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The recent discovery of GW140915 and the confirmation of the existence of

gravitational waves (GWs) has garnered the attention of many physicists as they

seek to understand their behavior as they travel across the universe. In this dis-

sertation, one will find the study singularities which may arise in plane GWs, and

cosmological perturbations may affect GWs as they propagate through an expand-

ing, inhomogeneous universe. It is found that in the BJR coordinates, singularities

arise at the focused point u = us, except in the two cases: (i) α = 1/2,∀ χn, and

(ii) α = 1, χi = 0, where χn are the coefficients in the expansion and α is a parame-

ter. When observing GWs produced from remote astrophysical sources, one finds that

there are three scales to consider, λ, Lc, and L which denote the typical wavelength

of the GW, the scale of the cosmological perturbations, and the size of the observable

universe, respectively. The Einstein equations were calculated for GWs on the cos-

mic scale, and the geometric optics approximation found the gravitational integrated

Sachs-Wolfe effects created by both the cosmological scalar and tensor perturbations.
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“Deep in the human unconscious is a pervasive need for a logical universe that

makes sense. But the real universe is always one step beyond logic.” - Frank Herbert
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CHAPTER ONE

Introduction to General Relativity

1.1 Gravitational Theory

During the 1500’s the foundation for a more modern gravitational theory be-

gan with Italian astronomer and physicist Galileo Galilei as he studied the motion of

objects and celestial bodies. As an astronomer, he was able to devise a more precise

telescope for watching the stars and rigorously track the movement of the celestial

bodies. He was the first to discover the moons Io, Europa, Ganymede, and Callisto

orbiting Jupiter. As a natural philosopher, he studied the motion of objects from

pendulums to falling bodies. He proposed that all bodies fall with uniform acceler-

ation, as the acceleration is independent from its mass. This idea was the basis for

Newton’s first law of motion. Galileo’s work on falling bodies stood as the basis for

Newton’s theory of gravity.

Around the same time, astronomer Johannes Kepler was able to describe the

movements of planets with his three laws of planetary motion developed in his books

Astronomia nova and Harmonices mundi [2,3]. The findings stated: (i) every planet

moves in an ellipse with the Sun at the center of one of the to foci, (ii) a planet

moving relative to the Sun sweeps out equal areas in equal time intervals, and (iii)

the square of a planet’s orbital period is proportional to the cube of the semi-major

axis of its orbit.

Only one year after Galileo passed away, Isaac Newton was born in 1643 in

England. Having been inspired by the works of the natural philosophers like Galileo,
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Newton began devising a way to explain the effects of gravity. Newton developed

Calculus as the mathematical language which he would describe the world. This was

the beginning of the modern form of physics that we see today in which phenomena

are described using mathematical equations. The culmination of his work led to his

Universal Law of Gravitation, published in Philosophiæ Naturalis Principia Mathe-

matica in 1687 [1]. In these writings, Newton stated his three Laws of Motion: (i)

the law of inertia, (ii) the law of dynamics, and (iii) the law of action and reaction.

Newton’s theory developed the idea that mass creates a gravitational potential

which creates an attractive force between it and all other masses in the form of the

gravitational force,

~Fg = −Gm1m2

r2
r̂ (1.1)

The strength of the gravitational force is proportional to inverse square law, and G

is the gravitational constant valued at G = 6.67410−11 m3kg−1s−2. Newton’s theory

was highly successful as it is able to accurately describe the motions of the planets

in the solar system, producing Kepler’s results. The theory is also able to predict

the equations of motions of objects, describing their trajectory and movement when

subjected to the gravitational force. Even though Newton’s theory has had great

success, it is not a perfect theory and has some shortcomings. Newton’s theory of

gravitation holds that time is an absolute value, and that the gravitational forces

between objects act instantaneously. Observational experiments have shown that

light falls, and therefore is subject to the gravitational force even though light has

no mass. The theory is also unable to account for the anomalous precession of the
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perihelion of Mercury’s orbit around the Sun. Newton’s theory also struggles when

dealing with velocities that approach the speed of light.

