
ABSTRACT

Three Applications of Linear Dimension Reduction

Gabriel J. Odom, Ph.D.

Chairperson: Dean M. Young, Ph.D.

Chairperson: Amanda S. Hering, Ph.D.

Linear Dimension Reduction (LDR) has many uses in engineering, business,

medicine, economics, data science and others. LDR can be employed when observa-

tions are recorded with many correlated features to reduce the number of features

upon which statistical inference may be necessary. Some of the benefits of LDR are

to increase the signal to noise ratio in noisy data, rotate features into orthogonal

space to reduce feature correlation effects, reduce the number of parameters to esti-

mate, and decrease computational and memory costs associated with model fitting.

In this manuscript, we will discuss applications of LDR to poorly-posed classification,

ill-posed classification, and statistical process monitoring.

Three Applications of Linear Dimension Reduction

by

Gabriel J. Odom, B.Th., B.A., B.S., M.Div., Th.D.

A Dissertation

Approved by the Department of Statistical Science

Jack D. Tubbs, Ph.D., Chairperson

Submitted to the Graduate Faculty of
Baylor University in Partial Fulfillment of the

Requirements for the Degree
of

Doctor of Philosophy

Approved by the Dissertation Committee

Dean M. Young, Ph.D., Chairperson

Amanda S. Hering, Ph.D., Chairperson

David J. Kahle, Ph.D.

James D. Stamey, Ph.D.

Cindy Riemenschneider, Ph.D.

Accepted by the Graduate School
December 2017

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on file in the Graduate School.

Copyright © 2017 by Gabriel J. Odom

All rights reserved

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . ix

LIST OF ABBREVIATIONS. x

ACKNOWLEDGMENTS . xi

DEDICATION.. xii

CHAPTER ONE
Introduction . 1

CHAPTER TWO
Regularized Linear Dimension Reduction for the Sample Quadratic
Discriminant Function . 4

2.1 Introduction . 4
2.2 Main Results . 7
2.3 Four Competing HLDR Methods . 11
2.4 Monte Carlo Simulation Description . 13
2.5 Monte Carlo Simulation Results . 15
2.6 A Real-Data Example . 22
2.7 Discussion . 24

CHAPTER THREE
A Comparison of Principal Component Analysis and the Singular Value
Decomposition as Linear Dimension Reduction Methods . 26

3.1 Introduction . 26
3.2 Notation and Methods . 29
3.3 Principal Direction Ordering . 34
3.4 Bootstrap Design . 37
3.5 Computational Costs and Numerical Stability . 38
3.6 Results for Six Real Data Sets . 41
3.7 Discussion . 59

CHAPTER FOUR
Multi-State Multivariate Statistical Process Control . 61

4.1 Introduction . 61
4.2 Methods . 68
4.3 Simulation Design . 74
4.4 Simulation Results . 87

iv

4.5 Case Study . 93
4.6 Conclusion. 101

CHAPTER FIVE
Multivariate Statistical Process Control with mvMonitoring 103

5.1 Introduction . 103
5.2 Motivation . 104
5.3 Simulating Data with mspProcessData . 105
5.4 Training with mspTrain . 110
5.5 Monitor and Issue Alarms with mspMonitor and mspWarning 112
5.6 Example Simulation Workflow . 113
5.7 Conclusion. 124

CHAPTER SIX
Discussion. 125

APPENDIX A
Selected Proofs . 130

APPENDIX B
Simulation Parameter Configuration. 132

BIBLIOGRAPHY .. 136

v

LIST OF FIGURES

Figure 2.1. Conditional Error Rate Plots for Simulation Configuration 1
with ni = 30. 16

Figure 2.2. Conditional Error Rate Plots for Simulation Configuration 2
with ni = 15. 18

Figure 2.3. Conditional Error Rate Plots for Simulation Configuration 3
with ni = 60. 20

Figure 2.4. Conditional Error Rate Plots for Ionosphere Data 22

Figure 3.1. EEER by reduction method, discriminant function, and
eigenvector order for the colon cancer data set of Alon, Barkai,
Notterman, Gish, Ybarra, Mack, & Levine (1999). 42

Figure 3.2. EEER by reduction method, discriminant function, and
eigenvector order for the leukemia data set of Golub, Slonim,
Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing,
Caligiuri, Bloomfield, & Lander (1999). 45

Figure 3.3. EEER by reduction method, discriminant function, and
eigenvector order for the breast cancer prognosis data set of
Gravier, Pierron, Vincent-Salomon, Gruel, Raynal, Savignoni,
De Rycke, Pierga, Lucchesi, Reyal, Fourquet, Roman-Roman,
Radvanyi, Sastre-Garau, Asselain, & Delattre (2010). 49

Figure 3.4. EEER by reduction method, discriminant function, and
eigenvector order for the small, round blue-cell cancer data set of
Khan, Wei, Ringner, Saal, Ladanyi, Westermann, Berthold,
Schwab, Antonescu, Peterson, & Meltzer (2001). 52

Figure 3.5. EEER by reduction method, discriminant function, and
eigenvector order for the breast cancer data set of Sorlie, Perou,
Tibshirani, Aas, Geisler, Johnsen, Hastie, Eisen, Rijn, Jeffrey,
Thorsen, Quist, Matese, Brown, Botstein, Lonning, &
Borresen-Dale (2001). 55

vi

Figure 3.6. EEER by reduction method, discriminant function, and
eigenvector order for the breast cancer prognosis data set of
van’t Veer, Dai, van de Vijver, He, Hart, Mao, Peterse, van der
Kooy, Marton, Witteveen, Schreiber, Kerkhoven, Roberts,
Linsley, Bernards, & Friend (2002). 57

Figure 4.1. Process flow diagram of the decentralized SB-MBR WWT pilot
at Mines Park. Influent from the municipal sanitary sewer is
diverted to a 2,500 gallon equalization tank and filtered through
a 2-mm drum screen to remove large solids before addition to
the bioreactors. The bioreactors are dosed sequentially: the first
bioreactor is fed influent while the second recirculates through
the membrane tanks. The membranes are hollow-fiber,
ultrafiltration membranes with a nominal pore size of 0.04 µm
and a total surface area of 74 m2. 63

Figure 4.2. Each panel shows a time series of a monitored variable. The
values of each variable change drastically with blower operation. . . . 65

Figure 4.3. Differences in correlation matrices between S0 and S1 (left) and
S0 and S2 (right). 66

Figure 4.4. Multivariate process feature time series under ICC. The vertical
black line (21:40 on 2 December) marks the time at which a
fault would be induced. 78

Figure 4.5. Multivariate process feature time series before and after shift
faults. Fault 1A (top), Fault 1B (middle), and Fault 1C (bottom)
are shown after the vertical black line (21:40 on 2 December). 81

Figure 4.6. Multivariate process feature time series before and after drift
faults. Fault 2A (top), Fault 2B (middle), and Fault 2C (bottom)
are shown after the vertical black line (21:40 on 2 December). 83

Figure 4.7. Multivariate process feature time series before and after latent /
error faults. Fault 3A (top), Fault 3B (middle), and Fault 3C
(bottom) are shown after the vertical black line (21:40 on 2
December). 85

Figure 4.8. The blower process flow chart shows the number of times the
process changes states and in which directions (left). The lengths
of times spent in each state are bi-modal, as shown by their
densities (right).. 94

vii

Figure 4.9. Example processes for four different MAD estimation techniques:
(top left) a stationary process, (top right) a process with a trend
and constant variance with overlaid general additive smoother,
(bottom left) a process with constant mean and non-constant
variance, and (bottom right) a process with non-stationary mean
and variance with overlaid general additive smoother. 97

Figure 4.10. Observation alarms issued after AD-PCA (top) and MSAD-PCA
(bottom) projections during a real system fault that occurred
between 21 and 24 April, 2010. The y-axis represents the
categories for when an observation triggers no alarms, a T 2

alarm, an SPE alarm, or both alarms. The blue triangles are at
14:15 on 21 April, when the MSAD-PCA monitoring method
first detects a fault. The red triangle at 10:00 on 24 April is
when the human operators detected a fault. 100

Figure 5.1. Time series plot of alarms. The fault was introduced at 07:40 on
22 May. 123

viii

LIST OF TABLES

Table 3.1. Computation times and memory allocated for PCA and SVD on
some real high-dimensional data sets. Data sets are described in
their respective subsections in Section 3.6. 41

Table 3.2. Minimum EEERs by reduction method, discriminant function,
and eigenvector ordering scheme for the colon cancer data set of
Alon et al. (1999).. 43

Table 3.3. Minimum EEERs by reduction method, discriminant function,
and eigenvector ordering scheme for the leukemia data set of
Golub et al. (1999). 46

Table 3.4. Minimum EEERs by reduction method, discriminant function,
and eigenvector ordering scheme for the breast cancer prognosis
data set of Gravier et al. (2010). 48

Table 3.5. Minimum EEERs by reduction method, discriminant function,
and eigenvector ordering scheme for the small, round blue-cell
cancer data set of Khan et al. (2001). 51

Table 3.6. Minimum EEERs by reduction method, discriminant function,
and eigenvector ordering scheme for the breast cancer data set of
Sorlie et al. (2001).. 54

Table 3.7. Minimum EEERs by reduction method, discriminant function,
and eigenvector ordering scheme for the breast cancer prognosis
data set of van’t Veer et al. (2002). 58

Table 4.1. Fault types by how each fault affects different sets of features. 80

Table 4.2. False alarm rates and detection probabilities. Note that Faults
1C, 2C, and 3C are state-specific and are cannot be applied to
observations generated under a single state. 88

Table 4.3. Detection times for shift, drift, and latent / error faults. Fault 3A
has a maximum latent drift of δ + 1 = 6 under Multi-State and
δ + 1 = 3 under Single-State. Cells shaded in green have perfect
fault detection (see Table 4.2). 90

Table B.1. Mean vectors for simulations 1–3. 132

ix

LIST OF ABBREVIATIONS

AD Adaptive-Dynamic

CER Conditional Error Rate

HLDR Heteroscedastic Linear Dimension Reduction

IC In Control

LDA Linear Discriminant Analysis

LDF Linear Discriminant Function

LDR Linear Dimension Reduction

MVSPC Multivariate Statistical Process Control

PCA Principal Component Analysis

QDA Quadratic Discriminant Analysis

QDF Quadratic Discriminant Function

SPC Statistical Process Control

SVD Singular Value Decomposition

WWT Waste-Water Treatment

x

ACKNOWLEDGMENTS

I would like to thank my wife, Tremaine, and my family for their support

through this endeavor.

Additionally, I would like to thank my advisors, Mandy Hering and Dean Young,

for their countless hours of guidance and support; my co-authors Phil D. Young, John

A. Ramey, Kathryn B. Newhart, Tzahi Y. Cath, and Ben J. Barnard for their scientific

expertise and hard work; my fellow students, especially Whitney V. Worley, for their

support and patience; and the additional members of my committee, David J. Kahle,

Cindy Riemenschneider, and James D. Stamey, for their valuable time and feedback.

Further, I thank the Colorado School of Mines for their partnership on my re-

search into waste-water treatment monitoring. Also, I acknowledge the partial fund-

ing for my research from the King Abdullah University of Science and Technology

(KAUST) Office of Sponsored Research (OSR) under Award No: OSR-2015-CRG4-

2582 and the National Science Foundation PFI:BIC Award No: 1632227.

Finally, I express gratitude to my Lord and Savior, Jesus Christ, and to the

precious Holy Ghost, for without their grace I would have been even more hopeless.

xi

DEDICATION

To my wife and family

xii

CHAPTER ONE

Introduction

Linear Dimension Reduction (LDR) has many uses in engineering, business,

medicine, economics, and other disciplines. LDR is a technique to reduce the number

of features (dimensions) retained in a problem or data set through linear combina-

tions or subsets of the original features. More specifically, we discuss linear feature

extraction, or combining features via weighted sums of vectors to reduce redundant

information and separate out noisy measurements.

In this dissertation, the specific form of LDR we employ is principal component

analysis (PCA). For a given data matrix X, PCA has many forms in many disciplines,

but we specifically focus on three: the spectral decomposition (or eigen-decomposition)

which operates on the Gramian of a mean-centered data matrix (XTX), the singular

value decomposition (or discrete Karhunen-Loeve transformation) of the data matrix

X, and the spectral decomposition of X or XTX with time-dependent observations.

Some of the benefits of PCA are to increase the signal to noise ratio in noisy data,

rotate features into orthogonal space to reduce feature correlation effects, reduce the

number of parameters to estimate, and decrease computational and memory costs

associated with model fitting. PCA can be employed when observations are recorded

with many correlated features to reduce the number of features upon which statistical

inference may be necessary. In this manuscript, we will discuss applications of PCA

and its variants to poorly-posed classification, ill-posed classification, and statistical

process monitoring.

In chapter two, we develop a heteroscedastic linear dimension reduction (HLDR)

procedure for poorly-posed (p < N < p2/2) heteroscedastic multivariate populations

1

that combines shrinkage estimation of precision matrices with the SVD of a rect-

angular data sufficiency matrix. Our new HLDR technique often preserves, nearly

preserves, or even improves the original feature-space conditional error rate in a re-

duced feature space, especially in cases where training-sample sizes are small relative

to the original-feature dimension. For certain population configurations, our new pro-

cess outperforms competing HLDR methods—including the well-known Loog & Duin

(2004), sliced inverse regression (Li, 1991), and sliced average variance estimation

(Cook & Yin, 2001) HLDR techniques—by more efficiently incorporating discrimi-

natory information contained in the disparate covariance matrices. We demonstrate

the efficacy of our new HLDR approach when applied in conjunction with the sam-

ple quadratic classification procedure via three Monte Carlo simulations for three

multivariate normal population configurations as well as for a real-data example.

In chapter three, we compare the computational costs of PCA to SVD for ill-

posed or high-dimensional (N ≤ p) classification scenarios. PCA is often employed

to reduce the dimensionality of samples in contexts where N � p. However, the

commonly-employed PCA algorithm can be thousands of times longer in computation

and hundreds of times larger in space complexity than the SVD in high-dimensional

contexts. We apply PCA and SVD to observations from seven real data sets before

classification with either linear discriminant analysis (LDA) or quadratic discriminant

analysis (QDA), and show that the discrimination behavior does not significantly

change between PCA and SVD dimension reduction techniques. Further, we compare

different eigenvector ordering schemes for each combination of dimension reduction

method and discriminant function. We also offer remarks about the conditional error

rates (CERs) of PCA and SVD when combined with LDA and QDA.

In chapter four, we discuss modifications to the PCA routine to account for

time-dependent, nonlinear, and non-stationary observations drawn from multiple pro-

cess states. In some engineered systems, additional designed features create a known

2

multi-state switching scheme among multiple autocorrelated, non-linear, and non-

stationary processes, and incorporating this known information into PCA can signifi-

cantly improve the ability to detect changes (faults) in the system. Adaptive-dynamic

PCA (AD-PCA) has been shown in previous research to do as well as or better than

nonlinear dimension reduction methods in flagging outliers in such environments. In

simulations with one of three types of faults introduced, we compare accounting for

the states versus ignoring them. We find that multi-state AD-PCA (MSAD-PCA) re-

duces the proportion of false alarms and reduces the average time to fault detection.

Conversely, we also investigate the impact of assuming multiple states when only one

exists, and find that as long as the number of observations is sufficient, this misspec-

ification is not detrimental. We then apply MSAD-PCA to real-world data collected

from a decentralized wastewater treatment (WWT) system during in control (IC)

and out of control (OoC) conditions. MSAD-PCA flags a strong system fault earlier

and more consistently than its single-state competitor. Furthermore, accounting for

the physical switching system does not increase the number of false alarms when the

process is IC and may ultimately assist with fault attribution.

In chapter five we describe the R software package mvMonitoring for imple-

menting multi-state adaptive-dynamic PCA useful for multivariate statistical process

monitoring. We describe briefly our motivation for creating this package and also de-

scribe four of the main functions within the package, including a detailed description

of the synthetic data generation process used in chapter four. We further provide

real and synthetic results from applying the mvMonitoring package to multivariate

process monitoring data from a decentralized WWT plant in Golden, CO. We offer

some brief concluding remarks in chapter six.

3

CHAPTER TWO

Regularized Linear Dimension Reduction for the Sample Quadratic Discriminant
Function

ABSTRACT

We develop a new heteroscedastic linear dimension reduction (HLDR) proce-

dure for heteroscedastic multivariate populations that combines shrinkage estima-

tion of precision matrices with the concept of a theoretical HLDR result. Our new

HLDR technique, which we refer to as the SYS HLDR method, often preserves, nearly

preserves, or even improves the original feature-space conditional error rate in a re-

duced feature space, especially in cases where training-sample sizes are small rela-

tive to the original-feature dimension. For certain population configurations, the SYS

HLDR process outperforms competing HLDR methods—including the well-known

Loog and Duin, sliced inverse regression, and sliced average variance estimation HLDR

techniques—by more efficiently incorporating discriminatory information contained

in the disparate covariance matrices. We demonstrate the efficacy of our new HLDR

approach when applied in conjunction with the sample quadratic classification pro-

cedure via three Monte Carlo simulations for three multivariate normal-population

configurations as well as for a real-data example.

2.1 Introduction

If one assumes known class-conditional probability densities, then the optimal error

rate of a statistical supervised classifier does not increase as the feature-space dimen-

sion p increases. However, this perspective is impractical because one must estimate all

parameters from training data. Specifically, the performance of a statistical discrimi-

nant rule can be significantly degraded when the feature dimension, p, is large relative

4

to the class-specific training-sample sizes ni, i = 1, . . . ,m, where m is the number of

pre-identified classes. Generally, as p increases, the ratio 2ni/p
2, i = 1, . . . ,m, must be

sufficiently large to avoid what Bellman (1961) first called the curse of dimensionality.

In statistical classification, linear dimension reduction (LDR) is a widely practiced

approach that avoids the curse of dimensionality by decreasing the number of feature

dimensions from p to some reduced dimension q < p.

Here, we propose a new HLDR technique that stabilizes each class precision

matrix by inducing bias via the shrinkage method of Haff (1979). When p < ni < p2/2,

class precision matrix estimators can have large variability. To this end, we replace

the unbiased sample precision estimator with Haff’s biased shrinkage estimator, which

greatly stabilizes the training-sample LDR matrix. As a result, our new HLDR process

generally preserves or reduces the full-feature conditional error rates (CERs) in a

reduced dimension for a statistical supervised classification rule for heteroscedastic

populations.

For classification scenarios examined in this paper, our HLDR method outper-

forms four considered competitors in terms of classifier stability and smaller median

CERs. We demonstrate the superior classification efficacy of our new HLDR approach

compared to four current competing sufficient-statistic-based HLDR routines while

considering three synthetic heteroscedastic multivariate normal data sets as well as

a real data set. We remark that we do not compare methods of choosing an optimal

reduced dimension r < p, but rather aim to discuss the behavior of the the CERs for

r < p. For some methods of choosing an optimal dimension r, see Schott (1994) and

Cook & Forzani (2008).

The LDR technique derived by Fisher (1936), sometimes known as the linear

discriminant function (LDF), holds for two populations with equal covariance matri-

ces. As mentioned above, HLDR methods extend the LDF to incorporate information

in the differences in covariance matrices. Unfortunately, as Velilla (2008) states,“there

5

seems to be no universally accepted dimension reduction method” for heteroscedastic

populations. However, several attempts have been recorded in the literature.

One such method has been proposed by Loog & Duin (2004), who use an

eigenvector-based HLDR approach for greater than two populations utilizing the

Chernoff criterion and have extended the well-known LDA technique using directed

distance matrices. Partial least squares as an HLDR process has been proposed by

Nguyen & Rocke (2002), Barker & Rayens (2003), and Boulesteix & Strimmer (2007).

Additional HLDR methods have been proposed by Young, Marco, & Odell (1987a),

Fischer & Thiele (1979), Velilla & Hernandez (2005), Velilla (2008), and Mahanta,

Aghaei, Plataniotis, & Pasupathy (2012), as well as Fukunaga (1990), Kumar, An-

dreou, & Andreou (1996), Hennig (2004), Fan, Ke, Liu, & Xia (2015), and Oun-

praseuth, Young, Van Zyl, Nelson, & Young (2015).

The remainder of the paper proceeds as follows. In Section 2.2.1, we establish

notation and give a brief introduction to the sample quadratic classifier. We provide

conditions under which the optimal error rate of the quadratic classification rule

with all parameters known is preserved in a low-dimensional transformed feature

space in Section 2.2.2. Also, we derive an HLDR projection matrix preserving the

optimal error rate. In Section 2.2.3, we describe our new SYS HLDR routine—a robust

and stabilizing modification wherein we apply shrinkage to the precision estimates.

Further, in Section 2.3, we summarize four competing sufficient-statistic-based HLDR

procedures. We describe our Monte Carlo simulation design in Section 2.4. In Section

2.5, we present the results of three Monte Carlo simulations under various multivariate

normal parameter configurations with heteroscedastic covariance matrices using five

competing HLDR processes, including our new SYS HLDR technique. Furthermore,

in Section 2.6, we compare the efficacy of our new HLDR approach with four well-

known HLDR methods using a non-parametric bootstrap simulation for a real data

example. Finally, we give some concluding remarks in Section 2.7.

6

2.2 Main Results

2.2.1 The Quadratic Classifier

Let Rm×n denote the set of all m×n matrices with entries in the field R. Let Sp ⊂ Rp×p

denote the set of p× p real symmetric matrices, and let R>
p ⊂ Sp denote the interior

of the cone of p × p real symmetric positive-definite matrices. Also, for a matrix

A ∈ Rm×n, we let A+ ∈ Rn×m represent the Moore-Penrose pseudo-inverse of A, we

let C(A) represent the column space of A, and we let N (A) denote the null space of

A.

Suppose we have m distinct classes, Π1, . . . ,Πm. Let x ∈ Rp×1 represent a real

observation with p measured features. Also, let fi(x) be a p-dimensional multivariate

density corresponding to population Πi such that essentially all classification infor-

mation for random samples from fi(x) reside in the means µi and covariances Σi,

where i = 1, . . . ,m. Some example distributions include the multivariate Student’s t

with non-heavy tails, symmetric multivariate Laplace, the multivariate logistic distri-

bution, and other distributions within the multivariate elliptical family. For m ≥ 2

multivariate populations or classes with a priori class membership αi, the criterion

function for the ith class can be expressed as

di(x) := log |Σi| − 2 log (αi) + (x− µi)
T Σ−1i (x− µi) , i = 1, . . . ,m. (2.1)

Then, the well-established decision rule classifies the unlabeled observation x into the

class Πk if dk(x) = D(x), where

D(x) := min {di(x); i = 1, . . . ,m} . (2.2)

The classification rule (2.2) is known as the quadratic discriminant function

(QDF) or the quadratic classifier. If all parameters in (2.1) are estimated from training

data and ni > p, then (2.1) becomes

d̂i(x) := log |Si| − 2 log (αi) + (x− x̄i)
T S−1i (x− x̄i) , (2.3)

7

where x̄i, Si, and S−1i are the maximum likelihood estimates of µi, Σi, and Σ−1i ,

respectively, for class i, i = 1, . . . ,m.

2.2.2 A Linear Dimension Reduction Model Result

We now present a result that enables us to construct an HLDR transformation of

full-dimensional feature data that preserves the optimal error rate associated with

the full-dimension feature space. The following result is motivated by the discussion

of Peters, Redner, & Decell (1978) on linear sufficient statistics for the differences

in m heteroscedastic multivariate observations, specifically that (Σiµi −Σ1µ1) and

(Σi −Σ1) , i = 2, . . . ,m, are sufficient to compare each population i to population

1. Group 1 is chosen as the reference group arbitrarily. Although Ounpraseuth et al.

(2015) have provided similar results to the theorem below and the lemmas in the

appendix, our proofs have the following major dissimilarities: this proof does not

assume multivariate normality, the following proof uses the QDF shown in (2.2) for

its criterion function instead of the ratio of multivariate normal densities, and all of

our proofs are more concise. The HLDR method presented in the subsequent theorem

constructs a relationship between classifying an observation in p-dimensional feature

space and in a q-dimensional subspace, where q < p, when all parameters are known.

Theorem. Suppose we have m multivariate populations with full classification infor-

mation within the means µi and covariance matrices Σi ∈ R>
p , and let αi denote a

priori class membership, where i = 1, . . . ,m. Also, let

M :=
[
Σ−12 µ2 −Σ−11 µ1| . . . |Σ−1m µm −Σ−11 µ1|Σ2 −Σ1| . . . |Σm −Σ1

]
. (2.4)

Let M = FG ∈ Rp×s be a full-rank decomposition of M, where F ∈ Rp×q, rank(F) =

q < p, and s = (m − 1)(p + 1). Then, for an unlabeled observation vector x ∈ Rp×1,

D(x) = D
(
F+x

)
, where D(x) is defined in (2.2).

Proof. First let F ∈ Rp×q with rank(F) = q. Now let P⊥F :=
(
I− FF+

)
, and C :=

RP⊥F where R ∈ R(p−q)×p and rank(R) = p − q. Using Lemmas A.1, A.2, and A.3,

8

with a matrix A =
[
F+T ,CT

]T ∈ R>
p , we have that

di(x) = di(Ax)

= −2 log (αi) + log
∣∣AΣAT

∣∣+ [A (x− µi)]
T (AΣiA

T
)−1

[A (x− µi)]

= −2 log (αi) + log

∣∣∣∣∣∣∣
F+ΣiF

+T F+ΣiC
T

CΣiF
+T CΣiC

T

∣∣∣∣∣∣∣
+

F+ (x− µi)

C (x− µi)


T F+ΣiF

+T F+ΣiC
T

CΣiF
+T CΣiC

T


−1 F+ (x− µi)

C (x− µi)


= −2 log (αi) + log

∣∣∣∣∣∣∣
F+ΣiF

+T 0

0 CΣiC
T

∣∣∣∣∣∣∣
+

F+ (x− µi)

C (x− µi)


T F+ΣiF

+T 0

0 CΣiC
T


−1 F+ (x− µi)

C (x− µi)


= −2 log (αi) + log

∣∣F+ΣiF
+T
∣∣+ log

∣∣CΣ1C
T
∣∣

+
[
F+ (x− µi)

]T
FTΣ−1i F

[
F+ (x− µi)

]
+ [C (x− µ1)]

T [CΣ1C
T
]−1

[C (x− µ1)]

= −2 log (αi) + log
∣∣F+ΣiF

+T
∣∣

+
[
F+ (x− µi)

]T
FTΣ−1i F

[
F+ (x− µi)

]
+ c

= di
(
F+x

)
+ c,

where c := log
∣∣CΣ1C

T
∣∣+[C (x− µ1)]

T [CΣ1C
T
]−1

[C (x− µ1)]. Thus di(x) > dj(x)

if and only if di
(
F+x

)
> dj

(
F+x

)
for all i, j = 1, . . . ,m; i 6= j. Hence, D(x) =

D
(
F+x

)
.

In the theorem above, we have provided conditions under which the optimal

error rate of the QDF is preserved in a low-dimensional transformed feature space.

Moreover, we have derived an HLDR projection matrix preserving the optimal error

rate for the reduced subspace of dimension q = rank(M) < p in the theoretical case

9

when all population parameters are known, and class means and precision matrices

are unequal.

2.2.3 The SYS HLDR Method

First, let

M̂ :=
[
S−12 x̄2 − S−11 x̄1| . . . |S−1m x̄m − S−11 x̄1|S2 − S1| . . . |Sm − S1

]
(2.5)

be an estimator of (2.4). Because rank(M̂) = p, one cannot directly obtain the HLDR

matrix F+ ∈ Rp×q that preserves the full-feature CER. Moreover, we may wish to

obtain a still lower dimensional representation of the original data with dimension r,

say, where 1 ≤ r < q < p. Thus, we seek to construct an r-dimensional HLDR matrix

that preserves essentially all of the original p-dimensional CER.

Motivated by the theorem in Section 2.2.2, we propose a new HLDR procedure

that utilizes a regularized estimate of the precision matrix in scenarios when ni is

small relative to p2. For cases when p < ni < p2/2, the Haff shrinkage estimator of

S−1i has smaller variance than the inverse of the unbiased or maximum likelihood

estimators for Σi (Haff, 1979). This induced bias will stabilize the chosen estimator

of Σ−1. Next, let

M̂SY S :=
[
S̃
−1
2 x̄2 − S̃

−1
1 x̄1| . . . |S̃

−1
m x̄m − S̃

−1
1 x̄1|S2 − S1| . . . |Sm − S1

]
(2.6)

be our new estimator of (2.4). In this equation, we have used the Haff shrinkage

estimator for Σ−1i , defined as

S̃
−1
i := (1− t(Ui)) (ni − p− 2) S−1i +

t(Ui) (pni − p− 2)

tr (Si)
Ip, (2.7)

where

t(Ui) := min

{
4 (p2 − 1)

(ni − p− 2) p2
, 1

}
U

1/p
i

and

Ui :=
p |Si|1/p

tr (Si)
,

10

for i = 1, . . . ,m. We remark that Peck, Jennings, & Young (1988) have shown that

the QDF performs well when (2.7) estimates Σ−1i in (2.4). However, one could use

other regularized estimators of Σ−1i , i = 1, . . . ,m.

