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The neural network training period took several seconds to several 

minutes (for details, see Appendix Figures A.3 and A.4); however, once trained, 

each network classification was rapid (~85 µs of processor time). Thus, these 

operations can be performed at frequencies comparable to TOF data acquisition 

rates, which (depending on the measured m/z range) can range from ~10-100 

kHz 105, 197, 215. 

The presented approach is robust in dealing with instrumental noise and 

small variations in analytes’ measured masses (data acquisition restrictions that 

are due to formation of various types of adducts, resolving power limits, and 

mass measurement errors). Additionally, our findings suggest that iSF can be 

applied successfully to MS data produced from low (L) MRP instrumentation. 

Versions of LIPNET, PEPNET, and LIPSUBNET were trained and tested with 

monoisotopic m/z and KMD values restricted to only two decimal places. The 

monoisotopic m/z and KMD values of the experimental test inputs from the 

artificially combined multi-omics separation were likewise restricted to two 

decimal places. These two types of networks (viz., networks trained using data 

sets with either (a) only two or (b) four decimal places for m/z values) had nearly 

identical performance characteristics both in application to computationally 

generated data and experimental MS data to LIPNET, PEPNET, and LIPSUBNET. 

The exciting implication of this finding is iSF’s applicability to data from 

relatively LMRP instrumentation (with precision to only 2 decimal places) that 

exhibit mass measurement errors unsuitable for elemental composition 
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determination (~10 ppm error). Tabulated performance metrics for the 

networks trained with precision to 2 decimal places are shown in Appendix 

A.12. 

Given that relative peak intensities and isotopic ratios are the primary 

dimensions of separation used by the neural network, the proposed approach is 

sensitive to convolution of analyte signals in the m/z domain (hence, peak 

capacity limits in the m/z dimension govern the level of sample complexity that 

can be tolerated). We recommend the use of pre-MS physical separations such 

as LC and/or IM to prevent potential peak convolutions in the m/z domain and 

increase isotopic envelope purity. IM profiles or trendlines for biomolecules 

have also shown class-dependent trends that may assist in classifications183; 

however, overlaps of m/z-mobility trends complicate classification of some 

groups of biomolecules183. It should be noted that, even with physical separation 

prior to MS injection, convolution of closely related chemicals across 

measurement domains is possible. In such instances of partial isotopic envelope 

convolutions of closely related lipids in the LC and m/z domains (for example, as 

reported in Figure 2.6) iSF is still able to correctly classify each convolved 

component. For instance, 11 of the 85 lipid inputs (all of which were correctly 

classified as TL by LIPNET) were partially convoluted in the LC retention time 

and m/z domains. Of the 11 convolved lipids, 6 were partially convolved by 

closely related species that differed by a degree of unsaturation. In regions of 

full LC convolution (e.g. retention times at which two lipids that differ by one 
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degree of unsaturation are eluting; an example of which is shown in Appendix 

A.13), the third isotopologue peak of the singly-charged, unsaturated species 

(which eluted first in each case) was fully convolved with the monoisotopologue 

peak of the saturated species (which elutes second in each case). However, by 

sampling from the leading edge of the saturated species’ LC peak and the 

trailing edge of unsaturated species’ LC peak, sufficiently pure isotopic 

envelopes were obtained. The other 5 convolved lipid components were 

partially convolved in the m/z domain (i.e., each isotopologue peak convolved 

up to ~20% peak height; an example for which is shown in Appendix A.14), but 

extracted isotopic features were sufficiently pure for iSF to classify each 

component correctly.  

 
2.5 Conclusions 

 
In this study, we describe an In Silico Fractionation approach for 

classification of small biological compounds from MS data via isotopic ratio 

analysis using a neural decision tree. The FFNNs estimate the relationships that 

define and separate biomolecular classes (e.g., lipids, glycans, polypeptides, etc.) 

based on their respective isotopic distribution patterns and, therefore, their 

elemental compositions. The FFNNs utilized to demonstrate iSF (PEPNET, 

LIPNET, and LIPSUBNET) were sensitive in their application to experimentally 

detected chemical components: PEPNET had a TPR of 100%, LIPNET had a TPR 

of 100%, and LIPSUBNET had a combined TPR of 95% (without confidence 
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threshold constraint). The specific demonstration presented here, constitutes 

one possible design and application of iSF; however, depending on the sample 

composition and class types present in the sample, the iSF workflow can be 

tailored for a wide variety of multi-class component mixtures. 
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CHAPTER THREE 
 

Chemical Classification for Improved Lipidomics Sample Annotation with In 
Silico Fractionation 

 
 Blah 

3.1 Abstract 
 
Chemical annotation is indispensable in untargeted lipidomics 

workflows. Conventionally, annotations in lipidomics data are often limited to 

identifications produced by instrumental methods (e.g., exact mass 

measurements and fragmentation spectral matching) and to chemical structures 

that are present in existing libraries or databases. Here we describe an 

application of In Silico Fractionation (iSF), a machine learning tool for 

classification of small biological molecules in mass spectrometry (MS) data, for 

subclassification of lipids in liquid chromatography (LC)-MS data. In this work, 

iSF uses an array of binary multi-layer feedforward neural networks to classify 

lipids using only relative abundance information for chemical isotopes. Here we 

show the performance of iSF classifiers in application to large lipidomic data 

sets and assess its performance by comparing the iSF results to LipiDex tandem 

MS identifications. Using this approach, we can accurately classify LC separated 

lipids into their respective sub-classes using data from single stage mass 

spectrometry alone. This approach does not require a priori chemical 

identification and hence is orthogonal to conventional and tandem MS 

assignment protocols. 
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3.2 Introduction 

 
Lipid distributions and structures vary greatly with respect to organism, 

organ, tissue, and cell type216-218, and their characterization is a vital step towards 

understanding of the chemistry involved in living organisms. Mass spectrometry 

(MS)-based lipidomics is a powerful approach for characterization of lipids and 

their prevalence in biological samples219, 220. For example, in early applications, 

direct injection electrospray ionization (ESI) coupled to triple quadrupole 

instruments was used to characterize and quantify lipids in cellular lipid 

extracts221, 222. To expand the analytical capabilities of direct injection MS, pre-

MS in-line separation tools such as liquid chromatography (LC) and ion mobility 

(IM) are often coupled to MS to increase peak capacity 223 and improve lipidome 

characterization 224, 225. Likewise, advanced MS acquisition modes such as 

tandem MS (MS/MS) are used to increase the accuracy and confidence in lipid 

identifications 226, 227. However, lack of comprehensive of MS/MS spectral 

libraries might prevent full lipidome annotation and require computer-

generated tandem mass spectral libraries to increase coverage 228. Furthermore, 

the extent to which a sample can be accurately annotated with identifications 

made by MS/MS fragment spectral matching depends on the quality of MS/MS 

spectra utilized; for instance, LC coeluting compounds may require advanced 

deconvolution methods to ensure confident annotation 229. 
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In conventional tandem MS lipidomics studies, generally a subset of 

MS/MS analyte identifications can be highly confident; however, it is also 

possible that many of the MS/MS ion fragmentation pattern matches exhibit 

poorer qualities and yield less confident lipid identifications 226, 229. Additionally, 

even with highly accurate measured masses (e.g., better than 1 parts-per-million 

(ppm) at mass resolving powers (M/M50%) greater than ~100,000), it is not often 

possible to differentiate potential isomers, isobars, or other confounding species 

in congested mass spectra. Hence, more complete and accurate sample 

characterization in LC-MS and -MS/MS lipidomics data should require 

annotation methods that provide relevant information, regarding lipid types and 

their functional groups, in cases that preclude definitive analyte identification. 

Structure based classification are useful for lipid characterizations and 

have been used to address sample complexities in lipidomics studies. For 

example, more advanced lipidomics analysis workflows such as ClassyFire 230 

and LIPID MAPS 198 utilize substructure or molecular fingerprint analyses 231-233 

and structure-based chemical classification systems to enable specific structure-

based class annotation. Alternatively, experimental methods have enabled 

annotation of metabolomics and lipidomics features through assignment of 

analyte class information in the absence of definitive identity assignment. For 

instance, the IM-MS community has thoroughly shown that analytes map to IM 

collision cross section (CCS) conformational space on a per-class basis 234 which 
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has assisted in identity assignment in untargeted acquisition methods 183, 209, 234. 

Additionally, Kenrick mass defect (KMD) 19 has been shown to vary dependently 

with respect to analyte class; KMD analyses have been purposed towards 

classification of bulk lipid classes 14, 15, 23 and identification of cohorts of similar 

chemicals in MS imaging experiments 22. In addition to these structure-based 

approaches, modern machine learning tools have been utilized to enhance 

lipidomics data analyses 14, 15, 235.  

Machine learning approaches improve the classification and descriptive 

power of the MS measurements by elucidating hidden correlations between 

various measured data points. For examples, Dührkop et al. developed a two-

step approach, Class Assignment aNd Ontology Prediction Using mass 

Spectrometry (CANOPUS), involving support vector machines and neural 

networks to classify analytes using MS/MS fragmentation spectra 235. 

Additionally, McLean and colleagues employed a random forest machine 

learning method, Supervised Inference of Feature Taxonomy from Ensemble 

Randomization (SIFTER), and IM-MS data (i.e., monoisotopic m/z, KMD, and IM 

CCS) for analyte classification 14. Neither CANOPUS nor SIFTER can be utilized 

using single-stage mass spectrometry data alone. For example, the CANOPUS 

method requires MS/MS data, and SIFTER uses ion mobility CCS and MS data as 

input. Herein, we present a method that predicts analyte classifications using 

only MS measurements. This approach avoids complexities associated with 
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variable quality of MS/MS measurements and does not require IM data for 

successful classification of lipids. 

In this work, we use In Silico Fractionation (iSF), a feed-forward neural 

network (FFNN)-based approach, for the classification and annotation of lipid 

molecular ions in MS data 15. Here, we evaluate the performance of iSF for 

specific lipid sub-classification in a large lipidomic dataset by comparing its 

results to LipiDex MS/MS findings. Overall, iSF FFNNs utilizes the measured 

features of the MS isotopic envelope for 1) supervised FFNN training using 

theoretical isotopic envelope calculations and 2) to classify analytes using 

experimentally acquired single-stage mass spectral data. Specifically, we show 

the capacity of iSF to accurately classify lipids in LC-MS analyses of complex 

samples into the eight main lipid classes as denoted by the LIPID MAPS 

Structure Database (LMSD). Additionally, we demonstrate the ability of iSF 

classification and annotation to refine lipid identification (especially those 

associated with low confidence MS/MS spectra) and to provide the basis for 

sample differentiation by iSF predicted class representation. 

 
 
 
 
 
 
 
 
 



104 
 

3.3 Materials and Methods 
 
 
3.3.1 Training, Validation, and Test Dataset Generation 
 

The iSF neural network training set was generated from the lipid 

elemental compositions in the LIPID MAPS Structure Database (LMSD, updated 

2019-10-02). A custom Python (CPython 3.7.6; Python Software Foundation, DE) 

script was used to parse the LMSD in .sdf format and generate theoretical 

isotopic envelopes for each composition using the IsoSpecPy Python library. 

The neutral composition of each lipid was modified with five class-appropriate 

potential electrospray adducts (all resulting in singly charged molecular ions) 

for positive- and/or negative-ion modes, and the isotopic envelope was 

calculated for each molecular ion form. The adduct forms for each lipid class 

are detailed in Appendix B.1. The isotopic feature input for each adduct form of 

each lipid was collected in a “master” dataset (n = 200,805 structures) from 

which the training set for each type of FFNN (i.e., for each major class of lipid) 

was built. In general, the training set for each type of FFNN incorporated a 

pseudo-random selection of isotopic feature inputs in Python for the positive 

class targets (targets to be positively predicted) equal to the number of the least 

represented class (viz., saccharolipids, n = 6,580) from the master dataset; a 

pseudo-random selection of isotopic feature inputs for each of the other classes 

(all equal in size) were incorporated for the negative class targets (targets to be 

negatively predicted).  The relative size of the negative inputs to positive inputs 



105 
 

was increased if FFNN overtraining was evident (e.g., if FFNN training and 

validation set performance metrics diverged substantially) 236. Optimized ratios 

of negative-to-positive inputs were as follows for each class: 1.0 (fatty acyls, nTotal 

= 13,160), 1.5 (glycerolipids, nTotal = 16,450), 1.5 (glycerophospholipids, nTotal = 

16,450), 1.0 (polyketides, nTotal = 13,160), 1.0 (prenol lipids, nTotal = 13,160), 1.0 

(saccharolipids, nTotal = 13,160), 2.5 (sphingolipids, nTotal = 23,030), and 1.0 (sterol 

lipids, nTotal = 13,160). Supervised training target outputs were provided such that 

the presence of a class of biological molecules was indicated by a value of 1.0 

and absence by a value of 0.0. 

The neural network inputs for each molecular ion component were 

calculated from its respective isotopic envelope features and were structured as 

MATLAB (R2020a; The MathWorks Inc., Natick, MA) row vectors and are shown 

in Table 3.1. The monoisotopic m/z (input 1) was limited to 4 decimal places to 

be consistent with achievable mass resolving power of the Orbitrap employed 

(m/m50% ~ 60,000) in this demonstration.  

Table 3.1. FFNN input vector structure. 
Position Input   Position Input 

1 m/z  7 AR.I./A+2R.I. 
2 AR.I.  8 KMDCH2 
3 A+1R.I.  9 KMDS 
4 A+2R.I.  10 KMDO 
5 AR.I./A+1R.I.  11 KMDP 
6 A+1R.I./A+2R.I.   12 KMDN 
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The relative intensity (as subscripts R.I. in Table 3.1) for each 

isotopologue referenced by inputs 2-7 is denoted using the “A” notation 

introduced by McLafferty et al.186 where each subsequent isotopologue 

proceeding the monoisotopologue is indicated with [A+N] nomenclature. Five 

Kendrick mass defect (KMD) values relative to CH2, S, O, P, and N (inputs 8-12) 

were included as each provided a small improvement in training performance 

and were simple to calculate. 

 
3.3.2 Neural Network Training 
 

FFNNs were constructed and trained with the neural network package in 

M (MATLAB R2020a). Eight FFNNs were used in this study and they were 

denoted as FA-NET (for positive classification of fatty acyls), GL-NET (for 

positive classification of glycerolipids), GP-NET (for positive classification of 

glycerophospholipids), PK-NET (for positive classification of polyketides), PL-

NET (for positive classification of prenol lipids), SL-NET (for positive 

classification of saccharolipids), SP-NET (for positive classification of 

sphingolipids), and ST-NET (for positive classification of sterol lipids). Each 

FFNN is a binary classifier trained to positively classify the class of lipids 

denoted in the name and negatively classify all other lipid classes. 

The hidden layer architecture (i.e., number of hidden layers and number 

of nodes per hidden layer) was optimized by evaluating the mean percent error 

(i.e. percent of false-positive and false-negative classifications over all 
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classifications) of each architecture with 10 training samples of each 

architecture. FFNN architectures with up to 3 hidden layers and up to 100 nodes 

per layer (in 10 node increments) were tested; in every sample, the number of 

nodes per layer were held constant. Hidden layer architecture optimization data 

is shown in Appendix B.2. A network architecture of 2 hidden layers with 50 

nodes in each layer was chosen for its low error and low training time. The input 

data set was then randomly divided (i.e., MATLAB function “dividerand”) for 

network training as follows: 70% in the training set, 15% in the validation set, 

and 15% in the test set. Networks were trained using scaled conjugate gradient 

(SCG) backpropagation (i.e., MATLAB function “trainscg”) and gradient descent 

with momentum and adaptive learning rate (GDX) backpropagation (i.e., 

MATLAB function “traingdx”)—both with GPU acceleration. Seven networks 

were trained for each type of FFNN, for each training method (SCG and GDX), 

and for each training set (i.e., that included different ratios of negative-to-

positive inputs). Additionally, an early stopping method 203 was used to avoid 

overfitting; FFNN training was completed after 4 validation set failures. The loss 

function used to measure FFNN training performance was cross-entropy 

(MATLAB function “cross-entropy”). Following training, the most accurate 

networks with sufficient generalization were selected for this demonstration; a 

generalized FFNN was indicated by insignificant performance differences 

between the training and test sets as well as positive and negative classification 

performances. All networks were trained using a desktop computer (Precision 
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Tower 7810; Dell Computer, Round Rock, TX) equipped with a 10-core/20-thread 

processor (Intel® Xeon™ E5-2640), a discrete graphics processing unit (NVIDIA 

GTX 1080), and 32 GB of RAM. 

 
3.3.3 Lipidomics Data Sourcing and Feature Extraction 
 

The lipidomics data used in this study was acquired and shared on the 

CHORUS mass spectrometry database by Coon et al. for an initial demonstration 

of LipiDex, an open-source software suit for LC-MS/MS lipidomics data 

analysis226. The sample preparation procedures and LC-MS/MS analysis 

parameters are comprehensively shown in the main text and supplemental 

material of the LipiDex publication226 but are summarized here. Lipidomics 

datasets include three LC-MS/MS acquisitions for each positive- and negative-ion 

mode from 4 biological sources: human Hap1 cells, yeast (S. cerevisiae), mouse 

liver homogenate, and pooled human plasma. Hap1 cell, yeast, and mouse liver 

lipids were extracted by a chloroform/methanol liquid-liquid extraction and 

were reconstituted in ACN/IPA/H2O (65:30:5, v/v/v). Human plasma lipids were 

extracted by methyl tert-butyl ether liquid-liquid extraction and was 

reconstituted in MeOH/Toluene (9:1, v/v). All acquisitions used a full MS 

resolution of 60,000 and an MS/MS resolution of 15,000. All mouse liver, human 

plasma, and yeast cell analyses used an MS/MS collision-induced dissociation 

(CID) stepped normalized collision energy (NCE) of 20 to 25, positive polarity 

Hap1 cell analyses used a stepped NCE of 20 to 25, and negative polarity Hap1 



109 
 

cell analyses used a stepped NCE of 20 to 30. Reversed-phase LC separations 

were conducted with a binary solvent gradient program; mobile phase A was 10 

mM ammonium acetate in ACN/H2O (70:30, v/v) with 250 µL/L acetic acid, and 

mobile phase B was 10 mM ammonium acetate in IPA/ACN (90:10, v/v) with 250 

µL/L acetic acid. Thermo Fisher Scientific *.raw files were downloaded from the 

Chorus Project (Stratus Biosciences, Seattle, WA) mass spectrometry file sharing 

database 

(https://chorusproject.org/pages/dashboard.html#/projects/all/1409/experiment

s)205. Additionally, unfiltered lipid identifications/peak lists were sourced from 

the LipiDex results files provided with the software in the Coon group’s github 

repository (https://github.com/coongroup/LipiDex). 