In 1905, Einstein published a series of articles called Annus Mirabilis [4] where

he proposed his theory of relativity that is based on two postulates: (i) All inertial

observers are equivalent, and the laws of physics are invariant in an inertial frame,

and (ii) The speed of light is constant, and the same for all observers. Einstein’s ideas

toss aside Newton’s proposals of absolute space and time, stating that all events are

relative. Space and time are no longer separate quantities, but are connected to

each other, and measuring them depends on the frame of the observer. Einstein

updated the Galilean transformation, which connects two inertial frames of reference,

to account for time and relativistic moving bodies:

t′ = β

(
t− vx

c2

)
x′ = β(x− vt)

y′ = y

z′ = z. (1.2)

These are the Lorentz transformations for a test body moving in the x-direction, and

where one can define the Lorentz factor:

β =
1√

1− v2/c2
(1.3)

The Lorentz factor shows that an observer in one inertial frame of reference can mea-

sure length and time differently than another inertial observer in the manifestation of

length contraction and time dilation. But if all inertial observers are equivalent, then

there must be some invariant quantity that relates the results of the two observers.
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Einstein stated that the square of the interval between two events must remain in-

variant under a Lorentz transformation, similar to the manner in which the square of

the distance remains invariant under a Galilean transformation. If one looks at the

infinitesimal interval between two events, there is

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1.4)

This is the invariant four-dimensional spacetime called Minkowski spacetime, which

is flat and provides the background geometry.

So far, this theory only applies to situations that are in inertial frames, making

it a special case of relativity. In 1915, Einstein generalized his theory in which gravity

worked into his formulation [5]. Including gravity allows for non-inertial reference

frames, where he made the realization that a frame that is linearly accelerated relative

to an inertial frame is identical to that of a frame that is at rest in a gravitational

field, and an observer would not be able to tell the difference. The mathematical

framework of general relativity relies on adopting an all-encompassing tensorial form.

To start, the line element can be written in the form,

ds2 = gµνdx
µdxν (1.5)

where the metric, gµν , will be the building block for the Einstein equations. The

metric is a rank-2 symmetric tensor that defines the distances and lengths of vectors

in the space time. If the norm of the vector Xµ is zero, then Xµ is said to be

a null vector and classifies things like light-ray geodesics. The metric also defines

the orthonormality of vectors, where it is said that two vectors Xmu and Y µ are

orthogonal if

gµνX
µY ν = 0. (1.6)
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The metric can also be inverted by the definition

gµλg
λν = δνµ, (1.7)

where δνµ is the identity tensor. Using the metric, one can also raise and lower indices

on any type of tensor, with the exception of rank-0 tensors, which are scalar values

and contain no indices, by

gµλX
µν...
αβ... = Xν...

λαβ...,

gαλXµν...
αβ... = Xµνα...

β.... (1.8)

Now that the metric is defined, one can now use it to start building up Ein-

stein’s field equations. First, there needs to be a new way to take a derivative using

a covariant derivative. Since the space is no longer flat, there needs to be an extra

term added to the derivative, called the Christoffel symbols, which describes how the

metric deviates along a curved space. The Christoffel symbols are defined as

Γλµν =
1

2
gλρ
(
gµρ,ν + gρν,µ − gµν,ρ

)
, (1.9)

where partial derivatives are written as ∂ρgµν = gµν,ρ. With this termed defined, the

covariant derivative of a generic mixed tensor can be written as

∇ρT
µ...
ν... = ∂ρT

µ...
ν... + ΓµρλT

λ...
ν... + ...− ΓλρνT

µ...
λ... − ... . (1.10)

With the covariant derivatives defined, along with the Christoffel symbols we can now

define the Riemann tensor, otherwise known as the curvature tensor which depends

on the second derivatives of the metric and is defined as

Rα
βµν = ∂µΓαβν − ∂νΓαβµ + ΓλβνΓ

α
λµ − ΓλβµΓαλν . (1.11)

The Riemann tensor is an anti-symmetric tensor defined by

Rαβµν = −Rβαµν = Rµναβ. (1.12)
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The Ricci tensor is formed by contracting the upper index α, with the lower index µ,

Rµν = Rα
µαν . (1.13)

Taking a trace of the Ricci tensor gives the Ricci scalar,

R = GµνRµν , (1.14)

which gives everything needed to construct Einstein’s field equations,

Rµν −
1

2
gµνR =

8πG

c4
Tµν (1.15)

where Tµν is the energy-momentum tensor which accounts for things like matter,

perfect fluids, or electromagnetic fields. The left-hand side of the equation describes

the curvature of space, whether it is flat or curved. The right hand side describes

matter makeup of the universe. One can conclude from this equation that matter

creates curvature in space, and space describes how matter is distributed. A massive

object, like the Sun, bends space around it, and the gravity generated by the Sun is

a manifestation of this curvature.

In order for the general theory of relativity to be valid, then it must match

previous predictions made by gravity, as well as provide some of the predictions made

by general relativity.