Our approach to obtaining an r-dimensional HLDR matrix, 1 ≤ r < p, is the

singular value decomposition of Eckart & Young (1936). Let A = UDVT denote

the singular value decomposition of some arbitrary matrix A, and let U(r) denote

the r eigenvectors of A corresponding to the r < p largest singular values of A.

Finally, let M̂SY S = USY SDSY SVT
SY S be the singular value decomposition of (2.6),

and define F̂
(r)

SY S := U
(r)
SY S. Then

[
F̂

(r)

SY S

]T
∈ Rr×p is the SYS HLDR matrix for

reducing the feature dimension from p to r, 1 ≤ r < p. In brief, the SYS HLDR

approach, employing inverse-covariance matrix shrinkage, can yield relatively small

CERs, reduced classifier variability, and is especially useful when ni is small.

Concerning the selection of an appropriate reduced dimension r, we have men-

tioned other research completed on the optimal choice of the reduced dimension r in

Section 2.1. While we respect the validity of such work, we firmly believe that for the

task of supervised classification, the median conditional error rate is the most appro-

priate criterion for choosing a reduced dimension. We employ a bootstrap estimator

of the error rate.

2.3 Four Competing HLDR Methods

In this section, we describe four sufficient-statistic-based HLDR methods that we

contrast against the SYS HLDR method. For these four HLDR techniques, let A =

UDVT denote the singular value decomposition of a matrix A and U(r) be the r

eigenvectors of A corresponding to the r < p largest singular values of A.

11

2.3.1 The SY Method

Let M̂SY be defined as in (2.5), where Si and x̄i are the maximum likelihood estimates

of Σi and µi in (2.4), respectively, provided ni > p, i = 1, . . . ,m. While the SY HLDR

routine from Ounpraseuth et al. (2015) uses the full-rank decomposition of the matrix

MSY , we equivalently let M̂SY = USY DSY VT
SY be the singular value decomposition

of M̂SY . Then, for F̂
(r)

SY := U
(r)
SY , the r × p SY HLDR matrix is

[
F̂

(r)

SY

]T
.

2.3.2 The LD HLDR Method

For the HLDR procedure proposed by Loog & Duin (2004), we wish to determine a

matrix A ∈ Rr×p that maximizes the Chernoff distance

JC(A) :=
m−1∑
i=1

m∑
j=i+1

αiαj tr
[(

ASWAT
)−1

AS
1/2
W

(
S̃
∗
ij

)
S
1/2
W AT

]
, (2.8)

where

S̃
∗
ij :=

(
S∗(i,j)

)− 1
2 S
−1/2
W (x̄i − x̄j) (x̄i − x̄j)

T S
−1/2
W

(
S∗(i,j)

)− 1
2

+
1

π(i|j)π(j|i)

[
log
(
S∗(i,j)

)
− π(i|j) log

(
S∗(i,i)

)
− π(j|i) log

(
S∗(j,j)

)]
.

(2.9)

Here S∗(a,b) := S
−1/2
W

(
π(a|b)Sa + π(b|a)Sb

)
S
−1/2
W , π(a|b) := αa/ (αa + αb), αi is the a priori

probability for the ith class such that
∑m

i=1 αi = 1, and i = 1, . . . ,m. Also,

SW :=
m∑
i=1

αiSi (2.10)

and

SB :=
m∑
i=1

(x̄i − ¯̄x) (x̄i − ¯̄x)T (2.11)

are the sample within-class covariance and sample between-class scatter matrices, re-

spectively. Moreover, x̄i is the sample mean vector for the ith class and ¯̄x =
∑m

i=1 αix̄i

is the overall mean. Let

M̂LD :=
m−1∑
i=1

m∑
j=i+1

αiαjS
−1
W S

1/2
W

[
S̃
∗
ij

]
S
1/2
W ,

12

where S̃
∗
ij is given in (2.9), and let M̂LD = ULDDLDVT

LD be the singular value

decomposition of M̂LD. Then for F̂
(r)

LD := U
(r)
LD, the r×p LD HLDR matrix is

[
F̂

(r)

LD

]T
.

2.3.3 The SIR HLDR Method

We now describe the sliced inverse regression (SIR) HLDR approach, originally pro-

posed by Li (1991). For the case where parameters are unknown, we use the SIR

matrix

M̂SIR := Γ̂
−1/2

SBΓ̂
−1/2

, (2.12)

where Γ̂ := SB + SW is the estimated marginal covariance matrix of X, and SW and

SB are given in (2.10) and (2.11), respectively. Let M̂SIR = USIRDSIRVT
SIR be the

singular value decomposition of (2.12), and let F̂SIR := Γ̂
−1/2

U
(r)
SIR. Then, the r × p

SIR HLDR matrix is
[
F̂

(r)

SIR

]T
.

2.3.4 The SAVE HLDR Method

Lastly, we describe the sliced average variance estimation (SAVE) routine proposed

by Cook & Weisberg (1991) and discussed in Cook & Yin (2001). For the case where

parameters are unknown, we use a form of SAVE given in Velilla (2008), which is

M̂SV :=
(
Γ̂
−1/2

SBΓ̂
−1/2)2

+ Γ̂
−1/2

SΓ̂Γ̂
−1/2

. (2.13)

In (2.13), SΓ̂ := 1
m

∑m
i=1 (Si − SW) Γ̂

−1
(Si − SW), and SW and SB given in (2.10) and

(2.11), respectively. Let M̂SV = USV DSV VT
SV be the singular value decomposition of

(2.13). Then,
[
F̂

(r)

SV

]T
:=
[
Γ̂
−1/2

U
(r)
SV

]T
is the r × p SAVE HLDR matrix.

2.4 Monte Carlo Simulation Description

In this section, we describe the simulation design we used to contrast our new SYS

HLDR routine derived in Section 2.2.3 against the SY, LD, SIR, and SAVE HLDR

approaches of Section 2.3. Specifically, due to the skewness of the CERs, we evaluate

13

the classification efficacy in terms of the median CER (MCER). We reiterate that

we examine the conditional error rates and their variability, not the behavior of the

expected error rates. We use Monte Carlo simulations for three different configurations

of multivariate normal populations with p = 10.

First, let MCERr(·) denote the estimated MCERs for each of the chosen pro-

cedures with reduced dimension r < p. We performed the following steps for each

parameter configuration:

Step 1. Generate 5,000 observations from the designated 10-dimensional multivariate

normal distribution per each of the m = 3 classes.

Step 2. Partition the (5000m) observations into training and test data sets.

i. Simulate poorly-posed covariance matrix scenarios taking n = 15 train-

ing observations per class.

ii. Hold the remaining 4,985 observations per class aside for testing.

Step 3. Repeat the following steps for each HLDR technique:

i. Project the training and test data from p to r dimensions, where r is

fixed.

ii. Construct the classifier.

iii. Classify the test observations into one of the m distinct classes.

iv. Record the CER.

Step 4. Repeat Steps 1–3 2,500 times.

Step 5. Increase ni from 15 to 30 then 60, and repeat Steps 1–4.

In Step 3, we apply the five competing HLDR matrices—F̂
(r)

SY S, F̂
(r)

SY , F̂
(r)

LD, F̂
(r)

SIR,

and F̂
(r)

SV —to project the data from p to r dimensions, r = 1, . . . , 9. Then, we calculate

the CERs for the five reduced-dimensional QDF s. Specifically, in Step 3(iii), the test

data are assigned to either Π1, Π2, or Π3 using QDF classifier (2.3). In Step 4, we

calculate the MCER for each HLDR process within each reduced dimension r by

14

taking the median of the 2,500 estimated CERs from Step 3. In Step 5, we vary the

training sample sizes on the five HLDR methods using ni = 1.5p, 3p, 6p, for i = 1, 2, 3.

Each training sample size is less than the 65 parameters to be estimated per class.

The simulation parameter configurations are as follows.

(1) Configuration 1: m = 3 with diverse population covariance matrices. For Con-

figuration 1, we have three distinct multivariate normal populations:Np (µ1i,Σi),

for i = 1, 2, 3, and p = 10; µ1i and Σi are given in 2.0.1 and 2.0.2, respectively.

For this configuration of parameters, rank(M) = 2, and we display results for

ni = 30.

(2) Configuration 2: m = 3 with two similar covariance matrices and one spher-

ical covariance matrix. In the second Monte Carlo simulation, we examined

the results of a configuration with three multivariate normal populations,

Np (µ2i,Σi), for i = 1, 2, 3 and p = 10; µ2i and Σi are given in 2.0.1 and

2.0.3, respectively. For this configuration of parameters, rank(M) = 2, and

we display results for ni = 15.

(3) Configuration 3: m = 3 with diffuse similar covariance matrices except for

the first two dimensions. Here we have three multivariate normal populations:

Np (µ3i,Σi), for i = 1, 2, 3 and p = 10; µ3i and Σi are given in 2.0.1 and 2.0.4,

respectively. Also, rank(M) = 4, and we display results for ni = 60.

2.5 Monte Carlo Simulation Results

We present the results of our Monte Carlo simulations. We performed three Monte

Carlo simulations using the statistical computing resource R, versions 3.2.0–3.3.1. The

code will be released as a package separately. In Figures 2.1–2.3, we display boxplots

of the CERs of the five competing HLDR techniques for the various population con-

figurations and values of ni and r, where i = 1, . . . ,m and r = 1, . . . , 7. For r > 7, all

five HLDR procedures behaved similarly. The estimated standard error of all MCERs

15

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7
Reduced Dimension

C
E

R

LDR
Method
(L to R)

LD
SV
SIR
SY
SYS

Figure 2.1: Conditional Error Rate Plots for Simulation Configuration 1 with ni = 30.

was less than 0.008. Unless otherwise stated, CER values are rounded to the nearest

0.005.

2.5.1 Configuration 1: m = 3 with diverse population covariance matrices

In Figure 2.1, the vertical box plots represent the summary of the CERs for the

2,500 replications of each approach within each dimension. The HLDR processes are

– from left to right within each dimension – LD from Loog & Duin (2004), SAVE

from Velilla (2008), SIR from Li (1991), SY from Ounpraseuth et al. (2015), and SYS

from Section 2.2.3.

The line at CER = 0.505 in Figure 2.1 is the MCER for the original 10-

dimensional data. In Figure 2.1, we see that as r decreased, the MCER decreased

for the LD, SY, and SYS HLDR techniques. Moreover, the variability of the SY

16

and SYS HLDR routines decreased as r decreased, yielding more stable discriminant

functions. However, the MCER for the SIR and SAVE HLDR procedures remained

relatively constant, and classifier variability increased for the SAVE HLDR procedure.

In scenarios where the covariance matrix estimates are highly disparate, the SIR and

SAVE methods suffered because they depended upon a pooled covariance matrix es-

timate. However, in these same situations, the SY and SYS approaches appeared to

benefit.

Because rank(M) = 2, the theoretical CER-preserving reduced-dimension lower

bound is at q = 2, which, we remark, is not the practical lower bound. The practical

lower bound, however, yielding the lowest MCER of the five methods, occurred at r =

1. By the principle of parsimony, describing our data using two parameter estimates

per class instead of five parameter estimates further decreased the MCER for both

the SY and SYS HLDR processes. By reducing the full dimensional data from p = 10

to the reduced dimension r = 1, we also greatly stabilized our classifier via the

SYS HLDR technique. Specifically, we decreased the MCER from 0.505 to 0.375

with the SY and SYS HLDR routines, which resulted in an MCER improvement of

approximately 0.130.

Overall, the CER behavior of each HLDR procedure was similar for each ni =

15, 30, 60. From p = 10 to r = 1, CER boxplots for the LD, SY, and SYS HLDR ap-

proaches monotonically decreased, even past the theoretical CER-preserving reduced-

dimension lower bound at q = 2. For ni = 15, the five-method minimum MCER of

0.390 was achieved concurrently by the SY and SYS HLDR methods at the reduced

dimension r = 1. The original 10-dimensional data yielded an MCER of 0.565, result-

ing in an MCER decrease of 0.175.

Furthermore, for ni = 60, the five-method minimum MCER was 0.370, achieved

concurrently by the SY and SYS HLDR approaches at the reduced dimension r = 1.

The MCER for the original 10-dimensional data was CER = 0.455, yielding an MCER

17

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7
Reduced Dimension

C
E

R

LDR
Method
(L to R)

LD
SV
SIR
SY
SYS

Figure 2.2: Conditional Error Rate Plots for Simulation Configuration 2 with ni = 15.

decrease of 0.085. Further, increasing the training sample size from 15 to 30 or 60 per

class reduced all the MCERs and the CER variability for each of the five competing

HLDR techniques.

2.5.2 Configuration 2: m = 3 with two similar covariance matrices and one spherical
covariance matrix

In Figure 2.2, the line at CER = 0.490 is the MCER for the original 10-dimensional

data. In Figure 2.2 we see that as r decreased, the MCER decreased for the LD,

SIR, SY, and SYS HLDR procedures. However, the variability of the SY HLDR

method increased dramatically as r decreased, yielding a less stable quadratic dis-

criminant function. Moreover, the MCER for the SAVE HLDR procedure increased

as r decreased, although the variability of this classifier decreased. We remark that

18

the variability of the LD, SIR, and SYS HLDR methods remained roughly stable as

r decreased.

Because rank(M) = 2, the theoretical CER-preserving reduced-dimension lower

bound occurred at q = 2. In this instance, the practical and theoretical error-rate pre-

serving lower bounds coincided. However, for 1 ≤ r ≤ 4, the SAVE HLDR-based clas-

sifier produced greater MCERs than when p = 10. By reducing the full dimensional

data from p = 10 to r = q = 2, we decreased the MCER from 0.490 to 0.320 by using

the SYS HLDR routine, which resulted in an MCER improvement of approximately

0.170.

While varying ni, the LD HLDR CER behavior of the procedure changed from

monotonically decreasing for ni = 15, to slightly concave for ni = 30 with a minimum

MCER at r = 3, to concave with a larger radius of curvature for ni = 60 with a

minimum at r = 2. The CER behavior of the SAVE and SYS HLDR approaches

was similar to the LD HLDR process. The CER behavior of the SIR HLDR method

became more flat as ni increased. Furthermore, the MCER behavior of the SY HLDR

routine was similar to the MCER behavior as shown in Figure 2.2, but the variability

decreased markedly for ni = 30, 60.

For ni = 30, the five-method minimum MCER of 0.270 was achieved by the

SY HLDR approach at the reduced dimension r = 2. The MCER for the original

10-dimensional data was at CER = 0.395, yielding an MCER decrease of 0.125.

Furthermore, for ni = 60, the five-method minimum MCER was 0.260, achieved by

the SYS HLDR procedure at reduced dimension r = 2. The MCER for the original

10-dimensional data was at CER = 0.335, yielding an MCER decrease of 0.075.

Finally, increasing the training-sample size from 15 to 30 or 60 per class reduced all

the MCERs and the CER variability for all five competing HLDR techniques.

19

2.5.3 Configuration 3: m = 3 with diffuse similar covariance matrices except for the
first two dimensions

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7
Reduced Dimension

C
E

R

LDR
Method
(L to R)

LD
SV
SIR
SY
SYS

Figure 2.3: Conditional Error Rate Plots for Simulation Configuration 3 with ni = 60.

In Figure 2.3, the line at CER = 0.245 is the MCER for the original 10-dimensional

data. We see in Figure 2.3 that as r decreased, the MCER slightly decreased for the

LD, SY, and SYS HLDR techniques until r = q = 4, then increased for 1 ≤ r ≤ 3.

The variability of the LD, SY, and SYS HLDR processes remained roughly constant

until r = 4, while the variability of the SIR HLDR process actually decreased as r

decreased. However, this increase in classifier stability means little because the MCER

for the SIR HLDR approach increased while r decreased. Moreover, for 4 ≤ r ≤ 10,

the SAVE HLDR method performed only nominally better than classification in the

original 10-dimensional space, and the MCER for the SAVE HLDR method was

greater than 0.240 for all r < p = 10.

20

We attribute this poor showing of the classifiers in r = 1, 2, 3 to rank(M). Be-

cause rank(M) = 4, q = 4 is the theoretical CER-preserving reduced-dimension lower

bound. For this configuration, the practical and theoretical lower bounds coincided.

Only the LD, SY, and SYS procedures produced any practical improvement in the

MCER, and for r = 4 the SYS HLDR approach showed fewer instances with CER

> 0.245 than the LD HLDR routine, while remaining competitive with the CER of

the LD HLDR routine. We remark that MCER4(LD) = MCER4(SYS) = 0.210. By

reducing the full dimensional data from p = 10 to r = 4, we decreased the MCER

from 0.245 to 0.210 with the LD and SYS HLDR processes, which resulted in an

MCER improvement of approximately 0.035.

Overall, the CER behavior of each HLDR procedure was similar for each ni =

15, 30, 60. As ni increased, we observed a more pronounced increase in the CERs

for 1 ≤ r ≤ 3. From p = 10 to r = 4, CER boxplots for the LD, SY, and SYS

HLDR approaches monotonically decreased. The CER boxplots for the SIR HLDR

routine were relatively flat for each value of ni selected. However, for ni = 15, 30, the

width of the CER boxplots for the SAVE HLDR method monotonically increased as

r decreased.

For ni = 15, the five-method minimum MCER of 0.300 was achieved by the

SYS HLDR technique at the reduced dimension r = 3. The MCER for the original

10-dimensional data was 0.465, yielding an MCER decrease of 0.165. Furthermore,

for ni = 30, the five-method minimum MCER was 0.25, achieved by the SYS HLDR

process at r = 4. The MCER for the original 10-dimensional data was 0.325, yielding

an MCER decrease of 0.075 for the SYS HLDR method. Further, increasing the

training-sample size from 15 to 30 or 60 reduced all of the MCERs and the variability

of the CERs for each HLDR technique, for 4 ≤ r ≤ 10.

21

2.6 A Real-Data Example

The radar data of Sigillito, Wing, Hutton, & Baker (1989) was collected by a signal

collection system in Goose Bay, Labrador. According to the University of California–

Irvine Machine Learning Repository summary, this system consisted of a phased array

of 16 high-frequency antennas with a total transmitted power on the order of 6.4

kilowatts. The targets were free electrons in the ionosphere. “Good” radar returns

showed evidence of some type of structure in the ionosphere. “Bad” returns did not;

their signals passed through the ionosphere.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Dim1 Dim3 Dim5 Dim7 Dim9 Dim11 Dim13 Dim15
Reduced Dimension

C
E

R

LDR
Method
(L to R)

LD
SV
SIR
SY
SYS

Figure 2.4: Conditional Error Rate Plots for Ionosphere Data

Researchers processed signals using an autocorrelation function whose argu-

ments were the time of a pulse and the pulse number. The Goose Bay system had 17

pulse numbers. Because electromagnetic signals are complex-valued, instances in this

22

database are described by two attributes per pulse number. In each pair, the first at-

tribute corresponds to the real component while the second represents the imaginary.

Because measures “V1” and “V2” were binary (all feature names and descriptions are

proprietary), we removed these two original features.

After preliminary data cleaning, the data had 351 observations with 32 features.

The “Good” category had 225 observations while the “Bad” category had only 126

observations. Also, the covariance matrices were substantially unequal, as confirmed

by the p-value of a likelihood ratio test statistic. The M̂ matrix was full rank (as to

be expected with real data), but the sum of the smallest 23 weighted singular values

of M̂ was less than 0.10, thus suggesting that the SY and SYS dimension reduction

techniques should improve the classification accuracy.

We implemented a non-parametric bootstrap simulation as follows: we varied

the training data percentage from 40% to 90% over 10 percentage point intervals.

We chose an 80% training proportion to minimize cross-validated MCER, and we

randomly selected 80% (rounded down) of the observations for the training data set.

That is, we randomly selected 180 “Good” and 100 “Bad” observations from the 351

observations to form our training-sample data set and then followed the substeps in

Step 3 of Section 2.4 to record a single CER for each of the five competing HLDR

methods within each of the r reduced dimensions, r = 1, . . . , 31. We repeated this

process 5,000 times.

In Figure 2.4, the line at CER = 0.13 is the MCER for the original 32-

dimensional data. For brevity, we display eight of the 31 reduced dimensions. We

chose this subset of reduced dimensions (7 ≤ r ≤ 14) which surrounded r = 8, 9

where the effective global minimum MCERs occurred.

We now describe the behavior of the five competing HLDR approaches. For the

LD HLDR technique, the MCER remained roughly constant from p = 32 to r = 19

and then slowly decreased from r = 18 to its minimum of 0.071 at r = 2. For the

23

SAVE HLDR procedure, the MCER remained roughly constant at 0.13 from p = 32

to r = 13, then increased starting at r = 12 before slowly returning to 0.13. For

r < 32, the MCER(SAVE) was greater than 0.13. For the SIR HLDR routine, the

MCER remained roughly constant from p = 32 to r = 27, then decreased from r = 26

to its minimum of 0.086 at r = 6. As r decreased from 32 dimensions to 9 dimensions,

the SY and SYS HLDR MCERs slowly decreased. The SY and SYS HLDR methods

achieved the lowest MCER of all HLDR methods—0.056 for r = 8, 9.

Because min{ni} = 100 > 10 ∗ r, i = 1, 2, the SY and SYS HLDR routines

performed almost equivalently. Thus, we used the mean CER for further comparison.

For r = 8, the mean CERs for the SYS and SY HLDR approaches were slightly

smaller than the same means for r = 9. Also for r = 8, the mean CER for the

SYS HLDR procedure was slightly smaller than the mean CER for the SY HLDR

procedure. By reducing the full-dimensional data from p = 32 to r = 8, thus reducing

the number of parameters to estimate from 1120 to 88, we reduced the MCER from

0.13 to 0.056 by using the SY and SYS HLDR processes—an MCER improvement

of approximately 0.074.

2.7 Discussion

In summary, we have derived a new HLDR technique employing inverse-covariance

matrix shrinkage that can yield relatively small CERs and reduced classifier vari-

ability. Furthermore, using Monte Carlo simulations under various heteroscedastic

multivariate normal parameter configurations, we have corroborated our claim that

our new SYS HLDR method with shrinkage estimators of class precision matrices can

decrease the CERs, especially in scenarios when ni/p
2 < 0.5.

In scenarios when the eigenstructure of M from (2.4) is somewhat spiked and

monetary or temporal limitations constrain researchers from collecting sufficient train-

ing data, the SYS HLDR procedure generally outperforms the four chosen HLDR

24

competitors in terms of classifier stability and reduced median CERs. Furthermore,

considering the principle of parsimony, we have exhibited scenarios wherein reducing

the dimension beyond the theoretical lower bound decreased the MCER. We do not

claim that our new SYS HLDR technique has uniformly lower MCERs. However,

we have shown that the SYS HLDR approach offers superior classification ability

over four current competing HLDR approaches for three simulated-data population

configurations and is non-inferior for the real ionosphere data set.

Acknowledgments

We acknowledge Ben J. Barnard for his help in developing an associated R

package, Whitney V. Burrow for her coding assistance, and the Machine Learning

Repository of Bache & Lichman (2013), hosted by the University of California—Irvine,

for providing real machine learning data. This research did not receive any specific

grant from funding agencies in the public, commercial, or not-for-profit sectors.

25

CHAPTER THREE

A Comparison of Principal Component Analysis and the Singular Value
Decomposition as Linear Dimension Reduction Methods

ABSTRACT

Principal component analysis (PCA) and the singular value decomposition (SVD)

are often employed to reduce the dimensionality of sampled data in high-dimensional

(N � p) contexts. However, the commonly-employed PCA algorithm can take thou-

sands of times longer in computation and be hundreds of times larger in space com-

plexity than the SVD in high-dimensional contexts. We apply PCA and the SVD to

observations from six real high-dimensional microarray data sets combined with clas-

sification for both linear discriminant analysis or quadratic discriminant analysis. We

show that the discrimination behavior does not significantly change between the PCA

and the SVD dimension-reduction techniques over the considered supervised classi-

fiers. Further, we compare different eigenvector ordering schemes for each combination

of dimension reduction method and discriminant function. We also offer remarks and

observations concerning the estimated expected error rates of PCA and SVD when

combined with linear discriminant analysis and quadratic discriminant analysis.

3.1 Introduction

When researchers have recorded data with many features—that is, p is large rela-

tive to N—they often use linear dimension reduction (LDR) techniques to mitigate

what Bellman (1961) has described as the curse of dimensionality. One commonly

accepted LDR technique is principal component analysis (PCA), in which one decom-

poses a sample covariance matrix into its eigenvectors and their associated eigenvalues

(Pearson, 1901). Similarly, one can use the singular value decomposition (SVD) to de-

26

compose the data matrix into singular vectors and their associated singular values

(Eckart & Young, 1936).

Consider this motivating example. One may desire to apply supervised classi-

fication to the stem cell factors in the glioma data set of Sun, Hui, Su, Vortmeyer,

Kotliarov, Pastorino, Passaniti, Menon, Walling, Bailey, Rosenblum, Mikkelsen, &

Fine (2006). This data set has 54,613 microarray feature values with a sample size

of 180 subjects, so that N � p. Because PCA is O(p3) in computation time and

O(p2) in space complexity, calculating a sample covariance matrix for this data is a

non-trivial task, and calculating the eigen-decomposition of this covariance matrix is

not tractable because of memory overflow. In contrast, because the SVD is O(Np2) in

computation time and O(Np) in space complexity, performing the SVD on this data

matrix is tractable. However, despite its potentially exorbitant computational costs in

high-dimensional contexts, PCA remains the default option to reduce the observation

dimension, as one can see in Raychaudhuri, Stuart, & Altman (2000).

In this paper, for the case when the number of observations is small relative to

a large number of dimensions (N � p), we calculate benchmark results comparing

the SVD and PCA when combined with supervised classification via linear discrimi-

nant analysis (LDA) or quadratic discriminant analysis (QDA). Further, we present

supervised classification results with the linear and quadratic discriminant functions

to verify that LDR with the SVD yields non-inferior statistical classification results

to LDR with PCA. Moreover, we discuss the condition numbers of PCA and the SVD

to prove that the SVD has a smaller loss of numerical precision than PCA. We also

provide a theoretical justification for replacing PCA with the SVD. Additionally, we

describe three eigenvector ordering schemes and compare their statistical classification

results with singular or eigenvalue ordering of eigenvectors.

Instead of directly employing the SVD to reduce the feature space in high-

dimensional scenarios, many researchers attempt to augment PCA by using feature

27

pre-screening, gene identification, and other preliminary dimension reduction tech-

niques. Satagopan & Panageas (2003) have provided a summary of such techniques.

One set of pre-screening methods is to calculate gene-specific t-tests or gene-specific

Wilcoxon Mann-Whitney tests, and then “screen” features by selecting the first few

hundred genes after ordering these genes by their statistic values. However, Wang &

Gehan (2005) remark that this test-statistic ranking method fails to account for cor-

relation among the screened features. Resampling techniques, such as those discussed

in Westfall & Young (1993), are an attempt to correct the corresponding p-values of

these statistics for the inherent correlation of the genes. Further, the t-statistic and

similar feature-ranking approaches fail when observations are drawn from more than

two populations. Pavlidis (2003) has also discussed ranking the genes by decreas-

ing test statistic scores from multiple one-way ANOVA F -statistics on each feature.

Additionally, many other methods can be found in the literature.

Unfortunately, Satagopan & Panageas (2003) have also remarked that when

these gene identification techniques are performed, often “every sample ... is utilized

in these analyses” (p. 490). This implies that observations from the testing and even

the validation sets are indirectly used in the model selection process. Oftentimes,

overfitting the classification model (by feature filtering with both the training and

test data sets) can cause severe bias, as discussed in Wang, Yin, Pei, Yu, & Yu

(2006).

In this paper, we show that the SVD enables one to reduce the feature dimension

effectively using observations reserved for training alone, thereby reducing the bias

inherent in statistical gene selection, all while being computationally superior to PCA.

In Section 3.2, we establish notation for high-dimensional observations, give definitions

for the linear and quadratic discriminant functions, and define our PCA- and SVD-

based dimension reduction methods. In Section 3.3, we describe three alternatives to

ordering the eigenvectors by the eigenvalue magnitude, including canonical variates

28

ordering. In Section 3.4, we discuss the non-parametric boostrap simulation design. In

Section 3.5, we discuss the condition numbers of PCA and the SVD and also present

some benchmark results on the time and memory costs for these two LDR routines.

In Section 3.6, we present the estimated expected error rates (EEER) for six real

data cases and discuss their behavior under four eigenvector-ordering schemes and

two statistical discriminant functions. Finally, we offer some concluding remarks in

Section 3.7.

3.2 Notation and Methods

Consider N � p observations or subjects from G mutually exclusive populations,

Π1, . . . ,ΠG, with class sample sizes N1, N2, . . . , NG, so that

N :=
G∑
g=1

Ng.

Further, let the a priori class membership proportions be αg := Ng/N . Let Rr×p

denote the set of all r × p matrices with entries in the field R. Let Sp ⊂ Rp×p denote

the set of p × p real symmetric matrices, and let R>
p ⊂ Sp denote the interior of the

cone of p× p real symmetric positive-definite matrices.