Several custom Python scripts were used to: 1) parse LipiDex results files 

for feature information including monoisotopic m/z, LC retention time, lipid 

identification/class, molecular ion charge, and MS/MS dot product score, and 2) 

extract MS isotopic envelope features (monoisotopic m/z and relative intensities 

of [A], [A+1], and [A+2] isotopologues) directly from Thermo Fisher Scientific 

*.raw files using Francois Allain’s Thermo MSFileReader Python bindings 

(pymsfilereader, https://github.com/frallain/pymsfilereader). Additionally, 

isotopic features were extracted from five scans along the apex of the select ion 

chromatogram peak for each identified lipid feature to control for variable 

quality in isotopic envelopes over the duration of each LC elution event; each 
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identified lipid LC-MS feature is associated with five iSF inputs before further 

quality control filters were applied (described in section 2.4). Isotopic envelope 

features were used to calculate each of the iSF input vector values (as shown in 

Table 1). 

 
3.3.4 iSF Input Testing and Results Filtering 
 

All iSF inputs were submitted to each network, and results were filtered 

using several quality control (QC) parameters. Calculated QC parameters fall 

into two groups wherein they either 1) describe the quality of the LC-MS feature 

that produced the iSF input or 2) describe the confidence/validity of the LipiDex 

identification. 

The following QC parameters describe the quality of each LC-MS feature 

and estimate the isotopic purity (i.e., the potential for m/z convolution of 

isobaric peaks). The primary concern for an iSF application to lipidomics data 

was potential for convolution of the [A+2] isotopologue of one lipid component 

with the [A] isotopologue of a component that contains one less degree of 

unsaturation. The primary QC parameter controlling isotopic purity was the 

linear correlation (R2) between isotopologue select ion chromatograms (SIC) to 

filter out potentially LC-MS convolved features. For each input, the SIC of each 

isotopologue were extracted, and each SIC was tested for linear correlation with 

the SIC of the proceeding peak; the term R2
1 represents the linear correlation 

between SIC[A] and SIC[A+1], and R2
2 represents the linear correlation between 
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SIC[A+1] to SIC[A+2]. An additional concern was potential for feature extraction of 

unassociated peaks (i.e., non-isotopologues) in, for example, a case where the 

[A+2] isotopologue of a feature is below detection limits and a different peak is 

acquired during feature extraction. The difference between the Δm/z[A+1]-[A] and 

Δm/z[A+2]-[A+1] (termed ΔΔm/z) was calculated to provide a metric with which to 

filter out such invalid iSF inputs. Given the theoretical mass difference of 

1.00335 between 12C and 13C, the theoretical absolute value of ΔΔm/z approaches 

zero for organic molecules. Additionally, iSF inputs were filtered by the 

intensity of the monoisotopologue peak.  

The following QC parameters describe the confidence and validity of each 

LipiDex identification. A QC parameter utilized in LipiDex identification 

filtering that was incorporated into this workflow was retention time (RT) 

median absolute deviation (MAD) for each subclass of lipid identified by 

LipiDex. The median and MAD was calculated for each subclass and identified 

LC-MS features were an outlier if its respective RT was outside the subclass 

median RT ± 3*MAD range. Additionally, iSF inputs were filtered by the LipiDex 

MS/MS Dot Product score of the lipid identification associated with the iSF 

input. 

 
3.4 Results and Discussion 

 
Lipid features identified by the LipiDex MS/MS analysis workflow from 

several different biological sources (Hap1 cells, liver, plasma, and yeast) and 
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from both positive- and negative-ion mode acquisitions were extracted from 

their respective Thermo .raw files. Classifications for each feature were then 

predicted by iSF FFNNs. The accuracy of iSF predictions were assessed by 

constraining inputs to those with high scoring LipiDex identifications. 

Additionally, the orthogonality of iSF in application to low confidence MS/MS 

identifications and as a means to describe and differentiate sample types were 

investigated.  

 
3.4.1 In Silico Fractionation of Lipidomics LC-MS Data 
 

In order to provide a performance baseline for each iSF network, iSF 

FFNNs were tested with inputs that were filtered by the abovementioned QC 

parameters to include only those produced by high quality LC-MS features and 

high confidence LipiDex identifications (R2
1 ≥ 0.9, R2

2 ≥ 0.9, |ΔΔm/z| ≤ 0.01, 

Intensity[A] ≥ 1e5, MS/MS Dot Product ≥ 700). Figure 3.1 displays the receiver 

operator characteristic (ROC) curve for each type of network which positively 

predicted lipid classes identified by LipiDex, which includes fatty acyls (Figure 

3.1A), glycerolipids (Figure 3.1B), glycerophospholipids (Figure 3.1C), 

sphingolipids (Figure 3.1D), and sterol lipids (Figure 3.1E). A perfect classifier 

would have an ROC area under the curve (AUC) of 1.0 given that both true-

positive rate (TPR) and false-positive rate (FPR) are ratios between 0 and 1. The 

FA-NET ROC curve (Figure 3.1A) was produced from 24 true-positive FA 

positive-ion mode inputs (solid green), had an AUC of 0.934, and had an optimal 
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cutoff value of 0.403 (TPR% = 87.5, FPR% = 11.5). The GL-NET ROC curve (Figure 

3.1B) was produced from 6218 GL positive-ion mode inputs (solid green), had an 

AUC of 0.934, and had an optimal cutoff value of 0.322 (TPR% = 89.2, FPR% = 

10.8).  

 
Figure 3.1. Receiver operator characteristic (ROC) curves for fatty acyls (A), glycerolipids (B), 
glycerophospholipids (C), sphingolipids (D), and sterol lipids (E) showing the performance of 
each iSF neural network for each class of lipid identified by LipiDex analysis. iSF inputs were 
constrained to those lipid features that produced high confidence LipiDex identifications 
(MS/MS Dot Product ≥ 700) and satisfied high isotopic purity standards (R2

1 ≥ 0.9, R2
2 ≥ 0.9, 

|ΔΔm/z| ≤ 0.01, IntensityA ≥ 1e5). Optimal score cut-offs are marked and labeled for each class 
and instrument polarity; positive instrument polarity is indicated by green solid lines and 
negative instrument polarity by dashed blue lines. The legend of each plot displays the 
instrument polarity (as + or -), area under the curve (AUC), and the number of true-positives 
(n) in the class. AUC is a general descriptor of classifier performance and is similar for those 
classes present in both positive- and negative-ion modes (i.e., glycerophospholipids and 
sphingolipids). 
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The GP-NET ROC curves (Figure 3.1C) were produced from 3587 GP positive-ion 

mode inputs (solid green) and 4100 GP negative-ion mode inputs (dotted blue). 

The GP positive-ion mode (Figure 3.1C, solid green) curve had an AUC of 0.917 

with an optimal cut-off value of 0.242 (TPR% = 79.6, FPR% = 20.4). The GP 

negative-ion mode (Figure 3.1C, dotted blue) curve had an AUC of 0.922 with an 

optimal cut-off value of 0.492 (TPR% = 82.2, FPR% = 17.8). The SP-NET ROC 

curves (Figure 3.1D) were produced from 1022 SP positive-ion mode inputs 

(solid green) and 651 SP negative-ion mode inputs (dotted blue). The SP positive-

ion mode (Figure 3.1D, solid green) curve had an AUC of 0.888 with an optimal 

cut-off value of 0.515 (TPR% = 83.0, FPR% = 17.0). The SP negative-ion mode 

(Figure 3.1D, dotted blue) curve had an AUC of 0.892 with an optimal cut-off 

value of 0.424 (TPR% = 87.4, FPR% = 12.6). The ST-NET ROC curve (Figure 3.1E) 

was produced from 119 ST positive-ion mode inputs (solid green), had an AUC of 

0.902, and had an optimal cutoff value of 0.465 (TPR% = 86.6, FPR% = 13.3). As 

an example of a general application, iSF network performance characteristics 

applied to the same dataset with a cutoff of 0.5 are displayed in Table 3.2. As 

expected, application of a cutoff of 0.5 produced worse results than the 

optimized cutoff values for each class. Notably, the FA class inputs were 

predicted with a decreased TPR% of 45.83% in contrast with a TPR% of 87.5 with 

an optimized cutoff value of 0.403.  
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Table 3.2. iSF network performance metrics in application to inputs with high confidence LipiDex identifications 
(MS/MS Dot Product > 700), with high isotopic purity parameters (R2

1 > 0.9, R2
2 > 0.9, |ΔΔm/z| < 0.1), and with a score 

cutoff at 0.5. 

Metric FA GL GP PK PL SL SP ST 

TPR% (n) 45.83 (11) 84.54 (5257) 79.96 (6417) NA (0) NA (0) NA (0) 85.76 (1451) 80.67 (96) 

TNR% (n) 96.92 (15560) 92.81 (9151) 91.33 (7355) 98.7 (15869) 91.67 (14739) 99.98 (16075) 84.29 (12126) 85.86 (13702) 

FPR% (n) 3.08 (494) 7.19 (709) 8.67 (698) 1.3 (209) 8.33 (1339) 0.02 (3) 15.71 (2260) 14.14 (2257) 

FNR% (n) 54.17 (13) 15.46 (961) 20.04 (1608) NA (0) NA (0) NA (0) 14.24 (241) 19.33 (23) 

 
In our initial demonstration of iSF, only positive-ion mode ESI-MS 

features were tested; however, the diversity of molecular adduct types produced 

in positive-ion mode suggested that slight changes in mass and composition 

would not significantly hinder classification 15. In the present demonstration, 

comparison of iSF performance between positive- and negative-ion modes with 

glycerophospholipid and sphingolipid inputs showed general parity. As shown 

in Figure 3.1, iSF performed only slightly better in application to negative-ion 

mode inputs; the AUC for glycerophospholipids increased from 0.917 in 

positive-ion mode to 0.922 in negative-ion mode, and the AUC for sphingolipids 

increased from 0.888 in positive-ion mode to 0.892 in negative-ion mode. The 

shapes of the glycerophospholipid curves (Figure 3.1, bottom left) are more 

similar in shape relative to the shapes of the sphingolipid curves (Figure 3.1, 

bottom middle) because the subclass compositions (i.e., the relative portions of 

various lipid subclasses in the group of inputs) of positive- and negative-ion 

mode glycerophospholipids are more similar. For example, in both positive- and 

negative-ion mode, glycerophospholipid inputs that scored between 0.1-0.3 
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(roughly in the range where both curves “step-up”; Figure 3.1, bottom left), 

~70% were lysophospholipids, which lack a fatty acyl chain compared to their 

diacyl and alkyl/acyl counterparts. Regarding the sphingolipid class, ceramides 

and hexosylceramides were the only sphingolipid subclasses detected in the 

negative-ion mode; sphingomyelins made up ~50% of sphingolipids identified in 

the positive-ion mode, and the rest were identified as ceramides and 

hexosylceramides. 

 
3.4.2 Orthogonality of iSF Chemical Classification 
 

Not all lipidomics identifications with LC-MS/MS are made with high 

confidence, and the confidence of such identifications depend on the quality of 

the MS/MS fragmentation spectra. Among the MS/MS identifications produced 

by LipiDex demonstration dataset, approximately 58% of identifications were 

produced with MS/MS dot product scores less than 700 (Appendix B.3), at which 

point LipiDex MS/MS identification performance begins to degrade226. 

Presumably, the probability for misassignment increases as the quality of the 

fragmentation spectra declines. However, classification by iSF should be 

unhindered even for low confidence MS/MS identifications provided that the 

quality of the MS isotopic pattern of the precursor ion is high (i.e., isotopic 

purity and S/N). We suggest that iSF classification could provide insight for such 

low confidence identifications.  
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Figure 3.2 displays the relationship between the LipiDex MS/MS Dot 

Product (binned by increments of 100) and the ROC AUC to show the level of 

“agreement” between iSF and LipiDex (i.e., the degree to which iSF predicted 

classifications match the classes determined by MS/MS identification).  

Figure 3.2. Scatter plot displaying receiver iSF neural network classifier operator 
characteristic (ROC) area under curve (AUC) as a function of LipiDex MS/MS Dot Product. iSF 
inputs were binned in increments of 100 dot product units. The fatty acyl and sterol lipid 
classes were omitted because these classes were not represented in most LipiDex MS/MS Dot 
Product bins. The glycerolipid (green circles), glycerophospholipid (blue squares), and 
sphingolipid (red triangles) classes are represented by at least 120 inputs per bin. Given that 
the true class of each lipid input is determined by the LipiDex identification and potential for 
LipiDex misidentification correlates inversely with Dot Product (as shown in Figure 3.2), ROC 
AUC is indicative of agreement between the iSF and LipiDex rather than true accuracy. For 
each class, the degree of “agreement” between the iSF predicted classifications and the 
expected classes as identified by LipiDex increases linearly (as confirmed by the R2 score of 
the linear regression for each class) with respect to the LipiDex MS/MS Dot Product.   
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The MS/MS Dot Product score is a metric that describes the quality of MS/MS 

fragment spectral matching between experimental and reference spectra226. The 

LC-MS QC parameters of each iSF input included in Figure 3.2 were such that 

each LC-MS feature utilized was of high isotopic purity and sufficient intensity 

(R2
1 ≥ 0.9, R2

2 ≥ 0.9, |ΔΔm/z| ≤ 0.01, minimum intensity ≥ 1e5 counts). For each of 

the predicted lipid classes that had populated bins for each data point (i.e., 

glycerolipids (green circles), glycerophospholipids (blue squares), and 

sphingolipids (red triangles)), the ROC AUC was positively correlated with the 

LipiDex MS/MS Dot Product as shown for glycerolipids (green dashes, R2 = 0.66), 

glycerophospholipids (blue dots, R2 = 0.54), and sphingolipids (red dash-dots, R2 

= 0.72). Given that the QC parameters defining the quality of each included LC-

MS feature, and therefore iSF input, were maintained, the correlation between 

iSF agreement and identification confidence cannot be primarily attributed to 

the degradation of iSF feature quality or classification performance; instead, it 

can be attributed to the increased propensity of lipid identification workflows to 

produce misidentifications associated with MS/MS spectra of low 

quality/confidence. Additionally, the ROC AUC for the 100-200 MS/MS Dot 

Product bin for glycerophospholipids and sphingolipids were notably lower 

than what the modeled linear relationship would suggest; this decrease in ROC 

AUC in the same bin was not observed for the glycerolipid class. Neither bin was 

underpopulated with 786 and 152 inputs for glycerophospholipids and 

sphingolipids, respectively, relative to the lowest number of inputs in any 
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glycerophospholipid and sphingolipid bin which was 357 and 124, respectively. 

Given the high QC constraints placed on the LC-MS features included in all bins, 

we suggest that the observed decrease in ROC AUC should be attributed to biases 

inherent to the LipiDex MS/MS identification workflow. 

 
3.4.3 Differentiation Between Biological Sample Types 
 

Distributions and biosynthesis of lipids vary significantly with respect to 

different biological sources237-241. Application of iSF to lipidomics LC-MS data 

provides a means to describe sample types by annotating species in terms of 

their respective class. The relative proportions of different identified lipid 

classes by a given LC-MS/MS workflow and sample preparation routine may 

then be utilized to discriminate between different sample types. Figure 3.3 

displays the iSF-predicted class representation (%) of each lipid class identified 

by LipiDex analysis (i.e., glycerolipids, glycerophospholipids, sphingolipids, 

fatty acyls, and sterol lipids) for each biological source used to prepare 

lipidomics samples – Hap1 cells (red), liver tissue (green), plasma (yellow), and 

yeast (blue). Error bars are confidence intervals (confidence level = 95%) 

calculated for each set of measurement replicates (n = 3 for each positive- and 

negative-ion mode and each biological source; nTotal = 24).  
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Confidence intervals were propagated when classifications from positive- and 

negative-ion mode from each biological source were added; the class 

representation of each class for both positive and negative instrument polarities 

are displayed in Appendix B.4. Classes were considered discriminatory if tested 

positive for sign difference by the Student’s t-test with respect to one biological 

source to another. By this approach, each biological source was differentiated 

by at least one lipid class, and the inset of Figure 3.3 displays the primary 

discriminating lipid classes between each biological source. Glycerolipids 

Figure 3.3. Bar charts displaying the predicted class representation for each of the sampled 
biological sources. Error bars are confidence intervals (confidence level = 95%) calculated for 
each set of measurement replicates (n = 3 for each polarity and each biological source; nTotal = 
24). Confidence intervals were propagated when classifications from positive- and negative-
ion mode from each biological source were accounted for. Each labeled bracket indicates two 
biological sample sources that are differentiated (defined by statistically significant 
difference by performing student t-test at the 95% confidence level) by the predicted lipid 
class representation and the label above each bracket denotes the two biological sources that 
were differentiated; biological sample source labels are H (Hap1), L (liver), P (plasma), and Y 
(yeast). The inset in the upper right depicts the primary discriminating lipid classes between 
each biological source. 
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differentiated Hap1 from yeast, plasma from yeast, and liver from yeast. 

Glycerophospholipids did not assist in differentiating sample types. 

Sphingolipids differentiated Hap1 from plasma and plasma from yeast. Fatty 

acyls differentiated liver from plasma and plasma from yeast. Sterol lipids 

differentiated Hap1 from liver, liver from plasma, and liver from yeast. 