1.2 Tests of General Relativity

Since his development of general relativity in 1915, Einstein proposed three

tests that would determine the validity of his theory. In this next section the classical

tests of general relativity will be discussed in the chronological order in which they

were confirmed
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1.2.1 The Precession of the Perihelion of Mercury

The first evidence of the validity of general relativity was the prediction of

the precession of the perihelion of mercury. When Newton developed his theory of

gravitation, he was able to accurately describe the motions of the planets that circle

the Sun. There was one problem that was present in Newtonian theory, the precession

of Mercury’s perihelion. The planet’s motion seemed to align perfectly with Newton’s

predictions until French astronomer Urbain Le Verrier began studying the data from

the orbit of Mercury around the Sun. He noticed that the perihelion of Mercury

had a slow precession about its perihelion, which was not accounted for by Newton’s

theory. Le Verrier proposed the existence of another planet, even closer to the Sun

that he named Vulcan, to explain why Mercury’s orbit was so strange. Since then,

physicists attempted to calculate the period of this precession and were able to get

so close as to only have a remainder of 43 arcseconds/century unaccounted for. From

Newtonian gravity, the equations of motion of a particle in orbit, known as Binet’s

equation, are written as

d2u

dφ2
+ u =

Gm

h2
, (1.16)

where u = 1/r, φ is the polar angle and h = L/m is a constant where L is the angular

momentum.

In 1915 Einstein was able to apply his equations to the problem. Using GR,

Einstein developed his own equation of motion for Mercury using general relativity,

and was able to provide the equation,

d2u

dφ2
+ u =

Gm

h2
+

3Gm

c2
u2. (1.17)

7



We can see the differences in the two equations, where there is an extra term in the

equation, which perfectly provides the missing remainder of 43 arcseconds/century

that was needed to match observational results.

1.2.2 Deflection of Light

Another one of Einstein’s predictions from his theory of relativity is that light

will bend through curved spacetimes. The Einstein equivalence principle states that

an observer cannot tell the difference between being in uniform acceleration or being

under the influence of gravity. Since gravity is related to spacetime curvature, Einstein

proposed that light would follow null geodesics that follow the curvature of space.

This means the light rays moving across space would not necessarily follow straight

line paths and that light moving near a massive object would have a deflection as it

passed near the massive object as it was drawn in by its curvature. The experiment

to prove this was to utilize a solar eclipse. If one was able to measure the stars at

night in the exact position that the solar eclipse was to occur, then during totality

when the moon has completely eclipsed the sun one can take pictures again of the

stars around the sun and compare the two pictures. Einstein calculated the deflection

of light rays “which just graze the Sun” to be a 1.75 arcsecond deflection.

The perfect time to measure this phenomenon was approaching with the solar

eclipse of 1919 [8]. This task was taken up by English astronomer Sir Arthur Edding-

ton, where he took two expeditions to different spots to view the total solar eclipse.

One team went to Sobral, Brazil while the other team, along with Eddington, went to

the island of Pŕıncipe in Africa. The teams designed to take pictures of the Hyades
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Figure 1.1: Light passing nearby a massive object with have its trajectory deflected.
The result of such deflection cumulates in an apparent position of the light source
that does not reflect its actual position in the sky [150].

star cluster, which would be directly behind the point where the solar eclipse was go-

ing to take place in the sky. Comparing the before and after pictures, Eddington and

his team were able to conclude that the positions of the stars had changed between

the two pictures, confirming the fact that massive bodies bend light rays.

1.2.3 Gravitational Redshift

The last of the classical tests put forth by Einstein to verify his theory of

general relativity was the prediction of a gravitational redshift. Photons travelling

out of a gravitational well should naturally lose some of their energy as they leave.

The loss of energy will manifest in a change of frequency, shifting the light towards

red. This prediction took a while to actually prove. In the 1959 two physicists,

Robert Pound and Glen Rebka, developed an experiment to test it [9,10]. The setup

was simple, to shoot photons from an iron (Fe) emitter upwards and measure the

frequency shift in the spectral lines. The reason that this was difficult in the first

place is that photons being emitted from the Fe emitter would exchange momentum

with the nuclei which would lower a photon’s overall energy, shifting it towards red.
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Figure 1.2: An illustration of the experiment carried out by Pound and Rebka. In a)
one sees photons released by the Fe emitter being redshifted and passing through the
detector at the other end. In b) we see the detector moving at speed v toward the Fe
emitter where the photons are absorbed by the detector [11].