Without loss of generality, draw from group g the 1× p measurement vector for

subject i,

xig ∼ fg
(
µg,Σg

)
,

where µg and Σg ∈ R>
p are the mean vector and covariance matrix, respectively, of

the p-dimensional multivariate elliptical density fg. Additionally, let the maximum

likelihood estimates for µg and Σg be

x̄g :=
1

Ng

Ng∑
i=1

xig

and

Sg :=
1

Ng

Ng∑
i=1

(xig − x̄g)
T (xig − x̄g),

29

respectively. Further, let the full data matrix be denoted by [x1
... x2

... · · · ... xN]T .

Finally, without loss of generality, assume that the data have been sample-mean

centered, so that the data matrix is given by

X := [x1 − ¯̄x
... x2 − ¯̄x

... · · · ... xN − ¯̄x]T ∈ RN×p,

where

¯̄x :=
1

G

G∑
g=1

αgx̄g

is the grand mean for the total training data.

3.2.1 Two Statistical Discriminant Functions

Assume that the group-specific covariance matrices are Σg = Σ, g = 1, . . . , G. Then

the Anderson (1951) approximate linear discriminant criterion function of group g for

observation x with pooled covariance estimate S is

d̂Lg (x) := −2 log (αg) + (x− x̄g) S−1 (x− x̄g)
T , (3.1)

with discriminant rule

d̂L(x) = min
{
d̂Lg (x); g = 1, . . . , G

}
. (3.2)

However, if we are unable to assume the equality of covariance matrices, then the

sample quadratic discriminant criterion function of group g for observation x is

d̂Qg (x) := log |Sg| − 2 log (αg) + (x− x̄g) S−1g (x− x̄g)
T , (3.3)

with discriminant rule

d̂Q(x) = min
{
d̂Qg (x); g = 1, . . . , G

}
. (3.4)

30

3.2.2 Matrix Decompositions

To mitigate the effects of the curse of dimensionality, we can use linear dimension re-

duction to take linear combinations of all features, and then discard features according

to some criterion. Often, this criterion is the relative magnitude of the eigen- or singu-

lar values. Let n1, n2, . . . , nG and m1,m2, . . . ,mG denote the per-group training and

test sample sizes, respectively, where

n :=
G∑
g=1

ng ; m :=
G∑
g=1

mg;

so that N = n+m. Because n < p, the rank(X) ≤ n. Therefore, we discuss only the

reduced dimensions q ≤ n < p. The intuition for this approach is given in Hastie, Tib-

shirani, & Friedman (2001), who remark that“just like two points in three-dimensional

space always lie on a line,N points in p-dimensional space lie in an (N−1)-dimensional

affine subspace”(p. 660). This computational linear dimension reduction result is valid

for any model linear in its parameters and under a quadratic penalty (p. 661).

3.2.2.1 SVD. The singular value decomposition decomposes the sample-mean

centered data matrix X into three components,

X := UDVT .

The matrix U is the n × n orthogonal matrix of the left singular vectors, D =

diag(δ1, . . . , δn) is the n × n diagonal matrix of singular values which measure the

variance of each singular vector, and V is the p× n matrix of right singular vectors.

Let the projection Vq from p to q ≤ n� p dimensions be the q columns of V which

correspond to the q largest singular values in D. One can reduce the dimension of

observation xi by taking

yi := xiVq ∈ R1×q,

for i = 1, 2, . . . , n.

31

3.2.2.2 PCA. The principal component decomposition of the sample covariance

matrix, S, is

S := PΛPT ,

where P is the orthonormal matrix of eigenvectors and Λ is the diagonal matrix of

eigenvalues, such that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ λn+1 = · · · = λp = 0 for n� p. Let the

projection Pq from p to q � p dimensions be the q columns of P which correspond

to the q largest eigenvalues in Λ. One can reduce the dimension of observation xi by

taking

yi := xiPq ∈ R1×q,

for i = 1, 2, . . . , n.

3.2.2.3 Relating PCA to the SVD. We now demonstrate a direct relationship

between PCA and the SVD.

Theorem. Let the unbiased estimator of the pooled covariance matrix Σ of the mean-

centered data matrix X ∈ Rn×p be given by

S =
1

n− 1
XTX ∈ R≥p ,

where R≥p denotes a p× p positive semi-definite matrix. Further, let n < p. Then the

principal axes of S are the right singular vectors of X, and the eigenvalues of S are

proportional to the squared singular values of X; that is, for i = 1, . . . , n,

λi :=
1

n− 1
δ2i .

Proof. Let E[X] = 0 without loss of generality. The SVD of X is

X = UDVT ,

where U is the orthonormal matrix of left singular vectors, D = diag(δ1, . . . , δn) are

the singular values, and V is the orthonormal matrix of right singular vectors. Thus,

32

the symmetric Gram matrix of X is decomposed as

XTX =
(
UDVT

)T (
UDVT

)
= VD2VT

=⇒ XTXvi = δ2i vi,

for i = 1, . . . , n. Therefore, V, the right singular vectors of X are the eigenvectors

of XTX with corresponding eigenvalues δ2i , noting that δn+1, . . . , δp = 0. Further,

because X is mean-centered, the pooled sample covariance matrix of X is

S =
1

n− 1
XTX = VΛVT

=⇒ Svi = λivi,

where λivi is the ith principal component, λi = 1
n−1δ

2
i , and i = 1, . . . , p. Thus, theoret-

ically, the principal axes of S are the right singular vectors of X, and the eigenvalues

of S are proportional to the squared singular values of X.

3.2.3 Ill-Posed Discriminant Functions

Without loss of generality, let ng < nj for each j 6= g. Assume that we reduce the

original feature dimension p to some arbitrary dimension q < p via PCA or the SVD

and recalculate the maximum likelihood estimate for µg and the unbiased estimates

for Σg and Σ in the q-dimensional subspace. For cases when ng ≤ q < p, the group

covariance matrix for group g is singular, so (3.3) is said to be ill-posed. For cases

when n ≤ q < p, the pooled covariance matrix is singular, implying that (3.1) is also

ill-posed.

We replace the inverse of Sg with the Moore-Penrose (MP) pseudo-inverse (Pen-

rose, 1955). The MP pseudo-inverse S+ simplifies to S−1 when q < n. This modifica-

tion yields the q-dimensional sample linear discriminant function

d̃Lg (x) := −2 log (αg) + (x− x̄g) S+ (x− x̄g)
T . (3.5)

Also, S+
g reduces to S−1g when the reduced dimension q < ng. Therefore, for the

class-specific quadratic criterion function, S−11 , . . . ,S−1G are replaced with S+
1 , . . . ,S

+
G,

33

respectively. Further, because the determinant of Sg = 0 when q ≥ ng, the log |Sg|

tends without bound toward −∞. Therefore, in (3.3) we replaced

log |Sg| =
p∑
i=1

log λi

with

log (tr(Sg)) = log
k∑
j=1

λj,

where k = rank(Sg). These modifications yielded the q-dimensional sample quadratic

criterion function

d̃Qg (x) := log (tr(Sg))− 2 log (αg) + (x− x̄g) S+
g (x− x̄g)

T . (3.6)

We replace (3.1) with (3.5) for LDA or (3.3) with (3.6) for QDA, and we assign an

observation x to the group g which minimizes the appropriate linear or quadratic

discriminant rule.

3.3 Principal Direction Ordering

Often, the projection matrix from p to q < p dimensions is constructed from the q

eigenvectors corresponding to the largest q eigen- or singular values. However, Chang

(1983) showed that reducing multivariate observations from p dimensions to q dimen-

sions by decreasing variance order does not always guarantee that the most useful

discriminatory information is preserved. That is, we may improve our low-rank clas-

sifier for X by projecting the observations onto some judiciously chosen subspace

spanned by the q eigenvectors. Because the rank of the training-data matrix is at

most n, we have only n linearly independent eigenvectors to consider as a subspace

basis. Hence q ≤ n. We examine three such alternative ordering schemes: the canon-

ical variate criterion (CVA) of Krzanowski (1992), a heteroscedastic modification of

CVA (HCVA), and the univariate Bayes quadratic error rate criterion discussed in

Young, Turner, & Marco (1987b).

34

3.3.1 Canonical Variates

Song, Ren, & Yan (2009) have applied CVA to eigenvector ordering to improve clas-

sification of high-dimensional observations. The CVA ordering scheme seeks to find

principal component which maximize the ratio of the between- to within-sums-of-

squares. More precisely, let

SW :=
G∑
g=1

αgSg (3.7)

and

SB :=
G∑
g=1

(x̄g − ¯̄x)T (x̄g − ¯̄x) =
G∑
g=1

x̄Tg x̄g (3.8)

be the within group and between group sum-of-squares matrices, respectively. Calcu-

late the canonical variate score of the eigenvector ei as

CVi :=
eTi SBei
eTi SWei

, i = 1, . . . , n, (3.9)

then order the eigenvectors by their CVi scores using (3.9). A projection matrix

constructed of these selected eigenvectors reduces the observations to the lower-

dimensional subspace containing some portion of among-group discriminatory infor-

mation.

3.3.2 Heteroscedastic Canonical Variates

In many cases the assumption that the group covariance matrices are equal is vio-

lated. Therefore, we have modified the canonical variate score in (3.9) so that the

estimates of the group covariance matrices retain their individual influence. Thus, the

heteroscedastic canonical variate score is

HCVi :=
G∑
g=1

αg
eTi SBei
eTi Sgei

, i = 1, . . . , n. (3.10)

Similarly to the CVA ordering described in Section 3.3.1, a projection matrix com-

posed of the selected eigenvectors from their corresponding HCVi scores will reduce

the observations to a subspace containing a portion of group-specific discriminatory

information, while partially accounting for unequal group covariance matrices.

35

3.3.3 Univariate Quadratic Parametric Error Rate

Young et al. (1987b) have discussed the two-population parametric error rate for the

QDF in one dimension under the assumption of normality when the parameters are

known. The univariate sample QDF is given by

d̂g(x) := −2 log(αg) +
1

s2g
(x− x̄g)2. (3.11)

We assign an observation x to the group g which minimizes (3.11) over g.

The steps necessary to determine this error rate are given below. First, partition

the data by group, and select groups 1 and 2. Then, transform each observation by

each of the eigenvectors ei, i = 1, . . . , n, and calculate the univariate leave-one-

out quadratic error rate estimate (the details are discussed in the next paragraph).

Complete this same error rate calculation in a pairwise fashion for all groups, and

then take a sample-size-weighted average of the pairwise error rates.

Once all the observations from groups j and k (j 6= k) have been transformed

by the p × 1 principal component ei, calculate x̄j, x̄k, s
2
j , and s2k. Further, assume

s2j > s2k without loss of generality. The non-centrality parameters for two non-central

χ2 distributions are λj = as2j and λk = as2k, where

a :=
(x̄j − x̄k)2

(s2j − s2k)2
. (3.12)

The two critical values are χ∗j = bs2k and χ∗k = bs2j , where

b :=
1

s2j − s2k

[
log

(
s2j
s2k

)
+

(x̄j − x̄k)2

s2j − s2k

]
. (3.13)

Therefore, the estimated probability of classifying an observation x drawn from group

j incorrectly into group k after projection onto eigenvector ei is

P
[
d̂k(xei) < d̂j(xei) | x ∈ Πj

]
≈
∫ χ∗

j

0

χ2(1, λj),

while the estimated probability of classifying x drawn from group k incorrectly into

group j after projection onto ei is

P
[
d̂j(xei) < d̂k(xei) | x ∈ Πk

]
≈
∫ ∞
χ∗
k

χ2(1, λk),

36

where d̂ is given in (3.11). We calculate these weighted misclassification probabilities

for all pairs of j and k, and then average these probabilities to render the final esti-

mated error-rate score for each principal component. One then orders the eigenvectors

from the smallest to the largest using the weighted average pairwise estimated error.

3.4 Bootstrap Design

For each of the six real-data cases in Section 3.6, we held half of the observations

as training data at random, and kept the other half for test data. The test data set

was centered on the mean of the training data, and the dimension was reduced via

the eigenvectors from the training data. This step ensured that the test data were

not used in any way for training purposes. We completed a non-parametric bootstrap

replication on each data set 1,000 times for data sets with N × p2 <= 109 and 100

times for data sets with N × p2 > 109, where N × p2 is shown in Table 3.1.

Within each replicate, we

(1) Draw, at random, half of the observations for training.

(2) Mean-center the train data, and then center the test data with the training-

sample mean.

(3) Calculate the full p× n matrix of eigenvectors:

(a) For PCA, construct the sample pooled covariance matrix, and decompose

this covariance as

S = PΛPT .

Take the n columns of P associated with the n non-zero eigenvalues of

Λ as a dimension reduction matrix.

(b) For the SVD, factor a training data matrix as

X = UDVT .

37

Take the n columns of V associated with the Nn non-zero eigenvalues

of D as the dimension reduction matrix.

(4) Separately order the eigenvectors by each of the following criterion:

(a) Eigenvalue magnitude (no change in order).

(b) Canonical variate ordering (CVA) of Section 3.3.1.

(c) Heteroscedastic canonical variates ordering (HCVA) of Section 3.3.2.

(d) Univariate quadratic parametric error rate ordering (QPER) of Section

3.3.3.

(5) For each q ∈ 1, . . . , n, map the training and test data sets from p to q dimen-

sions.

(6) Classify the test observations in the q-dimensional reduced-feature subspace,

and record the conditional error rate for that sample.

Repeat this process 100 or 1,000 times, as described in the previous paragraph, and

average the estimated conditional error rates and store these EEERs for each combina-

tion of LDR method, eigenvector ordering scheme, and statistical classifier considered.

3.5 Computational Costs and Numerical Stability

3.5.1 Precision Error Conditions

Let z ∈ Rp×1. Recall the `2 norm of a matrix A ∈ Rr×p,

||A||2 := max
z6=0

(
||Az||2
||z||2

)
,

where ||z||2 =
√
z21 + z22 + · · ·+ z2p . The condition number of A is defined to be

κ(A) :=
max {σ(A)}
min {σ(A)}

,

where max σ(A) and minσ(A) are the largest and smallest strictly positive singular

values of A, respectively. As discussed in Golub & Van Loan (1996), the condition

38

number of a matrix measures the “rate of change” of the estimator of the matrix with

respect to small error (p. 80). The larger the condition number, the more inaccurate

calculations using A will be.

Now recall the relationship between the SVD and PCA of a mean-centered data

matrix, X ∈ RN×p. The SVD factors the data matrix as

X = UDVT ,

while PCA factors the scatter matrix,

XTX = VDUTUDVT = VD2VT ,

yielding positive singular values σ(XTX) = [σ(X)]2. Therefore,

κ
(
XTX

)
=

max
{
σ(XTX)

}
min

{
σ(XTX)

} =
max

{
[σ(X)]2

}
min

{
[σ(X)]2

} =

[
max {[σ(X)]}
min {[σ(X)]}

]2
= κ2 (X) .

That is, the computational error associated with estimating the PCA of a scatter

matrix is the square of the computational error yielded by estimating the SVD of the

original data. Any computational error in estimating the reduced-dimensional data,

w = Az, using the SVD would be squared if PCA were used instead.

3.5.2 Complexity Costs

For PCA, one must compute the orthonormal matrix P ∈ Rp×p and the diagonal

matrix Λ ∈ R≥p , while for the SVD one must compute the orthogonal matrix U ∈

RN×N , the diagonal matrix D ∈ R≥N , and the matrix of orthogonal vectors V ∈ Rp×N .

According to Section 5.5.9 of Golub & Van Loan (1996), the time complexity for the

SVD of X ∈ RN×p is O(Np2), while the time complexity for the PCA of XTX ∈ R≥p

is O(p3). Furthermore, the initial space required is Np for PCA and SVD, and the

non-zero entries of the diagonal matrices Λ and D only require N to store. So the

additional space complexity of PCA is N + 2p2 ∈ O(p2), while the additional space

complexity of SVD is only N + N2 + Np ∈ O(Np). For N � p, these differences in

39

time and space complexity can be large. However, for the majority of practitioners in

other branches of statistics, p is not prohibitively large, so PCA is less computationally

expensive than SVD. We speculate that this fact explains why PCA and its many

incarnations and modifications are the “de facto” linear dimension reduction routines

for most of the sciences.

Unfortunately, when N < p we still find researchers attempting to employ PCA

despite its prohibitive O(p2) space and O(p3) time costs (Song et al., 2009). A common

technique in the high-dimensional setting is the use of pre-process feature selection,

wherein features are retained through some thresholding mechanism such as multiple

t-tests, correlation tests, and other methods. However, many of these techniques retain

redundant information. For a thorough discussion of these approaches, see Liu &

Motoda (1998). Alternatively, the SVD is well known to preserve all of the energy of

X in an (N − 1)-dimensional subspace, as discussed here in Section 3.2.2.

The time and space complexity summaries listed in Table 3.1 demonstrate how

much more computationally expensive PCA can be in comparison to the SVD. Recall

that PCA additionally requires the computation of XTX, which is also O(p3), but

the calculation of the eigen-decomposition of this scatter matrix can be made more

efficient by operating on the lower triangular of this symmetric matrix rather than the

full p× p matrix. The machine we used for these benchmark comparisons was a Dell

Optiplex 9020 with 64-bit OS with an Intel Core i7-4790 3.60 GHz processor and 16

GB of RAM. For computation costs on the moderately-sized data set shown in row 4

of Table 3.1 (labeled “Khan”), we observe that the calculation time to multiply XTX

and perform the symmetric eigendecomposition is 12.12 seconds and requires 2.4×108

total bytes of memory. In contrast, the SVD does not require the multiplication of

XTX. Further, the calculation time and space for the same data set are reduced

considerably to 0.01 seconds and only 6.0 × 106 bytes of memory, respectively. The

40

SVD calculations for the “Khan” data set are over 1,200 times faster and nearly 40

times more memory efficient than their PCA counterparts.

Table 3.1: Computation times and memory allocated for PCA and SVD on some real
high-dimensional data sets. Data sets are described in their respective subsections in
Section 3.6.

Dimensions Time (seconds) Memory (bytes)
Data Set N p N × p2 PCA SVD Ratio PCA SVD Ratio

Alon 62 2000 2.5× 108 8.25 0.01 825 1.8× 108 5.1× 106 34.5
Golub 72 7129 3.7× 109 336.70 0.07 4810 2.2× 109 2.1× 107 107.9
Gravier 168 2905 1.4× 109 24.43 0.14 175 3.7× 108 2.1× 107 18.0
Khan 63 2308 3.4× 108 12.12 0.01 1212 2.4× 108 6.0× 106 39.3
Sorlie 85 456 1.8× 107 0.10 0.02 5 7.7× 106 1.8× 106 4.1
van’t Veer 77 250 4.8× 106 0.02 0.01 2 2.9× 106 1.0× 106 2.8

3.6 Results for Six Real Data Sets

For Figures 3.1 – 3.6, each point represents the EEER for each reduced dimension q

for one of the 16 possible classifiers we have discussed: the fully-factorial combination

of discriminant functions (LDF or QDF), projection methods (PCA or the SVD),

and one of the four eigenvector ordering schemes described in Section 3.3. The left

column of graphs shows EEER results for dimension reduction with PCA, while the

right column shows EEER results for dimension reduction with the SVD. The top

row of graphs shows EEER results for classification with the LDF, while the graphs

on the bottom row show EEER results for classification with the QDF. Because of

the heteroscedastic assumption of the QDF, we expect the behavior of error rates for

the reduced dimensions q < min{ng} to be different from the EEER behavior for the

reduced dimensions q ≥ min{ng} in the bottom row of figures. Finally, the plot colors

and shapes distinguish the four dimension ordering schemes discussed in Section 3.3.

41

0.0

0.2

0.4

0.6

D3 D6 D9 D12 D15 D18 D21 D24 D27 D30

PCA + LDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

D3 D6 D9 D12 D15 D18 D21 D24 D27 D30

SVD + LDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

D3 D6 D9 D12 D15 D18 D21 D24 D27 D30

PCA + QDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

D3 D6 D9 D12 D15 D18 D21 D24 D27 D30

SVD + QDA EEER by Dimension Ordering

Order Eigenvalue CVA HCVA QPER

Figure 3.1: EEER by reduction method, discriminant function, and eigenvector order
for the colon cancer data set of Alon et al. (1999).

42

3.6.1 The Alon et al. Data Set

The data set of Alon, Barkai, Notterman, Gish, Ybarra, Mack, & Levine (1999) has

62 observations in two groups with 2,000 measured features. The observations consist

of 40 cancerous and 22 non-cancerous biopsies of colon tissue, while the features are

gene expression levels from an oligonucleotide array. We randomly chose n1 = 20 cases

and n2 = 11 controls as training data, and the remaining observations were used as

test data. This bootstrap sampling sampling process was repeated 1,000 times to

determine 1,000 conditional error rates (CERs) for each supervised classifier, which

were then averaged to yield the EEERs.

Table 3.2: Minimum EEERs by reduction method, discriminant function, and eigen-
vector ordering scheme for the colon cancer data set of Alon et al. (1999).

PCA SVD
Discrim Order Mean Dim Mean Dim

LDA Eigenvalue 0.146 9 0.146 9
LDA CVA 0.216 8 0.216 7
LDA HCVA 0.221 19 0.221 19
LDA QPER 0.220 14 0.220 16

QDA Eigenvalue 0.241 4 0.233 5
QDA CVA 0.247 3 0.225 3
QDA HCVA 0.268 2 0.296 1
QDA QPER 0.331 12 0.344 11

As one can see in the top row of Figure 3.1, the EEERs for PCA and SVD were

identical when we classified test observations with the LDF. Similarly, the EEERs

for PCA and SVD were almost identical when we classified test observations with

the QDF, with the slight exception of the HCVA ordering approach for the reduced

dimensions 2 ≤ q ≤ 9. Also, eigenvector ordering had a greater effect as q decreased.

As the number of principal components decreased, the EEERs became more sensitive

to the choice of principal components. This result explains the convergence of EEERs

for the four eigenvector ordering methods as q increased. For classification with the

43

LDF, ordering by the eigenvalues yielded the smallest EEERs. For classification with

the QDF, the CVA eigenvector ordering process yielded EEERs roughly equivalent to

traditional eigenvalue ordering for the reduced dimensions q ≥ 4, and yielded smaller

EEERs for 1 ≤ q ≤ 3. Recall that for the QDF, the ordered class training-sample

sizes were n2 = 11 and n1 = 20, so we see different EEER behavior over three

intervals: 1 ≤ q ≤ 10, 11 ≤ q ≤ 19, and q ≥ 20. For classification with the QDF, we

observed that ordering the eigenvectors by some criterion which incorporated group

information yielded smaller EEERs for the QDF in the lowest-dimensional subspaces

when compared to default eigenvalue-based eigenvector ordering approach. We remark

that the choice of principal components had the strongest effect when fewer principal

components were selected; that is, the ordering scheme of the eigenvectors mattered

more for LDA when q ≤ 13 and QDA when q ≤ 10.

As one can see in Table 3.2, after we blocked on the type of discriminant function

and eigenvector ordering techniques, the overall minimum EEERs were very similar for

the PCA and SVD dimension-reduction methods. For example, the best error rate for

this colon cancer classification data set was given by LDA coupled eigenvector ordering

by decreasing eigenvalue. This error rate was 0.141 when the reduced dimension was

q = 10 for PCA and 0.146 when q = 9 for the SVD. For this data set, dimension

reduction with the SVD yielded non-inferior EEERs to dimension reduction with PCA

and completed calculations 825 times faster while requiring 34.5 times less memory.

For the data set of Alon et al. (1999), we concluded that classifier performance was

essentially equivalent when the computationally-superior SVD was used in comparison

to PCA for feature-dimension reduction.

3.6.2 The Golub et al. Data Set

The data set of Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh,

Downing, Caligiuri, Bloomfield, & Lander (1999) has two groups with 7,129 features

44

0.0

0.2

0.4

0.6

D32 D36

PCA + LDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

D32 D36

SVD + LDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

D4 D8 D12 D16 D20 D24 D28 D32 D36

D4 D8 D12 D16 D20 D24 D28

PCA + QDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

D4 D8 D12 D16 D20 D24 D28 D32 D36

D4 D8 D12 D16 D20 D24 D28

SVD + QDA EEER by Dimension Ordering

Order Eigenvalue CVA HCVA QPER

Figure 3.2: EEER by reduction method, discriminant function, and eigenvector order
for the leukemia data set of Golub et al. (1999).

45

recorded on 72 subjects. The observations consist of 47 acute myeloid leukemia (AML)

and 25 acute lymphoblastic leukemia (ALL) samples, while the features are gene

expression levels from a microarray. We randomly chose n1 = 24 AML and n2 = 13

ALL samples as training data, and the remaining observations were used as test

data. Because Np2 > 109, this bootstrap sampling process was repeated 100 times to

determine 100 CERs for each supervised classifier, which were then averaged to yield

the EEERs.

Table 3.3: Minimum EEERs by reduction method, discriminant function, and eigen-
vector ordering scheme for the leukemia data set of Golub et al. (1999).

PCA SVD
Discrim Order Mean Dim Mean Dim

LDA Eigenvalue 0.048 23 0.048 23
LDA CVA 0.051 27 0.051 26
LDA HCVA 0.052 29 0.052 31
LDA QPER 0.053 32 0.053 31

QDA Eigenvalue 0.071 7 0.085 8
QDA CVA 0.056 8 0.066 6
QDA HCVA 0.057 7 0.068 6
QDA QPER 0.087 16 0.093 16

As one can see in the top row of Figure 3.2, the EEERs for PCA and SVD were

nearly identical when we classified test observations with the LDF, except for the

CVA eigenvector ordering strategy when q = 1. Similarly, the EEERs for PCA and

SVD were very similar when we classified test observations with the QDF. The EEER

for eigenvalue-based ordering was comparatively smaller when q = 1 and larger when

q = 2. Also, the EEERs under the QPER ordering approach were slightly smaller

for the reduced dimensions 25 ≤ q ≤ 31 when reducing the dimension with the

SVD. Once again, the EEERs were more dispersed for the four eigenvector ordering

methods, in this case for q ≤ 23. For classification with the QDF, the CVA and HCVA

ordering schemes yielded EEERs roughly equivalent to eigenvalue-based ordering for

46

the reduced dimensions 1 ≤ q ≤ 12 and 26 ≤ q ≤ 37. Recall that for the QDF, the

ordered class training-sample sizes were n2 = 13 and n1 = 24, so we see different

EEER behavior over three intervals: 1 ≤ q ≤ 12, 13 ≤ q ≤ 23, and q ≥ 24. For

4 ≤ q ≤ 14, we remark that, for this data set, employing the QPER eigenvector

ordering technique to choose principal components in conjunction with the QDF

yielded larger EEERs in comparison to the other ordering schemes.

As one can see in Table 3.3, after we blocked on the type of discriminant function

and eigenvector ordering methods, the overall minimum EEERs were nearly identical

between the PCA and SVD dimension-reduction methods for the LDF, which differed

slightly in the reduced dimension yielding the minimum EEER. Further, these mini-

mum EEERs were within a range of 0.015 for the QDF. Additionally, using eigenvalue-

based eigenvector ordering in conjunction with the LDF yielded the smallest EEER,

but the other ordering method EEERs were within a range of 0.005. For this data set,

dimension reduction with the SVD yielded non-inferior EEERs to dimension reduc-

tion with PCA, while completing calculations 4,810 times faster and requiring 107.9

times less memory. For the data set of Golub et al. (1999), we concluded that clas-

sifier performance was essentially equivalent between the computationally-superior

SVD and PCA for feature-dimension reduction.

3.6.3 The Gravier et al. Data Set

The data set of Gravier, Pierron, Vincent-Salomon, Gruel, Raynal, Savignoni, De Rycke,

Pierga, Lucchesi, Reyal, Fourquet, Roman-Roman, Radvanyi, Sastre-Garau, Asselain,

& Delattre (2010) has two groups with 2,905 features recorded on 168 subjects. The

observations consist of 111 patients labeled“good”and 57 patients labeled“poor”, and

all patients have been diagnosed with T1T2 node-negative breast cancer. A “good”

label represents that the patient has had no metastasizing in the five years after a

positive diagnosis while a “poor” label represents that the patient has experienced

47

metastasis after diagnosis. The features are gene expression levels from a compara-

tive genomic hybridization array. We randomly chose n1 = 50 “good” and n2 = 28

“poor” samples as training data, and the remaining observations were used as test

data. Because Np2 > 109, this bootstrap sampling process was repeated 100 times to

determine 100 CERs for each supervised classifier, which were then averaged to yield

the EEERs.

Table 3.4: Minimum EEERs by reduction method, discriminant function, and eigen-
vector ordering scheme for the breast cancer prognosis data set of Gravier et al.
(2010).