Sample annotation and description by iSF holds several distinct 

advantages. Though in this demonstration, all lipid features were previously 

identified by LipiDex MS/MS fragment spectral matching or exact mass 

assignment, iSF sample description does not require previous feature 

identification. Comparison of datasets/sample types for purposes of comparison 

and/or differentiation does require consistent experimental methodology (e.g., 

sample preparation, analyte separations, instrumental parameters, etc.). If all 

necessary analytical rigor is maintained, the quantitative results produced from 

iSF sample annotation are easily comparable, and qualitative conclusions about 

sample type are easy to draw. We expect that iSF sample annotation of 

lipidomics datasets may be useful for differentiating other clinically relevant 

biological sample types such as bacteria242, 243 and cancer244. 

 
3.5 Conclusions 

 
In this work, we demonstrated a means for sample annotation and 

description of complex lipidomics datasets via iSF classification. The accuracy 

of iSF prediction was characterized through assignment and testing against true-
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positives given by high confidence LipiDex MS/MS fragmentation spectral 

matching. In general, each iSF network superseded 79% TPR for lipidomics data 

acquired with both positive- and negative-ion mode. Moreover, we 

demonstrated the importance of orthogonal means of class annotation and 

sample description in LC-MS and MS/MS workflows in which acceptance of 

unconfident assignments are likely to lead to erroneous annotations and sample 

metanalysis. Finally, we provided an initial demonstration of sample description 

and differentiation through comparison of iSF predicted class distributions in 

which each biological sample type was differentiated by at least one predicted 

class.  
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CHAPTER FOUR 
 

Referenced Kendrick Mass Defect-Based Annotation and Filtering of Imaging 
MS Lipidomics Experiments 

 
  

4.1 Abstract 
 
Because of their diverse functionality in cells, lipids are of primary 

importance when characterizing molecular profiles in physiological and disease 

states. Imaging mass spectrometry (IMS) can provide the spatial distributions of 

lipid populations in tissues. Referenced Kendrick mass defect (RKMD) analysis 

is an effective mass spectrometry (MS) data analysis tool for classification and 

annotation of lipids. Herein, we extend the capabilities of RKMD analysis and 

demonstrate an integrated method for lipid annotation and chemical structure-

based filtering for IMS datasets. Annotation of lipid features with lipid 

molecular class, radyl carbon chain length, and degree of unsaturation allows 

image reconstruction and visualization based on each chemical property. We 

show a proof-of-concept application of the method to a computationally 

generated IMS dataset and validate that the RKMD method is highly specific for 

lipid components in the presence of confounding background ions. Moreover, 

we demonstrate an application of the RKMD-based annotation and filtering to 

matrix-assisted laser desorption/ionization (MALDI) IMS lipidomic data from 

human kidney tissue analysis.  
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4.2 Introduction 
 

Imaging mass spectrometry (IMS) provides valuable identity, abundance, 

and spatial distribution information for molecular components of complex 

biological tissues. Variety of IMS approaches have been used to explore 

molecular profiles of many biological systems and measure small 

metabolites,245-247 lipids,248-250 peptides,60, 251, 252 glycans,253, 254 and proteins.255, 256 

Among these molecular classes, lipids are essential for cell signaling, membrane 

composition, and metabolism257-259 but are difficult to study by non-MS means 

such as immunostaining or transcriptomics. Matrix-assisted laser 

desorption/ionization (MALDI) IMS is a powerful tool to  measure lipids at 10 µm 

spatial resolutions approaching the size of a mammalian cell260. In MALDI 

analyses, tissue sections between 5 and 20 µm are thaw mounted on conductive 

glass slides and uniformly covered with a chemical matrix that absorbs 

ultraviolet radiation and allows for ionization of lipids60, 261, 262. Ion intensities 

from mass spectra acquired from each laser position are correlated to produce 

spatially resolved ion images26. Because of the abundance and diversity of lipids, 

resultant IMS spectra can be congested250; some of the detected lipids can be 

isomeric and/or isobaric that are unresolvable by using high resolution MS 

instrumentation alone. Therefore, often ultrahigh mass resolving power 

instruments are used for isobar separation130, 263 and other analysis dimensions 

such as ion mobility separation250, 264, low energy CID62, or chemical 

modification265, 266 are utilized to assign double-bond position and 
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stereospecifically numbered (sn) position isomers. Given the direct biosynthetic 

relationships within families of lipids, methods that can identify lipids, link lipid 

families, and preserve their spatial distributions in tissues are essential for 

investigating lipid biochemistry.  

KMD analysis is an approach that has been used to deduce families of 

chemically related compounds, such as lipids, using high resolution MS data in a 

variety of different fields of study18, 20, 22. In KMD analysis, the atomic mass unit 

reference is changed from 12C to other groups, such as methylene (or CH2, often 

using 12C1 and 
1H2 isotopes for carbon and hydrogen atoms) or other units that 

repeat in polymer chain elongation. Thus, the Kendrick mass is the 

monoisotopic m/z value adjusted to the new reference and the resultant mass 

deficiency or defect, usually rounded to the nearest integer unit, can be used to 

discriminate molecular classes that contain varied mass deficiencies. Given that 

KM scale eliminates all CH2 mass defect contributions, molecules such as lipids 

that differ by aliphatic chain length have the same KMD and those with differing 

degrees of unsaturation exhibit KMD differences of 0.01335 per unsaturation, 

which corresponds to the KMD of H2. De Pauw et al. demonstrated a KMD-based 

IMS visualization tool that filtered MALDI-MS images based on lipid features 

clustered in KMD space22. Although molecular families could be grouped by 

untargeted clustering algorithms, analyte assignments were provided by exact 

mass matching, and molecular classes of clusters were inferred. As evidenced in 

this visualization tool, KMD analysis is well suited to lipidomics; however, the 
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more specialized referenced KMD (RKMD) approach can provide more direct 

information about lipid molecular families23. 

Lerno et al. demonstrated an adapted KMD analysis method, termed 

RKMD, that determined the class and degrees of unsaturation for lipidomics 

experiments23. In RKMD analysis, the reference KMD of a specified lipid 

headgroup is subtracted from the analyte KMD, and the difference is divided by 

0.0134. Theoretically, if the resulting quotient is equal to integer value of zero or 

less, it is indicative of a positive classification for lipid molecular class with the 

specified head group. Moreover, the absolute value of the RKMD value is 

indicative of the degrees of unsaturation. However, mass measurement errors 

often preclude an error-free case, and thus RKMD values that predict correct 

chemical classes might not be an exact integer value. Additionally, the presence 

of confounding peaks in mass spectra (such as those from heavy isotopologues, 

MALDI matrix species, solvent clusters, and other molecular classes) present 

challenges for conventional RKMD analyses that lack controls to ensure 

specificity in lipid classification. Lerno et al. employed heuristic constraints that 

limited false-positive classifications but simultaneously narrowed the scope of 

application to lipids with less than or equal to six unsaturations, which comprise 

a narrower subset of lipids than might be detected during MS experiments. This 

provides an opportunity for method improvements to expand the coverage of 

the RKMD analysis to a wider subset of the lipidome. 
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Herein, we report a method for lipid feature annotation and class-based 

image filtering for lipidomics IMS data using an RKMD-based approach. We 

utilized both computationally generated and experimental MALDI-MS imaging 

datasets from human kidney tissue to assign lipid features via RKMD 

determination of lipid molecular classes, degrees of unsaturation, and numbers 

of radyl carbons. The latter is a novel extension of RKMD analysis that allows for 

increased method specificity and precision as well as lipid assignment. We show 

that class-specific spatial distributions of lipid populations can be used for 

automated image filtering and visualization of lipid descriptors such as 

molecular class, unsaturation, and radyl carbons. In previous approaches, 

spatial analyses depended on targeted identification of lipids by instrumental 

methods and user input to determine relationships in and between chemically 

related groups of lipids. In contrast, the presented method provides an 

integrated means for identification, annotation, and rapid visualization of 

related lipids in IMS datasets. 

 
4.3 Materials and Methods 

 
 
4.3.1 Sample Preparation 
 

Human kidney tissue was surgically removed during a full nephrectomy 

and remnant tissue was processed for research purposes by the Cooperative 

Human Tissue Network at Vanderbilt University Medical Center. Remnant 

biospecimens were collected in compliance with the Cooperative Human Tissue 
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Network standard protocols and National Cancer Institute’s Best Practices for 

the procurement of remnant surgical research material. The excised tissue was 

flash frozen over an isopentane, dry ice slurry, embedded in 

carboxymethylcellulose, and stored at −80 °C until use. Kidney tissue was 

cryosectioned to a 10 µm thickness, thaw mounted onto indium tin-oxide (ITO) 

coated glass slides (Delta Technologies, Loveland, CO, USA) for IMS analysis. 

Tissues were stored at -80 °C and returned to ~20 °C within a vacuum desiccator. 

IMS samples were coated with a 20 mg/mL solution of 1,5-diaminonapthalene 

dissolved in THF using an HTX TM M3 Sprayer (HTX Technologies, LLC, Chapel 

Hill, NC, USA) yielding a 1.67 mg/cm2 coating (0.05 mL/hr, 5 passes, 40 °C spray 

nozzle). Tissue samples underwent IMS analysis immediately after matrix 

deposition.  

 
4.3.2 MALDI timsTOF IMS 
 

MALDI IMS was performed on a Bruker timsTOF pro MS system260 

(Bruker Daltonics, Bremen, Germany) in quadrupole-time of flight (Q-TOF) only 

analysis mode. The qTOF ion images were collected in positive-ion mode at 10 

µm pixel size. The laser beam scan was set to 6 µm2 and 200 laser (= 266 nm) 

shots per pixel at 10 kHz was used for laser desorption and 18.6% laser power 

(30% global attenuator and 62% local laser power). Mass spectrometry data were 

collected from m/z 50 – 2000 in centroid mode for lipid analysis. Lipids were 

identified using a combination of mass accuracy (≤ 3 ppm) and LIPIDMAPS267, 268 
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database searching. Only even chained lipids were considered because it is well 

known that mammalian systems do not generally produce odd-chain lipids, 

except in special circumstances269, 270. 

 
4.3.3 Computational Generation of IMS Data 
 

Theoretical isotopic envelopes for lipids, MALDI matrix clusters, and 

peptide ions were calculated using the pyOpenMS (2.6.0) Python package to 

provide a proof-of-concept for and test the specificity and precision of the 

RKMD-based method. Peptides and MALDI matrix clusters were used to test the 

specificity of the method for lipids in the presence of confounding species. Lipid 

chemical formulas were acquired from the LIPIDMAPS structure database. Each 

lipid isotopic envelope was generated from the chemical formula of the 

protonated, singly-charged molecular ion and data for three isotopologues were 

calculated and used in subsequent analyses. The isotopic envelopes for MALDI 

matrix (M) cluster ions were calculated for monomeric [M+H]+  and proton 

bound dimeric [2M+H]+, trimeric [3M+H]+, and tetrameric [4M+H]+ ion clusters 

of 2,5-dihydroxybenzoic acid (DHB), -cyano-4-hydroxycinnamic acid (CHCA), 

and DAN. In addition to inclusion of the isotopic envelopes for singly-charged 

protonated matrix molecule ions and clusters, isotopic envelopes for fragment 

ions resulting from common neutral losses (H2O and CO2 from DHB and CHCA 

and NH3 from DAN) as well as sodium and potassium adducts were included as 

potential confounders; sodiated and potassiated cluster ions were generated 
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according to the rules described by Keller et al.271 DHB, CHCA, and DAN are 

three common choices for MALDI matrix in positive mode lipidomics MALDI-

IMS experiments and provide good ionization for a variety of lipid classes272. 

Peptide chemical formulas were converted from randomly generated peptide 

sequences with chain lengths between 1 and 25 amino acids. Each peptide 

isotopic envelope was synthetically generated from singly-charged and 

protonated species and included seven isotopologue peaks. Continuum mass 

spectra (i.e., with multiple sampled points over each peak) were generated by 

calculating the gaussian distribution of each isotopologue along an m/z axis 

from m/z 100-1500. The m/z centroid and relative isotopic abundance values 

were input for the mean and amplitude in the gaussian function. Given that 

resolving power is fixed across the mass range in TOF instrumentation273, the 

gaussian sigma parameter was held constant across the m/z range and produced 

peaks with mass resolving powers (m/Δm50%) ranging from ~55,000 to 65,000.  

To test the specificity and precision of the RKMD annotation method, five 

MS datasets consisting of theoretical centroid m/z values were generated for 

each type of molecular class tested, viz. protonated, sodiated, and potassiated 

lipids, MALDI matrix clusters, and peptides. Lipid components included 

protonated, sodiated, and potassiated ions of 500 lipids, including 62 

phosphatidylcholine  (PC), 60 phosphatidylethanolamine (PE), 61 phosphatidic 

acid (PA), 62 phosphatidylglycerol (PG), 59 diacylglycerol (DG), 22 

sphingomyelin (SM), 32 triacylglycerol (TG), 40 ether-linked (O/P-) PC, 35 O/P-
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PE, 33 O/P-PA, and 34 O/P-PG. Lipids were chosen pseudo-randomly from the 

LIPIDMAPS Structure Database (LMSD) and had even chains between 28 and 50 

radyl carbons and between 0 and 9 unsaturations from the abovementioned 11 

lipid classes.  The peptide ion spectrum was generated from 1000 unique peptide 

sequences, resulting in 7000 total peaks. The MALDI matrix ion spectrum was 

generated from 1305 matrix cluster species, resulting in 3915 total peaks. 

The computationally generated IMS dataset was based on a .PNG image 

depicting the letters “BU & VU”, and each letter had a unique set of RGB color 

values. The RGB color values in the image were associated with collections of 

lipid ion isotopic envelopes related by lipid molecular class, degree of 

unsaturation, or number of radyl carbons. At each coordinate in an equivalently 

sized 2-dimensional array, a spectrum extending in the 3rd dimension was 

generated using the lipid species of the appropriate class. At “BU” coordinates 

were spectra containing MS isotopic envelopes from 86 O/P-PG lipids with 0-6 

double bonds and 28-40 radyl carbons (even radyl carbon chains only). 

However, “&” coordinates included spectra containing MS peaks from 216 MS 

isotopic envelopes from lipids with 4 double bonds in the PC, PA, PG, and DG 

classes and with 28-40 radyl carbons (even radyl carbon chains only). Finally, 

“VU” coordinates included spectra that contained MS isotopic envelopes from 

257 lipids with 34 radyl carbons in the PC, PA, PG, and DG classes and with 0-6 

double bonds. 

 



132 
 

4.3.4 MALDI-IMS Data Preprocessing 
 

Bruker MALDI-IMS data was converted to the imzML file format prior to 

peak picking and then to a native Python dictionary structure with custom 

Python (3.8.5, CPython, Python Foundation) scripts. To make the data amenable 

to numpy array operations and matplotlib image visualization in Python, data 

for unsampled coordinates between the maximum x and y image coordinate 

were filled with an empty spectrum. An internal, quadratic recalibration of the 

summed spectrum was performed using six common lipid features, 

[PC(32:0)+H]+, [PC(34:1)+H]+, [PC(34:1)+Na]+, [PC(36:1)+H]+, [PC(34:1)+K]+, and 

[PC(36:1)+Na]+, resulting in < 3 ppm error. Each peak in each MALDI-MS 

spectrum was aligned to the recalibrated summed spectrum.  

 
4.3.5 RKMD-Based Lipid Annotation 
 

Overall, we annotate lipids with their sum compositions using an RKMD-

based workflow that uses mass spectrometry data to assign lipid sum 

compositions, namely, with headgroup, radyl carbon chain length, and 

unsaturation information. A representative schematic of the lipid annotation 

using this RKMD approach is included in Supporting Information (Appendix 

C.1). Firstly, the synthetically generated or experimentally acquired IMS dataset 

was input to the annotation workflow in a Python dictionary structure. On a per 

pixel basis, the centroid spectrum was read and aligned to the recalibrated 

summed spectrum. A recalibrated summed spectrum was used to bin m/z values 
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and enhance mass measurement accuracy by recalibrating the average m/z 

values in all acquired mass spectra. Once the mass spectrum was realigned, 

RKMD analysis was performed for each peak in the spectrum for the molecular 

class headgroup and adduct reference KMD. Headgroup elemental 

compositions used to calculate the reference KMD for each class and commonly 

observed adducts for each class are listed in Supporting Information (Appendix 

C.2 and C.3, respectively). Specifically, the reference KMD of the adducted 

headgroup of each lipid class was calculated and subtracted from the 

experimentally acquired KMD value. The resulting difference is then divided by 

0.0134 (CH2-based Kendrick mass defect of carbon) to produce the RKMD 

value23.  

For each calculated RKMD value, its distance from the closest integer 

value (δ) was determined. The features that produced an RKMD δ within a user-

defined window (δ = 0.35 in this work) for RKMD values between 0 to -9 

(corresponding to 0 and 9 unsaturations, respectively) were considered potential 

positive annotations for the class-of-interest; features that did not meet these 

criteria were excluded from further processing. The corresponding headgroup 

and unsaturation information were used to calculate the number of radyl 

carbons for each potential positive classification. Analogous to using δ 

acceptance windows, the distance from the calculated integer values indicating 

numbers of radyl carbons (ε) was used to exclude erroneous classifications. 

Peaks with radyl carbon ε values greater than 0.001 were excluded from 
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downstream processing steps as true positive identifications were found to have 

radyl carbon ε ≤ 0.001. Positive integer results were considered unacceptable 

results not in agreement with physical reality23. For each potential annotation, 

m/z, lipid class, adduct, number of radyl carbons, degree of unsaturation, radyl 

carbon ε, RKMD δ, even number radyl carbons (as true for even numbers and 

false for odd numbers), and peak intensity were stored in a Python dictionary. 

This process is repeated for every molecular class headgroup and adduct of 

interest. 