To truly test whether the redshift was due to gravitation or a Doppler effect, they

made use of the Mössbauer effect, which allowed for recoil-free emissions of photons.

This keeps a photon’s energy the same as it leaves the lattice that the Fe emitter

source was placed in, and ensures that any redshift would be due to a photon leaving

the gravitational well.

In the first part of the experiment, Pound and Rebka emitted photons from

the Fe emitter, which were gravitationally redshifted and passed straight through the

stationary Fe detector. The experiment did not detect Fe spectral lines due to this

gravitational red shift. In the second part of the experiment, the Fe detector was

moving down at a constant velocity toward the emitter. Doing this creates a Doppler

blueshift in the Fe spectral lines coming from the emitter. Pound and Rebka were able

to calculate the speed at which the Fe detector should move in order to completely

cancel out the effects of gravitational redshift. In this part of the experiment, the
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Fe detectors were able to detect the spectral lines, indicating that the redshift was

indeed from the photon moving through a gravitational well, confirming Einstein’s

prediction of gravitational red shift.

1.3 Predictions of General Relativity

There have been two predictions made by GR that have only been recently

confirmed. Einstein’s equations predicted the existence of black holes (BHs) and

gravitational waves (GWs). A BH was theorized to be an object whose mass was

so large that it creates an area of intense gravitational pull so strong that light can-

not escape it. GWs are a direct result from linearizing the metric into background

and perturbation terms, which produces wave equations. These GWs were found to

propagate at the speed of light, and cause ripples in spacetime itself, bending and

stretching space or any object that they pass through.

An important note before we move on, for the rest of the dissertation we shall

adopt the convention of natural units setting c = G = 1 where c is the speed of

light, and G is the gravitational constant. These units are useful in that we can treat

all dimensions (t, x, y, z) with the same units of length which allows us to simplify

equations.

1.3.1 Black Holes

The first person to find a solution to Einstein’s field equations was Karl

Schwarzschild, a German physicist, one year after the field equations were formu-

lated in 1916. Schwarzschild developed the solution for a static mass, yielding the

Schwarzschild metric,

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2dθ2 + r2sin2θdφ2. (1.18)

11



By examining this metric, we can notice that there are two areas for singularity found

in it. The first being at r = 0, which would be the point at which the mass resides.

The second singularity resides at the point r = 2m, which has become known as the

Schwarzschild radius, rs. This radius helps classify exactly what a black hole is, which

is any object whose radius is smaller than its Schwarzschild radius. It was realized in

1958 that the Schwarzschild radius was the black hole’s event horizon.

In 2020 physicists were first able to image the shadow of the M87 BH [64–69].

Imaging BHs is a difficult task because they are black and do not emit light them-

selves. That is not to say that the whole area around a BH is dark though; due to

the high gravity in the area, BHs are able to capture light rays and put them into

unstable circular orbits. The unstable orbits cause some of the photons to fall into

the BH which can never be observed, and allows for some of the photons to escape

just before they get to the event horizon. These pictures have confirmed the existence

of BHs and have shown the validity of GR through its predictions of these objects.

1.3.2 Gravitational Waves

The last prediction of general relativity that we will discuss is the prediction

of gravitational waves made in 1916, one year after GR was formulated. GWs are

formed by linearly expanding the metric around a flat background metric,

gµν = γµν + εhµν , (1.19)

where γµν is the flat background metric, and hµν is a perturbation in the space time.

The smallness parameter ε corresponds to the ratio of the gravitational wavelength

and the size of the observable universe, making ε� 1. Expanding upon the Einstein

field equations, one is able to produce a wave equation for the perturbation in the
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absence of matter, Tµν = 0,

�h̄µν = 0. (1.20)

Here, the d’Alembert operator is defined as � = −∂2t + ∇2, and the trace-reversed

perturbation is h̄µν = hµν − 1
2
γµνh, and h is the trace, defined as h = γµνhµν . This

equation shows that GWs, which are perturbations in spacetime, travel at the speed

of light. These GWs have extremely small amplitudes and are difficult to detect

without precise equipment.

Plane gravitational waves are parallel-propagated along null geodesics and

oscillate in perpendicular to the direction of travel. The canonical form of the plane

GW propagating along the z-direction takes the form

hµν =



0 0 0 0

0 0 0 0

0 0 h22 h23

0 0 h32 −h22


. (1.21)

As the matrix shows, the GW relies only upon two functions, h22(t−z) and h23(t−z),

which are functions of t and z, and propagates along the z-direction. We can infer from

this that two polarization states arise from plane GWs in which the ”+” polarization

state is related to the h22 term, and the ”×” polarization state is related to the h23

terms. These two polarization states create oscillation effects that can be measured

by laser interferometers. If the GWs passed through a ring of test particles, then the

”+” polarization and the ”×” polarization have oscillations that looks like those in

Figure 1.3.