PCA SVD
Discrim Order Mean Dim Mean Dim

LDA Eigenvalue 0.254 24 0.254 24
LDA CVA 0.256 49 0.256 49
LDA HCVA 0.256 71 0.256 71
LDA QPER 0.255 67 0.255 67

QDA Eigenvalue 0.313 26 0.313 28
QDA CVA 0.279 16 0.280 17
QDA HCVA 0.285 15 0.289 14
QDA QPER 0.309 38 0.313 38

As one can see in the top row of Figure 3.3, the EEERs for PCA and SVD were

identical when we classified test observations with the LDF. Similarly, the EEERs

for PCA and SVD were nearly identical when we classified test observations with the

QDF, with the only difference in the reduced dimensions q ≤ 2 for the eigenvalue-

based eigenvector ordering approach. Once again, the EEERs were more disperse

for the four ordering methods, for q ≤ 39 in this case. For classification with the

QDF, the CVA and HCVA eigenvector ordering techniques yielded EEERs roughly

equivalent to eigenvalue-based ordering for all reduced dimensions and much smaller

EEERs when q ≤ 49. Recall that for the QDF, the ordered class training-sample sizes

were n2 = 28 and n1 = 50, so we see different EEER behavior over three intervals:

48

0.0

0.2

0.4

0.6

0.8

D8 D16 D24 D32 D40 D48 D56 D64 D72

PCA + LDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

0.8

D8 D16 D24 D32 D40 D48 D56 D64 D72

SVD + LDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

0.8

D8 D16 D24 D32 D40 D48 D56 D64 D72

PCA + QDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

0.8

D8 D16 D24 D32 D40 D48 D56 D64 D72

SVD + QDA EEER by Dimension Ordering

Order Eigenvalue CVA HCVA QPER

Figure 3.3: EEER by reduction method, discriminant function, and eigenvector order
for the breast cancer prognosis data set of Gravier et al. (2010).

49

1 ≤ q < 27, 28 ≤ q ≤ 49, and q ≥ 50. For q ≤ 27, we remark that, for this data

set, employing the eigenvalue-based eigenvector ordering strategy to choose principal

components in conjunction with the QDF yielded larger EEERs in comparison to the

other eigenvector ordering schemes.

As one can see in Table 3.4, after we blocked on the type of discriminant func-

tion and eigenvector ordering processes, the overall minimum EEERs were identical

between the PCA and SVD dimension-reduction methods for the LDF and were

within a range of 0.004 for the QDF. Additionally, all ordering schemes with the

LDF yielded the smallest EEER, but eigenvector ordering methods had an effect on

EEER for the QDF. For this data set, dimension reduction with the SVD yielded

non-inferior EEERs to dimension reduction with PCA, while completing calculations

175 times faster and requiring 18 times less memory. For the data set of Gravier et al.

(2010), we concluded that classifier performance was essentially equivalent when the

computationally-superior SVD was used compared to PCA for feature-dimension re-

duction.

3.6.4 The Khan et al. Data Set

The data set of Khan, Wei, Ringner, Saal, Ladanyi, Westermann, Berthold, Schwab,

Antonescu, Peterson, & Meltzer (2001) has 63 observations in four groups with 2,308

recorded features. The observations consist of four different types of small, round

blue-cell tumors: neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lym-

phoma (NHL) and the Ewing family of tumors (EWS). The data set contains 12 NB,

20 RMS, 8 NHL, and 23 EWS observations, while the features are gene expression

signatures from a complementary-DNA microarray. We randomly chose n1 = 6 NB,

n2 = 10 RMS, n3 = 4 NHL, and n4 = 11 EWS samples as training data, and the

remaining observations were used as test data. This bootstrap sampling process was

50

repeated 1,000 times to determine 1,000 CERs for each supervised classifier, which

were then averaged to yield the EEERs.

Table 3.5: Minimum EEERs by reduction method, discriminant function, and eigen-
vector ordering scheme for the small, round blue-cell cancer data set of Khan et al.
(2001).

PCA SVD
Discrim Order Mean Dim Mean Dim

LDA Eigenvalue 0.017 30 0.014 30
LDA CVA 0.017 30 0.017 30
LDA HCVA 0.017 30 0.017 30
LDA QPER 0.017 31 0.017 31

QDA Eigenvalue 0.276 4 0.324 6
QDA CVA 0.225 4 0.217 4
QDA HCVA 0.225 4 0.217 4
QDA QPER 0.364 4 0.353 4

As one can see in the top row of Figure 3.4, the EEERs for PCA and SVD

were essentially identical when we classified test observations with the LDF. Sim-

ilarly, the EEERs for PCA and SVD were nearly identical when we classified test

observations with the QDF, with the only difference in the reduced dimensions q ≤ 5

for eigenvalue-based ordering approach. We again observed a diverging of the EEERs

for the four eigenvector ordering procedures for q ≤ 19, but these differences were

smaller in comparison to the EEER divergences seen in the previous data sets. For

classification with the QDF, the CVA and HCVA ordering strategies yielded EEERs

roughly equivalent to eigenvalue-based eigenvector ordering for all reduced dimensions

and much smaller EEERs when q ≤ 10. Recall that for the QDF, the ordered class

training-sample sizes were n3 = 4, n1 = 6, n2 = 10, and n4 = 11, so we see different

EEER behavior over five interval sets: 1 ≤ q ≤ 3, 4 ≤ q ≤ 5, 6 ≤ q ≤ 9, q = 10,

and q ≥ 11. Further, we remark that for this data set, employing the eigenvalue-based

51

0.00

0.25

0.50

0.75

1.00

D3 D6 D9 D12 D15 D18 D21 D24 D27 D30

PCA + LDA EEER by Dimension Ordering

0.00

0.25

0.50

0.75

1.00

D3 D6 D9 D12 D15 D18 D21 D24 D27 D30

SVD + LDA EEER by Dimension Ordering

0.00

0.25

0.50

0.75

1.00

D3 D6 D9 D12 D15 D18 D21 D24 D27 D30

PCA + QDA EEER by Dimension Ordering

0.00

0.25

0.50

0.75

1.00

D3 D6 D9 D12 D15 D18 D21 D24 D27 D30

SVD + QDA EEER by Dimension Ordering

Order Eigenvalue CVA HCVA QPER

Figure 3.4: EEER by reduction method, discriminant function, and eigenvector order
for the small, round blue-cell cancer data set of Khan et al. (2001).

52

eigenvector ordering approach to choose principal components in conjunction with the

QDF yielded larger EEERs in comparison to the other ordering schemes for q ≤ 3.

As one can see in Table 3.5, after we blocked on the type of discriminant function

and eigenvector ordering strategies, the overall minimum EEERs were nearly iden-

tical between the PCA and SVD dimension-reduction methods for the LDF, while

eigenvalue-based ordering in conjunction with the SVD had a slightly smaller EEER

than for PCA. For the QDF, the EEERs were also slightly smaller for all eigenvector

ordering schemes, other than the eigenvalue-based ordering scheme, but the EEERs

were within a range of 0.01 for the other three ordering processes. Additionally, all or-

dering schemes with the LDF yielded the smallest EEER for both the SVD and PCA,

but eigenvector ordering methods had an effect on EEER for the QDF. For this data

set, dimension reduction with the SVD yielded non-inferior EEERs to dimension re-

duction with PCA, while completing calculations 1,212 times faster and requiring 39.3

times less memory. For the data set of Khan et al. (2001), we concluded that classifier

performance was essentially equivalent between the computationally-superior SVD

and PCA for feature-dimension reduction.

3.6.5 The Sorlie et al. Data Set

The data set of Sorlie, Perou, Tibshirani, Aas, Geisler, Johnsen, Hastie, Eisen, Rijn,

Jeffrey, Thorsen, Quist, Matese, Brown, Botstein, Lonning, & Borresen-Dale (2001)

has 85 observations in five groups with 456 recorded features. The observations con-

sist of five different subtypes of breast cancer tumors: basal-like (14 observations),

ErbB2+ (11 observations), normal (13 observations), luminal C or B (15 observa-

tions), and luminal A (32 observations). The features are gene expression signatures

from a complementary-DNA microarray. We randomly chose n1 = 7 basal-like, n2 = 5

ErbB2+, n3 = 6 normal, n4 = 7 luminal C / B, and n5 = 16 luminal A samples as

training data, and the remaining observations were used as test data. This bootstrap

53

sampling process was repeated 1,000 times times to determine 1,000 CERs for each

supervised classifier, which were then averaged to yield the EEERs.

Table 3.6: Minimum EEERs by reduction method, discriminant function, and eigen-
vector ordering scheme for the breast cancer data set of Sorlie et al. (2001).

PCA SVD
Discrim Order Mean Dim Mean Dim

LDA Eigenvalue 0.177 21 0.177 21
LDA CVA 0.185 11 0.185 11
LDA HCVA 0.203 33 0.203 33
LDA QPER 0.205 41 0.205 41

QDA Eigenvalue 0.246 2 0.247 2
QDA CVA 0.256 2 0.257 2
QDA HCVA 0.273 3 0.276 3
QDA QPER 0.374 3 0.370 3

As one can see in the top row of Figure 3.5, the EEERs for PCA and SVD

were identical. While grouping on the four eigenvector ordering schemes, the among-

group variability of the EEERs increased with the linear and quadratic classifiers as

q decreased. For classification with the LDF, the CVA and eigenvalue-based ordering

strategies yielded smaller EEERs than the HCVA and QPER eigenvector ordering

approaches. For classification with the QDF, the three ordering procedures, other

than QPER, yielded nearly equivalent EEERs. Recall that for the QDF, the ordered

class training-sample sizes were n2 = 5, n3 = 6, n1 = 7, n4 = 7, and n5 = 16, so

we see different EEER behavior over five interval sets: 1 ≤ q ≤ 4, q = 5, q = 6,

7 ≤ q ≤ 15, and q ≥ 16. For q ≤ 7, we remark that, for this data set, employing the

QPER eigenvector ordering method to choose principal components in conjunction

with the QDF yielded larger EEERs in comparison to the other eigenvector ordering

schemes.

As one can see in Table 3.6, after we blocked on the type of discriminant function

and eigenvector ordering approaches, the overall minimum EEERs were identical be-

54

0.0

0.2

0.4

0.6

0.8

D4 D8 D12 D16 D20 D24 D28 D32 D36 D40

PCA + LDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

0.8

D4 D8 D12 D16 D20 D24 D28 D32 D36 D40

SVD + LDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

0.8

D4 D8 D12 D16 D20 D24 D28 D32 D36 D40

PCA + QDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

0.8

D4 D8 D12 D16 D20 D24 D28 D32 D36 D40

SVD + QDA EEER by Dimension Ordering

Order Eigenvalue CVA HCVA QPER

Figure 3.5: EEER by reduction method, discriminant function, and eigenvector order
for the breast cancer data set of Sorlie et al. (2001).

55

tween the PCA and SVD dimension-reduction methods for the LDF and were within

a range of 0.004 for the QDF. Also, the eigenvalue-based ordering scheme yielded

the smallest EEER for both LDA and QDA. Overall, the EEERs of the eigenvector

ordering schemes with the LDF were within a range of 0.03 for both the SVD and

PCA, but ordering methods had a stronger effect on EEER for the QDF. For this

data set, dimension reduction with the SVD yielded non-inferior EEERs to dimension

reduction with PCA, while completing calculations five times faster and requiring 4.1

times less memory. For the data set of Sorlie et al. (2001), we concluded that classifier

performance was essentially equivalent when the computationally-superior SVD was

used compared to PCA for feature-dimension reduction.

3.6.6 The van’t Veer et al. Data Set

The data set of van’t Veer, Dai, van de Vijver, He, Hart, Mao, Peterse, van der

Kooy, Marton, Witteveen, Schreiber, Kerkhoven, Roberts, Linsley, Bernards, & Friend

(2002) has 78 subjects in two groups with 250 features independently selected by biol-

ogists. One case was removed due to majority missing feature values. The observations

consist of 44 patients labeled “good” and 33 patients labeled “poor”, and all patients

have been diagnosed with lymph node negative breast cancer. Similarly to Section

3.6.3, a “good” label represents the patient has had no metastasizing in the five years

after a positive diagnosis while a “poor” label represents that the patient has ex-

perienced metastasis after diagnosis. The features are gene expression levels from a

DNA microarray. We randomly chose n1 = 22 “good” and n2 = 16 “poor” subjects as

training data, and the remaining observations were used as test data. This bootstrap

sampling process was repeated 1,000 times times to determine 1,000 CERs for each

supervised classifier, which were then averaged to yield the EEERs.

As one can see in the top row of Figure 3.6, the EEERs for PCA and SVD

were identical when we classified test observations with the LDF and nearly iden-

56

0.0

0.2

0.4

0.6

D32 D36

PCA + LDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

D32 D36

SVD + LDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

D4 D8 D12 D16 D20 D24 D28 D32 D36

D4 D8 D12 D16 D20 D24 D28

PCA + QDA EEER by Dimension Ordering

0.0

0.2

0.4

0.6

D4 D8 D12 D16 D20 D24 D28 D32 D36

D4 D8 D12 D16 D20 D24 D28

SVD + QDA EEER by Dimension Ordering

Order Eigenvalue CVA HCVA QPER

Figure 3.6: EEER by reduction method, discriminant function, and eigenvector order
for the breast cancer prognosis data set of van’t Veer et al. (2002).

57

Table 3.7: Minimum EEERs by reduction method, discriminant function, and eigen-
vector ordering scheme for the breast cancer prognosis data set of van’t Veer et al.
(2002).

PCA SVD
Discrim Order Mean Dim Mean Dim

LDA Eigenvalue 0.205 26 0.205 26
LDA CVA 0.212 31 0.212 31
LDA HCVA 0.212 36 0.212 36
LDA QPER 0.212 38 0.212 38

QDA Eigenvalue 0.219 3 0.239 4
QDA CVA 0.233 4 0.242 5
QDA HCVA 0.234 5 0.244 5
QDA QPER 0.258 2 0.252 1

tical with the QDF. The EEERs were slightly more dispersed with the linear and

quadratic classifiers as q decreased. For classification with the LDF, the eigenvalue-

based eigenvector ordering strategy yielded slightly smaller EEERs than the three

other ordering techniques. For classification with the QDF, the eigenvector ordering

schemes (other than QPER for the reduced dimensions 2 ≤ q ≤ 15) yielded nearly

equivalent EEERs. Recall that for the QDF, the ordered class training-sample sizes

were n2 = 16 and n1 = 22, so we see different EEER behavior over three intervals:

1 ≤ q ≤ 15, 16 ≤ q ≤ 21, and q ≥ 22. For q ≤ 15, we remark that, for this data set,

employing the QPER eigenvector ordering procedure to choose principal components

in conjunction with the QDF yielded slightly larger EEERs in comparison to the other

ordering processes.

As one can see in Table 3.7, after we blocked on the type of discriminant func-

tion and eigenvector ordering techniques, the overall minimum EEERs were identical

between the PCA and SVD dimension-reduction methods for the LDF. For the QDF,

however, we saw a small performance decrease for the SVD instead of PCA; that is,

the minimum EEER for ordering the principal components via eigenvectors was 0.02

58

less for PCA than for the SVD. However, we remark that the EEERs for the QDF

were larger without exception than the corresponding EEERs for the LDF. Also, the

eigenvalue-based ordering scheme yielded the smallest EEER for both LDA and QDA.

Overall, the EEERs of the eigenvalue ordering schemes with the LDF were within a

range of 0.007 for both the SVD and PCA, but ordering methods had a stronger effect

on EEER for the QDF. For this data set, dimension reduction with the SVD yielded

arguably non-inferior EEERs to dimension reduction with PCA, while completing cal-

culations 2 times faster and requiring 2.8 times less memory. For the data set of van’t

Veer et al. (2002), we concluded that classifier performance was essentially equivalent

between the computationally-superior SVD and PCA for feature-dimension reduction.

3.7 Discussion

In this paper, we have established notation for the data sets, have given definitions

for the linear and quadratic discriminant functions, and have defined the PCA and

SVD dimension-reduction methods. Further, we have described three alternatives to

ordering the eigenvectors by their eigenvalues, such as canonical variates ordering.

Additionally, we have discussed the condition numbers of PCA and SVD and have

also presented some benchmark results on the time and memory costs of these two

routines, thoroughly demonstrating the increased computational cost associated with

PCA when compared to the SVD. We have also presented the EEERs for six real

data cases and have discussed their behavior under four eigenvector ordering schemes

and two statistical discriminant functions.

Additionally, we have shown that the EEER behavior for the linear and quadratic

discriminant functions are essentially equivalent when reducing the data dimension

via PCA or the SVD for the six high-dimensional data sets we considered. While

the EEERs for these two dimension reduction methods are essentially equal, the

computational costs and allocated memory associated with PCA makes this linear

59

dimension-reduction technique prohibitively expensive and even impossible for cer-

tain high-dimensional data sets. Overall, we recommend the use of the SVD to reduce

the feature space of high-dimensional data sets before classification to decrease com-

putational costs while preserving misclassification rates, instead of using dimension

reduction with PCA or a combination of PCA with gene selection.

Furthermore, we have shown that while eigenvector ordering schemes take into

account group information, their positive effects on the EEERs are often minimal at

best, and negligible at worst. Eigenvector reordering methods based on the canonical

variates or heteroscedastic canonical variates criteria perform similarly to ordering

eigenvectors by their eigenvalues alone for the six real data sets considered in this pa-

per. However, both of these ordering schemes require the calculation of one or more

group covariance or sums-of-squares matrices, which significantly increases the com-

putational cost. Because of these considerations, we can not recommend employing

eigenvector reordering techniques for the high-dimensional cases we considered.

60

 CHAPTER FOUR

Multi-State Multivariate Statistical Process Control

ABSTRACT

Even though principal component analysis (PCA) is not optimal for autocor-

related, nonlinear, and non-stationary data, adaptive-dynamic PCA (AD-PCA) has

been shown to do as well as or better than nonlinear dimension reduction meth-

ods in flagging outliers in such environments. In some engineered systems, additional

designed features create a known multi-state switching scheme among multiple auto-

correlated, non-linear, and non-stationary processes, and incorporating this additional

known information into AD-PCA can further improve it. In simulations with one of

three types of faults introduced, we compare accounting for the states versus ignoring

them. We find that multi-state AD-PCA reduces the proportion of false alarms and

reduces the average time to fault detection. Conversely, we also investigate the impact

of assuming multiple states when only one exists, and find that as long as the number

of observations is sufficient, this misspecification is not detrimental. We then apply

multi-state AD-PCA to real-world data collected from a decentralized wastewater

treatment (WWT) system during in control (IC) and out of control (OoC) condi-

tions. Multi-state AD-PCA flags a strong system fault earlier and more consistently

than its single-state competitor. Furthermore, accounting for the physical switching

system does not increase the number of false alarms when the process is IC and may

ultimately assist with fault attribution.

4.1 Introduction

In the past two decades, online system monitoring and statistical process control

(SPC) of industrial systems has expanded rapidly due to increased personnel and en-

61

ergy costs and questions of environmental impact (Stavropoulos, Chantzis, Doukas,

Papacharalampopoulos, & Chryssolouris, 2013). One such area of application is in the

monitoring of centralized and decentralized WWT operations. Centralized treatment

plants are often placed at the geographical location that maximizes gravity wastewater

conveyance, but most water treatment systems still require extensive pumping oper-

ations (EPA, 2000). Decentralized plants are growing in popularity because they can

reduce the high costs necessary for water-system infrastructure (Leverenz & Asano,

2011). Additionally, smaller, decentralized facilities can more flexibly respond to lo-

cal demand for water reuse as well as potentially reduce energy demand within the

region (Gikas & Tchobanoglous, 2009; Vuono, Henkel, Benecke, Cath, Reid, Johnson,

& Drewes, 2013).

Because of the decentralized locations of these treatment plants, online SPC

from a central, off-site location or by on-call staff is often the only cost-effective strat-

egy to ensure that satellite facilities operate within established parameters. These

systems generate data that are non-linear, non-stationary, autocorrelated, and mul-

tivariate. In an initial monitoring study, Kazor, Holloway, Cath, & Hering (2016)

compared an adaptive-dynamic modification of principal component analysis (PCA)

(Wold, Esbensen, & Geladi, 1987), abbreviated AD-PCA, with non-linear dimension

reduction approaches. They found that AD-PCA yielded either similar or better mon-

itoring results than adaptive, dynamic versions of kernel PCA (Choi & Lee, 2004;

Chouaib, Mohamed-Faouzi, & Messaoud, 2013; Scholkopf, Smola, & Muller, 1998)

and locally linear embedding (Miao, Song, Ge, Zhou, & Wen, 2013; Zhang, Liu, Qi,

& Jiang, 2013). Additional comparisons could still be made between AD-PCA and

nonlinear dimension reduction techniques such as IsoMap (Tenenbaum, de Silva, &

Langford, 2000), Laplacian eigenmaps (Belkin & Niyogi, 2003), ICA (Lee, Yoo, &

Lee, 2004), semidefinite embedding (Weinberger & Saul, 2006), spectral embedding

(Bengio, Delalleau, Le Roux, Paiement, Vincent, & Ouimet, 2004), multidimensional

62

scaling (Torgerson, 1958), or spectral multidimensional scaling (Aflalo & Kimmel,

2013). However, a PCA-based approach remains an interpretable and accessible solu-

tion that can be implemented with minimal computational cost.

Many adaptations to PCA have been proposed. Gertler, Li, Huang, & McAvoy

(1999) discusses monitoring PCA residuals, and Kano, Nagao, Hasebe, Hashimoto,

Ohno, Strauss, & Bakshi (2000) compare Moving PCA, wavelet-based Multi-scale

PCA, and a dissimilarity scale (DISSIM). Dynamic PCA was employed by Garcia-

Munoz, Kourti, & MacGregor (2004) to detect process faults by comparing process

observations to their predictions, and Wang & He (2010) augment PCA with statis-

tical pattern analysis.

Figure 4.1: Process flow diagram of the decentralized SB-MBR WWT pilot at Mines
Park. Influent from the municipal sanitary sewer is diverted to a 2,500 gallon equal-
ization tank and filtered through a 2-mm drum screen to remove large solids before
addition to the bioreactors. The bioreactors are dosed sequentially: the first biore-
actor is fed influent while the second recirculates through the membrane tanks. The
membranes are hollow-fiber, ultrafiltration membranes with a nominal pore size of
0.04 µm and a total surface area of 74 m2.

However, none of these authors applied these techniques to SPC for WWT. One

of the early applications of PCA to WWT process monitoring was by Wise, Veltkamp,

Davis, Ricker, & Kowalski (1988), and PCA was also applied to the similar task

63

of chemical systems monitoring by Kresta, MacGregor, & Marlin (1991). Baggiani

& Marsili-Libelli (2009) discuss implementing adaptive PCA to detect faults in a

large-scale, centralized WWT plant by monitoring three process variables. Sanchez-

Fernandez, Fuente, & Sainz-Palmero (2015) dissected the fault detection problem in

a large-scale, centralized WWT plant by employment of distributed PCA to monitor

segments within the plant as a sum of parts rather than the whole. Kazor et al. (2016)

focused exclusively on a decentralized WWT facility monitoring nearly 30 variables.

4.1.1 Motivating Example

In this paper, we study multi-state PCA in which PCA or one of its variations is

independently applied to subsets of observations. These states can occur in many

processes when an operator controls, for example, a physical mechanism in the sys-

tem. While one could consider any number of states, we illustrate the concept with

three states. Figure 4.1 shows a schematic of a decentralized WWT facility with a

hybrid sequencing batch reactor (SBR) and membrane bioreactor (MBR), known as a

sequencing batch membrane bioreactor (SB-MBR). The system is partitioned, and a

blower for each MBR mixes the pre-screened wastewater. The operation of a blower in

MBR 1 has no direct effect on MBR 2, and vice versa. At any given time, the system

is in one of three states: neither blower on (S0); blower 1 one on (S1); and blower 2 on

(S2). The operator can control the operation and duration of each blower. Figure 4.2

shows the values of a few monitored variables over time, and it is clear that a blower

being off or on will change the dissolved oxygen and blower flow rates dramatically. In

addition, two heat maps are shown in Figure 4.3 where the differences in correlation

matrices between states (S1) versus (S1) and (S0) versus (S2) are given. The pairwise

correlation between variables can also change substantially between different states.

As a simple example to show why blocking the multivariate process model on

these known system states is important, assume that blower 1 malfunctions. Because

64

Figure 4.2: Each panel shows a time series of a monitored variable. The values of each
variable change drastically with blower operation.

65

Figure 4.3: Differences in correlation matrices between S0 and S1 (left) and S0 and S2
(right).

Correlation Heat Map Difference: Blower 1

−1.0

−0.5

0.0

0.5

1.0

Correlation Heat Map Difference: Blower 2

−1.0

−0.5

0.0

0.5

1.0

of this malfunction, the dissolved oxygen values in this state would fall towards 0.

If state information is ignored, these lower values would not be considered unusual

because the dissolved oxygen values are often 0 when both blowers are off. However,

with state information, a multi-state monitoring method could correctly identify that

the blower is, in fact, malfunctioning.

4.1.2 Multi-State Versus Multi-Stage Monitoring

A similar approach to multi-state SPC is multi-stage SPC, which accounts for dif-

ferent stops along an ordered manufacturing process or assembly line. Jearkpaporn,

Borror, Runger, & Montgomery (2007) accounted for the differences in feature means

across different stages in a multivariate production process, where each stage directly

influences the following stages. Asadzadeh, Aghaie, & Yang (2008) built on this with

their work on Cause Selecting Control Charts, but these methods do not account

for changes in variances of features or correlation among features across stages. For

a discussion of multivariate SPC (MVSPC) over sequential stages, see Li & Tsung

(2012) and the references therein. A restriction of the multi-stage assumption is that

66

the process must follow the same steps in order, and stages never deviate from the

prescribed order. However, states in multi-state monitoring do not have a required

order and often depend entirely on operator input.

In this paper, we build on the work of Kazor et al. (2016), by constructing a

modification to AD-PCA that accounts for different known and controlled process

states. We will show that monitoring non-linear, non-stationary, and serially auto-

correlated multi-state multivariate processes by pairing the Squared Prediction Error

(SPE) and Hotelling’s T 2 (T 2) monitoring statistics after dimension reduction via

our new multi-state adaptive-dynamic principal components analysis (MSAD-PCA)

is superior to AD-PCA. We show in a simulation study, and verify with a real case

study on a decentralized WWT plant, that the SPE monitoring statistic after MSAD-

PCA dimension reduction offers the best combination of sensitivity and high detection

proportion while the T 2 monitoring statistic after MSAD-PCA dimension reduction

offers the best combination of specificity and high detection proportion.

This paper is organized as follows: in Section 4.2, the basic notation for PCA is

presented along with a description of MSAD-PCA. In Section 4.3, a simulation study

to test the utility and reliability of the new method is described. Section 4.4 presents

the simulation results with average false alarm rates, detection probabilities, and

detection times for nine different faults introduced into the multi-state simulation

design. In Section 4.5, we return to the real scenario that motivates the need for

multi-state monitoring and demonstrate the added benefit to correctly monitoring

a multi-state process with multi-state AD-PCA. In Section 4.6, we offer concluding

remarks, discuss future research directions, and mention useful software for applying

multi-state or single-state AD-PCA.

67

4.2 Methods

First, let P represent a real p-dimensional multivariate process. Let s = 1, . . . , n be

the observation index of process P , and further let Xi(s) be the observed value for

feature i = 1, . . . , p < n at index s. Then, Xs = (X1(s), X2(s), . . . , Xp(s)) ∈ R1×p is a

standardized realization from the multivariate stochastic process P at index s.

When the process dimension p is large, variables are often noisy and dependent.

One widely accepted technique to reduce the data dimension and produce linearly

independent variables is PCA (Johnson & Wichern, 2002). Briefly, PCA is an orthog-

onal linear transformation mapping the existing data matrix, X, defined as

X := [X1
... X2

... · · · ... Xn]T ∈ Rn×p, (4.1)

onto a new coordinate system wherein the greatest source of the variability of X lies

in the first coordinate of the new system, the second-greatest source lies in the second

coordinate, and so forth.

To do this, the singular value decomposition (Eckart & Young, 1936) can be

applied to the mean-centered data matrix

X
n×p

:= U
n×n
× D

n×p
× P

p×p
T , (4.2)

where U is the matrix of n orthonormal basis vectors {u1,u2, . . . ,un}, or left singular

vectors, and P is the p×p orthogonal matrix of right singular vectors, {v1,v2, . . . ,vp}.

These singular vectors correspond to the eigenvalues in the rectangular block matrix

D, defined as

Dn×p :=

 Λp×p

0(n−p)×p

 ,
where Λ is the diagonal matrix of the p eigenvalues.

To reduce the data dimension from p to d, for d < p, let

Pd := [v1
...v2

... · · · ...vd] (4.3)

68

be the p× d projection matrix comprised of the d eigenvectors associated with the d

largest eigenvalues. Then, post-multiply X by Pd to obtain the data matrix approxi-

mated in its d-dimensional principal component subspace, as follows:

Yd = UD ≈ UDPTPd = XPd. (4.4)

Because P is orthogonal,

lim
d→p
||UDPTPd −UD|| = 0.

4.2.1 Adaptive-Dynamic PCA

Kazor et al. (2016) applied dimension reduction prior to performing multivariate sta-

tistical process control to reduce variability of the process monitoring statistics. An

adaptive-dynamic variation of PCA was found to account for inherent non-linearity,

non-stationarity, and autocorrelation in simulated data. For a good survey of account-

ing for non-linearity, non-stationarity, or autocorrelation in process data, see Ge &

Song (2012). AD-PCA is the concurrent application of both the adaptive and dynamic

modifications discussed below to the PCA of process data.