 
4.3.6 Image Filtering and Heuristic Constraints 
 

Lipid distributions were then visualized based on lipid classes defined by 

similarities in lipid headgroup, degrees of unsaturation, and number of radyl 

carbons. As an example, a filter for the O/P-PE class is applied for RKMD 

assignments of m/z 790.5151, which include [PC(O/P-35:5)+K]+, [PE(O/P-

38:5)+K]+, [LPC(35:5)+K]+, and [LPE(38:5)+K]+ (Appendix C.4). Firstly, 

assignments were rank ordered by ascending RKMD δ values for each peak at 

each pixel. To limit false positive identifications, several heuristic constraints 

were applied. Lower and upper limits were placed on the numbers of radyl 

carbons and degrees of unsaturation that were accepted for each lipid molecular 

class (Appendix C.5). Limits were based on commonly observed fatty acids274 

and radyl carbon chain lengths for each lipid molecular class in MALDI-IMS 

tissue analyses249, 275. Molecular class-specific degree of unsaturation limits were 
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necessary to limit false-positive identifications in which unrealistically high 

degrees of unsaturation were calculated as noted by Lerno et al.23 Additionally, 

in this work, odd numbered of radyl carbon chains were excluded given that odd 

chain fatty acids are uncommon in human tissues269, 270. After excluding potential 

annotations by heuristic constraints, the top ranked assignment was compared 

to the filter criterion, and the RKMD δ was compared to an m/z value dependent 

error limit. If the filter criterion matched the assignment and the RKMD δ was 

below the error limit, the feature intensity was added to the pixel intensity of the 

filtered image. In this demonstration, the RKMD δ error limit was calculated by 

𝑟 =    where r is the error limit expressed in terms of RKMD δ, p is the 

error limit expressed in terms of ppm error, m is the m/z value of the feature, 

and 13415 is a constant that relates RKMD δ to ppm error to approximate a 2.5 

ppm error threshold. The relationship between RKMD δ and ppm error is 

inversely related (Appendix C.6). 

 
4.4 Results and Discussion 

 
 
4.4.1 RKMD-Based Annotation and Filtering of Computationally Generated IMS 

Data 
 

Data processing and analysis methods in IMS have advanced significantly 

in recent years to accelerate analysis of large data volumes. Imaging data 

analysis in MS is often conducted manually by selective visualization of m/z 

values or by unsupervised data reduction (e.g., principal component analysis276) 



136 
 

and/or segmentation approaches277 that group pixels/spectra by similarity278. 

However, manual analysis can be time consuming, and unsupervised analyses 

do not describe the relationships between pixel groups or may produce 

uninterpretable results277. Biologically relevant conclusions are therefore 

dependent on accurate annotation of molecular species in biomarker discovery 

workflows. Chemical class annotation is useful to analyze global trends in data, 

and one attractive option for lipid class annotation is the RKMD method23. 

However, in conventional RKMD, there is a potential for false-positive 

classifications from confounding ions because the only criterion for chemical 

classification is an acceptance window for RKMD values (determined by mass 

measurement error). To address this drawback and adapt RKMD for imaging 

applications, we implemented an additional data curation criterion to reduce 

potential incorrect results and expanded the RKMD approach’s analytical 

capabilities from classification to full sum composition lipid annotation.  

In this approach, we increase the specificity and precision of RKMD-

based annotation via exclusion of true-negative peaks based on the distance 

from calculated radyl carbon integer values. The specificity and precision of the 

RKMD-based annotation method are demonstrated in application to a 

computationally generated complex dataset containing lipids and potentially 

confounding species, including MALDI matrix cluster and peptide ions (Figure 

4.1). Confounding species were included to evaluate the performance of the 

approach for their effective exclusion.  
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Figure 4.1. Computationally generated [PG+H]+ RKMD plots A, B, and C with their respective 
zoom regions in D, E, and F demonstrate the utility of using data curation parameters, RKMD 
δ and radyl carbon ε exclusion windows, to enhance specificity and precision of the RKMD-
based annotation method in the presence of protonated lipids (blue, 500 w/ three isotopes), 
sodiated lipids (purple, 500 w/ three isotopes), potassiated lipids (orange, 500 w/ three 
isotopes), peptides (pink, 1000 w/ seven isotopes), and MALDI matrix clusters (green, 1305 w/ 
three isotopes). The top row plots (A, D) include all datapoints, Plots in the second row (B, E) 
include datapoints with δ ≤ 0.1, and plots in the third row (C, F) include datapoints with δ ≤ 
0.1 and ε ≤ 0.001. 
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MALDI matrix cluster ions are often observed as background ions in MALDI 

experiments279.  Likewise, peptides are potential confounders in tissue IMS 

lipidomics; although they are not often detected concurrently with lipids in 

tissue IMS experiments except in single cell251 and small metabolite246 analyses. 

The computationally generated ions were subjected to RKMD analysis 

and results as are displayed as plots of RKMD as a function of KNM (Figure 4.1 

A-F). Each row of plots was subjected to a different level of data curation. In this 

work, [PG+H]+ was chosen as a reference lipid headgroup as it exhibited the 

lowest specificity of all classes included in the dataset. In Figure 4.1, MALDI 

matrix cluster ions are displayed in green, peptide ions are displayed in pink, 

and lipids are shown in three different colors of blue (protonated), purple 

(sodiated), and orange (potassiated). Plots labeled “All Peaks” (Figure 4.1A-C) 

contain the entire dataset whereas plots labeled “Positive ID Region” (Figure 

4.1D-F) show the relevant regions for RKMD classifications. Prior to any data 

curation, 1112 peptide, 498 MALDI matrix cluster, 2596 true-negative lipid MS 

datapoints were observed in the zoomed positive ID region (Figure 4.1D). 

For comparison, lipid, matrix cluster, and peptide data were first curated 

by RKMD δ exclusion only with a window of 0.1 or ~1.9 ppm mass error (Figure 

4.1B & E). This case reflects a conventional application of RKMD wherein 

retained datapoints would indicate positively classified species for the specified 

headgroup. By imposing the RKMD δ exclusion value of 0.1, 20.1% (1410) of the 

7000 peptide datapoints in the total space were retained (Figure 4.1B), and 20.6% 
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(229) of the 1112 peptide datapoints in the positive ID region were retained 

(pink, Figure 4.1E). Similarly, 20.4% (799) of the 3915 MALDI matrix cluster 

datapoints in the total space were retained (Figure 4.1B), and 19.5% (97) of the 

498 matrix cluster datapoints in the positive ID region were retained (green, 

Figure 4.1E). Of the retained lipid datapoints, 55 corresponded to [PG+H]+ 

monoisotopic peaks, and 358 corresponded to heavy isotopologues and/or peaks 

from other lipid molecular classes. In the total RKMD space (Figure 4.1B), the 

specificity for correct exclusion of non-[PG+H]+ monoisotopologues was 83.3% 

(ratio of true-negative indications to all negatives), and the precision (ratio of 

true-positive indications to all positive indications) imparted by RKMD δ 

exclusion was 2.1%. In the positive ID region, these numbers for the specificity 

and precision improved to 89.9% and 11.4%, respectively (Figure 4.1E). 

Although a significant portion of the confounders were excluded by utilizing an 

RKMD  window (Figure 4.1E), this conventional approach lacks the desired 

level of specificity and precision for confident lipid annotation. 

To demonstrate the enhancement provided in the presented RKMD-based 

annotation workflow, the number of radyl carbons were calculated for each 

feature assuming a [PG+H]+ headgroup, and data were curated by a radyl carbon 

ε exclusion window of 0.001 in addition to an RKMD δ exclusion window of 0.1 

(Figures 4.1C & F). Application of radyl carbon ε exclusion with a window of 

0.001 significantly decreased the number of retained peptide datapoints from 

1410 (peptides retained by RKMD δ exclusion only) to only 79 (1.1% of 7000 total) 
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and matrix cluster peaks from 773 to 64 (1.6% of 3915 total) in the total space 

(Figure 1C). In the RKMD positive ID region (Figure 4.1F), radyl carbon ε 

exclusion decreased retained peptide datapoints from 229 to 26 (2.3% of 1112) 

and MALDI matrix cluster datapoints from 97 to 8 (1.6% of 498). All potential 

lipid false-positives were eliminated, leaving only the 55 peaks corresponding to 

the 12Call isotopologues of [PG+H]+ components (Figure 4.1C & F). This 

corresponds to a true-positive rate of 100% for positive identification of all 

[PG+H]+ lipids. In the positive ID region (Figure 4.1F), specificity was increased 

to 98.8% (from 89.9% for RKMD δ exclusion only) and precision to 78.6% (from 

11.4% with only RKMD δ). The exclusion of a most matrix cluster ions and 

peptides (98.4% and 97.7%, respectively) suggest that the method is robust in 

excluding non-lipid components (Figure 4.1). 

Moreover, the observed enhancement in this new approach enabled 

assignment of highly unsaturated lipids with greater confidence, relative to 

conventional RKMD δ windowing exclusion approach via elimination of false-

positive lipid assignments from both heavy isotopologue peaks and 

monoisotopic peaks of other classes. For instance, when solving for [PC+H]+ 

RKMD values, [PA(34:1)+K]+, [PA(38:4)+K]+, and [PA(36:6)+K]+ monoisotopic 

peaks produce low RKMD δ values at integers -7, -10, and -12, respectively 

(purple diamonds, Appendix C.1, node III), and therefore reduce confidence in 

highly unsaturated PC assignments in conventional RKMD analyses. However, 

solving for each [PA+K]+ components radyl carbon chain length (assuming a 
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[PC+H]+ headgroup) produces large radyl carbon ε values exceeding the 

threshold of 0.001 used in this work (purple diamonds, Appendix C.1, node IV), 

restoring confidence to highly unsaturated [PC+H]+ assignments.  

As a proof-of-concept, the RKMD-based annotation and filtering method 

was applied to a computationally generated IMS dataset comprised of 

theoretical MS peaks (Figure 4.2). The total ion current (TIC) image of the 

dataset (Figure 4.2B) displays contributions from 559 protonated lipid MS peaks 

spatially arranged to display the text “BU & VU”. The summed mass spectrum of 

all included lipid components is displayed on top of the total ion current (TIC) 

image and is notably complex with regions of severe congestion (Figure 4.2A). 

RKMD-based annotation correctly assigned each lipid, and the filtering method 

reconstructed each select class image using RKMD δ and radyl carbon ε 

exclusion windows of 0.1 and 0.001, respectively. Specifically, reconstructed 

images for 86 ether-linked phosphatidylglycerol lipids at “BU” coordinates 

(Figure 4.2C), 216 lipids with four degrees of unsaturation from PC, PA, PG, and 

DG chemical classes at “&” coordinates (Figure 4.2D), and 257 lipid features with 

34 radyl carbons from PC, PA, PG, and DG chemical classes at “VU” coordinates 

(Figure 4.2E) are shown in Figure 4.2C-E. Each SC image represents a filtering 

mode that utilizes a different criterion, namely lipid chemical class (Figure 

4.2C), degrees of unsaturation (Figure 4.2D), and number of radyl carbons 

(Figure 4.2E). 
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Figure 4.2. A computationally generated summed mass spectrum (A) for an MS dataset from 
37044 pixels that included 559 lipids with pseudo-randomized relative abundances was used 
to generate the total ion image show in (B) and a series of RKMD-based filtered mass 
spectrometry images (C-E). Total ion current (TIC) image (84 x 441 pixels) in B depicts the 
summed intensity for each coordinate. The selected class (SC) images were filtered based on 
molecular class, degrees of unsaturation, and radyl carbon chain length, respectively. The 
molecular class image (C) was filtered for ether-linked phosphatidylglycerol (O/P-PG) lipids; 
the dataset included 86 O/P-PG lipids at the “BU” coordinates. The degree of unsaturation 
image (D) was filtered for lipids containing 4 unsaturations; this dataset included 216 lipids 
containing PC, PA, PG, or DG headgroups and all contained four double bonds at the “&” 
coordinates. The radyl carbon chain length image (E) was filtered for lipids with 34 radyl 
carbons; the dataset included 257 lipids with 34 radyl carbons from the same four molecular 
classes. 
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The RKMD-based reconstructed images demonstrate that this class-based 

filtering approach can be used to ascertain the character and localization of 

related groups of lipids in IMS data (Figure 4.2). To evaluate the utility of the 

RKMD-based lipid annotation for tissue image reconstruction, we analyzed 

MALDI-IMS data from a human kidney tissue and highlighted the advantages of 

a class-based approach for spatial tissue characterization.  

 
4.4.2 MALDI-IMS of Kidney Tissue Lipids 
 

The presented workflow was applied to a MALDI tissue imaging analysis 

of human kidney lipids. Lipids are of primary importance to the healthy 

functioning of kidney tissues and characterization of renal disease280, 281. MALDI-

MS has enabled detailed interrogations into the spatial distribution and 

composition of different lipids in human kidney tissues that have provided key 

insights into physiological and disease mechanisms282-284. The imaged kidney 

section (220,000 pixels) contains portions of the medulla and cortex. Subsections 

of these regions are visible at varying degrees in all class-based images, such as 

medullary rays, tubules, collecting ducts, vasculature, and glomeruli (Figure 

4.3). A composite of all saturated lipids and monounsaturated PC lipids are 

shown in Figure 4.3 (top and bottom, respectively). To confirm the accuracy of 

the RKMD-based annotation method, 44 m/z values that resulted in 

identifications made by a combination of mass accuracy and LIPIDMAPS 

database searching were submitted to RKMD-based annotation.  
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The RKMD-based method produced equivalent assignments in each case after 

application of the heuristic constraints used in the presented image filtering 

workflow (Appendix C.7). 

Observed lipids from MALDI-IMS of kidney tissue from several different 

molecular classes were detected and assigned by the RKMD workflow. At the 

highest level, resultant images are composites of all assigned lipid components 

that are grouped by molecular class, unsaturation, and radyl carbon chain 

length (Appendix C.8). Although the high-level class composite images may be 

useful to evaluate broad differences in lipid class distributions in tissue, 

localization of related lipids can vary significantly with respect to other 

characteristics, such as localization of a lipid class with varying radyl carbon 

chain length or degree of unsaturation. Some lipid isomers can even have 

differing spatial distributions in tissues; however, these differences cannot be 

visualized without an orthogonal dimension of separation such as ion 

Figure 4.3. Labeled renal tissue structures spanning parts of the medulla and cortex region in 
class composite images depicting saturated (top) and monounsaturated PC (bottom).  
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mobility250. However, in the interest of preserving spatial information, all 

molecular metadata for each component was retained such that subclass images 

of more specific groupings of lipids could be easily reconstructed and compared 

to evaluate localization of lipid classes with finer differences.  

For example, lipid distributions corresponding to saturated and 

monounsaturated PC and PE and mono- and diunsaturated SM components 

were evaluated (Figure 4.4). Images of saturated PC (Figure 4.4A) and PE (Figure 

4.4B) and monounsaturated SM (Figure 4.4C) components are highly colocalized 

in the kidney tissue, showing high abundance within the glomeruli, vasculature, 

and medullary rays (Figure 4.3). Previously, SM lipids have been characterized 

throughout the renal cortex and medulla; moreover, studies have characterized 

localization of monounsaturated SM to glomeruli in healthy rat subjects285 and in 

diabetic mouse subjects in response to a high fat diet282. In contrast, images of 

monounsaturated PC and PE (Figure 4.4D & E) show different spatial 

distributions. Although some low signal may be observed from the glomeruli in 

the cortex, signal arises primarily from the surrounding structures. In the 

medulla, monounsaturated PC and PE (Figure 4.4D & E) are colocalized to the 

renal tubules and their collecting ducts; in the cortex, monounsaturated PC and 

PE highlight elements of the renal cortical labyrinth that surround the 

glomeruli. Concerning the vasculature, saturated (Figure 4.4A & B) and 

unsaturated PC and PE (Figure 4.4D & E) are negatively correlated. 
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 Figure 4.4. RKMD-based filtering applied to a MALDI-IMS dataset from a human kidney section with medulla and cortex visible in all images: 
A) saturated PC, B) saturated PE, C) monounsaturated SM, D) monounsaturated PC, E) monounsaturated PE, and F) diunsaturated SM.  
Images generated by RKMD-based filtering can be used to rapidly determine lipid trends among functional regions. For instance, glomeruli 
possess higher levels of saturated PC and PE lipids (A-B) and monounsaturated SM (C), and elements of the vasculature and medulla are 
represented very differently by saturated PC/PE (A and B) and SM (C and F) compared to monounsaturated PC/PE (D and E).  
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Saturated PC and PE colocalized to structures above the artery, and unsaturated 

PC and PE have higher abundance in the surrounding tissues. In contrast, 

diunsaturated SM (Figure 4.4F) maintains localization to the medullary rays and 

vasculature relative to saturated PE, PC, and monounsaturated SM; however, 

this lipid class is completely absent from glomeruli.  