4.2.1.1 Adaptive PCA. The adaptive modification to PCA creates a rolling

training window over which to estimate a reduced data matrix Yd, in order to mit-

igate the effects of non-linearity and non-stationarity. Let X, as defined in (4.1), be

a realization from a p-dimensional non-linear, non-stationary stochastic process P .

Further, let X be locally linear for a w-width discrete-time neighborhood of obser-

vation s. We assume that within this w-width neighborhood, the process X can be

approximated by a d-dimensional linear process, for d < p. Thus, we estimate the

p× d projection matrix Pd by taking the SVD of w observations,

[Xs−w+1
... Xs−w+2

... · · · ... Xs−1
... Xs]

T ,

69

rather than of the full data matrix X. We then project the next nu 1× p observation

from p to d dimensions by right-multiplying each by Pd, yielding 1 × d observations

Ys+1,Ys+2, . . . ,Ys+nu , where nu is the number of observations to monitor before

moving the window forward and re-estimating Pd. Once these reduced-dimension

observations are constructed, any number of tests can be performed in this reduced-

dimension feature space.

After the next set of observations, Xs+nu+1, . . . ,Xs+2nu , is recorded, the oldest

nu observations, Xs−w+1,Xs−w+2, . . . ,Xs−w+nu , are removed from the training set; the

newest nu observations, Xs+1,Xs+2, . . . ,Xs+nu , are added to the training set; and the

above dimension reduction process is repeated. At each step in the adaptive process,

the number of training observations is fixed at w.

As an example, consider a multivariate process, Xs, recorded hourly, that is

known to be non-linear or non-stationary. For short subsets of consecutive observa-

tions, X may be locally linear. Thus, we could estimate the p × d projection matrix

Pd using a week’s worth of data points, setting w = 24×7 = 168. From this first week

of observations, we reduce the data dimension for the eighth day of the process, and

we perform tests on the set of 24 reduced observations {Y169,Y170, . . . ,Y192}. After

we have finished testing or classifying the reduced forms of {X169,X170, . . . ,X192}, we

remove the first 24 observations from X, replace them with the last 24, and estimate

a new projection matrix Pd to reduce the data dimension for observations from day

nine. This process is then repeated until the end of the data is reached.

4.2.1.2 Dynamic PCA. If X defined in (4.1) is a realization from a p-dimensional

autocorrelated stochastic process, then a dynamic modification to PCA can account

for autocorrelation in this process. Assume a feature Xi (s) depends upon Xi (s− `),

for some lag ` ∈ N. These lagged features are column-concatenated onto the data

matrix X. In the most general case, all lags up to lag ` for each feature would be

70

included. Row s, a 1× (p+p`)-dimensional vector, of this data matrix is then defined

as

L(Xs) := [X1(s), X1 (s− 1) , . . . , X1 (s− `) ,

X2(s), X2 (s− 1) , . . . , X2 (s− `) ,

· · · ,

Xp(s), Xp (s− 1) , . . . , Xp (s− `)]. (4.5)

Combining n− ` rows, the lagged data matrix is formed as

X = [L(X`)
... L(X`+1)

... · · · ... L(Xn)]T ∈ R(n−`)×(p+p`). (4.6)

To reduce the dimension of observation L(Xs+1), we estimate the (p + p`) × d

projection matrix Pd by taking the SVD of (4.6). To curb the rapid dimensional

growth possible in (4.6), Rato & Reis (2013) advocate including only a few lagged

features per original feature. To this end, Kazor et al. (2016) define

L`(Xs) := [X1 (s) , X1 (s− `1) , X2 (s) , X2 (s− `2) , . . . , Xp (s) , Xp (s− `p)] , (4.7)

where ` = (`1, `2, . . . , `p) is the vector of maximally autocorrelated lags for each

feature i = 1, . . . , p. This lag feature selection criterion yields a data matrix X with

n − max{`} rows and 2p columns. Thus, our projection matrix Pd has dimension

2p × d. This doubles the number of features and consequently the number of rows

of the projection matrix Pd. However, these new features are maximally correlated

with the existing features, so the number of retained principle components, d, is not

expected to double.

4.2.2 Multi-State Adaptive-Dynamic PCA

We now consider how known dichotomous states affect system behavior. MSAD-PCA

accounts for the multi-state structure of the process while still incorporating the adap-

tive and dynamic PCA modification. When the relationships among features change

71

as the state changes, the projection matrix will have different linear combinations of

features under different states.

Let Xs = (X1 (s) , X2 (s) , . . . , Xp (s)) be a standardized realization from some

unknown real-valued p-dimensional multivariate stochastic process recorded over in-

dex s, where Xi (s) denotes the realization of the ith feature at index s. Given a set, S,

of K mutually exclusive process states, S1, . . . ,SK , we assign corresponding pairwise

disjoint sets of indices T1, . . . , TK such that
⋃K
k=1 Tk = {1, . . . , n} and nk = C(Tk),

where C(·) denotes the cardinality of a set. More specifically, s∗ ∈ Tk ⇐⇒ Xs∗ was

observed under state Sk.

We now define an observation from a multi-state p-dimensional stochastic pro-

cess. Let fk : Rp → Rp be some measurable function describing the process under

state k with mean µk and finite covariance matrix Σk, for k = 1, . . . , K. Then

Xs∗ ∼ fk (µk,Σk)⇐⇒ s∗ ∈ Tk. (4.8)

Naturally, in order to find the feature subspace maximizing the principal compo-

nent loadings, the observations from each process state should be treated differently.

Therefore, for states S1, . . . ,SK , we partition X as
{

X(1),X(2), . . . ,X(K)
}

, where

X(k) :=
[
Xmin(Tk), . . . ,Xmax(Tk)

]T
is the set of all observations from the process under state k, ordered in s. Appropriate

lags can then be included and state-specific projection matrices calculated along a

rolling window for a full MSAD-PCA approach.

In summary, MSAD-PCA splits the observations by state and estimates state-

specific projection matrices that update over a rolling window of training observations.

However, one should exercise caution when including state information. ForK equally-

sized states, MSAD-PCA will partition the observations into K groups, effectively

dividing the total sample size by K. Therefore, the number of states should be kept

as small as possible. We return to this point at the end of Section 4.4.1.

72

4.2.3 Process Monitoring Statistics

After we have calculated the 2p × d linear projection matrix Pd, trained from the

observations maxi{`}, . . . , s , we calculate two process monitoring statistics of the

new observation Xs+1. The statistics we choose are the Hotelling’s T 2 and squared

prediction error (SPE). We recognize the uses of the Apley & Shi (1999) generalized

likelihood ratio test (GLRT) statistic as applied to SPC of a univariate autocorrelated

process, but extensions of this test to MVSPC do not seem to be used frequently in

practice, so we do not employ the GLRT statistic at this time.

4.2.3.1 Hotelling’s T 2. The T 2 statistic is calculated as

T 2
s+1 = Ys+1Λ

−1
d YT

s+1, (4.9)

where Λd = diag (λ1, λ2, . . . , λd), and λi is the ith eigenvalue. Thus, T 2 is the Ma-

halanobis distance of the mapped value Ys+1 from the original space into the PCA-

subspace, and it measures deviations in the lower d-dimensional subspace. Because

this subspace should characterize the major components of the process under IC con-

ditions, outliers identified by large T 2 values are often indicative of OoC conditions.

4.2.3.2 Squared Prediction Error. The SPE statistic is calculated as

SPEs+1 =
(
Xs+1 −Ys+1P

T
d

) (
Xs+1 −Ys+1P

T
d

)T
. (4.10)

The SPE statistic measures the squared distance between the original and reduced-

dimension vectors, measuring the goodness-of-fit of the d-dimensional model to the

p-dimensional process observations, or how well Pd approximates P. Abnormal values

of SPE can indicate either an unusual observation or that the lower-dimensional model

does not account for an important component of process variability.

4.2.3.3 Threshold estimation. It is commonplace to use parametric distribu-

tions, such as the χ2 or F -distribution, to compute thresholds for the above process

73

monitoring statistics, but when the underlying distribution of the data is not normal,

these thresholds are not reliable (Qiu, 2013). To avoid making any distributional as-

sumptions about T 2, Kazor et al. (2016) calculated non-parametric thresholds based

on observations in the IC training window for the SPE and T 2 monitoring statis-

tics. We follow their work and compute a non-parametric threshold for T 2 from the

values of T 2 computed in the training data via kernel density estimation with a

Sheather-Jones bandwidth (Sheather, 2009) and a Gaussian kernel. A threshold for

SPE is computed similarly. For further discussion of non-parametric SPC, see Qiu

& Li (2012). For non-parametric MVSPC, see Chen, Zi, & Zou (2016). Additional

modifications for multivariate autocorrelated observations could be extended from

univariate approaches (Apley & Lee, 2012; Apley & Tsung, 2002; Lee & Apley, 2011).

4.3 Simulation Design

A simulation study is constructed to illustrate the fault-detection behavior of MSAD-

PCA compared to ordinary AD-PCA. Specifically, performance is measured on three

scales: (1) the average time-to-detection for true system faults, (2) the proportion of

faults detected, and (3) the average false alarm rates for IC conditions. Lower values

of (1) and (3) and higher values of (2) are desirable.

4.3.1 Simulation Notation

Consider an n× p multivariate process indexed over s as defined in Section 4.2.2. In

order to account for state differences, Xi is piecewise-defined over the state boundaries

and smooth within these boundaries. To simulate non-linearity and non-stationary in

each feature, let Xi(s) := Xi(ts) be a function of a latent feature t, where t := g(s).

Further, restrict g to be a smooth and bounded function with g′(s) 6= 0 for some s. To

induce autocorrelation within t, draw the errors of t, εt, from an autoregressive process

over s. Combining these conditions, we have the form of a univariate, non-stationary,

74

and autocorrelated latent variable

ts := g(s) + εs, εs = ϕεs−1 + ε,

where ε ∼ N(0, σε). The full non-linear, autocorrelated, non-stationary process at

index s is denoted

Xs := 〈X1(ts), X2(ts), . . . , Xp(ts)〉 .

4.3.2 Data Generation

Based on the study of Dong & McAvoy (1996), we set p = 3 so that

Xs = 〈x(ts), y(ts), z(ts)〉 .

Also, let the cycle length ω = 60 ∗ 24 ∗ 7 = 10, 080, and define the observation index

s = 1, . . . , ω, which corresponds to one observation per minute for one week. Further,

we set the autocorrelation dependence parameter ϕ to 0.75. The data is generated as

follows:

(1) Initialize the first innovation

ε1 ∼ N
(

1

2
(a+ b)(1− ϕ),

b− a
12

(1− ϕ2)

)
, (4.11)

where a = 0.01 and b = 2. These mean and variance multipliers are from the

mean and variance of the uniform(a, b) distribution.

(2) Define the first-order autoregressive error structure

εs := ϕεs−1 + (1− ϕ)ε, s = 2, 3, . . . , (4.12)

where ε is defined in (4.11).

(3) Define the latent-feature vector

ts := − cos

(
2π

ω
s

)
+ εs, s = 1, . . . , ω (4.13)

75

where εs is the autoregressive process defined in (4.12). Notice that the mean

of this latent feature depends upon the index, which allows the process to be

non-stationary.

(4) Scale the latent feature vector ts by

t̃s :=
(b− a)(ts −min(ts))

max(ts)−min(ts)
+ a,

where a and b are defined in step 1.

(5) Draw three machine-error vectors, each of length ω: e1, e2, e3
i.i.d.∼ N (0, 0.01).

(6) The three features are constructed as follows:

x(ts) := ts + e1(s)

y(ts) := t2s − 3ts + e2(s) (4.14)

z(ts) := −t3s + 3t2s + e3(s).

(7) Optional: Induce a state-independent fault (Fault 1A, 1B, 2A, 2B, 3A, or

3B) as described in Section 4.3.3. (Note: apply this step only if you will not

apply Step 10.)

(8) The system states are defined as:

S1: X(ts) := 〈x(ts), y(ts), z(ts)〉.

S2: X(ts) := 〈x(ts), y(ts), z(ts)〉 ·P1Λ1, where

P1 =


0 0.50 −0.87

0 0.87 0.50

1 0 0


is the orthogonal rotation matrix for a yaw, pitch, and roll degree change

of 〈0◦, 90◦, 30◦〉, and Λ1 = diag(1, 0.5, 2) is a diagonal scaling matrix.

76

S3: X(ts) := 〈x(ts), y(ts), z(ts)〉 ·P2Λ2, where

P2 =


0 0.87 −0.50

−1 0 0

0 0.50 0.87


is the orthogonal rotation matrix for a yaw, pitch, and roll degree change

of 〈90◦, 0◦,−30◦〉, and Λ2 = diag(0.25, 0.1, 0.75) is a diagonal scaling

matrix.

The rotation matrices P1 and P2 turn the states in three-dimensional space

so that the states are at right angles to each other in at least one dimension,

and the scaling matrices Λ1 and Λ2 inflate or deflate the feature variances

along each principal component.

(9) Single-State or Multi-State options:

(a) For data generation under a single-state model, generate all observations

from S1.

(b) For data generation under a multi-state model, define the state-switching

scheme corresponding to a known hourly process schedule as follows:

f(s) :=


S1, s mod (60 ∗ 3) = 0,

S2, s mod (60 ∗ 3) = 1,

S3, s mod (60 ∗ 3) = 2.

The state switches each hour from S1 to S2 to S3 in a three-hour cycle

before returning to S1.

(10) Optional: Induce a state-specific fault (Fault 1C, 2C, or 3C) as described in

Section 4.3.3. (Note: apply this step only if you have not applied Step 7.)

Figure 4.4 shows the time series of a single random draw of the IC multi-

state multivariate process data generated via this simulation scheme. Note that the

77

Figure 4.4: Multivariate process feature time series under ICC. The vertical black line
(21:40 on 2 December) marks the time at which a fault would be induced.

0

1

2

3

12−02 12:00 12−03 12:00

State

1

2

3

Feature X

−2

−1

0

1

2

12−02 12:00 12−03 12:00

Time

Feature Y

−6

−4

−2

0

2

12−02 12:00 12−03 12:00

Feature Z

features x, y, and z are represented by the labels X, Y, and Z in Figure 4.4. Time

series observations were generated over 1 week, with the arbitrarily chosen time index

running from 27 November at 00:00 to 4 December at 00:00. As we can see in this

figure, the means and variances for each of the process features change as the state

changes. For each feature window, the limits of the vertical axis are constant across

each of the generated faults. Moreover, the vertical black line at 21:40 on 2 December

marks when a fault is to be introduced. The process responses to the right of the black

line show the observations as they should have been, if a fault had not been introduced.

Finally, unless otherwise specified, faults are introduced before the observations are

partitioned into the state projections (Step 8).

4.3.3 Fault Scenarios

We introduce one of the following system faults at s = 8500, or roughly 85% through

the cycle. Table 4.1 shows the types of faults and how these faults affect states and

features. The columns show the general type of fault introduced, while the rows show

how these faults affect each process feature. The specific faults are as follows:

78

Fault 1A: X∗(t̃s) = X(t̃s) + 2, s ≥ 8500. This fault is a shift for all features in all

states.

Fault 1B: x∗(t̃s) = x∗(t̃s) + 2, s ≥ 8500. This fault is a shift for one feature in all

states.

Fault 1C: x∗(t̃s) = x∗(t̃s) + 0.5, z∗(t̃s) = z∗(t̃s) + 0.5, s ≥ 8500. This fault simulates

a shift in two of the process monitoring features in S3 only.

Fault 2A: X∗(t̃s) = X(t̃s) + (s − 8500) × 10−3, s > 8500. This fault simulates a

positive drift across all the process monitoring features.

Fault 2B: y∗(t̃s) = y(t̃s)+(s−8500)×10−3 and z∗(t̃s) = z(t̃s)+(s−8500)×10−3, for

s > 8500. This fault simulates a positive drift in two of the process monitoring

features.

Fault 2C: y∗(t̃s) = y(t̃s) − 1.5 × s−8500
10080−8500 , for s > 8500. This fault simulates a

negative drift in one of the process monitoring features in S2 only.

Fault 3A: X∗(t̃s) = X(t̃∗s), where t̃∗s =
[
δ(s−8500)
ω−8500 + 1

]
t̃s. For s > 8500, this fault

will amplify the underlying latent effect for all features. The maximum latent

drift of this fault will be δ + 1.

Fault 3B: z∗(t̃s) = z(t̃∗s), where t̃∗s = ln |t̃s|, s ≥ 8500. This fault will dampen the

underlying latent effect for x3 if t̃s > 1 and amplify this effect if t̃s < 1.

Fault 3C: y∗(t̃s) = y(t̃s) + 2 ∗ e2(s) − 0.25, for s > 8500. This fault simulates an

error increase and negative shift, but only applied to one feature in S2.

In summary, the “1” faults are a shift to all features in all states (“A”), one

feature in all states (“B”), and two features in one state (“C”). The “2” faults are a

slow drift to all features in all states (“A”), two features in all states (“B”), and one

feature in one state (“C”). Fault 3A is a mutation of the latent t vector, affecting all

features in all states. Fault 3B is a different mutation of the latent t vector, but it

affects only one feature in all states. Fault 3C is a shift and amplitude increase to the

79

Table 4.1: Fault types by how each fault affects different sets of features.

Type of Fault
Features Affected Shift Fault Drift Fault Latent / Error Faults

All Features Equally Fault 1A Fault 2A Fault 3A
(x, y, z) (x, y, z) (x, y, z)

Each Feature Differently Fault 1B Fault 2B Fault 3B
(x) (y, z) (z)

Each State Differently Fault 1C Fault 2C Fault 3C
(x, z) ∈ S3 y ∈ S2 y ∈ S2

error vector of one feature in one state. The “C” faults should showcase differences

between AD-PCA and MSAD-PCA.

4.3.3.1 Shift faults: 1A, 1B, and 1C. Figure 4.5 shows the effects of the “Shift

Faults” column in Table 4.1. The first row exhibits a realization of each of the three

features after the introduction of Fault 1A. This fault is simply adding 2 to each

feature before state projections. This adds a further layer of complexity to the fault as

certain projections will affect the positive shift differently. For example, the projection

associated with S3 actually makes this shift negative for feature X, and similarly the

projection associated with S2 makes this shift negative for feature Z as well. Overall,

however, this positive shift affects each state within each feature, and we expect this

shift to be relatively trivial for each of the monitoring statistics of both methods to

detect.

The second row of Figure 4.5 exhibits a realization of each of the three features

after the introduction of Fault 1B. By definition, this fault is a positive shift to the X

feature only, but the state projections will allow this fault to affect the other features

as well. Specifically, we see this shift clearly in S1 of feature X and S2 of feature Z,

80

Figure 4.5: Multivariate process feature time series before and after shift faults. Fault
1A (top), Fault 1B (middle), and Fault 1C (bottom) are shown after the vertical black
line (21:40 on 2 December).

0

1

2

3

12−02 12:00 12−03 12:00

State

1

2

3

Feature X

−2

−1

0

1

2

12−02 12:00 12−03 12:00

Time

Feature Y

−6

−4

−2

0

2

12−02 12:00 12−03 12:00

Feature Z

0

1

2

3

12−02 12:00 12−03 12:00

State

1

2

3

Feature X

−2

−1

0

1

2

12−02 12:00 12−03 12:00

Time

Feature Y

−6

−4

−2

0

2

12−02 12:00 12−03 12:00

Feature Z

0

1

2

3

12−02 12:00 12−03 12:00

State

1

2

3

Feature X

−2

−1

0

1

2

12−02 12:00 12−03 12:00

Time

Feature Y

−6

−4

−2

0

2

12−02 12:00 12−03 12:00

Feature Z

81

and we see this fault’s effect in S2 of feature Y to a lesser extent. We consider it worth

noting that shifting one of these features in a closed but correlated system will have

ramifications throughout the entire system, as demonstrated by Fault 1B. Because

of the cross-feature fault infection, we also expect Fault 1B to be relatively easy to

detect by all four monitoring statistics, but not as easy to detect as Fault 1A.

The last row of Figure 4.5 depicts a realization of each of the three features

after the introduction of Fault 1C. By definition, this fault is a positive shift to the

X and Z features only, but we constrain this fault to occur only in S3. In this case,

the fault was applied after the state partitioning and projection, so the other feature

realizations within S1 and S2 remain unaffected. We remark that the S3 realizations of

X and Z remain relatively “hidden” within the noise of the other states, so we expect

Fault 1C to be the most difficult to detect of the three shift faults, but it should be

easier to detect for MSAD-PCA than AD-PCA.

4.3.3.2 Drift faults: 2A, 2B, and 2C. Figure 4.6 shows the effects of the “Drift

Faults” column in Table 4.1. The first row exhibits a realization of each of the three

features after the introduction of Fault 2A. This fault adds a slowly-building drift

effect to each feature before state projections. The drift value starts at 0 and increases

to its maximum value of 1.58 over the course of around 1,500 observations. Again,

certain projections will affect the positive drift differently. For example, the projection

associated with S3 actually makes this drift negative for feature X, while this positive

drift negates the expected negative drift for feature Z in all states. We expect this

drift to be moderately difficult for each of the monitoring statistics to detect until

the drift has been in effect for a few hundred steps. For example, after 300 minutes,

the drift has reached +0.3, which may be large enough to detect with reasonable

accuracy.

82

Figure 4.6: Multivariate process feature time series before and after drift faults. Fault
2A (top), Fault 2B (middle), and Fault 2C (bottom) are shown after the vertical black
line (21:40 on 2 December).

0

1

2

3

12−02 12:00 12−03 12:00

State

1

2

3

Feature X

−2

−1

0

1

2

12−02 12:00 12−03 12:00

Time

Feature Y

−6

−4

−2

0

2

12−02 12:00 12−03 12:00

Feature Z

0

1

2

3

12−02 12:00 12−03 12:00

State

1

2

3

Feature X

−2

−1

0

1

2

12−02 12:00 12−03 12:00

Time

Feature Y

−6

−4

−2

0

2

12−02 12:00 12−03 12:00

Feature Z

0

1

2

3

12−02 12:00 12−03 12:00

State

1

2

3

Feature X

−2

−1

0

1

2

12−02 12:00 12−03 12:00

Time

Feature Y

−6

−4

−2

0

2

12−02 12:00 12−03 12:00

Feature Z

83

The second row of Figure 4.6 exhibits a realization of each of the three features

after the introduction of Fault 2B. By definition, this fault is a positive drift of the

X and Z features, but the state projections will allow this fault to affect feature Y

as well. Specifically, we see this drift clearly in S2 of feature X and S1 of feature Y ,

and we see a minor effect across each state of feature Z. Because slow drifts can be

difficult to detect in the first place, and because this drift does not affect all states

and features equally, we expect Fault 2B to be just as or more difficult to detect than

Fault 2A.

The last row of Figure 4.6 exhibits a realization of each of the three features

after the introduction of Fault 2C. By definition, this fault is a negative drift to

feature Y only, and we further constrain this fault to only affect S2. In this case, the

fault was applied after the state partitioning and projection, so the other features’

realizations remain unaffected, as does the realization for feature Y within S1 and S3.

At maximum drift, feature Y will be decreased by 1.5. We expect Fault 2C to be the

most difficult to detect of the three drift faults.

4.3.3.3 Latent / error faults: 3A, 3B, and 3C. Figure 4.7 shows the effects of

the “Latent / Error Faults” column in Table 4.1. The first row exhibits a realization of

each of the three features after the introduction of Fault 3A. This fault is created by

drifting the underlying latent variable t in each feature before state projections, and

the maximum drift (δ+1) will be 6∗t. As with the other faults, certain projections will

affect this drift differently. For example, the projection associated with S3 actually

dampens this latent effect for features X and Y , while the projection associated with

S2 amplifies this latent drift for feature X. Overall, this latent drift amplifies the

within-feature, between-state variance. However, Fault 3A has less of an effect on the

feature means (other than within S2 of feature X), so we expect this latent drift to

be more difficult to detect.

84

Figure 4.7: Multivariate process feature time series before and after latent / error
faults. Fault 3A (top), Fault 3B (middle), and Fault 3C (bottom) are shown after the
vertical black line (21:40 on 2 December).

0

1

2

3

12−02 12:00 12−03 12:00

State

1

2

3

Feature X

−2

−1

0

1

2

12−02 12:00 12−03 12:00

Time

Feature Y

−6

−4

−2

0

2

12−02 12:00 12−03 12:00

Feature Z

0

1

2

3

12−02 12:00 12−03 12:00

State

1

2

3

Feature X

−2

−1

0

1

2

12−02 12:00 12−03 12:00

Time

Feature Y

−6

−4

−2

0

2

12−02 12:00 12−03 12:00

Feature Z

0

1

2

3

12−02 12:00 12−03 12:00

State

1

2

3

Feature X

−2

−1

0

1

2

12−02 12:00 12−03 12:00

Time

Feature Y

−6

−4

−2

0

2

12−02 12:00 12−03 12:00

Feature Z

85

The second row of Figure 4.7 exhibits a realization of each of the three features

after the introduction of Fault 3B. This fault is created by mutating the underlying

latent variable t only in feature Z before state projections by taking its natural loga-

rithm. Recall that t ∈ (0.01, 2), so this mutation amplifies the latent effect ∀t < 1, but

dampens it for ∀t > 1. Once again, the state projections will allow this fault to affect

the other features as well. Specifically, we see this mutation clearly in S2 of feature

X and S3 of feature Y , and we see a pronounced effect across S1 and S3 of feature Z.

We expect Fault 3B to be moderately simple to detect, though perhaps not quite as

easy as Fault 1A, for instance.

The last row of Figure 4.7 exhibits a realization of each of the three features

after the introduction of Fault 3C. By definition, this fault is a variance increase and

negative shift to the errors of feature Y in S2 only. In this case, the fault was applied

after the state partitioning and projection, so the other features’ realizations remain

unaffected, as does the realization for feature Y within S1 and S3. We expect Fault

3C to be the most difficult to detect of all the faults we have constructed.

4.3.4 Simulation Design

Based on the data generation process described in Section 4.3.2, we outline the sim-

ulation steps.

(1) Draw a set of IC observations with associated fault introduced under S1

(single-state) or under S1, S2, S3 alternating (multi-state).

(2) Train the fault-detection system on 75% of the observations (7,560 obser-

vations for AD-PCA). For MSAD-PCA, note that the number of training

observations per class is 7560/3 = 2520.

(3) Apply AD-PCA and MSAD-PCA to the training and test data sets for each

data set under both the single-state and multi-state assumptions.

86

(4) Measure the following:

(a) False Alarm Rate: when IC, we expect to see 0 alarms, so the SPE and

T 2 statistic alarm rates on the IC data are their false alarm rates.

(b) Fault Detection: for SPE and T 2, this is a 1 if the monitoring statistic

detected a fault and 0 otherwise.

(c) Detection Time: for SPE and T 2, this is the time in minutes after a fault

is introduced until a statistic raises an alarm. Note that the earliest the

methods can detect a fault is within three minutes because we set the

number of sequential faults necessary to trigger an alarm to be equal to

3.

(5) Repeat Steps 1 – 4 1,000 times.

4.4 Simulation Results

In this section, we present and discuss the time-to-detection results for each of the

four monitoring statistics (MSAD-PCA SPE and T 2, and AD-PCA SPE and T 2)

over 1,000 simulation replicates. In Table 4.2, we present the false alarm rates, ex-

pected number of false alarms per day, and detection percentages for each of the four

monitoring statistics within the multi- or single-state data generation processes. To

demonstrate parsing Table 4.2, note that for observations generated under a multi-

state process, the AD-PCA T 2 column along the “False Alarm” rows show that the

false alarm rate for this statistic is 1.25%, yielding 18.1 false alarms per day on aver-

age.

In Table 4.3, the rows are the mean and the 95th percentile (“Upper Tail”) of the

time until fault detection (in minutes) for each of the four monitoring statistics within

the multi- or single-state data generation processes, broken out by each of the nine

faults. Cells of Table 4.3 are shaded green if those cells have a detection percentage

of 100% as shown in Table 4.2. To demonstrate parsing Table 4.3, for observations

87

generated under a multi-state process, the AD-PCA T 2 rows under the “1C” column

show the following:

� The AD-PCA T 2 statistic detected Fault 1C after 122 minutes on average.

� When the AD-PCA T 2 statistic detected Fault 1C, it detected this fault

within 490 minutes in 95% of the simulation replicates.

� The cell is not shaded green because there were simulation replicates where

this statistic did not detect a fault at all.

Table 4.2: False alarm rates and detection probabilities. Note that Faults 1C, 2C, and
3C are state-specific and are cannot be applied to observations generated under a
single state.

Multi-State Process Single-State Process
MSAD-PCA AD-PCA MSAD-PCA AD-PCA
SPE T 2 SPE T 2 SPE T 2 SPE T 2

False Alarms
% 0.15 0 0 1.25 0.10 11.5 0.12 14.5
/Day 2.3 0.1 0.1 18.1 1.6 165.7 1.9 208.9

Shift Faults
1A 100.0 100.0 1.0 99.8 100.0 100.0 99.3 100.0
1B 100.0 100.0 0.0 97.7 100.0 100.0 100.0 100.0
1C 100.0 32.0 0.0 96.5 NA NA NA NA

Drift Faults
2A 100.0 100.0 0.0 97.7 25.8 100.0 20.3 100.0
2B 100.0 100.0 0.0 7.7 100.0 100.0 100.0 100.0
2C 100.0 100.0 0.0 97.0 NA NA NA NA

Latent / Error Faults
3A 100.0 16.2 3.0 30.6 92.9 98.5 93.0 98.8
3B 100.0 99.7 98.3 99.0 100.0 100.0 100.0 100.0
3C 100.0 14.0 0.0 97.0 NA NA NA NA

4.4.1 False Alarm Rates

In Table 4.2, we present the false alarm rates under both the single- and multi-state

models for each of the monitoring statistics. These values were calculated by applying

the four process-monitoring statistics to IC data for a full week (10,080 observations):

three days for training and four days for testing with the model updating every 24

88

hours. We repeated this data generation, training, and testing 1,000 times with α =

0.001. We also remark that the median detection percentage for all four monitoring

statistics under these faults is 100%.

We begin by discussing the results from the multi-state data generating process.

As we can see in Table 4.2, AD-PCA SPE yielded effectively no false alarms on

average, but this is not unexpected as this statistic is not very sensitive. In fact,

AD-PCA SPE only detects Fault 3B with any passable accuracy (98.3%) and fails

completely for the other eight faults. In contrast, MSAD-PCA T 2 also maintained a

false alarm rate of effectively 0, but was still sensitive enough to detect most faults.

Faults 1C, 3A, and 3C were the most difficult for this statistic to detect, detecting

only 32%, 16.2%, and 14%, respectively, of these faults. Alternatively, AD-PCA T 2

is hyper-sensitive and issues over 18 false alarms per day on average. This seriously

degrades any positive consideration we have for this statistic in terms of time to fault

detection. Further, this statistic has difficulty detecting Faults 2B (7.7% detection)

and 3A (30.6% detection). In the “sweet spot”, MSAD-PCA SPE recorded an average

2.3 false alarms per day, while also detecting all nine faults in 100% of the simulation

replicates. Overall, note that the AD-PCA T 2 statistic often has better detection

probabilities than MSAD-PCA T 2, but at the cost of much higher false alarm rates.

Table 4.2 also shows that all four methods’ false alarm rates increase for the

single-state model, particularly the T 2 statistics. However, AD-PCA SPE increases

slightly in false alarm rates, while MSAD-PCA SPE actually has fewer false alarms.

The increased false alarm rates for MSAD-PCA T 2 for observations from a single-

state process illustrate a possible consequence when making a model overly complex

by incorrectly assuming a multi-state model. We therefore recommend a thorough

exploratory data analysis to justify the necessity of a multi-state modification to an

existing fault-detection system before application.

89

T
a
b
le

4.
3:

D
et

ec
ti

on
ti

m
es

fo
r

sh
if

t,
d
ri

ft
,

an
d

la
te

n
t

/
er

ro
r

fa
u
lt

s.
F

au
lt

3A
h
as

a
m

ax
im

u
m

la
te

n
t

d
ri

ft
of
δ

+
1

=
6

u
n
d
er

M
u
lt

i-
S
ta

te
an

d
δ

+
1

=
3

u
n
d
er

S
in

gl
e-

S
ta

te
.

C
el

ls
sh

ad
ed

in
gr

ee
n

h
av

e
p

er
fe

ct
fa

u
lt

d
et

ec
ti

on
(s

ee
T

ab
le

4.
2)

.

S
h
if

t
F

au
lt

s
D

ri
ft

F
au

lt
s

L
at

en
t

/
E

rr
or

F
au

lt
s

1A
1B

1C
2A

2B
2C

3A
3B

3C

M
u
lt

i-
S
ta

te

M
S
A

D
-P

C
A

S
P

E
M

ea
n

3.
0

3.
0

17
1.

1
36

9.
9

28
1.

7
69

9.
3

86
9.

4
16

.7
34

.1
U

p
p

er
T

ai
l

3.
0

3.
0

10
32

.0
62

1.
1

38
4.

0
95

3.
0

12
25

.0
54

.0
19

1.
0

T
2

M
ea

n
3.

0
97

.0
39

2.
2

49
2.

6
57

0.
6

93
5.

8
13

51
.0

67
9.

0
12

51
.0

U
p
p

er
T

ai
l

3.
0

23
3.

0
13

54
.0

53
3.

0
69

2.
0

10
84

.0
15

18
.0

99
9.

6
14

32
.0

A
D

-P
C

A

S
P

E
M

ea
n

18
.0

∞
∞

∞
∞

∞
13

72
.0

73
8.

2
∞

U
p
p

er
T

ai
l

18
.0

∞
∞

∞
∞

∞
15

18
.0

11
16

.0
∞

T
2

M
ea

n
5.

2
26

.0
12

2.
0

11
14

.0
19

1.
7

81
.8

66
0.

9
87

.5
9.

7
U

p
p

er
T

ai
l

5.
0

26
.0

49
0.

0
14

06
.0

15
14

.0
19

5.
0

14
59

.0
25

8.
0

23
.0

S
in

gl
e-

S
ta

te

M
S
A

D
-P

C
A

S
P

E
M

ea
n

9.
9

3.
0

N
A

11
71

.0
30

4.
7

N
A

10
60

.0
17

.5
N

A
U

p
p

er
T

ai
l

32
.0

3.
0

N
A

15
68

.0
40

1.
8

N
A

14
81

.0
48

.0
N

A

T
2

M
ea

n
3.

0
4.

1
N

A
85

.8
93

.4
N

A
43

5.
4

95
.2

N
A

U
p
p

er
T

ai
l

3.
0

5.
0

N
A

15
6.

5
17

3.
0

N
A

94
2.

3
22

0.
8

N
A

A
D

-P
C

A

S
P

E
M

ea
n

12
.4

3.
0

N
A

11
41

.0
31

2.
3

N
A

10
55

.0
17

.9
N

A
U

p
p

er
T

ai
l

46
.0

3.
0

N
A

15
62

.0
40

5.
8

N
A

14
76

.0
50

.8
N

A

T
2

M
ea

n
3.

0
4.

1
N

A
83

.2
90

.1
N

A
41

2.
5

91
.2

N
A

U
p
p

er
T

ai
l

3.
0

5.
0

N
A

15
2.

8
16

8.
0

N
A

92
9.

9
22

2.
8

N
A

90

4.4.2 Detection Times

Table 4.3 shows that Fault 1A for a multi-state process is detected by three of the

methods almost instantly, except for AD-PCA SPE. The AD-PCA SPE monitoring

statistic does not detect a fault until minute 18 on average. Fault 1B is similar, but

slightly more difficult to detect, as expected. Also as expected, Fault 1C is the most

difficult of the shift faults to detect; comparing AD-PCA T 2 with MSAD-PCA SPE,

the average time to fault detection is 122 minutes (AD-PCA T 2) or 171 minutes

(MSAD-PCA SPE). However, the 95th percentile of MSAD-PCA SPE takes over

twice as long as AD-PCA T 2. The reason for this is in the detection probability. As

shown in Table 4.2, MSAD-PCA SPE detects 100% of these faults (increasing the

time to fault detection in the upper tail), while AD-PCA T 2 detects Fault 1C in only

96.5% of the replicates.

For the multi-state drift faults (Fault 2A, 2B, and 2C), our expectation that the

drift fault would take a few hours to detect seems to hold true. Interestingly, MSAD-

PCA SPE detected Fault 2B faster than Fault 2A, while MSAD-PCA T 2 detected

Fault 2A faster than Fault 2B. Also, AD-PCA T 2 detected Fault 2B on average hours

before either MSAD-PCA SPE or T 2, but Table 4.2 shows it only detected Fault 2B

in 7.7% of replicates. Fault 2C began in S2, so the earliest a method could correctly

detect a fault would be 21 minutes after the fault start index. As expected, Fault

2C was the most difficult drift fault to detect for MSAD-PCA SPE and MSAD-PCA

T 2, but was uncharacteristically easy to detect by AD-PCA T 2 in comparison. We

attribute this quick fault detection to the fact that AD-PCA T 2 is overly sensitive,

which is shown by the high false alarm rate (over 18 per day) for this statistic.

Of the two latent-feature faults (3A and 3B) and the error fault (3C), Fault

3A was the most difficult fault for all four methods to detect, as shown by the low

detection proportions for MSAD-PCA T 2 and AD-PCA SPE and T 2. Recall that this

fault was a drift in the underlying variable t, changing it to (δ + 1)t at its maximum

91

drift. Fault 3B was markedly easier to detect by comparison, and MSAD-PCA SPE

detected this fault quickly and consistently. Fault 3B is also the only fault under

the multi-state data generation model in which AD-PCA SPE performs comparably

to the other monitoring statistics. However, Fault 3C (a perturbation of the error

structure) shows AD-PCA SPE is again ineffective. This fault is especially difficult

even for MSAD-PCA T 2 to detect, detecting a fault in only 14% of cases. However,

MSAD-PCA SPE and AD-PCA T 2 detect this fault relatively quickly.

The fault detection times for single-state data are also included in Table 4.2 to

show that the multi-state methods detect faults as expected, even in the absence of

discernible state information. This table shows that when the data come from from a

single-state process, MSAD-PCA is not significantly different from AD-PCA in terms

of false alarm rates, detection percentage, or mean and upper tail detection times.

These results show that MSAD-PCA does not suffer a loss of power in well-posed

multivariate process scenarios, even when the process is erroneously assumed to have

the multi-state property.

Overall, the best performing monitoring statistics by average time to fault de-

tection are MSAD-PCA SPE and AD-PCA T 2. The best performing monitoring

statistics by detection percent are MSAD-PCA SPE, MSAD-PCA T 2, and AD-PCA

T 2. The best performing monitoring statistics by false alarm rates are MSAD-PCA

SPE, MSAD-PCA T 2, and AD-PCA SPE. In summary, we consider the MSAD-PCA

SPE monitoring statistic to be the best combination of high detection probability,

short time to detection, and low false alarm rates. While the AD-PCA T 2 monitoring

statistic does perform very well in some scenarios, it also performs very poorly in

others. Combine this with its high false alarm rate, and we consider this statistic to

be too erratic to consider in practice.

To summarize these results, when considering false alarm rates, fault detection

probabilities, and time to fault detection for data generated under a single state, the

92

MSAD-PCA test statistics perform almost identically to their AD-PCA counterparts.

When data are generated from multiple states, the MSAD-PCA test statistics have

the valuable combination of lower false alarm rates and higher detection probabilities.

Furthermore, their times to fault detection are superior (especially after considering

their detection probabilities). Overall, the MSAD-PCA SPE monitoring statistic ex-

hibits excellent detection probabilities and good detection times, at the cost of a few

false alarms per day. In comparison, the MSAD-PCA T 2 monitoring statistic, while

slower to detect faults than its AD-PCA counterpart, makes up for this lack of sensi-

tivity by perfect detection in over half of the faults and perfect specificity of the test

(within simulation error). For these reasons, we believe that pairing the more sensitive

MSAD-PCA SPE monitoring statistic with the specific MSAD-PCA T 2 monitoring

statistic is the best course of action.

4.5 Case Study

To illustrate these methods in practice, we have data from a decentralized WWT

plant in Golden, CO recorded at three different temporal frequencies: 20 features at

the five-second-level, 20 at the one-minute-level, and 15 at the 10-minute-level. We are

interested in detecting process faults remotely. That is, can the MSAD-PCA model

be applied without human intervention to detect when the WWT process may be op-

erating out of control? We build on the work of Kazor et al. (2016) by hypothesizing

that the underlying multivariate process may change based on the operation of a set

of two blowers. However, blower power (on / off) is recorded at the one-minute time

scale. We need to perform three major tasks: preliminary data cleaning, data aggrega-

tion and downscaling to the one-minute frequency, and secondary data cleaning and

joining. After importing the data into R, we first remove gross outliers identified by

visual inspection of the univariate time series of each feature.

93

4.5.1 Specific System Considerations

The plant has two separate blowers used to mix the suspended solids mixture (see

the figures and explanation in Section 4.1.1 for more detail). When either of these

blowers are in operation, some process features change dramatically. The blowers

have independent controls, so we have four states: S0 = both blowers off; S1 = only

blower one on; S2 = only blower two on; and SB = both blowers on. See Figure

4.8 for reference. We observe 130,153 sequential one-minute-level IC observations at

this facility. The operation of the blowers is known and controlled by the process

engineer(s), so we investigate the lengths of stay in each blower state.

Figure 4.8: The blower process flow chart shows the number of times the process
changes states and in which directions (left). The lengths of times spent in each state
are bi-modal, as shown by their densities (right).

BOTH
OFF

BLOW
1 ON

BLOW
2 ON

BOTH
ON

n0 = 54,408

nB = 2,070

n
2 =

 37,701

n
1 =

 35,974
171
184

S0

S2

SB

S1

S0

S1

S2

SB

94

When both blowers are off (S0), n0 = 54, 408. This is the most common state.

The process changes from S0 to S1 or S2 with similar frequency, but never changes

directly to SB. As we can see from the top three densities of Figure 4.8 (right), the

modal lengths of time to remain in S0, S1, and S2 are 10 or 20 minutes. If neither

blower is on, we surmise that the water treatment protocol is to leave both blowers

off for either 10 or 20 minutes, then turn one of the blowers on. S1 (only blower one

on) and S2 (only blower two on) also occur frequently (n1 = 35, 974, n2 = 37, 701).

Based on the diagram in Figure 4.8 (left), if a blower is on, we surmise that the most

common water treatment protocol is to leave that blower on for 10 or 20 minutes,

then turn that blower off. The last state, SB (both blowers on), is comparatively rare,

with nB = 2, 070 observations recorded (less than 2% of the observations). Thus, SB

is purely a transition state between S1 and S2, and we do not believe that accounting

for this rare state will increase model accuracy. We randomly assigned the < 2% of

observations in SB to either S1 or S2 with equal probability.

4.5.2 Data Cleaning

Since the blower operation indicator is recorded at the one-minute-level, and the

effects of the blower are almost immediate for features affected by blower status, we

need to down-scale all of the 10-minute observations to the one-minute level as follows:

(1) Interpolate nine observations between the 10-minute recorded observations.

For continuous features, we use linear interpolation. For discrete features, we

use “last object carried forward” (LOCF) interpolation.

(2) Estimate the Median Absolute Deviation (MAD) of each feature via an ap-

propriate method:

(a) For stationary features, estimate one MAD for the entire process (Figure

4.9, top left).

95

(b) For processes with a trend and constant variance, fit a smoothing spline

to the feature over time, and estimate a single MAD of the residuals

(Figure 4.9, top right).

(c) For processes with relatively constant mean but non-constant variance,

calculate a piecewise estimate of the MAD over empirically chosen blocks

of time (Figure 4.9, bottom left).

(d) For non-stationary processes in both mean and variance, fit a smoothing

spline to the feature over time, and calculate a piecewise estimate of the

MAD of the residuals (Figure 4.9, bottom right).

(3) To avoid underestimating process variance, we add a white noise component to

each linearly interpolated value with standard deviation equal to the feature-

and time-specific MAD values divided by
√

2/π (Geary, 1935).

We fit cubic splines via the function smooth.spline in R, which uses a knot at

each observation. For a thorough discussion of this function, see Venables & Ripley

(1999). For processes with variable mean but constant variance, we fit this cubic spline

and estimate the MAD of the process from the residuals of the spline fit. For processes

with variable mean and variance, we also fit a cubic spline and consider the residuals.

However, some residuals require piecewise MAD estimation, and some require MAD

estimation via a linear trend. For process features exhibiting heteroscedasticity, we

transform the feature values via the natural logarithm. After downscaling and jittering

the 10-minute-level observations, we round all observation time indices to the nearest

minute. Because of the difficulty of analyzing features recorded at different frequencies,

all features at the WWT facility are now recorded on the same one-minute scale.

With all observations on the one-minute scale, we can see some of the differences

among the variable values across states in Figure 4.2 and in S1 and S2 versus S0 via

49 × 49 correlation heatmaps in Figure 4.3. As discussed in Section 4.1.1, both the

feature values themselves and the relationships between the features change based

96

Figure 4.9: Example processes for four different MAD estimation techniques: (top left)
a stationary process, (top right) a process with a trend and constant variance with
overlaid general additive smoother, (bottom left) a process with constant mean and
non-constant variance, and (bottom right) a process with non-stationary mean and
variance with overlaid general additive smoother.

97

upon the multivariate process state. Changing from S0 (neither blower on) to S1

(blower one on) has a profound effect on the recorded process values for MBR 1 (row

13 of Figure 4.3, left), and for other features (such as raw, influent, and waste flow

values). We see a similar effect on MBR 2 (row 14 of Figure 4.3, right) when the

state changes from S0 (neither blower on) to S2 (blower two on). Therefore, the PCA

decomposition will change from one state to another. Accounting for these process

changes should improve our ability to correctly detect system faults.

4.5.3 Real-Data Results

We now discuss the performance of MSAD-PCA on some real data.

4.5.3.1 False alarm rates. We first applied our method to the IC data set from

1 June – 1 September 2013 described in Kazor et al. (2016), monitoring the false

alarm rates using the first 40 days of the 81-day data set. They showed that the

false alarm rates for the AD-PCA projection system were 4.4% for SPE and 2.2% for

T 2 when monitoring ICC for 10-minute-averaged observations. They required three

flagged observations in a row to issue an alarm.

For the same observations interpolated to the 1-minute level, the AD-PCA false

alarm rates were 0.3% for both SPE and T 2. Similarly, the MSAD-PCA rates were

0.3% for SPE and 0.1% for T 2. For the 1-minute-level observations, our requirement

for an alarm was five flagged observations in a row instead of three (which is different

from the simulation described in Section 4.3.4), and this increase is justified in the

following paragraph. This slight decrease in the false alarm rate of the T 2 monitoring

statistic agrees with the simulation results showing that the MSAD-PCA T 2 has

higher specificity than the single-state versions.

However, the false alarm rates for both AD-PCA and MSAD-PCA are higher

than the specified α threshold of 0.1%. These higher false alarm rates are likely due to

98

observations being serially autocorrelated. Therefore, if one observation is flagged as

beyond the threshold for its SPE or T 2 monitoring statistics, the monitoring statistics

for the next 2 to 5 observations also have a higher probability of being beyond these

same thresholds. Because of this, we increased the number of sequential flags necessary

to trigger an alarm from 3 to 5. Of note, in the Kazor et al. (2016) paper, 3 flagged

observations in a row corresponded to 30 minutes of data. Here, 5 consecutive flags

correspond to 5 minutes. One reason for this change is that serial autocorrelation will

have a greater impact on 1-minute averaged observations than it will on 10-minute

observations.

4.5.3.2 Time to fault detection. We also applied our method to a fault analyzed

by Kazor et al. (2016). To keep similar specifications as their paper, we train on

the observations from 10 April at 01:10 to 19 April at 00:00, for a total of 12,854

observation recorded at the 1 minute level. Operators detected a fault at 10:00 on 24

April, 2010. After downscaling the observations to the 1-minute level, the AD-PCA

method first detects a fault at 16:31 on 21 April, and triggers a few alarms between

then and the point at which the operators detected the fault. This is shown in Figure

4.10 (top). Furthermore, none of the observations projected with the AD-PCA method

trigger both the SPE and T 2 alarms.

After applying the MSAD-PCA method, the first alarms were issued around

noon on 20 April, but after inspecting the feature process graphs, we believe that

these first alarms were triggered by the observations directly following a period of

missing data on the morning of the 20th and not by the onset of a system fault.

However, Figure 4.10 (bottom) shows that observations projected with the MSAD-

PCA method trigger alarms starting at 14:15 on 21 April, two hours before AD-PCA.

Moreover, these alarms are persistent for longer than a 24-hour period (from 14:15 on

21 April to 17:00 on 22 April), and some of these observations trigger both the SPE

99

Figure 4.10: Observation alarms issued after AD-PCA (top) and MSAD-PCA (bottom)
projections during a real system fault that occurred between 21 and 24 April, 2010.
The y-axis represents the categories for when an observation triggers no alarms, a T 2

alarm, an SPE alarm, or both alarms. The blue triangles are at 14:15 on 21 April,
when the MSAD-PCA monitoring method first detects a fault. The red triangle at
10:00 on 24 April is when the human operators detected a fault.

100

and T 2 alarms. Based on these results from this real data case, we believe that our

new projection method will warn system operators of faults earlier, and it will more

consistently detect faults as they occur in real time.

4.6 Conclusion

In conclusion, we have illustrated how incorporating state information when monitor-

ing non-linear, non-stationary, autocorrelated, and non-Gaussian multivariate process

data can improve fault detection results. We have crafted a simulation study to test

the utility and reliability of this new method and have described the data generated

within this study. Additionally, we have shown average false alarm rates, detection

times, and detection probabilities for nine different faults, some of which occur only

in one of the states. Further, we have discussed the real data case that motivated the

multi-state monitoring paradigm, and we have briefly described the data exploration

process that lead to using a multi-state framework. We have concluded by comparing

the false alarm rates and time to fault detection with and without accounting for

multiple process states for a real fault in the decentralized WWT plant in Golden,

CO. Finally, we have demonstrated the added benefit of correctly monitoring a true

multi-state process with a multi-state model.

When choosing which states to include in a model, we recommend having at

least p2/2 IC observations per state for training, because multi-state monitoring with

MSAD-PCA estimates state-specific covariance matrices. Consequently, we also rec-

ommend that the frequency of membership for each state not be drastically dissim-

ilar. For example, five states with membership probabilities of (0.2, 0.2, 0.2, 0.2, 0.2),

(0.25, 0.11, 0.07, 0.36, 0.21), or (0.6, 0.1, 0.1, 0.1, 0.1) would probably be acceptable,

but a membership probability of (0.96, 0.01, 0.01, 0.01, 0.01) would most likely cause

problems. Furthermore, we recommend considering states in which the process distri-

bution, mean vector, and / or covariance matrix change significantly between states.

101

Finally, in the interest of model parsimony, we do not recommend including too many

states. In short, block on states meeting these criteria: states that have different vec-

tor or matrix moments; states with each training sample size at least p2/2; mutually

exclusive states that contain all system observations; and states with similar frequen-

cies.

Further, we recommend monitoring multi-state multivariate processes that ex-

hibit non-stationarity and serial autocorrelation by pairing the SPE and T 2 monitor-

ing statistics after dimension reduction via multi-state adaptive-dynamic PCA. We

have shown in our simulation study and the case study that the MSAD-PCA SPE

monitoring statistic offers an excellent combination of sensitivity and high detection

probability, while the MSAD-PCA T 2 monitoring statistic offers an excellent combi-

nation of specificity and high detection probability. Once implemented, this approach

can save engineers months of work reconstructing the stable biological environment

necessary for water treatment by warning of impending faults well in advance. Ac-

counting for mutually exclusive states can also help to identify and attribute causes

of faults when they occur in a specific state and is the next step in process monitor-

ing (Choi, Lee, Lee, Park, & Lee, 2005; Zheng & Zhang, 2013; Zou, Jiang, & Tsung,

2011). To implement the MSAD-PCA process in R, consider using our package mv-

Monitoring, discussed in the next chapter.

Acknowledgments

This work in multivariate statistical process monitoring is motivated by our part-

nership with the Colorado School of Mines and is supported by the King Abdullah

University of Science and Technology (KAUST) Office of Sponsored Research (OSR)

under Award No: OSR-2015-CRG4-2582 and by the National Science Foundation

PFI:BIC Award No: 1632227.

102

 CHAPTER FIVE

Multivariate Statistical Process Control with mvMonitoring

ABSTRACT

The task of automating a decentralized waste-water treatment process relies

heavily on accurate process monitoring. This vignette describes the motivation and

design details of the R package mvMonitoring and its utility when applied to multivari-

ate, state-switching, non-stationary, non-linear, and non-Gaussian stochastic process

data. This document serves as a tutorial to introduce engineers to the four main func-

tions within this package: mspProcessData, mspTrain, mspMonitor, and mspWarning.

Further, this vignette also describes the workflow necessary in order to analyze mul-

tivariate process monitoring data via this package.

5.1 Introduction

This is the accompanying package to the research published by Kazor et al. (2016)

and the previous chapter. The mvMonitoring package is designed to make simulation

of multi-state multivariate process monitoring statistics easy and straightforward, as

well as streamlining the statistical process monitoring component. This package can

be downloaded from GitHub by running the following:

devtools::install_github("gabrielodom/mvMonitoring",

auth_token = "tokenHere")

where you create the value of “tokenHere” by generating a personal access token

(PAT) at https://github.com/settings/tokens and copying the quoted string to

this argument.

103

The outline of this vignette is as follows. Section 5.2 discusses the motivation

for creating this package and briefly explains the utility of multi-state process moni-

toring. Section 5.3 offers a thorough explination of how to generate the synthetic data

employed to test and compare the new multi-state modification of the process moni-

toring setup with the mspProcessData function. Section 5.4 describes the necessary

information and data formatting to effectively train the fault detection algorithm us-

ing the mspTrain function. Then, Section 5.5 lists and explains the necessary inputs

to the mspMonitor and mspWarning functions and examines their outputs. Section

5.6 shows a step-by-step walkthrough of how to implement the four mvMonitoring

functions in practice. Some concluding remarks are offered in Section 5.7.

5.2 Motivation

5.2.1 Why Use mvMonitoring?

The mvMonitoring package can be used to detect outliers in a correlated, non-

Gaussian multivariate process with non-linear, non-stationary, or autocorrelated fea-

ture behavior. These process outliers are often indicative of system fault. The naive

(but unfortunately common) approach to multivariate process monitoring is to use

expert opinion to identify a few important features to monitor visually, and raise an

alarm if these features travel outside pre-defined normal operating boundaries.

However, this split univariate approach fails to account for the correlated na-

ture of the process features, so some engineers have taken to monitoring the system

as a single correlated multivariate process rather than a collection of independent

univariate processes. In the literature review of the motivating papers, the authors

cite how this approach has benefited the science of process monitoring as a whole.

Unfortunately, this approach has its own shortcomings. One such complication is that

monitoring a multivariate process in its original feature space can lead to exorbitant

104

computational costs, as discussed in Huang, Kong, & Huang (2014). Additionally,

correlated multivariate processes over many features may be noisy and often retain

redundant information. To combat these issues, principal components analysis (PCA)

and its many modifications have been employed to assist in monitoring multivariate

processes as a whole. This package is an implementation of one such PCA modifica-

tion.

5.2.2 Multi- or Single-State AD-PCA

Adaptive-Dynamic PCA (AD-PCA), thoroughly discussed in Kazor et al. (2016) as

well as in the previous chapter, accounts for non-linearity, non-stationarity, and au-

tocorrelation in non-Gaussian multivariate processes. As an additional layer of com-

plexity within this model, consider such a process with multiple known system states.

Multi-State monitoring is thus a modification to PCA which accounts for multiple

process states and models each one separately. States can be any mutually exclusive

blocking factor, and states do not necessarily follow a strict order. Then, Multi-State

AD-PCA (MSAD-PCA) allows process engineers to account for distinct process states.

Specifically, this modification should be used when features under different process

states have different means, correlations, variances, or some combination of these

three.

5.3 Simulating Data with mspProcessData

The mspProcessData function generates three-dimensional multi-state or single-state

non-linear, non-stationary, and autocorrelated process observations. We follow the

original work of Dong & McAvoy (1996) for generation of the foundational stationary

and independent features.

105

5.3.1 Latent Feature Creation

So that the simulated features have non-zero correlations, Dong and McAvoy created

their three features as polynomial functions of a single latent variable ts, where s =

1, . . . , ω is the observational index of the process.

5.3.1.1 Autocorrelated and non-stationary errors. The mspProcesData function

induces autocorrelation in t through its errors, εs, where

ε1 ∼ N
(

1

2
(a+ b)(1− ϕ),

b− a
12

(1− ϕ2)

)
,

where a = 0.01 and b = 2. Now, we define the first-order autoregressive process on εs

by

εs = ϕεs−1 + (1− ϕ)ε,

where ε is a random innovation drawn from the Normal distribution defined in the

previous expression, and the autocorrelation component ϕ = 0.75. The mean and vari-

ance multipliers are the mean and variance of a random variable from the uniform[a,b]

distribution.

5.3.1.2 The non-linear latent process. This t vector will be sinusoidal with

period ω = 7 ∗ 24 ∗ 60 (signifying a weekly period in minute-level observations). We

then synthesize a t by taking

t∗s = − cos

(
2π

ω
s

)
+ εs,

and then scaling t∗ to

t =
(b− a)(t∗s −min(t∗s))

max(t∗s)−min(t∗s)
+ a.

Finally then, the t vector will lie entirely in [a, b].

106

5.3.2 Single-State and Multi-State Features

5.3.2.1 Single-state features. First mspProcessData simulates three features,

with each feature operating under k different states. Let 〈xk(ts), yk(ts), zk(ts)〉 be the

process evaluated at ts within State k. These are the three features under State 1 (in

control, or IC) as three functions of t:

x(t) ≡ t + ε1, (5.1)

y(t) ≡ t2 − 3 ∗ t + ε2, (5.2)

z(t) ≡ −t3 + 3 ∗ t2 + ε3, (5.3)

where εi ∼ N(0, 0.01), 1 = 1, 2, 3. The mspProcessData function calls the internal

processNOCdata function to generate IC single-state observations.