In the interest of further characterizing the behavior of SM localization, 

we grouped and displayed SM subclasses by radyl carbon chain lengths (Figure 

4.5). Each image is a composite of at least three SM components (except for SM 

with 38 radyl carbons (Figure 4.5C) which has two). The 38 radyl carbon SM 

composite image was included to show continuity in the progression of 

increasing chain lengths in the SM class. Each image shows conservation of 

some features including the medullary rays, vasculature, and tubules. For 

example, 34 radyl carbon SM (Figure 4.5A) and 42 radyl carbon SM (Figure 4.5E) 

are uniquely colocalized to the glomeruli. Although 42 radyl carbon SM 

components produced less signal in these regions (as compared to Figure 4.5A 

for 34 radyl carbon SM), they contrasted with 36, 38, and 40 radyl carbon SM 

subclasses (Figure 4.5B-D), which are completely absent in the glomeruli.  Based 

on the localization of monounsaturated SM to the glomeruli (Figure 4.4C), we 

presumed and confirmed that a major component was SM(34:1), which was 

characterized previously as an important mediator for ATP production in 

glomeruli282.  
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Figure 4.5. RKMD-based filtering applied to a MALDI-IMS dataset from a human kidney section with 34, 36, 38, 40, and 42 radyl carbons in A-E 
followed by an enlarged region in the cortex for SM with 42 radyl carbons (F) with further classifications by the degree of unsaturation for 
1(G), 2 (H), and 3 (I) unsaturations. Red and blue arrows indicate vascular structures represented in the 42 radyl carbon SM composite (F) that 
are colocalized to SM(42:2) (H) and SM(42:3) (I) and absent in SM(42:1). Images were used to further characterize SM localization in the 
glomeruli and reducing class composite images enables localization of discrete sum compositions and attribution of observed morphological 
features to more specific groups of lipids. 
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The RKMD-based image filtering approach can be applied to any group or 

subgroup of lipids with increasing specificity down to individual lipid sum 

compositions, reducing composite images to observe colocalization of very 

closely related lipids. Of course, lipid sum composition does not describe sn 

position or double bond position/geometry but is the greatest level of specificity 

provided by single-stage MS measurement and the RKMD-based method. For 

example, the 42 radyl carbon SM composite class image (Figure 4.5E & F) was 

reduced to the spatial distributions of the three contributing sum compositions, 

SM(42:1), SM(42:2), and SM(42:3), were visualized in an enlarged region of the 

cortex (Figure 4.5G-I). The red and blue arrows (Figure 4.5F, H, & I) indicate 

vascular structures observed in the 42 radyl carbon SM composite image (Figure 

4.5F) that were observed with higher intensity relative to the surrounding tissue 

in the SM(42:2) and SM(42:3) (Figure 4.5H & I, respectively); this is in contrast to 

the SM(42:1) image (Figure 4.5G) in which signal intensities for the indicated 

areas are similar to the surrounding tissue. 

The RKMD-based annotation and image filtering approach provides the 

framework for an intuitive and data-driven approach for spatial analysis of 

lipids. High-level class composite images should allow investigators to make 

broad inferences about their data that inform subsequent interrogations with 

increasing levels of specificity. 

 
 



150 
 

4.5 Conclusions 
 

This work has demonstrated a method for RKMD-based lipid annotation 

and IMS image filtering. The enhanced specificity and precision of the 

annotation method was shown through calculation of radyl carbon chain length 

and dataset curation by exclusion of features with distances from radyl carbon 

integer values, ε, larger than a window defined in this work as 0.001. When 

applied to peptide, MALDI matrix cluster, and lipid MS features, the specificity 

and precision were broadly enhanced by radyl carbon ε exclusion when 

compared to conventional exclusion only by RKMD δ, or distance from RKMD 

integer values. A proof-of-concept application to a computationally generated 

IMS dataset showed the outputs of the method which were filtered and 

reconstructed images that use RKMD calculated molecular class, degree of 

unsaturation, and radyl carbon chain length as criteria. 

Finally, we applied the method to MALDI-IMS lipidomic data from 

human kidney tissue section that spanned the cortex and medulla regions. The 

filtering method was used to visualize spatial distribution of subgroups of PC, 

PE, and SM lipids. Colocalization of saturated PC and PE and monounsaturated 

SM components was observed throughout the tissue, namely in glomeruli, 

medullary rays, and vasculature. However, the addition of one unsaturation to 

each molecular class reduced the previously observed correlations between 

PC/PE and SM. Of particular note was the colocalization of SM to cortical 

glomeruli. To evaluate the extent of SM localization to glomeruli, we visualized 
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distributions of SM components with varying chain lengths noting unique 

colocalization of SM with 34 and 42 radyl carbons with glomerular structures. 

Finally, we unpacked the 42 radyl carbon SM composite image to visualize each 

sum composition component. Building on this work, future studies may utilize 

this workflow to intuitively analyze spatial distributions of lipid classes within 

and between samples to enhance analysis of lipidomics IMS datasets.  
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CHAPTER FIVE 
 

Conclusion 
 

  
5.1 Dissertation Overview 

 
The work presented in this dissertation focused on providing chemical 

classification and annotation tools that could enhance metabolomics and 

lipidomics analysis workflows for characterization of biological samples. After 

presenting mass spectrometry and existing data analysis tools in Chapter one, 

subsequent chapters introduced novel chemical class annotation tools for 

interpretation of mass spectrometry data. More specifically, Chapter one 

provided a brief history of the mass spectrometry and scope of the research 

presented in this dissertation followed by a general overview of the methods and 

concepts that might be necessary for better understanding of the presented 

research. The reviewed methods and concepts pertained to components of 

instrument configurations used to gather and analyze data that served to 

validate the chemical classification tools presented. 

Chapter two introduced a supervised feedforward neural network (FFNN) 

tool for chemical classification or In Silico Fractionation (iSF) of biomolecules. 

In this approach, iSF FFNNs utilized direct MS measurement inputs including 

m/z values, ion isotope relative abundances, isotope ratios, and KMD values to 

classify features. Classifiers were arranged in a neural decision tree structure 



153 
 

that sequentially classified inputs with increasing levels of specificity. In this 

demonstration, inputs that were positively predicted by the lipid classifier, 

LIPNET, were submitted to the lipid subclassifier, LIPSUBNET, to predict lipid 

subclasses. In addition, a performance enhancing measure, termed “confidence 

thresholding”, was implemented to improve the accuracy of iSF classifiers by 

limiting classification to those with an output exceeding the threshold value. 

The accuracy and robustness of iSF classifiers were demonstrated using two 

experimental datasets in which peptides, lipids, and metabolites were 

successfully classified. 

Chapter three demonstrated an application of iSF classifiers to a large 

lipidomics LC-MS/MS dataset. An array of iSF binary classifiers (i.e., one for 

each lipid subclass) were used to subclassify lipid features from lipid extracts 

from biological samples that were previously characterized and identified by 

LC-MS/MS and a fragmentation spectral matching workflow, LipiDex. The 

orthogonality of iSF to the LipiDex workflow was demonstrated by comparing 

the agreement of the iSF classifiers predicted classes with LipiDex-determined 

classes as a function of LipiDex match score. When the LC-MS quality control 

parameters were controlled to maintain high quality iSF inputs, it was shown 

that iSF agreement increased as a function of Lipidex MS/MS fragment spectral 

match score (i.e., the score that describes the similarity between experimental 

and reference library MS/MS spectra), up to a certain match score that the 

LipiDex authors describe as “confident”. These results demonstrate that iSF 
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classification could provide useful information in cases of low scoring, and 

therefore ambiguous, identification results produced by, for instance, MS/MS 

fragment spectral matching. 

Chapter four introduced an enhanced referenced Kendrick mass defect 

(RKMD) method for sum composition annotation of lipids in MS imaging 

datasets and class-based image filtering. Previously, RKMD was used as a 

chemical classification tool in high resolving power MS data that could also yield 

information on lipid unsaturation. However, in the presented research in 

Chapter four, this information was used to calculate radyl carbon chain length 

as well. Calculation of radyl carbon chain length using the information derived 

from RKMD analysis enabled lipid sum composition determination, significant 

improvements in automated data curation, and image filtering based on chain 

length. The RKMD-based annotation and image filtering workflow was applied 

to a MALDI-MS imaging analysis of human kidney tissue lipids. Spatial 

distributions of sphingomyelins, phosphatidylcholines, and 

phosphatidylethanolamines were visualized based on the degrees of 

unsaturation to show differential localization in kidney substructures. Kidney 

structures colocalized to sphingomyelin distributions led to visualization of 

sphingomyelin distributions based on radyl carbon chain length. 
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5.2 Future Directions 
 
 
5.2.1 iSF Application to Whole X-ome LC-MS Separations 
 

As demonstrated in Chapters two and three, iSF FFNNs can be trained to 

accommodate a wide diversity of biological chemical classes. Although 

lipidomics and metabolomics are important fields for application of orthogonal 

chemical classifiers, the field of whole x-omics requires flexible and 

comprehensive annotation strategies and hence, could benefit greatly from 

methods such as iSF. In whole x-omics research, investigators seek to unify 

analyses of various molecular classes in biological samples to interrogate inter-

class relationships and increase throughput. However, annotation workflows 

increase in their complexity with greater number of classes accommodated in 

an analysis as investigators lose the ability to use a priori assumptions to guide 

analysis. Regarding MS data analysis, a priori assumptions about analyte class 

inform: 1) allowable elements and numbers of atoms in EC determination, 2) MS 

database usage for mass accuracy and MS/MS fragmentation spectral matching, 

and 3) peptide and nucleotide sequencing workflows. In such cases where 

identification workflows are severely impaired, orthogonal chemical 

classification methods such as iSF could yield information on general sample 

composition and suggest strategies for identification on a feature-by-feature 

basis.  
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Recently, a proprietary sample preparation and LC-MS method, Omni-

MS, was presented at ASMS 2019 and 2020 that provides “one-shot” analysis of 

peptides, lipids, metabolites, metals, and nucleotides. Omni-MS is being used at 

Dalton Bioanalytics to perform quantitative analyses of various molecules in 

plasma. The presenting authors were kind to supply a dataset used for Omni-MS 

method validation. In general, the method involves sequential digestion of 

peptides and nucleotides and followed by extraction of the solution containing 

all soluble molecular components. Samples were then separated by UPLC with a 

triphasic solvent gradient using water, ACN, and a buffer constituted of volatile 

salts. The resulting LC-MS acquisitions produced molecular signatures from 

peptides, nucleotides, metabolites, lipids, and metals. Preliminary iSF FFNNs 

were trained to classify each molecular class except for metals. Application to 

iSF to these datasets showed promising results with strong classifications from 

each chemical class that correlated well with class predictions based on LC 

retention and/or manual inspection of LC-MS features. 

Although a trained user can often discriminate between different classes 

of molecules in LC-MS data (i.e., by charge state, LC retention, isotope ratios, 

etc.), data volumes produced in such acquisitions make such expectations 

untenable. Additionally, an automated implementation of chemical class 

prediction informs downstream processing steps and provides a means for 

sample description that is mostly independent of user bias. Of the other 

available orthogonal chemical classification methods13, 14, iSF is the only viable 
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available option for pure LC-MS data (i.e., iSF is not reliant on IM or MS/MS 

fragmentation data). 

 
5.2.2 Comparison of Internal Spatial Class Correlations between Lipidomics MS 

Images to Differentiate Sample Conditions 
 

As demonstrated in Chapter four, the RKMD-based lipid annotation and 

image filtering workflow can effectively describe lipids in terms of their 

headgroup, degrees of unsaturation, and radyl carbon chain length (i.e., their 

sum composition) and visualize lipid distributions based on each selected 

feature. The presented RKMD-based workflow provided an intuitive means for 

comparing the colocalization of lipid populations within samples; however, it 

can also support means for automated comparison of lipid spatial distributions 

between samples and conditions.  

In conventional MS imaging analyses, between condition/sample 

comparisons are difficult because tissue sections for different 

samples/conditions are unique in their size, shape, and distribution of internal 

structures due to differences in tissue morphology between equivalent sections 

from different animals. Therefore, comparing similarities or differences in 

localization of different molecules is not trivial; investigators must often 

evaluate each m/z specific image and infer whether molecules are likely to be 

differentially localized and then quantitatively evaluate select regions-of-interest 

that contain the localized features. Given the difficulty of direct comparisons, 

we suggest that the RKMD-based annotation and filtering workflow can facilitate 
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and automate indirect comparisons between samples by comparing internal 

spatial correlations (classA vs. classB within a sample where A and B are different 

lipid classes) between different samples with different conditions (correlationAB1 

vs. correlationAB2 for hypothetical conditions 1 and 2). Given equivalent sample 

preparation (e.g., uniform matrix deposition in MALDI, same MALDI matrix, 

etc.), and sampling conditions (e.g., laser fluence, wavelength, spot size, etc.), 

internal correlations between molecules in two equivalent tissue sections (e.g., 

two control samples) should be similar. Our hypothesis is that changes in 

localization of different molecules due to changing experimental conditions will 

result in significant changes in internal spatial correlations. The degree of 

similarity between samples of the same condition will need to be assessed to 

provide a baseline for comparisons between conditions. 

Preliminary data analysis has shown that the similarity of spatial 

distributions of lipids can be assessed by determining their structural similarity 

index286. Using Python scripting, the intensity values of select class and m/z 

images from the human kidney lipidomics MALDI-IMS dataset were scaled 

between 0 and 1 and then compared by calculating the structural similarity 

index (from the scikit-image Python package) for each pair of images. Visual 

inspection of pairs of images of high structural similarity index scores 

confirmed that the visualized lipids were highly colocalized. We suggest 

application of the RKMD-based method to multiple control and disease 

condition samples to validate the approach and assess changes in correlation 
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between equivalent samples and between conditions. The RKMD-based method 

is particularly suited for this type of analysis as it facilitates visualization and 

analysis of lipid classes with increasing specificity. We suggest that observed 

changes in internal spatial correlations, resulting from comparisons between 

high-level classes, will indicate general differences between conditions and 

direct analysis towards comparisons of more specific groups (and/or individual 

lipid sum compositions). Ultimately, the goal is to determine which classes and 

individual species are most affected by the condition(s).  
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APPENDIX A 
 
Using Isotopic Envelopes and Neural Decision Tree-based In Silico Fractionation 

for Biomolecule Classification 
 

A.  
A.1 Python Script for Generation of Pseudo-random Polypeptide and Nucleic Acid 

Sequences and Elemental Compositions 
 
 
import os, xlwt 
import pandas as pd 
import numpy as np 
import random as rn 
import datetime as dt 
 
def parse_csv(fileName): 
    with open(fileName) as f: 
        parsed = pd.read_csv(f) 
    parsed.head() 
    return parsed 
 
def build_dict(sequence, symbolType, atoms): 
    dictionary = {} 
    for i, symbol in enumerate(sequence[symbolType]): 
        dictionary[symbol] = {atom: sequence[atom][i] for atom in atoms} 
    return dictionary 
 
def build_filename(baseName, length, average, std): 
    time = dt.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") 
    return f'{time}_{length}__AVG{average}_STDEV{std}_{baseName}.xlsx' 
 
def generate_chemform(sequence, dictionary, atoms): 
    atomNumbers = {atom: 0 for atom in atoms} 
    for monomer in sequence: 
        molecules = dictionary.get(str(monomer)) 
        for atom in atoms: 
            atomNumbers[atom] = int(atomNumbers[atom] + molecules.get(atom)) 
    chemForm = "" 
    for atom in atoms: 
        if atomNumbers[atom] != 0: 
            chemForm = chemForm + atom + str(atomNumbers[atom]) 
    return chemForm 
 
def generate_sequence(length, df, symbolType, monoRange, ptm=False): 
    sequence = [df[symbolType][rn.randint(*monoRange)] for _ in range(length)] 
    if ptm: 
        sequence[-1] = ptm 
    return sequence 
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def generate_form(length, avgLen, atoms, df, d, symbolType, monoRange, std, 
ptm=False): 
    formList = [] 
    for _ in range(length): 
        lng = int(np.round(np.random.normal(loc=avgLen, scale=std, size=1), 
0)) 
        sequence = generate_sequence(lng, df, symbolType, monoRange) 
        formList.append(generate_chemform(sequence, d, atoms)) 
    return formList 
 
def save_form(formList, header, fileName, avg, std, index=False): 
    dataframe = pd.DataFrame(formList) 
    dataframe.columns = header 
    fileName = build_filename(fileName, len(formList), avg, std) 
    dataframe.to_excel(fileName, index=index) 
 
directory = os.path.dirname(os.path.abspath(__file__)) 
atName = 'AminoTable.csv' 
ntName = 'NucleicAcidTable.csv' 
dfAmino = parse_csv(atName).dropna(axis=0,how='all').reset_index(drop=True) 
dfNucleic = parse_csv(ntName) 
peptideDict = build_dict(dfAmino, 'Long Symbol', ['C', 'H', 'N', 'O', 'S']) 
nucleicDict = build_dict(dfNucleic, 'Short Symbol', ['C', 'H', 'N', 'O', 'P']) 

 

Listing A.1. Code for generating random peptide and nucleic sequences and 
elemental compositions. 

 

The above script builds a dictionary containing the elemental 

compositions of each amino acid and nucleotide monomer. Polymer sequences 

are then generated pseudo-randomly. The mean length of the sequences to be 

generated is provided, and the length of the output sequences follow a normal 

distribution around the provided mean and with a provided standard deviation. 

Using the nucleic acid or amino acid dictionary, the sequence is used to generate 

an elemental composition. The list of elemental compositions is then saved to an 

excel spreadsheet. 
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A.2 MATLAB Script for Feedfoward Neural Network Training 
 
 
function [performance, time, percentErrors] = NN_Train(Hidden_Nodes, 
Train_Set, Targ_Set) 
     
    x = Train_Set'; 
    t = Targ_Set'; 
  
    trainFcn = 'trainscg';   
  
    hiddenLayerSize = Hidden_Nodes; 
    net = patternnet(hiddenLayerSize, trainFcn); 
  
    net.input.processFcns = {'removeconstantrows','mapminmax'}; 
  
    net.divideFcn = 'dividerand';   
    net.divideMode = 'sample';   
    net.divideParam.trainRatio = 70/100; 
    net.divideParam.valRatio = 15/100; 
    net.divideParam.testRatio = 15/100; 
  
    net.performFcn = 'crossentropy';  
    net.trainParam.max_fail = 6; 
    net.trainParam.epochs = 1000; 
     
    net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
        'plotconfusion', 'plotroc'}; 
  
    [net,tr] = train(net,x,t); 
  
    y = net(x); 
    e = gsubtract(t,y); 
    performance = perform(net,t,y) 
    tind = vec2ind(t); 
    yind = vec2ind(y); 
    percentErrors = sum(tind ~= yind)/numel(tind); 
  
    trainTargets = t .* tr.trainMask{1}; 
    valTargets = t .* tr.valMask{1}; 
    testTargets = t .* tr.testMask{1}; 
    trainPerformance = perform(net,trainTargets,y) 
    valPerformance = perform(net,valTargets,y) 
    testPerformance = perform(net,testTargets,y) 
 
    if (true) 
        genFunction(net,'NNetFcn','MatrixOnly','yes'); 
        y = myNeuralNetworkFunction(x); 
    end 
end 
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Listing A.2. MATLAB code for training feedforward neural networks. 
 

The above script takes in the number of hidden neurons, a matrix for the 

training set of values, and a matrix for the training targets. We utilized the 

“trainscg” function (i.e., scaled conjugate gradient backpropogation) for all 

trained networks. Matrices were processed by removing rows with constant 

values and mapping minimum and maximum row values to [-1,1]. Training, 

validation, and test sets were selected from the provided training data at 

random. Divisions were as follows: training set with 70%, validation set with 

15%, and test set with 15%. The “crossentropy” function was used to monitor 

network performance. The early stopping method was employed when a max of 

6 validation checks were failed. The MATLAB functions for the trained 

networks, PEPNET, LIPNET, and LIPSUBNET, are available at: 

www.github.com/luketrichardson/in-silico-Fractionation. 
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A.3 Binary Classifier Neural Network Training Characteristics 
 
 

 
 

Figure A.1. Performance (left axis) and training time (right axis) for one and two 
hidden layers as a function of hidden layer neurons for the binary classifier 
architecture. 
 
 

The plot in Figure A.1 displays the mean performance (left axis) and 

training time (right axis) for neural network training. A two hidden layer 

network with 30 neurons each was selected for the binary classifier (PEPNET 

and LIPNET) architecture for its relatively consistent and high performance 

(lowest mean cross-entropy) within an acceptable training timeframe. 



166 
 

A.4 Multi-target Classifier Neural Network Training Characteristics 
 
 

 
 

Figure A.2. Performance (left axis) and training time (right axis) for one and two 
hidden layers as a function of hidden layer neurons for the multi-target 
classifier architecture. 

 

The plot in Figure A.2 displays the mean performance (left axis) and 

training time (right axis) for neural network training. A two hidden layer 

network with 64 neurons each was selected for the poly-target classifier 

(LIPSUBNET) architecture for its relatively consistent and high performance 

(lowest mean cross-entropy) within an acceptable training timeframe. 
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A.5 Mass Resolution Evaluation for Peptide and Lipid MS Peaks 
 
 

 
 

Figure A.3. Evaluation of mass resolution of peptide and lipid MS peaks. 
 
 

The mass spectra in Figure A.3 display exemplary isotopic envelopes 

from the lipid (left) and polypeptide (right) classes. Components with similar 

m/z values were chosen to show the mass resolution of the experimentally 

acquired spectra utilized in this demonstration. Mass resolution was calculated 

as the ratio of the monoisotopic m/z to the monoisotopic peak width at half of 

maximum intensity (m/Δm50%). The mass resolution of the measured lipid and 

polypeptide analytes were 22749 and 21572, respectively. 
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A.6 PEPNET Binary Classifier Confusion Matrix 
 
 

 
 

Figure A.4. Confusion matrix of PEPNET binary classifier. 
 
 

The diagram in Figure A.4 displays the neural network confusion matrix 

for PEPNET. The “Target Class” columns correspond to the true class and 

“Output Class” rows correspond to the predicted class. The green-shaded cells 

cor-respond to correct classifications, and the red-shaded cells correspond to 

incorrect classifications. The number of classifications (top) and percentage of 

the total number of classification (bottom) are shown in each cell. The far-right 

column (excluding the cell in the bottom-right corner) displays the positive 
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predictive values (top, green) and false discovery rates (red, bottom) for each 

class. The bottom-most row (excluding the cell in the bottom-right corner) 

displays the true positive rates (top, green) and false negative rates (bottom, red) 

for each class. The cell in the bottom-right corner displays the overall accuracy 

(top, green) and error (bottom, red). Classes 1 and 2 are polypeptides and non-

polypeptides, respectively. 
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A.7 LIPNET Binary Classifier Confusion Matrix 
 
 

 
 

Figure A.5. Confusion matrix of LIPNET binary classifier. 
 

 
The diagram in Figure A.5 displays the neural network confusion matrix 

for LIPNET. The “Target Class” columns correspond to the true class and 

“Output Class” rows correspond to the predicted class. The green-shaded cells 

correspond to correct classifications, and the red-shaded cells correspond to 

incorrect classifications. The number of classifications (top) and percentage of 

the total number of classification (bottom) are shown in each cell. The far-right 

column (excluding the cell in the bottom-right corner) displays the positive 
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predictive values (top, green) and false discovery rates (red, bottom) for each 

class. The bottom-most row (excluding the cell in the bottom-right corner) 

displays the true positive rates (top, green) and false negative rates (bottom, red) 

for each class. Classes 1 and 2 are lipids and non-lipids, respectively. 
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A.8 LIPSUBNET Multitarget Classifier Confusion Matrix 
 
 

 
 

Figure A.6. Confusion matrix of LIPSUBNET multi-target classifier. 
 
 

The diagram in Figure A.6 displays the neural network confusion matrix 

for LIPSUBNET. The “Target Class” columns correspond to the true class and 

“Output Class” rows correspond to the predicted class. The green-shaded cells 

correspond to correct classifications, and the red-shaded cells correspond to 

incorrect classifications. The number of classifications (top) and percentage of 

the total number of classification (bottom) are shown in each cell. The far-right 
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column (excluding the cell in the bottom-right corner) displays the positive 

predictive values (top, green) and false discovery rates (red, bottom) for each 

class. The bottom-most row (excluding the cell in the bottom-right corner) 

displays the true positive rates (top, green) and false negative rates (bottom, red) 

for each class. Classes 1-7 are as follows in order: (1) fatty acyls, (2) 

glycerolipids, (3) glycerophospho-lipids, (4) polyketides, (5) prenol lipids, (6) 

saccharolipids, (7) sphingolipids, and (8) sterol lipids. 
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A.9 Lipid Subclass Coverage in the LIPSUBNET Training Set 
 
 

 
 

Figure A.7. Line plot show lipid subclass coverage (left axis) and the coverage 
standard error of the mean (SEM, right axis) between subclasses as a function of 
Confidence Threshold. 

 
 

The plot in Figure A.7 displays network coverage percent as a function of 

coverage threshold for the theoretical training set of LIBSUBNET. The coverage 

of each class (as well as the mean coverage) is plotted on the left axis, and 

standard error of the mean coverage (gold) is plotted on the right axis to 

represent the degree of variance in class representation. Coverage does not 

decrease until a confidence threshold of 0.25 after which each class begins to 

lose coverage at different rates. Typically, classes that lose the most coverage 

gain the most with regard to TPR, which results in higher total accuracy for all 

classes (~99%) at the cost of equal class representation in a sample. Subclasses 

are represented in the legend as follows: saccharolipids (SL, 1), glycerolipids 
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(GL, 2), glycerophospholipids (GP, 3), polyketides (PK, 4), sphingolipids (SP, 5), 

fatty acyls (FA, 6), sterol lipids (ST, 7), and prenol lipids (PR, 8). The percent 

coverage for each subclass and mean percent coverage (Mean, 9) is plotted 

against the left axis, and the standard error of the mean (SEM, 10) is plotted 

against the right axis. 
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A.10 PEPNET, LIPNET, and LIPSUBNET Score Outputs for the Multi-Class Sample 
 
 

Table A.1. FFNN output scores for PEPNET, LIPNET, and LIPSUBNET. 

PEPNET LIPNET LIPSUBNET 

P NP L NL FA GL GP PK PR SL SP ST 

.008 .992 .992 .008 .000 .000 .988 .001 .000 .000 .010 .000 

.006 .994 .993 .007 .000 .000 .991 .001 .000 .000 .008 .000 

.008 .992 .991 .009 .002 .001 .974 .001 .000 .001 .020 .000 

.006 .994 .991 .009 .000 .000 .952 .001 .000 .000 .047 .000 

.011 .989 .985 .015 .001 .999 .000 .000 .000 .000 .000 .000 

.007 .993 .993 .007 .000 .001 .986 .001 .000 .001 .011 .000 

.009 .991 .992 .008 .000 .006 .985 .001 .000 .001 .005 .002 

.005 .995 .992 .008 .000 .000 .947 .001 .000 .000 .052 .000 

.008 .992 .992 .008 .002 .009 .958 .001 .000 .006 .023 .001 

.006 .994 .993 .007 .000 .000 .970 .001 .000 .001 .028 .000 

.009 .991 .989 .011 .019 .036 .799 .002 .000 .064 .078 .001 

.006 .994 .994 .006 .000 .001 .975 .001 .000 .003 .019 .000 

.004 .996 .993 .007 .000 .000 .848 .001 .000 .000 .151 .000 

.004 .996 .993 .007 .000 .000 .941 .001 .000 .000 .058 .000 

.003 .997 .996 .004 .000 .000 .158 .000 .000 .000 .842 .000 

.004 .996 .994 .006 .001 .000 .407 .002 .000 .001 .590 .000 

.003 .997 .994 .006 .000 .000 .367 .002 .000 .000 .631 .000 

.041 .959 .994 .006 .000 .988 .000 .000 .012 .000 .000 .000 

.036 .964 .995 .005 .000 .996 .000 .000 .001 .000 .000 .003 

.008 .992 .997 .003 .001 .078 .000 .000 .036 .000 .000 .886 

.027 .973 .991 .009 .001 .762 .000 .000 .000 .012 .000 .225 
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Table A.1. FFNN output scores for PEPNET, LIPNET, and LIPSUBNET. 

P NP L NL FA GL GP PK PR SL SP ST 

.009 .991 .997 .003 .000 .459 .000 .000 .006 .000 .000 .534 

.011 .989 .997 .003 .001 .855 .012 .000 .000 .000 .042 .090 

.026 .974 .995 .005 .000 .981 .000 .000 .000 .000 .000 .019 

.011 .989 .996 .004 .001 .145 .000 .000 .003 .000 .000 .852 

.010 .990 .997 .003 .001 .702 .038 .000 .001 .000 .154 .104 

.013 .987 .996 .004 .000 .994 .000 .000 .000 .000 .001 .005 

.015 .985 .996 .004 .000 .983 .001 .000 .000 .000 .004 .012 

.103 .897 .960 .040 .000 .000 .000 .000 .000 .000 .000 .000 

.010 .990 .994 .006 .011 .377 .000 .000 .000 .000 .001 .610 

.018 .982 .996 .004 .000 .995 .000 .000 .000 .000 .000 .005 

.021 .979 .996 .004 .000 .992 .000 .000 .000 .000 .001 .007 

.011 .989 .996 .004 .000 .996 .000 .000 .000 .000 .003 .001 

.013 .987 .996 .004 .000 .997 .000 .000 .000 .000 .002 .001 

.017 .983 .996 .004 .000 .997 .000 .000 .000 .000 .002 .002 

.009 .991 .994 .006 .050 .597 .000 .000 .000 .000 .030 .323 

.015 .985 .996 .004 .000 .997 .000 .000 .000 .000 .002 .000 

.017 .983 .996 .004 .000 .992 .001 .000 .000 .000 .006 .001 

.915 .085 .005 .995 

.994 .006 .001 .999 

.876 .124 .015 .985 

.866 .134 .017 .983 

.735 .265 .121 .879 

.881 .119 .031 .969 
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Table A.1. FFNN output scores for PEPNET, LIPNET, and LIPSUBNET. 

P NP L NL FA GL GP PK PR SL SP ST 

.993 .007 .000 .000 

.953 .047 .027 .973 

.988 .012 .001 .999 

.987 .013 .002 .998 

.855 .145 .138 .862 

.851 .149 .132 .868 

.669 .331 .253 .747 

.939 .061 .019 .981 

.989 .011 .000 .000 

.526 .474 .045 .955 

.736 .264 .201 .799 

.988 .012 .001 .999 

.980 .020 .003 .997 

.895 .105 .034 .966 

.959 .041 .000 .000 

.989 .011 .001 .999 

.955 .045 .018 .982 

.637 .363 .032 .968 

.872 .128 .032 .968 

.991 .009 .001 .999 

.711 .289 .095 .905 

.898 .102 .053 .947 

.997 .003 .002 .998 
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Table A.1. FFNN output scores for PEPNET, LIPNET, and LIPSUBNET. 

P NP L NL FA GL GP PK PR SL SP ST 

.966 .034 .008 .992 

.931 .069 .006 .994 

.832 .168 .055 .945 

.903 .097 .034 .966 

.932 .068 .016 .984 

.987 .013 .000 .000 

.989 .011 .000 .000 

.843 .157 .012 .988 

.883 .117 .015 .985 

.989 .011 .001 .999 

.988 .012 .007 .993 

.987 .013 .000 .000 

.988 .012 .000 .000 

.640 .360 .285 .715 

.896 .104 .016 .984 

.968 .032 .016 .984 

.978 .022 .001 .999 

.989 .011 .000 .000 

.930 .070 .016 .984 

.793 .207 .020 .980 

.955 .045 .008 .992 

.944 .056 .018 .982 

.987 .013 .011 .989 
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Table A.1. FFNN output scores for PEPNET, LIPNET, and LIPSUBNET. 

P NP L NL FA GL GP PK PR SL SP ST 

.936 .064 .018 .982 

.825 .175 .023 .977 

.980 .020 .000 .000 

.942 .058 .014 .986 

.644 .356 .019 .981 

.953 .047 .010 .990 

.001 .999 .251 .749 

.061 .939 .161 .839 

.009 .991 .702 .298 .622 .000 .000 .001 .217 .000 .000 .160 

.050 .950 .164 .836 

.011 .989 .184 .816 

.064 .936 .166 .834 

.011 .989 .184 .816 

.009 .991 .184 .816 

.015 .985 .188 .812 

.007 .993 .185 .815 
 
 

Neural network output scores for PEPNET, LIPNET, and LIPSUBNET 

corresponding to Figure 2.5 are displayed in Table A.1. Green cell shading 

indicates a correct component class prediction. Red cell shading indicates an 

incorrect component class prediction. For incorrectly predicted components, 

yellow cell shading indicates the true class. TP and TNP denote the peptide and 

non-peptide class targets for PEPNET, respectively. TL and TNL denote the lipid 
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and non-lipid class targets for LIPNET, respectively. Target classes in 

LIPSUBNET (i.e., lipid subclasses) are represented in the legend as follows: fatty 

acyls (TFA), glycerolipids (TGL), glycerophospholipids (TGP), polyketides (TPK), 

prenol lipids (TPR), saccharolipids (TSL), sphingolipids (TSP), and sterol lipids 

(TST). 
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A.11 PEPNET and LIPNET Score Outputs for the Lipid and Peptide Sample 
 

 
Table A.2. FFNN output scores for PEPNET and 

LIPNET in the Lipid and Peptide Separation. 

PEPNET LIPNET  
P NP L NL LC Region 

0.967 0.033 0.008 0.992 10-30 minutes 
0.949 0.051 0.044 0.956 Peptides 
0.977 0.023 0.035 0.965   
0.988 0.012 0.011 0.989   
0.990 0.010 0.010 0.990   
0.973 0.027 0.000 1.000   
0.905 0.095 0.000 1.000   
0.908 0.092 0.044 0.956   
0.939 0.061 0.007 0.993   
0.736 0.264 0.000 1.000   
0.923 0.077 0.000 1.000   
0.946 0.054 0.004 0.996   
0.938 0.062 0.333 0.667   
0.916 0.084 0.006 0.994   
0.985 0.015 0.001 0.999   
0.990 0.010 0.004 0.996   
0.919 0.081 0.016 0.984   
0.959 0.041 0.000 1.000   
0.989 0.011 0.001 0.999   
0.988 0.012 0.015 0.985   
0.787 0.213 0.003 0.997   
0.993 0.007 0.001 0.999   
0.993 0.007 0.001 0.999   
0.973 0.027 0.018 0.982   
0.957 0.043 0.000 1.000   
0.948 0.052 0.005 0.995   
0.974 0.026 0.004 0.996   
0.958 0.042 0.009 0.991   
0.874 0.126 0.006 0.994   
0.798 0.202 0.000 1.000   
0.849 0.151 0.006 0.994   
0.966 0.034 0.000 1.000   
0.969 0.031 0.027 0.973   
0.944 0.056 0.018 0.982   
0.934 0.066 0.009 0.991   



183 
 

Table A.2. FFNN output scores for PEPNET and 
LIPNET in the Lipid and Peptide Separation. 

P NP L NL LC Region 
0.963 0.037 0.010 0.990 10-30 minutes 
0.957 0.043 0.009 0.991 Peptides 
0.985 0.015 0.005 0.995   
0.936 0.064 0.001 0.999   
0.890 0.110 0.013 0.987   
0.970 0.030 0.000 1.000   
0.842 0.158 0.009 0.991   
0.938 0.062 0.008 0.992   
0.908 0.092 0.020 0.980   
0.989 0.011 0.000 1.000   
0.993 0.007 0.001 0.999   
0.932 0.068 0.000 1.000   
0.511 0.489 0.004 0.996   
0.939 0.061 0.001 0.999   
0.929 0.071 0.021 0.979   
0.991 0.009 0.012 0.988   
0.989 0.011 0.041 0.959   
0.972 0.028 0.000 1.000   
0.967 0.033 0.000 1.000   
0.983 0.017 0.012 0.988   
0.990 0.010 0.001 0.999   
0.973 0.027 0.000 1.000   
0.939 0.061 0.009 0.991   
0.958 0.042 0.029 0.971   
0.915 0.085 0.000 1.000   
0.951 0.049 0.004 0.996   
0.939 0.061 0.032 0.968   
0.982 0.018 0.003 0.997   
0.927 0.073 0.044 0.956   
0.933 0.067 0.002 0.998   
0.948 0.052 0.000 1.000   
0.990 0.010 0.008 0.992   
0.990 0.010 0.009 0.991   
0.920 0.080 0.016 0.984   
0.920 0.080 0.079 0.921   
0.987 0.013 0.005 0.995   
0.838 0.162 0.008 0.992   
0.964 0.036 0.006 0.994   
0.612 0.388 0.016 0.984   
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Table A.2. FFNN output scores for PEPNET and 
LIPNET in the Lipid and Peptide Separation. 