5.3.2.2 Multi-state features. The multi-state feature expression is induced by

rotation and scaling of certain sets of observations. To induce a three-state, hourly

switching process (the default), the mspProcessData function will create a label col-

umn that switches from “1” to “2” to “3” every hour. State “1” will be the features

generated under the single-state assumption, while State “2” and State “3” are gener-

ated as follows. These states will be scaled rotations of the current 〈x, y, z〉 set. The

second state is yaw, pitch, and roll rotated by (0, 90, 30) degrees, and the scales are

multiplied by (1, 0.5, 2). The third state is yaw, pitch, and roll rotated by (90, 0, -30)

degrees, and the scales are multiplied by (0.25, 0.1, 0.75). That is,

(1) S1: X(ts) := 〈x(ts), y(ts), z(ts)〉.

(2) S2: X(ts) := 〈x(ts), y(ts), z(ts)〉 ·P1Λ1, where

P1 =


0 0.50 −0.87

0 0.87 0.50

1 0 0


107

is the orthogonal rotation matrix for a yaw, pitch and roll degree change of

〈0◦, 90◦, 30◦〉, and Λ1 = diag(1, 0.5, 2) is a diagonal scaling matrix.

(3) S3: X(ts) := 〈x(ts), y(ts), z(ts)〉 ·P2Λ2, where

P2 =


0 0.87 −0.50

−1 0 0

0 0.50 0.87


is the orthogonal rotation matrix for a yaw, pitch and roll degree change of

〈90◦, 0◦,−30◦〉, and Λ2 = diag(0.25, 0.1, 0.75) is a diagonal scaling matrix.

These rotation matrices P1 and P2 turn the states in three-dimensional space

so that the states are at right angles to each other in at least one dimension, and the

scaling matrices Λ1 and Λ2 inflate or deflate the process variances along each prin-

cipal component. The mspProcessData function calls the internal function dataS-

tateSwitch which splits the observations by state and applies the state-specific ro-

tation and scaling through the internal rotateScale3D function.

5.3.3 Synthetic Fault Induction

Faults can be introduced to single- or multi-state data via the mspProcessData func-

tion. The default fault start index is 8500, or roughly 84% through the cycle of 10,080

observations. These faults are added through the internal faultSwitch function.

(1) Fault 1A is a positive shift to all three features before state rotation: X∗(ts) =

X(ts) + 2, s ≥ 8500.

(2) Fault 1B is a positive shift to the x feature before state rotation: x∗(ts) =

x(ts) + 2, s ≥ 8500.

(3) Fault 1C is a positive shift to the x and z features in State 3 only and after

state rotation: x∗(ts) = x(ts) + 2, z∗(ts) = z(ts) + 2, s ≥ 8500.

108

(4) Fault 2A is a positive drift across all the process monitoring features before

state rotation: X∗(ts) = X(ts) + (s− 8500)× 10−3, s > 8500.

(5) Fault 2B is a positive drift across the y and z process monitoring features

before state rotation: y∗(ts) = y(ts) + (s− 8500)× 10−3, z∗(ts) = z(ts) + (s−

8500)× 10−3, s > 8500.

(6) Fault 2C is a negative drift in the y process monitoring feature in State 2

only and after state rotation: y∗(ts) = y(ts)− 1.5× s−8500
10080−8500 , for s > 8500.

(7) Fault 3A is an amplification of the underlying latent variable t for all features.

The maximum latent drift of this fault will be 5 + 1: X∗(ts) = X(t∗s), s >

8500, where t∗s =
[
5(s−8500)
ω−8500 + 1

]
ts.

(8) Fault 3B is a mutation of the underlying latent variable t for the z feature:

z∗(ts) = z(log t∗s), s ≥ 8500. This fault will dampen the underlying latent

effect for z if ts > 1 and amplify this effect if ts < 1.

(9) Fault 3C is a polynomial mutation of the error for the y feature in State 2

only and after state rotation: y∗(ts) = y(ts) + 2 ∗ e3(s)− 0.25, for s > 8500.

5.3.4 Composing the Data Generation

The mspProcessData function can generate weeks of non-linear, non-stationary, auto-

correlated, multi-state, multivariate process data useful to test new process monitoring

techniques. Users can generate IC observations to measure false alarm rates, or in-

duce one of nine pre-built faults to test detection time and consistency with repeated

Monte Carlo sampling. We expect this function will generate interesting data useful

to compare new and improved process monitoring techniques with existing methods.

A detailed description of this function’s inputs and outputs are shown in Section 5.6.

109

5.4 Training with mspTrain

The mspTrain function will generate projection matrices and test statistic thresholds

from training data matrices. It requires data matrices to be in the xts matrix format.

5.4.1 The xts Data Matrix

An xts data matrix is first and foremost a matrix, not a data frame. For users

very familiar with data frame manipulation (with dplyr for instance), the slight but

profound differences between manipulating matrices and data frames quickly become

apparent. Because of the class requirements for matrices, all features must be integer

or double vectors. The mspTrain function cannot train on non-numeric information.

The xts object class stands for extendible time series and comes from the

package xts, which is built on the package zoo. The date and time information for

the multivariate stochastic process (necessarily as POSIX objects) are stored as the

row indices of xts matrices. We recommend the package lubridate for manipulating

POSIX objects.

5.4.2 The State Vector

The state membership (or class) vector of the data matrix is the column of integer

values corresponding to the generation state of the observation. When implementing

single-state AD-PCA, this class vector will simply be a numeric column of the same

value – for instance, 1. However, for MSAD-PCA, the class vector indicates from

which state each observation has been drawn.

The mspTrain function will split the observations by the class vector, apply

single-state AD-PCA to each class, then return the class-specific projection matrices

and thresholds. Because of this split-apply-combine strategy, users must ensure that

one or more classes are not too “rare” – that is, the class sample sizes should be suffi-

ciently large to allow for stable covariance matrix inversion. For p features (including

110

lags), stable covariance inversion requires a class sample size near p2/2 at minimum.

Because of this, attention must be given to model parsimony – we recommend against

blocking observations on a factor unless that factor has sufficent observations and sig-

nificantly affects the observations’ mean vector or covariance matrix.

5.4.3 Adaptive and Dynamic Modeling

Because of the non-linear, non-stationary, and autocorrelated nature of some pro-

cess monitoring applications, the mspTrain function allows users to include lags of

all feature variables. Including lags of the features in the data matrix (dynamic)

can significantly reduce the negative effects of modeling autocorrelated observations.

Further, the mspTrain function includes the option to update the training window

over time. Re-estimating the projection matrix and test statistic thresholds at pre-

specified time intervals (adaptive) can reduce the negative effects of non-linearity

and non-stationarity when modeling the observations. The idea is to divide a non-

linear and non-stationary process between some equally-spaced boundaries (every day,

for instance), so that the process becomes locally linear and stationary within these

boundaries. As time progresses, the oldest observations are“forgotten”and the newest

observations are “learned”. This causes the projection and IC thresholds to “adapt”

over time.

5.4.4 Model Training

After the observations have been split by class, the mspTrain function will call the

internal function processMonitor, which subsequently calls the internal function

faultFilter. This function will calculate a linear projection matrix of the data by

taking the PCA of the training data matrix. The observations will then be projected

linearly into a reduced-feature subspace which preserves a chosen proportion of the

energy of the training data, where the energy of a matrix is the relative sum of eigen-

111

values of that matrix. The default proportion is 90%. This projection is calculated by

the internal pca function.

Furthermore, non-parametric threshold values are calculated for the two pro-

cess monitoring statistics – Squared Prediction Error (SPE) and Hotelling’s T 2 (T 2).

These monitoring statistics are described in the motivating paper (chapter four).

These threshold values are calculated by the internal threshold function, and passed

up through the function pipe to be returned by mspTrain. The α-level of the non-

parametric threshold is controlled by the user, but defaults to 0.001.

Finally, the mspTrain function will remove any observation(s) that would cause

an alarm from the training data set. The alarm-free observations will be returned in

one xts matrix, while the alarmed observations will be returned by another. The alarm

criteria are discussed in Section 5.5. When training the process monitor, pay attention

to any observations flagged as alarms. The proportion of observations flagged as faults

may be higher than the α-level specified, so some tuning may be necessary. As with

the mspProcessData function, a detailed description of the inputs and outputs from

the mspTrain function are shown in Section 5.6.

5.5 Monitor and Issue Alarms with mspMonitor and mspWarning

After training the model with mspTrain, the projection matrices and non-parametric

monitoring statistic thresholds can be used to flag incoming observations which are

potentially out of control. The mspMonitor function was instead designed to test

a single incoming observation at a time via a script or batch file, but can check

every observation in a test matrix, which is useful for analyzing past data. To this

end, the mspMonitor function projects a single observation with the class projection

matrices returned by mspTrain and checks the observation’s SPE and T 2 statistics

against the thresholds also returned by mspTrain. The mspMonitor function will then

append the monitoring statistic values and indicators to the end of the observation

112

row. Indicator values will be returned as a “1” if the values of these statistics exceed

their IC thresholds. This new appended observation will be passed to the mspWarning

function.

The mspWarning function takes in an observation returned by the mspMonitor

function and an integer value (denoted r for this discussion) dictating the number of

sequential flagged observations observed before an alarm is raised. If an observation

returned by the mspMonitor function has positive statistic indicator values for either

the SPE or T 2 monitoring statistics, then the mspWarning function will query the most

recent r observations for other flags. If all r observations are positive for anomalies,

then the mspWarning function will issue an alarm. The number of flags necessary to

trigger an alarm defaults to 5. However, this default value depends heavily on the scale

of the data: for continuous observations aggregated and recorded every five seconds,

the number of sequential flags necessary to trigger an alarm could be much higher,

perhaps even 20 or more. In contrast, for observations aggregated to the 10-minute-

scale, only three sequential flags may be necessary.

In future updates of this package, this function will also have an option to

issue an alarm if a critical mass of non-sequential flags is reached in a set period of

observations. This modification may be necessary if the sampling frequency is less

than the 1-minute-level. Additionally, this function will also be equipped to take in a

cell phone number and service provider and issue an alarm via SMS through email.

Detailed descriptions of the inputs and outputs from the mspMonitor and mspWarning

functions are shown in the next section.

5.6 Example Simulation Workflow

This section provides a fully commented code walk-through for the main msp.* func-

tions in the mvMonitoring package. This package depends on few other packages, and

most of these dependencies are on commonly-used packages. The exception is BMS.

113

library(devtools)

library(xts)

install.packages("BMS") # If necessary

build("C:/Users/gabriel_odom/Documents/GitHub/mvMonitoring/mvMonitoring")

[1] "C:/Users/gabriel_odom/Documents/GitHub/mvMonitoring/

mvMonitoring_0.1.1.tar.gz"

library(mvMonitoring)

5.6.1 Generating Synthetic Data

First, begin by generating multi-state data from a fault scenario. This code will yield

observations under Fault 2A, as described in Section 5.3.3. We choose the default

options for the period length (7 days * 24 hours * 60 minutes = 10,080 observations),

the starting index of the fault (8500 out of 10080), and the time stamp for beginning

the data is 16 May of 2016 at 10:00AM (my wedding anniversary). As we can see

from the structure of the output, mspProcessData returns an xts matrix with 10080

rows and four columns (the state indicator and the three features).

fault1A_xts <- mspProcessData(faults = "A1",

period = 7 * 24 * 60,

faultStartIndex = 8500,

startTime = "2015-05-16 10:00:00 CST")

str(fault1A_xts)

An 'xts' object on 2015-05-16 10:00:00/2015-05-23 09:59:00 containing:

Data: num [1:10080, 1:4] 1 1 1 1 1 1 1 1 1 1 ...

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:4] "state" "x" "y" "z"

114

Indexed by objects of class: [POSIXct,POSIXt] TZ:

xts Attributes:

NULL

5.6.2 Train the Fault Detection Threshold

Now that these observations are generated and stored in memory, the mspTrain func-

tion can train the MSAD-PCA model. The last 1620 observations (27 hours’ worth)

will be saved for validation. The mspTrain function takes in the training data ma-

trix and corresponding class label column. If this function errors, make sure the label

column is not included in the data matrix – the constant values will cause a rank

deficiency training covariance matrix. The mspTrain function will

(1) Train on the first three days’ worth of observations, as set by trainObs.

(2) Scan the fourth day for anomalies, as set by updateFreq.

(3) Remove any alarmed observations.

(4) “Forget” the first day’s observations.

(5) “Learn” the non-alarmed observations from the fourth day.

(6) Retrain and repeat until the end of the training matrix.

Furthermore, the Dynamic = TRUE option means that the mspTrain function

will include the lags specified by the lagsIncluded argument. Finally, the number

of sequential anomalous observations necessary to raise an alarm is set at 5 by the

faultsToTriggerAlarm argument. These last three arguments are set to their de-

faults.

train1A_xts <- fault1A_xts[1:8461,]

This function will run in 13 seconds on the author's machine.

train1A_ls <- mspTrain(data = train1A_xts[,-1],

115

labelVector = train1A_xts[,1],

trainObs = 3 * 24 * 60,

updateFreq = 1 * 24 * 60,

Dynamic = TRUE,

lagsIncluded = 0:1,

faultsToTriggerAlarm = 5)

str(train1A_ls)

List of 4

$ FaultChecks :An 'xts' object on 2015-05-19 08:59:00/2015-05-22

07:00:00 containing:

Data: num [1:4142, 1:5] 0.364 0.425 0.821 1.004 0.864 ...

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:5] "SPE" "SPE_Flag" "T2" "T2_Flag" ...

Indexed by objects of class: [POSIXct,POSIXt] TZ:

xts Attributes:

NULL

$ Non_Alarmed_Obs:An 'xts' object on 2015-05-19 08:59:00/2015-05-22

07:00:00 containing:

Data: num [1:4142, 1:7] 2 3 1 1 1 1 1 1 1 1 ...

- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:7] "state" "x" "y" "z" ...

Indexed by objects of class: [POSIXct,POSIXt] TZ:

xts Attributes:

NULL

$ Alarms :An 'xts' object of zero-width

116

$ TrainingSpecs :List of 3

..$ 1:List of 6

.. ..$ SPE_threshold : Named num 4.7

..- attr(*, "names")= chr "99.9%"

.. ..$ T2_threshold : Named num 59.7

..- attr(*, "names")= chr "99.9%"

.. ..$ projectionMatrix: num [1:6, 1:2] 0.424 -0.384 0.437 0.433

-0.308 ...

.. ..$ LambdaInv : num [1:2, 1:2] 0.206 0 0 1.513

.. ..$ muTrain : Named num [1:6] 1.38 -2.09 2.96 1.37

-2.05 ...

..- attr(*, "names")= chr [1:6] "x" "y" "z" "x.1" ...

.. ..$ RootPrecisTrain : num [1:6, 1:6] 2.54 0 0 0 0 ...

.. ..- attr(*, "class")= chr [1:2] "threshold" "pca"

..$ 2:List of 6

.. ..$ SPE_threshold : Named num 1.35

..- attr(*, "names")= chr "99.9%"

.. ..$ T2_threshold : Named num 76.8

..- attr(*, "names")= chr "99.9%"

.. ..$ projectionMatrix: num [1:6, 1:3] -0.4995 -0.0334 0.4931

-0.5255 -0.1688 ...

.. ..$ LambdaInv : num [1:3, 1:3] 0.285 0 0 0 0.72 ...

.. ..$ muTrain : Named num [1:6] 2.977 -0.566 -4.498 2.951

-0.591 ...

..- attr(*, "names")= chr [1:6] "x" "y" "z" "x.1" ...

.. ..$ RootPrecisTrain : num [1:6, 1:6] 1.07 0 0 0 0 ...

.. ..- attr(*, "class")= chr [1:2] "threshold" "pca"

117

..$ 3:List of 6

.. ..$ SPE_threshold : Named num 5.85

..- attr(*, "names")= chr "99.9%"

.. ..$ T2_threshold : Named num 80.7

..- attr(*, "names")= chr "99.9%"

.. ..$ projectionMatrix: num [1:6, 1:2] 0.396 0.454 0.454 -0.153

0.461 ...

.. ..$ LambdaInv : num [1:2, 1:2] 0.276 0 0 0.499

.. ..$ muTrain : Named num [1:6] 0.528 0.272 1.44 0.568

0.258 ...

..- attr(*, "names")= chr [1:6] "x" "y" "z" "x.1" ...

.. ..$ RootPrecisTrain : num [1:6, 1:6] 16.4 0 0 0 0 ...

.. ..- attr(*, "class")= chr [1:2] "threshold" "pca"

The mspTrain function returns a list of four objects:

(1) FaultChecks: An xts matrix of monitoring statistics and associated indica-

tors for all observations after the burn-in of trainObs. It will have 8461 -

trainObs number of rows and five columns:

(a) SPE: the SPE statistic for each observation.

(b) SPE_Flag: an indicator showing if the SPE statistic for that observation

is beyond the calculated threshold; 0 is normal, 1 is flagged.

(c) T2: the T 2 statistic for each observation.

(d) T2_Flag: an indicator showing if the T 2 statistic for that observation is

beyond the calculated threshold; 0 is normal, 1 is flagged.

(e) Alarm: an indicator showing if the observation is in a sequence of flagged

observations; 0 is normal, 1 is alarmed.

118

(2) Non_Alarmed_Obs: An xts matrix containing all observations with an alarm

code of 0 from FaultChecks. Of note, this matrix contains the data, while the

FaultChecks matrix only contains the monitoring statistics and indicators.

(3) Alarms: An xts matrix of all the observations removed from the training data

matrix.

(4) TrainingSpecs: a list with length equal to the number of classes – in this

case 3. For each class, this list contains a list of six objects:

(a) SPE_Threshold: a named numeric scalar of the 1 − α percentile of the

non-parametric estimate of the SPE statistic density.

(b) T2_Threshold: a named numeric scalar of the 1 − α percentile of the

non-parametric estimate of the T 2 statistic density.

(c) projectionMatrix: The p×q matrix of eigenvectors necessary to project

a p-dimensional observation to q dimensions. This is necessary to reduce

the dimension of any test observation, and is used in calculating the SPE

statistic for test observations.

(d) LambdaInv: The inverse of the diagonal q×q matrix of eigenvalues. This

matrix is used to calculate the T 2 statistic for test observations.

(e) muTrain: The mean vector of the training observations. This is used to

center the test observations on the training mean.

(f) RootPrecisTrain: The p×p diagonal matrix of the inverse square roots

of the feature variances. This is used to scale the test observations into

the training scale.

5.6.3 Test New Observations for Anomalies

The training data summary was given by mspTrain, so this information can now be

used to monitor incoming observations for system faults.

119

5.6.3.1 Adding lagged features. First, concatenate the last given observation

from the training set as “row 0” of the test data set. This will enable mspMonitor

to include lag-1 features. Similarly, one would include the last k observations of the

training set should the process dictate the need for any lag-k features. Because the

Fault Start Index was set to 8500, this testing window will show the change point

between observations generated under normal conditions and those generated under

a fault state.

test1A_xts <- fault1A_xts[8460:8520, -1]

lagTest1A_xts <- lag.xts(test1A_xts, 0:1)

lagTest1A_xts <- cbind(fault1A_xts[8461:8520,1],

lagTest1A_xts[-1,])

head(lagTest1A_xts)

state x y z x.1

2015-05-22 07:00:00 1 0.7465717 -1.582803 1.141042 0.3817970

2015-05-22 07:01:00 1 0.8064225 -1.564885 1.226738 0.7465717

2015-05-22 07:02:00 1 0.7621322 -1.603962 1.150504 0.8064225

2015-05-22 07:03:00 1 0.7995411 -1.785750 1.149927 0.7621322

2015-05-22 07:04:00 1 0.8638972 -1.822695 1.116856 0.7995411

2015-05-22 07:05:00 1 0.7735952 -1.505855 1.139623 0.8638972

y.1 z.1

2015-05-22 07:00:00 0.1052954 0.3582939

2015-05-22 07:01:00 -1.5828027 1.1410421

2015-05-22 07:02:00 -1.5648852 1.2267384

2015-05-22 07:03:00 -1.6039621 1.1505043

2015-05-22 07:04:00 -1.7857497 1.1499272

2015-05-22 07:05:00 -1.8226952 1.1168557

120

5.6.3.2 Monitoring the test data. With the lagged test observations in the work-

ing environment, the mspMonitor function can be applied. This function (similarly

to mspTrain) takes in the label information as a separate argument from the input

data. Further, the mspMonitor function takes in the TrainingSpecs object returned

in the results list from mspTrain. Notice that the first six rows of the matrix returned

by mspMonitor are the exact same as the first six rows of the lagged test matrix, ex-

cept that the rows of the matrix from the mspMonitor function have the monitoring

statistics and corresponding indicator columns appended.

monitor1A_xts <- mspMonitor(observations = lagTest1A_xts[,-1],

labelVector = lagTest1A_xts[,1],

trainingSummary = train1A_ls$TrainingSpecs)

head(monitor1A_xts)

x y z x.1 y.1

2015-05-22 07:00:00 0.7465717 -1.582803 1.141042 0.3817970 0.1052954

2015-05-22 07:01:00 0.8064225 -1.564885 1.226738 0.7465717 -1.5828027

2015-05-22 07:02:00 0.7621322 -1.603962 1.150504 0.8064225 -1.5648852

2015-05-22 07:03:00 0.7995411 -1.785750 1.149927 0.7621322 -1.6039621

2015-05-22 07:04:00 0.8638972 -1.822695 1.116856 0.7995411 -1.7857497

2015-05-22 07:05:00 0.7735952 -1.505855 1.139623 0.8638972 -1.8226952

z.1 SPE SPE_Flag T2 T2_Flag Alarm

2015-05-22 07:00:00 0.3582939 0.3441627 0 29.445080 0 NA

2015-05-22 07:01:00 1.1410421 0.3811468 0 3.329163 0 NA

2015-05-22 07:02:00 1.2267384 0.2937754 0 3.222249 0 NA

2015-05-22 07:03:00 1.1505043 0.1424375 0 2.810259 0 NA

2015-05-22 07:04:00 1.1499272 0.2947956 0 2.630555 0 NA

2015-05-22 07:05:00 1.1168557 0.8742699 0 3.708552 0 NA

121

5.6.4 Warn Operators During Alarms

Note that all values in the Alarm column of the returned matrix above are recorded

with NA values. This is because the mspMonitor function does not check the monitor

output matrix for the sequential flags necessary to trigger an alarm. This is the re-

sponsibility of the mspWarning function. Because the mspWarning function is designed

to test one incoming observation at a time through a script or batch file, the following

example is designed to mimic the behavior of the mspWarning function as each new

observation comes online.

alarm1A_xts <- monitor1A_xts

for(i in 1:nrow(alarm1A_xts)){

if(i < (5 + 1)){

alarm1A_xts[1:i,] <- mspWarning(alarm1A_xts[1:i,])

}else{

alarm1A_xts[(i - 5):i,] <- mspWarning(alarm1A_xts[(i - 5):i,])

}

}

The fault was introduced at index 8500, which corresponds to about 40 minutes into

the test hour.

plot(alarm1A_xts[, ncol(alarm1A_xts)],

main = "Alarm Codes for Test Data")

The alarm codes are

(1) “0”: No alarm.

(2) “1”: Hotelling’s T 2 alarm.

(3) “2”: Squared Prediction Error alarm.

(4) “3”: Both alarms.

122

May 22 07:00 May 22 07:15 May 22 07:30 May 22 07:45 May 22 07:59

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Alarm Codes for Test Data

Figure 5.1: Time series plot of alarms. The fault was introduced at 07:40 on 22 May.

123

As we can see, the monitoring function detects a process anomaly after 40 minutes

into the test hour, and the warning function issues the corresponding alarms.

5.7 Conclusion

This vignette supplies motivation for the mvMonitoring package and discusses imple-

menting a multivariate process monitoring scheme with this package using synthetic

data. We believe that this software will provide system engineers with the tools nec-

essary to quickly and accurately detect abnormalities in multivariate, autocorrelated,

non-stationary, non-linear, and multi-state industrial and engineering systems. Fur-

ther, a synthetic example is given showing how the functions within this package

would be implemented and tuned in practice.

124

 CHAPTER SIX

Discussion

As the breadth of science increases, so will the dimensionality of recorded data.

Around 80 years ago, R.A. Fisher introduced the world to his four-dimensional “Iris”

data set. Today, we look to unlock the secrets of the human genome containing tens of

thousands of protein-coding genes, or query information from the million-dimensional

Internet of Things for patterns and hidden interactions. We believe that as these “big

data” problems grow more complex, new techniques in linear dimension reduction will

become more and more valuable. In this dissertation, we briefly scratched the surface

of one such linear dimension reduction method.

In chapter two, we discussed improving the sample quadratic classifier by replac-

ing a sample covariance estimator with a regularized covariance estimator for cases

where the number of observations is only slightly larger than the original feature di-

mension. We showed that estimating sample covariance matrices with a regularized

estimator can improve classification performance. In chapter three, we compared the

computational costs associated with linear dimension reduction for ill-posed cases us-

ing principal component analysis and the singular value decomposition. We show that

these two methods yield nearly identical classification results, but the singular value

decomposition can be thousands of times less computationally expensive.

In chapter four, we modified adaptive-dynamic principal component analysis

to account for known process state information. We show that correctly accounting

for process states decreases fault detection times and increases fault detection con-

sistency, while not suffering a decrease in power if process data do not have multiple

states. Further, in chapter five we describe the mvMonitoring package designed to

125

make multi-state (and single-state) Adaptive-Dynamic PCA for multivariate statisti-

cal process monitoring available for R users. We also show in chapter five some code

examples necessary to reproduce the simulations in chapter four. We believe this

package will provide necessary and timely assistance to wastewater treatment quality

control engineers.

We summarize our contributions to two main camps within the statistical lit-

erature. The first suite of contributions are to the field of supervised classification

under the constraints of insufficient observations. We apply a covariance matrix es-

timator, designed for matrix inversion with decreased estimator variability, to the

task of classifying observations from a data-poor environment. This result will better

equip scientists to predict the group membership of future observations, even under

a small sample-size constraint. Furthermore, we provide a computational compari-

son of two popular linear dimension reduction routines, principal component analysis

and the singular value decomposition, and settle conclusively that the singular value

decomposition is superior to principal component analysis for supervised classifica-

tion in high-dimensional, low sample-size contexts. The second suite of contributions

we make is to the field of multivariate statistical process control. We provide a new

quasi-linear dimension reduction approach specifically designed to assist engineers

in monitoring a potentially non-Gaussian, non-linear, non-stationary, and autocorre-

lated multivariate process drawn from disparate system states. Additionally, we give

a working example of software we designed and successfully implemented in practice

that can be useful to perform such process monitoring.

Our aims for these discussed contributions are as follows. For heteroscedas-

tic linear discriminant analysis, we expect data scientists to further apply different

covariance estimators to supervised classification exercises under the assumption of

unequal covariance matrices. While we believe that the Haff Shrinkage Estimator we

employed is an appropriate covariance estimator, there may be other covariance or

126

precision estimators with more attractive properties. Further, we hope that these an-

swers themselves raise additional research questions about the proper application of

covariance and precision matrix estimators in other branches of statistical modeling,

such as multi-dimensional hypothesis testing. Concerning our benchmark comparison

of principal component analysis and the singular value decomposition when applied to

ill-posed supervised classification exercises, we hope that computer scientists continue

to improve the algorithms associated with these and other matrix decompositions. We

also hope that data scientists working in high-dimensional genetics will leave principal

component analysis behind in favor of the superior singular value decomposition for

their dimension reduction needs. Furthermore, we believe that our work will motivate

statisticians to further study the theoretical properties of the singular value decompo-

sition when applied to ill-posed observations. We believe such research will bolster the

breadth of theoretical results associated with the singular value decomposition and

upgrade it from a clever result to the de facto method for linear dimension reduction

in ill-posed cases. Finally, we hope that environmental chemists and engineers will

be able to use our software package mvMonitoring, and by extension the multi-state

monitoring adaptation to adaptive-dynamic principal component analysis, to great

success in monitoring the behavior of their multivariate processes.

As with any piece of academic literature, we had too many good questions to ask

and too little time to answer them. We have further research interests in comparing

other covariance or precision estimators to round out our work in chapter two, includ-

ing what we have termed the “sparse correlation covariance estimator”. Additionally,

concerning our work on multivariate statistical process control, our immediate next

step is toward fault attribution; that is, given that our method detects a fault, can

we ascertain what circumstance may have caused it? The “great leap forward” after

accurate fault detection and attribution is fault intervention, wherein the system is

trained to apply small remedies to correct negative fault effects after their identifica-

127

tion. Ultimately, the final goal of this work is complete automation of a decentralized

wastewater treatment process.

While altruism should receive lofty praise, and passion for science for science’s

own sake can be a virtue—in the style of ars gratia artis, the true purpose of this

dissertation is the gainful employment of its author. To this end, the author sum-

marizes his efforts for any future employers or industry subject-matter experts. This

dissertation shows that the author is capable of identifying novel research areas and

reading the appropriate literature necessary to familiarize himself with their connected

branches of science. Further, this manuscript demonstrates the author’s perseverance

and diligence in pursuit of a goal, which are characteristics readily applicable to secur-

ing external funding, completing a full-spectrum industrial project, and/or advancing

the cause of science as a whole. Specifically, and as shown by his list of intra- and inter-

disciplinary co-authors, this author is well-equipped to succeed in a university, medical

center, or industrial research environment. Moreover, this treatise exhibits plainly the

author’s excellent written communication ability, a skill often underrepresented by

practitioners of the hard sciences. Finally, this completed work is evidentiary of the

years of trial, error, success, and experience with which the author is now invested.