P NP L NL LC Region 
0.960 0.040 0.073 0.927 10-30 minutes 
0.553 0.447 0.439 0.561 Peptides 
0.950 0.050 0.000 1.000   
0.842 0.158 0.003 0.997   
0.876 0.124 0.047 0.953   
0.945 0.055 0.036 0.964   
0.963 0.037 0.026 0.974   
0.882 0.118 0.009 0.991   
0.886 0.114 0.006 0.994   
0.963 0.037 0.000 1.000   
0.955 0.045 0.004 0.996   
0.953 0.047 0.010 0.990   
0.951 0.049 0.000 1.000   
0.964 0.036 0.000 1.000   
0.946 0.054 0.009 0.991   
0.905 0.095 0.000 1.000   
0.815 0.185 0.003 0.997   
0.955 0.045 0.029 0.971   
0.954 0.046 0.021 0.979   
0.946 0.054 0.022 0.978   
0.901 0.099 0.000 1.000   
0.979 0.021 0.167 0.833   
0.937 0.063 0.434 0.566   
0.867 0.133 0.260 0.740   
0.944 0.056 0.009 0.991   
0.944 0.056 0.000 1.000   
0.882 0.118 0.002 0.998   
0.931 0.069 0.003 0.997   
0.955 0.045 0.002 0.998   
0.960 0.040 0.375 0.625   
0.890 0.110 0.016 0.984   
0.959 0.041 0.006 0.994   
0.931 0.069 0.031 0.969   
0.945 0.055 0.006 0.994   
0.947 0.053 0.007 0.993   
0.890 0.110 0.006 0.994   
0.704 0.296 0.000 1.000   
0.932 0.068 0.021 0.979   
0.941 0.059 0.020 0.980   
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Table A.2. FFNN output scores for PEPNET and 
LIPNET in the Lipid and Peptide Separation. 

P NP L NL LC Region 
0.940 0.060 0.013 0.987 10-30 minutes 
0.874 0.126 0.015 0.985 Peptides 
0.979 0.021 0.004 0.996   
0.822 0.178 0.017 0.983   
0.970 0.030 0.000 1.000   
0.312 0.688 0.000 1.000   
0.916 0.084 0.032 0.968   
0.830 0.170 0.000 1.000   
0.857 0.143 0.009 0.991   
0.659 0.341 0.154 0.846   
0.964 0.036 0.011 0.989   
0.477 0.523 0.503 0.497   
0.932 0.068 0.033 0.967   
0.934 0.066 0.000 1.000   
0.934 0.066 0.005 0.995   
0.880 0.120 0.013 0.987   
0.948 0.052 0.000 1.000   
0.893 0.107 0.005 0.995   
0.885 0.115 0.059 0.941   
0.951 0.049 0.005 0.995   
0.633 0.367 0.014 0.986   
0.295 0.705 0.033 0.967   
0.831 0.169 0.000 1.000   
0.942 0.058 0.414 0.586   
0.903 0.097 0.010 0.990   
0.945 0.055 0.000 1.000   
0.950 0.050 0.007 0.993   
0.849 0.151 0.045 0.955   
0.932 0.068 0.002 0.998   
0.810 0.190 0.337 0.663   
0.580 0.420 0.008 0.992   
0.896 0.104 0.000 1.000   
0.845 0.155 0.000 1.000   
0.942 0.058 0.035 0.965   
0.945 0.055 0.000 1.000   
0.933 0.067 0.011 0.989   
0.936 0.064 0.003 0.997   
0.842 0.158 0.000 1.000   
0.932 0.068 0.000 1.000   
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Table A.2. FFNN output scores for PEPNET and 
LIPNET in the Lipid and Peptide Separation. 

P NP L NL LC Region 
0.933 0.067 0.026 0.974 10-30 minutes 
0.934 0.066 0.027 0.973 Peptides 
0.942 0.058 0.011 0.989   
0.610 0.390 0.000 1.000   
0.810 0.190 0.050 0.950   
0.925 0.075 0.000 1.000   
0.590 0.410 0.014 0.986   
0.880 0.120 0.029 0.971   
0.474 0.526 0.840 0.160   
0.933 0.067 0.026 0.974   
0.930 0.070 0.005 0.995   
0.929 0.071 0.004 0.996   
0.741 0.259 0.023 0.977   
0.748 0.252 0.090 0.910   
0.994 0.006 0.000 1.000   
0.832 0.168 0.259 0.741   
0.866 0.134 0.008 0.992   
0.912 0.088 0.019 0.981   
0.929 0.071 0.016 0.984   
0.721 0.279 0.009 0.991   
0.890 0.110 0.030 0.970   
0.938 0.062 0.008 0.992   
0.917 0.083 0.000 1.000   
0.924 0.076 0.014 0.986   
0.649 0.351 0.147 0.853   
0.602 0.398 0.025 0.975   
0.890 0.110 0.000 1.000   
0.881 0.119 0.006 0.994   
0.790 0.210 0.000 1.000   
0.912 0.088 0.005 0.995   
0.918 0.082 0.042 0.958   
0.902 0.098 0.204 0.796   
0.793 0.207 0.008 0.992   
0.010 0.990 0.992 0.008 55-80 minutes 
0.012 0.988 0.996 0.004 Lipids 
0.010 0.990 0.993 0.007   
0.350 0.650 0.909 0.091   
0.006 0.994 0.978 0.022   
0.005 0.995 0.989 0.011   
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Table A.2. FFNN output scores for PEPNET and 
LIPNET in the Lipid and Peptide Separation. 

P NP L NL LC Region 
0.026 0.974 0.969 0.031 55-80 minutes 
0.029 0.971 0.992 0.008 Lipids 
0.013 0.987 0.985 0.015   
0.015 0.985 0.886 0.114   
0.010 0.990 0.990 0.010   
0.010 0.990 0.991 0.009   
0.320 0.680 0.793 0.207   
0.297 0.703 0.856 0.144   
0.009 0.991 0.990 0.010   
0.019 0.981 0.986 0.014   
0.005 0.995 0.987 0.013   
0.483 0.517 0.996 0.004   
0.005 0.995 0.925 0.075   
0.005 0.995 0.991 0.009   
0.237 0.763 0.991 0.009   
0.003 0.997 0.956 0.044   
0.000 1.000 0.992 0.008   
0.136 0.864 0.883 0.117   
0.060 0.940 0.948 0.052   
0.146 0.854 0.987 0.013   
0.010 0.990 0.981 0.019   
0.007 0.993 0.993 0.007   
0.019 0.981 0.970 0.030   
0.007 0.993 0.971 0.029   
0.008 0.992 0.988 0.012   
0.006 0.994 0.992 0.008   
0.245 0.755 0.996 0.004   
0.468 0.532 0.997 0.003   
0.279 0.721 0.994 0.006   
0.003 0.997 0.995 0.005   
0.026 0.974 0.851 0.149   
0.011 0.989 0.982 0.018   
0.012 0.988 0.988 0.012   
0.018 0.982 0.978 0.022   
0.047 0.953 0.877 0.123   
0.009 0.991 0.996 0.004   
0.005 0.995 0.994 0.006   
0.005 0.995 0.995 0.005   
0.005 0.995 0.802 0.198   
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Table A.2. FFNN output scores for PEPNET and 
LIPNET in the Lipid and Peptide Separation. 

P NP L NL LC Region 
0.006 0.994 0.991 0.009 55-80 minutes 
0.006 0.994 0.996 0.004 Lipids 
0.006 0.994 0.983 0.017   
0.007 0.993 0.956 0.044   
0.014 0.986 0.990 0.010   
0.019 0.981 0.979 0.021   
0.017 0.983 0.994 0.006   
0.020 0.980 0.992 0.008   
0.040 0.960 0.956 0.044   
0.014 0.986 0.976 0.024   
0.004 0.996 0.893 0.107   
0.036 0.964 0.967 0.033   
0.110 0.890 0.998 0.002   
0.008 0.992 0.990 0.010   
0.008 0.992 0.938 0.062   
0.021 0.979 0.983 0.017   
0.004 0.996 0.981 0.019   
0.012 0.988 0.888 0.112   
0.011 0.989 0.990 0.010   
0.005 0.995 0.995 0.005   
0.004 0.996 0.969 0.031   
0.364 0.636 0.990 0.010   
0.145 0.855 0.678 0.322   
0.116 0.884 0.996 0.004   
0.098 0.902 0.963 0.037   
0.012 0.988 0.995 0.005   
0.012 0.988 0.986 0.014   
0.011 0.989 0.995 0.005   
0.032 0.968 0.997 0.003   
0.095 0.905 0.931 0.069   
0.017 0.983 0.993 0.007   
0.005 0.995 0.986 0.014   
0.012 0.988 0.957 0.043   
0.012 0.988 0.987 0.013   
0.497 0.503 0.994 0.006   
0.017 0.983 0.815 0.185   
0.006 0.994 0.990 0.010   
0.010 0.990 0.995 0.005   
0.005 0.995 0.987 0.013   
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Table A.2. FFNN output scores for PEPNET and 
LIPNET in the Lipid and Peptide Separation. 

P NP L NL LC Region 
0.009 0.991 0.989 0.011   
0.005 0.995 0.883 0.117 30-55 minutes 
0.006 0.994 0.877 0.123 Unknowns 
0.009 0.991 0.905 0.095   
0.106 0.894 0.776 0.224   
0.015 0.985 0.946 0.054   
0.233 0.767 0.101 0.899   
0.942 0.058 0.020 0.980   
0.851 0.149 0.029 0.971   
0.973 0.027 0.004 0.996   
0.660 0.340 0.000 1.000   
0.016 0.984 0.942 0.058   
0.025 0.975 0.917 0.083   
0.011 0.989 0.955 0.045   
0.012 0.988 0.947 0.053   
0.009 0.991 0.952 0.048   

 
 

Neural network output scores for PEPNET and LIPNET corresponding to 

Figure 2.6 are displayed in Table A.2. Green cell shading indicates a correct 

component class prediction (both true positives and true negatives). Red cell 

shading indicates an incorrect component class prediction (both false positives 

and false negatives). For incorrectly predicted components, yellow cell shading 

indicates the true class. TP and TNP denote the peptide and non-peptide class 

targets for PEPNET, respectively. TL and TNL denote the lipid and non-lipid 

class targets for LIPNET, respectively. 
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A.12 Neural Network Performance Characteristics with Simulated Low Mass 
Resolution Data 

 
 

Table A.3. Neural network performance metrics for PEPNET, LIPNET, and 
LIPSUBNET with simulated low mass resolution MS data. 

 

 Performance Metric 
Network Accuracy TPR TNR 
PEPNET 100.0% 100.0% 100.0% 
LIPNET 98.1% 100.0% 98.5% 
LIPSUBNET 99.4% 97.4% 99.6% 

 
 

Neural network performance metrics for PEPNET, LIPNET, and 

LIPSUBNET trained with m/z and KMD values restricted to two decimal places 

applied to the artificially combined, experimental test set used in Figure 5. The 

results for each network are very similar the networks trained with m/z and 

KMD values restricted to four decimal places. PEPNET exhibited perfect 

accuracy. LIPNET maintained 100% TPR, but the TNR fell to 98.5% (compared to 

100% for the four-decimal network). LIPSUBNET exhibited a slight increase in 

performance with 97.4% TPR (compared to 94.9% for the four-decimal network) 

and 99.6% TNR (compared to the 99.3% for the four-decimal network). 
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A.13 Partial LC and Full m/z Convolution of Lipids that Differ by One Degree of 
Unsaturation 

 
 

 
Figure A.8. Select ion chromatograms (top) and mass spectrum (bottom) of two 
partially convolved lipids that differ by one degree of saturation. 

 
 

The plots display select ion chromatograms (left) and an averaged mass 

spectrum (right) of two partially LC-MS convoluted lipids that differ by one 

degree of unsaturation separated in the combined analysis of peptides and 

lipids. The first isotopologue of the saturated lipid (808.5822 m/z) becomes fully 

convolved with the third isotopologue of the unsaturated lipid (806.5613 m/z) 

shortly after the unsaturated lipid begins to elute. 
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A.14 Partial m/z Convolution of Lipids 
 
 

 
Figure A.9. Mass spectrum of two partially m/z convolved lipids. 

 
 

The plot in Figure A.9 displays an averaged mass spectrum of two 

partially convolved lipids in the m/z domain separated in the combined analysis 

of peptides and lipids. Each isotopologue peak of both lipids is partially 

convolved with the neighboring isotopologue of the other lipid up to ~20% peak 

height. 
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APPENDIX B 
 

Chemical Classification for Improved Lipidomics Sample Annotation with In 
Silico Fractionation 

B.  
 

B.1 Table of Adducts that Modified Lipid Elemental Compositions in the iSF 
Training Set 

 
 

Table B.1. Table displaying positive and negative polarity adducts 
commonly generated in ESI-MS experiments that were used to modify 

lipid elemental compositions of each class for iSF training set 
generation.  

FA  GL  GP  PK  PL SL  SP  ST 
              

H  H  H  H  H K  H  H 
-H  NH4  -H  NH4  NH4 NH4  HCO2  NH4 
NH4  Na  -CH3  Na  Na Na  Na  Na 
Na  K  Na  K  -H -H  -H  -H 
-H3O  C2H4N  HCO2  C2H4N  -H3O -H3O  C2H3O2  -H3O 
 

FA (fatty acyls), GL (glycerolipids), GP (glycerophospholipids), PK (polyketides), PL 
(prenol lipids), SL (saccharolipids), SP (sphingolipids), ST (sterol lipids) 

 
 
This table displays the iSF training set adduct modifications for each lipid 

class, and each adduct was chosen for each class because it was commonly 

observed in positive and negative polarity LC-ESI-MS experiments. 
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B.2 iSF Feedforward Neural Network Training Time as a Function of Performance 
 
 

 
 
Figure B.1. Scatter plot displaying FFNN training time as a function of 
performance (incorrect predictions/total predictions). 

 
 

To optimize the FFNN architecture, ten FFNNs were trained with each 

architecture (number of layers and hidden nodes per layer), and the mean 

training time and performance of each architecture was determined. Based on 

the relatively short, required training times, a configuration of two hidden 

layers with 50 nodes each was chosen for its slightly higher performance. The 

datum for 1 layer with 90 nodes had very poor performance (off the plot to the 

right) was not displayed for sake of visual clarity. 
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B.3 Proportion of Confident and Unconfident LipiDex MS/MS Lipid Assignments 
 
 

 
 

Figure B.2. Pie chart depicting the proportions of confident (orange) and 
unconfident (blue) assignments as defined by a MS/MS dot product score 
threshold of 700. 

 
 

The plot displays the relative proportions of unconfident and confident 

assignments produced by the LipiDex MS/MS fragmentation spectral matching 

workflow. As show, over half of all assignments (58%) produced are unconfident 

and more likely to produce erroneous assignments. 
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B.4 Representation of each Lipid Class in the LipiDex Validation Positive and 
Negative Polarity LC-MS Experiments 

 
 

 
 
Figure B.3. Bar charts depicting the iSF predicted lipid class representation for 
both positive and negative polarity LC-MS experiments for each biological 
sample type. 

 
 

The bar plots show the representation of each class present in each set of 

measurement replicates (n = 3) as predicted by iSF. Error bars represent the 

relative standard deviation. As shown, each class is consistently represented 

across each set of measurement replicates for each biological sample type. 
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APPENDIX C 
 

Referenced Kendrick Mass Defect-Based Annotation and Filtering of Imaging 
MS Lipidomics Experiments 

 
C.  

C.1 Representative Schematic of the RKMD-Based Annotation Workflow 
 
 

 
 

Scheme C.1. A representative schematic of the RKMD-based annotation 
workflow. 
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A representative schematic of the RKMD-based lipid annotation workflow 

for assigning lipid classes, degree of unsaturation, and the number of radyl 

carbons. Input data utilizes the externally calibrated centroided image data 

saved in Python dictionary structure. At node I, data from the image is loaded, 

and the main processing loop begins operating on mass spectra at each image 

coordinates. The example mass spectrum shown in Fig. S1 (node II) contained 

279 peaks (corresponding to 31 lipids) and was computationally generated by 

using the elemental compositions of singly-charged protonated [M+H]+, 

sodiated [M+Na]+, and potassiated [M+K]+ lipids; hence, the masses in this 

example did not require calibration. The relative abundance for each species 

(between m/z range ~670-910) was randomized (from zero to one hundred 

percent using Python’s numpy package); pyOpenMS (2.6.0) Python package was 

used to calculate the theoretical isotopic patterns, and the first three 

isotopologues were included to generate the mass spectrum shown at node II. 

These 31 lipids included 21 phosphatidylcholine (PC), 3 sphingomyelin (SM), 4 

triacylglycerol (TG), and 3 phosphatidic acid (PA) lipids, which were selected to 

show examples of different types of RKMD results (as discussed below). At node 

II, the centroided peaks are read for each pixel and aligned to the recalibrated 

averaged spectrum constructed from all mass spectra. At node III, the RKMD 

values calculated for [PC+H]+ for the theoretical 12Call peaks of several PC 

(pink), SM (blue), TG (green), and PA (purple) lipids with H+ (circle), Na+ 

(square), and K+ (diamond) adducts are displayed as a function of Kendrick 
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nominal mass (KNM). Mass spectrometry peaks are retained with RKMD 

distances (δ) within a user-defined window, covering RMKD values between 0 to 

-9 (thick horizontal yellow lines). Positive integer results, such as those for SM 

(blue) and TG (green) observed in the RKMD plot at node III, were considered 

unacceptable results not in agreement with physical reality as non-zero values 

that correspond to non-zero degrees of unsaturation result in negative integer 

values.  At node IV, the number of radyl carbons of each feature is calculated 

and data points with radyl carbon distances (ε) within a user-defined window 

(thick horizontal gray lines) are retained. At node V, lipid peak assignment data 

for the molecular class and associated adducts are saved in a Python dictionary 

structure and, at node VI, the main processing loop proceeds to the next pixel 

until the last pixel is processed. The procedure is repeated for each lipid class 

and adduct combination. 
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C.2 Lipid Headgroup Elemental Compositions Used to Calculate RKMD 
 
 

Table C.1. Elemental compositions of 
lipid headgroups for each lipid class 

used calculate RKMD.  