128

APPENDICES

129

 APPENDIX A

Selected Proofs

Lemma 1. Let W ∈ Rp×s, where s := (m− 1)(p+ 1), be

W := [g2 − g1| . . . |gm − g1|H2 −H1| . . . |Hm −H1] , (A.1)

where gi ∈ Rp×1, Hi ∈ R>
p and is symmetric, and g1 6= gk and H1 6= Hk for at least

one value of k, where 2 ≤ k ≤ m and i = 1, . . . ,m. Also, let rank(W) = 1 ≤ q < p,

and let F ∈ Rp×q and G ∈ Rq×s be matrix components of a full-rank decomposition

of W so that W = FG with rank(F) = q. Then,

(a) FF+ (gi − g1) = gi − g1; FF+ (Hi −H1) = Hi −H1

(b)
(
Ip − FF+

)
(gi − g1) = 0;

(
Ip − FF+

)
(Hi −H1) = 0

(c) FF+ (Hi −H1) = (Hi −H1)FF
+

(d) FF+Hi = HiFF
+, and

(e)
(
I− FF+

)
Hi = H1

(
I− FF+

)
.

Proof. For parts (a) and (b), note that gi−g1, Hi−H1 ∈ C(F), and gi−g1, Hi−H1 ∈

N (Ip − FF+). For part (c), recalling that Hi ∈ Sp,

FF+ [Hi −H1] = [Hi −H1]
T = [Hi −H1] FF+.

For part (d), recall that for x ∈ Rp×1, xTFF+ projects x onto the row space of FF+.

Because FF+ ∈ Sp, the column space and row space are equal. Thus, FF+Hi =

HiFF+. Finally, for (e), we have by parts (b) and (d) that(
Ip − FF+

)
(Hi −H1) = 0 ⇐⇒

(
Ip − FF+

)
Hi = H1 − FF+H1

⇐⇒
(
Ip − FF+

)
Hi = H1 −H1FF+

⇐⇒
(
Ip − FF+

)
Hi = H1

(
Ip − FF+

)
.

130

Lemma 2. Consider the matrices F and Hi, i = 1, . . . ,m, defined in Lemma 1.

Then,
[
F+HiF

+T
]−1

= FTH−1i F.

Proof. Let P := FF+HiFF+ and Q := FF+H−1i FF+. Using Lemma 1(d),

(PQ)T =
[(

FF+HiFF+
) (

FF+H−1i FF+
)]T

= FF+HiFF+H−1i FF+

= PQ.

Therefore, PQ and (F+)TF+PQ are symmetric. Similarly, QP(F+)TF+ and QP are

symmetric. Further, using Lemma 1(d), PQP = P and QPQ = Q; thus Q = P+.

Therefore, by Theorem 1 (i) and (ii) of Hartwig (1986), we establish our result.

Lemma 3. Consider F, gi and Hi, i = 1, . . . ,m, defined in Lemma 1. Also, let

C = R
[
I− FF+

]
∈ R(p−q)×p, where R ∈ R(p−q)×p such that rank(C) = p − q. We

have that

(a) Cgi = Cg1,

(b) CHiC
T −CHiF

+T
(
F+HiF

+T
)−1

F+HiC
T = CH1C

T .

Proof. The proof of (a) follows trivially from Lemma 1(b). Also, by Lemma 1(d), note

that

F+HiC
T = F+Hi

(
Ip − FF+

)T
RT

=
(
F+Hi − F+HiFF+

)
RT

= 0.

Then by Lemma 1 (b), CHiC
T = CH1C

T .

131

APPENDIX B

Simulation Parameter Configuration

2.0.1 Mean Vectors

Table B.1: Mean vectors for simulations 1–3.

µ11 (0.21, -0.37, 2.29, 1.66, -0.81, 0.65, 0.18, 0.84, 1.88, 0.56)T

µ12 (4.64, 4.06, 6.72, 6.09, 3.62, 5.08, 4.61, 5.27, 6.31, 4.99)T

µ13 (8.21, 7.63, 10.29, 9.66, 7.19, 8.65, 8.18, 8.84, 9.88, 8.56)T

µ21 (-1.43, -0.66, -0.94, 0.31, -0.19, 0.89, 0.25, -0.34, 1.25, -1.60)T

µ22 (-0.43, 0.34, 0.06, 1.31, 0.81, 1.89, 1.25, 0.66, 2.25, -0.60)T

µ23 (0.57, 1.34, 1.06, 2.31, 1.81, 2.89, 2.25, 1.66, 3.25, 0.40)T

µ31 (-0.15, -0.96, 1.67, 0.70, -0.25, -2.54, -1.67, 2.00, 1.11, -0.86)T

µ32 (0.85, -0.96, 2.67, 0.70, 0.75, -2.54, -0.67, 2.00, 2.11, -0.86)T

µ33 (-1.15, -1.96, 0.67, -0.30, -1.25, -3.54, -2.67, 1.00, 0.11, -1.86)T

132

2.0.2 Configuration 1 Covariance Matrices

Σ1 =



15.01 0.81 1.25 1.13 −2.10 −2.30 2.43 −3.30 −0.87 −1.11

0.81 26.10 1.51 −0.74 0.89 4.35 1.25 1.85 −0.50 −0.39

1.25 1.51 24.55 −5.57 3.96 1.62 −0.27 0.49 −5.97 0.87

1.13 −0.74 −5.57 29.36 −3.58 −0.89 2.21 −3.71 −0.52 −2.19

−2.10 0.89 3.96 −3.58 20.17 6.05 −5.20 2.22 −0.80 −2.69

−2.30 4.35 1.62 −0.89 6.05 40.18 −5.18 3.83 1.94 0.51

2.43 1.25 −0.27 2.21 −5.20 −5.18 17.93 −0.17 −3.09 0.49

−3.30 1.85 0.49 −3.71 2.22 3.83 −0.17 26.05 −0.54 3.34

−0.87 −0.50 −5.97 −0.52 −0.80 1.94 −3.09 −0.54 16.3 −1.04

−1.11 −0.39 0.87 −2.19 −2.69 0.51 0.49 3.34 −1.04 26.84



,

Σ2 =



45.01 30.81 31.25 31.13 27.90 27.70 32.43 26.70 29.13 28.89

30.81 56.10 31.51 29.26 30.89 34.35 31.25 31.85 29.50 29.61

31.25 31.51 54.55 24.43 33.96 31.62 29.73 30.49 24.03 30.87

31.13 29.26 24.43 59.36 26.42 29.11 32.21 26.29 29.48 27.81

27.90 30.89 33.96 26.42 50.17 36.05 24.80 32.22 29.20 27.31

27.70 34.35 31.62 29.11 36.05 70.18 24.82 33.83 31.94 30.51

32.43 31.25 29.73 32.21 24.80 24.82 47.93 29.83 26.91 30.49

26.70 31.85 30.49 26.29 32.22 33.83 29.83 56.05 29.46 33.34

29.13 29.50 24.03 29.48 29.20 31.94 26.91 29.46 46.30 28.96

28.89 29.61 30.87 27.81 27.31 30.51 30.49 33.34 28.96 56.84



Σ3 =



75.01 60.81 61.25 61.13 57.9 57.7 62.43 56.70 59.13 58.89

60.81 86.10 61.51 59.26 60.89 64.35 61.25 61.85 59.50 59.61

61.25 61.51 84.55 54.43 63.96 61.62 59.73 60.49 54.03 60.87

61.13 59.26 54.43 89.36 56.42 59.11 62.21 56.29 59.48 57.81

57.90 60.89 63.96 56.42 80.17 66.05 54.80 62.22 59.20 57.31

57.70 64.35 61.62 59.11 66.05 100.18 54.82 63.83 61.94 60.51

62.43 61.25 59.73 62.21 54.80 54.82 77.93 59.83 56.91 60.49

56.70 61.85 60.49 56.29 62.22 63.83 59.83 86.05 59.46 63.34

59.13 59.50 54.03 59.48 59.20 61.94 56.91 59.46 76.30 58.96

58.89 59.61 60.87 57.81 57.31 60.51 60.49 63.34 58.96 86.84



.

133

2.0.3 Configuration 2 Covariance Matrices

Σ1 =



1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0



,

Σ2 =



2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0



,

Σ3 =



2.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 2.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 0.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 0.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 0.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0

1.0 1.0 0.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0

1.0 1.0 0.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0

1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0

1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0



134

2.0.4 Configuration 3 Covariance Matrices

Σ1 =



2.0 0.8 1.0 0.8 0.6 0.8 0.8 1.0 0.8 0.6

0.8 2.0 1.0 0.4 0.8 0.6 0.6 1.0 0.8 0.6

1.0 1.0 2.0 1.0 1.0 0.6 0.8 0.8 0.8 0.8

0.8 0.4 1.0 2.0 0.6 0.8 0.4 0.6 0.8 0.6

0.6 0.8 1.0 0.6 2.0 0.6 0.8 1.0 0.6 0.6

0.8 0.6 0.6 0.8 0.6 2.4 0.6 0.8 0.8 0.8

0.8 0.6 0.8 0.4 0.8 0.6 2.8 0.4 0.4 0.4

1.0 1.0 0.8 0.6 1.0 0.8 0.4 2.4 −0.1 −0.1

0.8 0.8 0.8 0.8 0.6 0.8 0.4 −0.1 2.8 −0.2

0.6 0.6 0.8 0.6 0.6 0.8 0.4 −0.1 −0.2 2.2



,

Σ2 =



20.0 0.8 1.0 0.8 0.6 0.8 0.8 1.0 0.8 0.6

0.8 40.0 1.0 0.4 0.8 0.6 0.6 1.0 0.8 0.6

1.0 1.0 2.0 1.0 1.0 0.6 0.8 0.8 0.8 0.8

0.8 0.4 1.0 2.0 0.6 0.8 0.4 0.6 0.8 0.6

0.6 0.8 1.0 0.6 2.0 0.6 0.8 1.0 0.6 0.6

0.8 0.6 0.6 0.8 0.6 2.4 0.6 0.8 0.8 0.8

0.8 0.6 0.8 0.4 0.8 0.6 2.8 0.4 0.4 0.4

1.0 1.0 0.8 0.6 1.0 0.8 0.4 2.4 −0.1 −0.1

0.8 0.8 0.8 0.8 0.6 0.8 0.4 −0.1 2.8 −0.2

0.6 0.6 0.8 0.6 0.6 0.8 0.4 −0.1 −0.2 2.2



Σ3 =



35.0 0.8 1.0 0.8 0.6 0.8 0.8 1.0 0.8 0.6

0.8 40.0 1.0 0.4 0.8 0.6 0.6 1.0 0.8 0.6

1.0 1.0 2.0 1.0 1.0 0.6 0.8 0.8 0.8 0.8

0.8 0.4 1.0 2.0 0.6 0.8 0.4 0.6 0.8 0.6

0.6 0.8 1.0 0.6 2.0 0.6 0.8 1.0 0.6 0.6

0.8 0.6 0.6 0.8 0.6 2.4 0.6 0.8 0.8 0.8

0.8 0.6 0.8 0.4 0.8 0.6 2.8 0.4 0.4 0.4

1.0 1.0 0.8 0.6 1.0 0.8 0.4 2.4 −0.1 −0.1

0.8 0.8 0.8 0.8 0.6 0.8 0.4 −0.1 2.8 −0.2

0.6 0.6 0.8 0.6 0.6 0.8 0.4 −0.1 −0.2 2.2



135

REFERENCES

Aflalo, Y., & Kimmel, R. (2013). Spectral multidimensional scaling. PNAS ,
110 (45), 18052–18057.

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., & Levine,
A. J. (1999). Broad patterns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by oligonucleotide arrays. Proc.
Natl. Acad. Sci. U.S.A., 96 (12), 6745–6750.

Anderson, T. (1951). Classification by multivariate analysis. Psychometrika, 16 (1),
31 – 50.

Apley, D. W., & Lee, H. C. (2012). Design of EWMA control charts for
autocorrelated processes with model uncertainty. Technometrics , 45 (3),
187–198.

Apley, D. W., & Shi, J. (1999). The GLRT for statistical process control of
autocorrelated processes. IIE Trans., 31 (12), 1123–1134.

Apley, D. W., & Tsung, F. (2002). The autoregressive T2 chart for monitoring
univariate autocorrelated processes. J. Qual. Technol., 34 (1), 80–96.

Asadzadeh, S., Aghaie, A., & Yang, S. F. (2008). Monitoring and diagnosing
multistage processes: A review of cause selecting control charts. J. Ind. Sys.
Eng., 2 (3), 214–235.

Bache, K., & Lichman, M. (2013). UCI Machine Learning Repository . University of
California, Irvine, School of Information and Computer Sciences.

Baggiani, F., & Marsili-Libelli, S. (2009). Real-time fault detection and isolation in
biological wastewater treatment plants. Water Sci. Technol., 60 (11),
2949–2961.

Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. J.
Chemometr., 17 (3), 166–173.

Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Comput., 15 (6), 1373–1396.

Bellman, R. (1961). Adaptive Control Processes: A Guided Tour . Princeton
University Press.

136

Bengio, Y., Delalleau, O., Le Roux, N., Paiement, J. F., Vincent, P., & Ouimet, M.
(2004). Learning eigenfunctions links spectral embedding and kernel PCA.
Neural Comput., 16 (10), 2197–2219.

Boulesteix, A.-L., & Strimmer, K. (2007). Partial least squares: a versatile tool for
the analysis of high-dimensional genomic data. Brief. Bioinform., 8 (1), 32–44.

Chang, W.-C. (1983). On using principal components before separating a mixture of
two multivariate normal distributions. Journal of the Royal Statistical Society.
Series C (Applied Statistics), 32 (3), 267–275.

Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart.
Technometrics , 58 (4), 448–459.

Choi, S. W., Lee, C. K., Lee, J. M., Park, J. H., & Lee, I. B. (2005). Fault detection
and identification of nonlinear processes based on kernel PCA. Chemometr.
Intell. Lab., 75 (1), 55–67.

Choi, S. W., & Lee, I. B. (2004). Nonlinear dynamic process monitoring based on
dynamic kernel PCA. Chem. Eng. Sci., 59 (24), 5897–5908.

Chouaib, C., Mohamed-Faouzi, H., & Messaoud, D. (2013). Adaptive kernel
principal component analysis for nonlinear dynamic process monitoring. In
Control Conference (ASCC), 2013 9th Asian, (pp. 1–6).

Cook, R. D., & Forzani, L. (2008). Covariance reducing models: An alternative to
spectral modelling of covariance matrices. Biometrika, 95 (4), 799–812.

Cook, R. D., & Weisberg, S. (1991). Sliced inverse regression for dimension
reduction: comment. J. Am. Stat. Assoc., 86 (414), 328–332.

Cook, R. D., & Yin, X. (2001). Theory & methods: Special Invited Paper:
Dimension reduction and visualization in discriminant analysis. Aust. N.Z. J.
Stat., 43 (2), 147–199.

Dong, D., & McAvoy, T. J. (1996). Batch tracking via nonlinear principal
component analysis. AIChE J., 42 (8), 2199–2208.

Eckart, C., & Young, G. (1936). The approximation of one matrix by another of
lower rank. Psychometrika, 1 (3), 211–218.

EPA (2000). Wastewater technology fact sheet: In-plant pump stations. Tech. Rep.
EPA 832-F-00-069, U.S. Environmental Protection Agency.

Fan, J., Ke, Z. T., Liu, H., & Xia, L. (2015). QUADRO: A supervised dimension
reduction method via Rayleigh quotient optimization. Ann. Stat., 43 (4),
1498–1534.

137

Fischer, K., & Thiele, C. (1979). On a distributionfree method in discriminant
analysis. Statistics , 10 (2), 281–289.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems.
Ann. Eugenic., 7 (2), 179–188.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. Boston:
Academic Press, 2nd edition ed.

Garcia-Munoz, S., Kourti, T., & MacGregor, J. F. (2004). Model predictive
monitoring for batch processes. Ind. Eng. Chem. Res., 43 (18), 5929–5941.

Ge, Z., & Song, Z. (2012). Multivariate Statistical Process Control: Process
Monitoring Methods and Applications. London: Springer-Verlag.

Geary, R. C. (1935). The ratio of the mean deviation to the standard deviation as a
test of normality. Biometrika, 27 (3-4), 310–332.

Gertler, J., Li, W., Huang, Y., & McAvoy, T. J. (1999). Isolation enhanced principal
component analysis. AIChE J., 45 (2), 323.

Gikas, P., & Tchobanoglous, G. (2009). The role of satellite and decentralized
strategies in water resources management. J. Environ. Manage., 90 (1),
144–152.

Golub, G. H., & Van Loan, C. F. (1996). Matrix Computations . JHU Press, 2 ed.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P.,
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., &
Lander, E. S. (1999). Molecular classification of cancer: Class discovery and
class prediction by gene expression monitoring. Science, 286 (5439), 531–537.

Gravier, E., Pierron, G., Vincent-Salomon, A., Gruel, N., Raynal, V., Savignoni, A.,
De Rycke, Y., Pierga, J.-Y., Lucchesi, C., Reyal, F., Fourquet, A.,
Roman-Roman, S., Radvanyi, F., Sastre-Garau, X., Asselain, B., & Delattre,
O. (2010). A prognostic DNA signature for T1t2 node-negative breast cancer
patients. Genes Chromosom. Cancer , 49 (12), 1125–1134.

Haff, L. R. (1979). Estimation of the inverse covariance matrix: random mixtures of
the inverse wishart matrix and the identity. Ann. Stat., 7 (6), 1264–1276.

Hartwig, R. E. (1986). The reverse order law revisited. Linear. Algebra. Appl., 76 ,
241–246.

Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical
learning: data mining, inference, and prediction: with 200 full-color
illustrations . Springer series in statistics. New York: Springer.

138

Hennig, C. (2004). Asymmetric linear dimension reduction for classification. J.
Comput. Graph. Stat., 13 (4), 930–945.

Huang, S., Kong, Z., & Huang, W. (2014). High-dimensional process monitoring
and change point detection using embedding distributions in reproducing
kernel Hilbert space. IIE Transactions , 46 (10), 999–1016.

Jearkpaporn, D., Borror, C. M., Runger, G. C., & Montgomery, D. C. (2007).
Process monitoring for mean shifts for multiple stage processes. Int. J. Prod.
Res., 45 (23), 5547–5570.

Johnson, R. A., & Wichern, D. W. (2002). Applied Multivariate Statistical Analysis .
Upper Saddle River, NJ: Prentice Hall, 5th ed.

Kano, M., Nagao, K., Hasebe, S., Hashimoto, I., Ohno, H., Strauss, R., & Bakshi,
B. (2000). Comparison of statistical process monitoring methods: Application
to the Eastman challenge problem. Comput. Chem. Eng., 24 (2), 175–181.

Kazor, K., Holloway, R. W., Cath, T. Y., & Hering, A. S. (2016). Comparison of
linear and nonlinear dimension reduction techniques for automated process
monitoring of a decentralized wastewater treatment facility. Stoch. Environ.
Res. Risk Assess., 30 (5), 1527–1544.

Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F.,
Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C., & Meltzer, P. S.
(2001). Classification and diagnostic prediction of cancers using gene
expression profiling and artificial neural networks. Nat Med , 7 (6), 673–679.

Kresta, J. V., MacGregor, J. F., & Marlin, T. E. (1991). Multivariate statistical
monitoring of process operating performance. Can. J. Chem. Eng., 69 (1),
35–47.

Krzanowski, W. J. (1992). Ranking principal components to reflect group structure.
J. Chemometrics , 6 (2), 97–102.

Kumar, N., Andreou, A. G., & Andreou, N. K. A. G. (1996). A generalization of
linear discriminant analysis in maximum likelihood framework.

Lee, H. C., & Apley, D. W. (2011). Improved design of robust exponentially
weighted moving average control charts for autocorrelated processes. Qual.
Reliab. Engng. Int., 27 (3), 337–352.

Lee, J. M., Yoo, C. K., & Lee, I. B. (2004). Statistical process monitoring with
independent component analysis. J. Process Contr., 14 (5), 467–485.

139

Leverenz, H. L., & Asano, T. (2011). 4.03 - Wastewater Reclamation and Reuse
System A2. In P. Wilderer (Ed.) Treatise on Water Science, (pp. 63–71).
Oxford: Elsevier.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. J. Am. Stat.
Assoc., 86 (414), 316–327.

Li, Y., & Tsung, F. (2012). False discovery rate-adjusted charting schemes for
multistage process monitoring and fault identification. Technometrics , 51 (2),
186–205.

Liu, H., & Motoda, H. (1998). Feature Extraction, Construction and Selection: A
Data Mining Perspective. Springer Science & Business Media.

Loog, M., & Duin, R. P. W. (2004). Linear dimensionality reduction via a
heteroscedastic extension of LDA: the Chernoff criterion. IEEE Trans.
Pattern. Anal. Mach. Intell., 26 (6), 732–739.

Mahanta, M. S., Aghaei, A. S., Plataniotis, K. N., & Pasupathy, S. (2012).
Heteroscedastic linear feature extraction based on sufficiency conditions.
Pattern Recogn., 45 (2), 821–830.

Miao, A., Song, Z., Ge, Z., Zhou, L., & Wen, Q. (2013). Nonlinear fault detection
based on locally linear embedding. J. Control Theory Appl., 11 (4), 615–622.

Nguyen, D. V., & Rocke, D. M. (2002). Multi-class cancer classification via partial
least squares with gene expression profiles. Bioinformatics , 18 (9), 1216–1226.

Ounpraseuth, S. T., Young, P. D., Van Zyl, J. S., Nelson, T. W., & Young, D. M.
(2015). Linear dimension reduction for multiple heteroscedastic multivariate
normal populations. OJS , 05 (04), 311.

Pavlidis, P. (2003). Using ANOVA for gene selection from microarray studies of the
nervous system. Methods , 31 (4), 282–289.

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine, 2 (11), 559–572.

Peck, R., Jennings, L. W., & Young, D. M. (1988). A comparison of several biased
estimators for improving the expected error rate of the sample quadratic
discriminant function. J. Stat. Comput. Sim., 29 (2), 143–156.

Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of
the Cambridge Philosophical Society , 51 (3), 406–413.

Peters, B. C., Redner, R., & Decell, H. P. (1978). Characterizations of Linear
Sufficient Statistics. Sankhya Ser. A, 40 (3), 303–309.

140

Qiu, P. (2013). Introduction to Statistical Process Control . Boca Raton, FL: CRC
Press.

Qiu, P., & Li, Z. (2012). On nonparametric statistical process control of univariate
processes. Technometrics , 43 (4), 390–405.

Rato, T. J., & Reis, M. S. (2013). Defining the structure of DPCA models and its
impact on process monitoring and prediction activities. Chemometr. Intell.
Lab., 125 , 74–86.

Raychaudhuri, S., Stuart, J. M., & Altman, R. B. (2000). Principal components
analysis to summarize microarray experiments: Application to sporulation
time series. Pac Symp Biocomput , (pp. 455–466).

Sanchez-Fernandez, A., Fuente, M. J., & Sainz-Palmero, G. I. (2015). Fault
detection in wastewater treatment plants using distributed PCA methods. In
2015 IEEE 20th Conference on Emerging Technologies Factory Automation
(ETFA), (pp. 1–7).

Satagopan, J. M., & Panageas, K. S. (2003). A statistical perspective on gene
expression data analysis. Statist. Med., 22 (3), 481–499.

Scholkopf, B., Smola, A., & Muller, K. R. (1998). Nonlinear component analysis as
a kernel eigenvalue problem. Neural Comput., 10 (5), 1299–1319.

Schott, J. R. (1994). Determining the dimensionality in sliced inverse regression. J.
Am. Stat. Assoc., 89 (425), 141–148.

Sheather, S. (2009). A Modern Approach to Regression with R. New York, NY:
Springer.

Sigillito, V. G., Wing, S. P., Hutton, L. V., & Baker, K. B. (1989). Classification of
radar returns from the ionosphere using neural networks. J. Hopkins Apl.
Tech. D., vol. 10 , 262–266. In.

Song, J. J., Ren, Y., & Yan, F. (2009). Classification for high-throughput data with
an optimal subset of principal components. Computational Biology and
Chemistry , 33 (5), 408–413.

Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., Hastie, T.,
Eisen, M. B., Rijn, M. v. d., Jeffrey, S. S., Thorsen, T., Quist, H., Matese,
J. C., Brown, P. O., Botstein, D., Lonning, P. E., & Borresen-Dale, A.-L.
(2001). Gene expression patterns of breast carcinomas distinguish tumor
subclasses with clinical implications. PNAS , 98 (19), 10869–10874.

141

Stavropoulos, P., Chantzis, D., Doukas, C., Papacharalampopoulos, A., &
Chryssolouris, G. (2013). Monitoring and control of manufacturing processes:
A review. Procedia CIRP , 8 , 421–425.

Sun, L., Hui, A.-M., Su, Q., Vortmeyer, A., Kotliarov, Y., Pastorino, S., Passaniti,
A., Menon, J., Walling, J., Bailey, R., Rosenblum, M., Mikkelsen, T., & Fine,
H. A. (2006). Neuronal and glioma-derived stem cell factor induces
angiogenesis within the brain. Cancer Cell , 9 (4), 287–300.

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science, 290 (5500),
2319–2323.

Torgerson, W. S. (1958). Theory and Methods of Scaling , vol. xiii. Oxford, England:
Wiley.

van’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A. M., Mao, M.,
Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber,
G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., & Friend,
S. H. (2002). Gene expression profiling predicts clinical outcome of breast
cancer. Nature, 415 (6871), 530–536.

Velilla, S. (2008). A method for dimension reduction in quadratic classification
problems. J. Comput. Graph. Stat., 17 (3), 572–589.

Velilla, S., & Hernandez, A. (2005). On the consistency properties of linear and
quadratic discriminant analyses. J. Multivariate Anal., 96 (2), 219–236.

Venables, W. N., & Ripley, B. D. (1999). Modern Applied Statistics with S-Plus
(Statistics and Computing). New York: Springer, 3rd ed.

Vuono, D., Henkel, J., Benecke, J., Cath, T. Y., Reid, T., Johnson, L., & Drewes,
J. E. (2013). Flexible hybrid membrane treatment systems for tailored
nutrient management: A new paradigm in urban wastewater treatment. J.
Membrane Sci., 446 , 34–41.

Wang, A., & Gehan, E. A. (2005). Gene selection for microarray data analysis using
principal component analysis. Statist. Med., 24 (13), 2069–2087.

Wang, H., Yin, J., Pei, J., Yu, P. S., & Yu, J. X. (2006). Suppressing Model
Overfitting in Mining Concept-drifting Data Streams. In Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining , KDD ’06, (pp. 736–741). New York, NY, USA: ACM.

Wang, J., & He, Q. P. (2010). Multivariate statistical process monitoring based on
statistics pattern analysis. Ind. Eng. Chem. Res., 49 (17), 7858–7869.

142

Weinberger, K. Q., & Saul, L. K. (2006). Unsupervised learning of image manifolds
by semidefinite programming. Int. J. Comput. Vision, 70 (1), 77–90.

Westfall, P. H., & Young, S. S. (1993). Resampling-Based Multiple Testing:
Examples and Methods for p-Value Adjustment . New York: John Wiley &
Sons.

Wise, B. M., Veltkamp, D. J., Davis, B., Ricker, N. L., & Kowalski, B. R. (1988).
Principal components analysis for monitoring the West Valley Liquid-Fed
Ceramic Melter. In Management of Radioactive Wastes, and Non-Radioactive
Wastes from Nuclear Facilities , vol. 20. Tucson, AZ.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis.
Chemometr. Intell. Lab., 2 (1), 37–52.

Young, D. M., Marco, V. R., & Odell, P. L. (1987a). Quadratic discrimination:
Some results on optimal low-dimensional representation. J. Stat. Plan. Infer.,
17 , 307–319.

Young, D. M., Turner, D. W., & Marco, V. R. (1987b). Some results on error rates
for quadratic discrimination with known population parameters. Biom. J.,
29 (6), 721–730.

Zhang, W., Liu, X. Y., Qi, R. L., & Jiang, Y. (2013). Improved locally linear
embedding based method for nonlinear system fault detection. Chi. Acad. Sci.
Int. J. Adv. Comp. Tech., 5 (1).

Zheng, Y. P., & Zhang, L. P. (2013). Fault Diagnosis of Wet Flue Gas
Desulphurization System Based on KPCA. In E. Qi, J. Shen, & R. Dou (Eds.)
The 19th International Conference on Industrial Engineering and Engineering
Management , (pp. 279–288). Springer Berlin Heidelberg. DOI:
10.1007/978-3-642-37270-4 27.

Zou, C., Jiang, W., & Tsung, F. (2011). A LASSO-based diagnostic framework for
multivariate statistical process control. Technometrics , 53 (3), 297–309.

143