Class 
Headgroup elemental 
composition 

TG C6H8O6 

DG C5H8O5 

MG C4H8O4 

FA C2H4O2 

SM C9H21N2O6P 

CER C4H9NO3 

CERP C4H10NO6P 

HCER C10H19NO8 

PE C7H14NO8P 

PC C10H20NO8P 

PA C5H9O8P 

PG C8H15O10P 

O/P-PE C6H14NO7P 

O/P-PC C9H20NO7P 

O/P-PA C4H9O7P 

O/P-PG C7H15O9P 

LPE C6H14NO7P 

LPC C9H20NO7P 

LPA C4H9O7P 

LPG C7H15O9P 

 

This table displays the elemental compositions of each lipid headgroup 

that was used to calculate RKMD for each lipid class. Abbreviations are as 

follows: triacylglycerol (TG), diacylglycerol (DG), monoacylglycerol (MG), fatty 

acyl (FA), sphingomyelin (SM), ceramide (CER), ceramide-1-phosphate (CERP), 

hexosylceramides (HCER), phosphatidylethanolamine (PE), 

phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidylglycerol (PG), 

ether-linked (O/P-), and lyso- (L).
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C.3 Charged Adducts that Modified Reference Lipid Headgroup Elemental 
Compositions 

 
 

Table C.2. Adducts that were used to modify reference lipid headgroup 
elemental compositions to calculate RKMD for each lipid class. 

TG DG MG FA SM CER CERP HCER PE PC 

Na+ Na+ Na+ H+ H+ H+ H+ H+ H+ H+ 

 [H-H2O]+ [H-H2O]+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ 

   K+ K+ K+ K+ K+ K+ K+ 

          [H-H2O]+ [H-H2O]+ [H-H2O]+     

          
PA PG O/P-PE O/P-PC O/P-PA O/P-PG LPE LPC LPA LPG 

H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ 

Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ Na+ 

K+ K+ K+ K+ K+ K+ K+ K+ K+ K+ 

 
 

This table displays the charged adducts that were used to modify the 

reference lipid headgroup elemental compositions that were used to calculate 

RKMD for each lipid class. Abbreviations are as follows: triacylglycerol (TG), 

diacylglycerol (DG), monoacylglycerol (MG), fatty acyl (FA), sphingomyelin 

(SM), ceramide (CER), ceramide-1-phosphate (CERP), hexosylceramides 

(HCER), phosphatidylethanolamine (PE), phosphatidylcholine (PC), 

phosphatidic acid (PA), phosphatidylglycerol (PG), ether-linked (O/P-), and lyso- 

(L).
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C.4 Representative Schematic of the Class-Based Image Filtering Workflow 
 
 

 
 

Scheme C.2. A representative schematic of the class-based image filtering 
workflow. 

 
 

An example schematic of the image filtering workflow for m/z 790.5151 

where its RKMD assignments are filtered for the ether-linked PE (O/P-PE) class. 

Annotations are sorted and rank-ordered by ascending RKMD distance (δ, row 2) 
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from the nearest RKMD integer value and filtered by three heuristic constraints: 

1) limiting numbers of radyl carbons, 2) limiting degrees of unsaturation, 3) and 

including odd chain lengths. In the third row, the calculated number of radyl 

carbons of the LPE and LPC annotations, 35 and 38, respectively, were larger 

than the upper limit for lysoglycerophospholipids and were, therefore, removed 

from consideration (text in grey, row 3). In the fourth row on the right, the 

exclusion of assignments with odd numbers of radyl carbons filters out the 

[PC(O/P-35:5)+K]+ assignment. In the fourth row on the left, odd numbers of 

radyl carbons are included, and the [PC(O/P-35:5)+K]+ assignment is retained in 

the top rank. If the top ranked assignment for the m/z 790.5151 matches the 

filter criteria (i.e., class) and the RKMD δ is less than an m/z dependent error 

limit, its peak intensity is added to the filtered image pixel intensity. In the fifth 

row on the left, the top ranked annotation, [PC(O/P-35:5)+K]+, does not match 

the filter criterion, and, therefore, the feature intensity is not added to the image 

pixel intensity. In the fifth row on the right, the top ranked annotation, [PE(O/P-

38:5)+K]+, matches the filter criterion, and, therefore, the feature intensity is 

added to the image pixel intensity (row 6).
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C.5 Heuristic Limits on Radyl Carbon Chain Lengths and Unsaturations for 
Filtering RKMD Annotations 

 
 

Table C.3. Heuristic limits on radyl carbon chain lengths and 
unsaturations for filtering RKMD annotations. 

Class 
Minimum radyl 

carbons 
Maximum radyl 

carbons 
Maximum 

unsaturations 
TG 48 70 9 
DG 26 47 9 
MG 12 25 5 
FA 0 25 5 
SM 26 47 3 

CER 26 47 3 
CERP 26 47 3 
HCER 26 47 3 

PE 26 47 9 
PC 26 47 9 
PA 26 47 9 
PG 26 47 9 

O/P-PE 26 47 9 
O/P-PC 26 47 9 
O/P-PA 26 47 9 
O/P-PG 26 47 9 

LPE 0 25 5 
LPC 0 25 5 
LPA 0 25 5 
LPG 0 25 5 

 
 

In order to limit false-positive assignments that result from RKMD 

indications of unrealistic degrees of unsaturation and radyl carbon chain length, 

we implemented the above heuristic limits based on commonly observed lipid 

species.
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C.6 Relationship Between RKMD δ and PPM Mass Measurement Error 
 
 

 
Figure C.1. Line plot displaying the inverse power function that relates ppm 
mass measurement error to RKMD δ as a function of m/z. 

 
 

To calculate the datapoints in the above plot, the monoisotope m/z of 16 

lipids from several lipid molecular classes were adjusted by ppm error factors 

between 0 and 1 by increments of 0.1, and the RKMD δ was calculated for each 

error adjusted m/z value. For each m/z, RKMD δ was plotted as a function of 

ppm error. Linear regression determined the slope which corresponds to the 

RKMD δ/ppm error. The RKMD δ/ppm error factor was plotted as a 

function of m/z, and a power regression determined an inverse power 

relationship. The root mean squared error of the fit was 2.49 x 10-4. 
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C.7 Comparison of LIPIDMAPS Database Searching and RKMD-Based Method Lipid Assignments 
 

Table C.4. LIPIDMAPS and RKMD-based lipid assignments from kidney tissue MALDI-IMS analysis. 

  Ranked RKMD Assignments 

m/z LIPIDMAPS Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 

666.4815 CERP(36:2)+Na 
CERP(36:2)+Na* 
(0.13368) 

CERP(38:5)+H 
(0.31286) None None None None 

697.478 PA(34:1)+Na PA(34:1)+Na* 
(0.00937) 

PA(36:4)+H 
(0.1698) 

TG(38:4)+K 
(0.17839) 

None None None 

703.5781 SM(34:1)+H SM(34:1)+H* 
(0.24233) None None None None None 

721.4783 PA(36:3)+Na PA(36:3)+Na* 
(0.03184) 

PA(38:6)+H 
(0.14734) 

TG(40:6)+K 
(0.15593) None None None 

723.4945 PA(36:2)+Na PA(36:2)+Na* 
(0.07279) 

PA(38:5)+H 
(0.10639) 

TG(40:5)+K 
(0.11498) None None None 

725.5586 SM(34:1)+Na SM(34:1)+Na* 
(0.13467) None None None None None 

731.607 SM(36:1)+H 
SM(36:1)+H* 
(0.06342) None None None None None 

732.5547 PC(32:1)+H PC(32:1)+H* 
(0.06863) 

PE(35:1)+H 
(0.06864) 

None None None None 

734.5697 PC(32:0)+H PC(32:0)+H* 
(0.02012) 

PE(35:0)+H 
(0.02014) None None None None 

737.4533 PA(36:3)+K PA(36:3)+K* 
(0.11106) 

LPA(39:9)+Na 
(0.12269) None None None None 

739.4669 PA(36:2)+K PA(36:2)+K* 
(0.0418) None None None None None 

741.5312 SM(34:1)+K SM(34:1)+K* 
(0.03499) None None None None None 
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Table C.4. LIPIDMAPS and RKMD-based lipid assignments from kidney tissue MALDI-IMS analysis. 

  Ranked RKMD Assignments 

m/z LIPIDMAPS Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 

745.4753 PA(38:5)+Na PA(38:5)+Na* 
(0.19169) 

PG(O/P-32:1)+K 
(0.20323) 

LPG(32:1)+K 
(0.20323) None None None 

747.4931 PA(38:4)+Na PA(38:4)+Na* 
(0.03147) 

PG(O/P-32:0)+K 
(0.04301) 

LPG(32:0)+K 
(0.04301) 

PA(40:7)+H 
(0.21065) 

TG(42:7)+K 
(0.21924) None 

749.5076 PA(38:3)+Na 
PA(38:3)+Na* 
(0.11725) 

PA(40:6)+H 
(0.29643) 

TG(42:6)+K 
(0.30501) None None None 

756.5526 PC(32:0)+Na PE(37:3)+H 
(0.0878) 

PC(34:3)+H 
(0.08781) 

PC(32:0)+Na* 
(0.09137) 

PE(35:0)+Na 
(0.09138) 

None None 

758.57 PC(34:2)+H PC(34:2)+H* 
(0.04259) 

PE(37:2)+H 
(0.0426) 

None None None None 

760.5842 PC(34:1)+H PE(37:1)+H 
(0.06554) 

PC(34:1)+H* 
(0.06555) None None None None 

763.4679 PA(38:4)+K PA(38:4)+K* 
(0.03284) None None None None None 

768.5888 PC(O-34:1)+Na PC(O/P-34:1)+Na* 
(0.0776) 

LPC(34:1)+Na 
(0.0776) 

PE(O/P-
37:1)+Na 
(0.07761) 

LPE(37:1)+Na 
(0.07761) 

PE(O/P-
39:4)+H 
(0.10156) 

LPE(39:4)+H 
(0.10156) 

772.5241 PE(O-38:6)+Na PE(O/P-38:6)+Na* 
(0.07867) 

LPE(38:6)+Na 
(0.07867) 

PC(O/P-
35:6)+Na 
(0.07868) 

LPC(35:6)+Na 
(0.07868) 

PE(35:0)+K 
(0.0903) 

PC(32:0)+K 
(0.09031) 

772.5842 PE(38:2)+H PE(38:2)+H* 
(0.06549) 

PC(35:2)+H 
(0.0655) 

None None None None 

774.5977 PE(38:1)+H PE(38:1)+H* 
(0.22581) 

PC(35:1)+H 
(0.22582) None None None None 

782.5688 PC(36:4)+H PE(39:4)+H 
(0.04675) 

PC(36:4)+H* 
(0.04676) 

PC(34:1)+Na 
(0.13242) 

PE(37:1)+Na 
(0.13243) None None 

784.5845 PC(36:3)+H PE(39:3)+H 
(0.04307) 

PC(36:3)+H* 
(0.04308) 

PC(34:0)+Na 
(0.13609) 

PE(37:0)+Na 
(0.13611) None None 
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Table C.4. LIPIDMAPS and RKMD-based lipid assignments from kidney tissue MALDI-IMS analysis. 

  Ranked RKMD Assignments 

m/z LIPIDMAPS Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 

786.5998 PC(36:2)+H PE(39:2)+H 
(0.06921) 

PC(36:2)+H* 
(0.06923) None None None None 

788.6134 PC(36:1)+H PE(39:1)+H 
(0.22208) 

PC(36:1)+H* 
(0.22209) None None None None 

790.5151 PE(P-38:5)+K PC(O/P-35:5)+K 
(0.02658) 

LPC(35:5)+K 
(0.02658) 

PE(O/P-
38:5)+K* 
(0.02659) 

LPE(38:5)+K 
(0.02659) None None 

796.5261 PC(34:2)+K PC(34:2)+K* 
(0.05888) 

PE(37:2)+K 
(0.05889) 

PC(O/P-
37:8)+Na 
(0.07051) 

LPC(37:8)+Na 
(0.07051) 

PE(O/P-
40:8)+Na 
(0.07052) 

LPE(40:8)+Na 
(0.07052) 

798.5404 PE(O-40:7)+Na PE(O/P-40:7)+Na* 
(0.03016) 

LPE(40:7)+Na 
(0.03016) 

PC(O/P-
37:7)+Na 
(0.03018) 

LPC(37:7)+Na 
(0.03018) 

PE(37:1)+K 
(0.04179) 

PC(34:1)+K 
(0.04181) 

806.5687 PC(38:6)+H PE(41:6)+H 
(0.0541) 

PC(38:6)+H* 
(0.05411) 

PC(36:3)+Na 
(0.12507) 

PE(39:3)+Na 
(0.12508) 

None None 

808.5847 PC(38:5)+H PE(41:5)+H 
(0.02806) 

PC(38:5)+H* 
(0.02807) 

PC(36:2)+Na 
(0.15111) 

PE(39:2)+Na 
(0.15112) None None 

810.6008 PC(38:4)+H PC(38:4)+H* 
(0.00542) 

PE(41:4)+H 
(0.00543) 

PC(36:1)+Na 
(0.1846) 

PE(39:1)+Na 
(0.18461) None None 

813.686 SM(42:2)+H SM(42:2)+H* 
(0.11938) None None None None None 

815.7006 SM(42:1)+H SM(42:1)+H* 
(0.04106) None None None None None 

818.5448 PE(O-40:5)+K PE(O/P-40:5)+K* 
(0.09268) 

LPE(40:5)+K 
(0.09268) 

PC(O/P-
37:5)+K 
(0.09269) 

LPC(37:5)+K 
(0.09269) None None 
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Table C.4. LIPIDMAPS and RKMD-based lipid assignments from kidney tissue MALDI-IMS analysis. 

  Ranked RKMD Assignments 

m/z LIPIDMAPS Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 

822.5417 PC(36:3)+K PC(36:3)+K* 
(0.0552) 

PE(39:3)+K 
(0.05522) 

PC(O/P-
39:9)+Na 
(0.06683) 

LPC(39:9)+Na 
(0.06683) 

PE(O/P-
42:9)+Na 
(0.06685) 

LPE(42:9)+Na 
(0.06685) 

824.5578 PC(36:2)+K PC(36:2)+K* 
(0.0887) 

PE(39:2)+K 
(0.08871) 

PC(O/P-
39:8)+Na 
(0.10032) 

LPC(39:8)+Na 
(0.10032) 

PE(O/P-
42:8)+Na 
(0.10034) 

LPE(42:8)+Na 
(0.10034) 

826.5708 PE(O-42:7)+Na 
PE(O/P-42:7)+Na* 
(0.09725) 

LPE(42:7)+Na 
(0.09725) 

PC(O/P-
39:7)+Na 
(0.09727) 

LPC(39:7)+Na 
(0.09727) 

PE(39:1)+K 
(0.10888) 

PC(36:1)+K 
(0.1089) 

830.5633 PC(38:5)+Na PE(41:5)+Na 
(0.27735) 

PC(38:5)+Na* 
(0.27736) None None None None 

832.5837 PC(38:4)+Na 
PC(38:4)+Na* 
(0.07667) 

PE(41:4)+Na 
(0.07668) 

PE(43:7)+H 
(0.1025) 

PC(40:7)+H 
(0.10251) None None 

834.6001 PC(40:6)+H PE(43:6)+H 
(0.04664) 

PC(40:6)+H* 
(0.04666) 

PC(38:3)+Na 
(0.13252) 

PE(41:3)+Na 
(0.13254) 

None None 

835.6693 SM (42:2)+Na SM(42:2)+Na* 
(0.22045) None None None None None 

848.5602 PC(38:4)+K PC(38:4)+K* 
(0.2677) 

PE(41:4)+K 
(0.26772) None None None None 

 
 

Kidney tissue lipids detected by MALDI-MS were identified by mass accuracies resulting in < 3 ppm mass error 

and LIPIDMAPS database searching, resulting in 44 lipid assignments. The m/z values that produced LIPIDMAPS 

identifications were submitted for RKMD-based annotation and are displayed by ascending RKMD δ. Final RKMD 



210 
 

assignments (marked with asterisk) were made through application of the same heuristics used in the RKMD image 

filtering workflow and were in full agreement with assignments based on mass accuracy, biological intuition, and prior 

experimentation. In most cases, the top ranked RKMD assignment matches the LIPIDMAPS assignment. All cases in 

which the top ranked RKMD assignment does not match the LIPIDMAPS assignment are produced from PC and PE 

species, particularly for ether linkage isomers. The even chain PC and odd chain PE assignments were structural isomers 

for twenty-seven m/z values and, therefore, could not be discriminated by mass accuracy alone. Additionally, 

differences in RKMD δ values of ~3E-5 between two putative assignments were not sufficient for identification. Similarly, 

the rank order of O/P- and lysoglycerophospholipids with the same headgroup was insignificant given their identical 

headgroup KMD values; for instance, m/z 769.5888, 772.5241, 790.5151 in Table C.4 produced O/P-PC and LPC (as well as 

O/P-PE and LPE) assignments with identical RKMD δ values. The final assignments in these cases (bolded) were made 

excluding odd chain radyl carbon chains and considering realistic radyl carbon chain lengths for each class. 
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C.8 High Level Lipid Class Images Produced by the RKMD-based Annotation and 
Image Filtering Method 
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Figure C.2.  High level class images from the MALDI-IMS analysis of human 
kidney tissue. 

 
 

High level class images include those composite images that are 

reconstructed from contributions of broad groups of lipids that are related by 

their headgroup, degree of unsaturation, or number of radyl carbons. These 

images can be used to assess broad differences in localization between classes of 

lipids.
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