In the 1960’s, experiments were devised to create equipment that could actu-

ally detect these waves. The idea was that very precise laser interferometers would be
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Figure 1.3: The effects of a gravitational wave passing through a ring of test particles.
The passing wave displaces the particles depending on the + or × polarization [145].

able to detect the passing of a GW. Using laser interferometers set up perpendicular

to each other, the lasers would be able to detect distortions in space as the GW passes.

As the wave passes through the arms of the interferometer, one arm will stretch while

the other shrinks. The variation in the arm length creates a phase difference between

the two beams that can be measured. Using the laser interferometer, detectors were

constructed around the 2000’s including LIGO, Virgo, TAMA 300, and GEO 600. In

2016, LIGO was the first to confirm the existence of GWs with GW150914. LIGO,

which uses interferometer arms 4 km long, was able to measure the GWs emitted in

the merger of a binary black hole system, confirming the existence of gravitational

waves [60–63]. The merger involved two black holes with masses, m1 = 29M� and

m2 = 36M�, where M� denotes the solar mass, M� ' 2×1030kg. The coalescence of

the two BHs consists of three phases. First is the orbital inspiral, which is the state

that the two masses are in as they orbit around each other. When the two bodies
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Figure 1.4: Data for the merger of GW150914. The frequency of the black holes GWs
increases from 35Hz to 150Hz over 0.2s, where the amplitude reaches a maximum at
their merger [17].

are sufficiently close to each other they go through the merger phase, where the two

bodies are coalescing into one body. The last part is the ringdown phase where the

new BH comes into equilibrium and the generation of GWs disappears.

1.4 Structure of the Dissertation

The rest of the dissertation will be organized as follows: Ch. 2 discusses the

work found in [12]; the work was led by Tongzheng Wang under the supervision of

Anzhong Wang, where Tongzheng and the rest of the authors completed the calcu-

lations and checked the work. Ch. 3 discusses the work found in [59]; the work was

led by myself under the supervision of Anzhong Wang, with the other authors also
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contributing to the derivations and discussions of the research presented. Ch. 4 sum-

marizes the results of the works presented as well as provide some final concluding

remarks.

Ch. 2 gives a brief review over the singularities appearing in the BJR coor-

dinates, and then the study of tidal forces and distortions felt by a typical class of

observers, whose movements are confined within the (u, v)−plane, and show explicitly

that tidal forces and distortions of these observers are finite in only two cases. Since

a lot of studies of memory effects of GWs have been carried out in the Brinkmann

coordinates, the singular behavior of the hypersurface u = us in the Brinkmann coor-

dinates will be considered and one will find that the singular behavior of the function

A(u) is the only function to appear in the Brinkmann metric.

Ch. 3 begins by introducing the three different length scales, λ, Lc, and L

and it is shown that for GWs to be detected by the current and foreseeable ground-

and space-based detectors, such GWs can be well approximated as high frequency

GWs. The Einstein field equations are then derived and one finds that, to make the

backreaction of the GWs to the background negligible, as well as to have the linearized

Einstein field equations for hµν to be valid, |hµν | � 1 must hold. There is also a brief

review on the cosmological background that consists of both the cosmological and

tensor perturbations. The gauge conditions are next considered and it is shown that

the three different gauge conditions, the Lorenz, traceless, and spatial gauges, can be

imposed simultaneously, even when the background spacetime is not in vacuo as long

as the high frequency approximations are valid. By imposing only the spatial gauge

condition, one can write the Einstein field equations for the GWs. Next, we study

the GWs with the geometrical optics approximation, and calculate the effects of the

16



cosmological scalar and tensor perturbations on the amplitudes and phases of such

GWs, and find the explicit expressions of the integrated Sachs-Wolfe effects due to

both the cosmological scalar and tensor perturbations.
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CHAPTER TWO

Singularities of Plane Gravitational Wave spacetimes in General Relativity

This chapter is published as [12]: T. Wang, J. R. Fier, B. Li, G. Lv, Z. Wang, Y.
Wu, A. Wang,” Singularities of plane gravitational waves and their memory effects,”

Gen. Relativity and Gravitation, 52 (2020) 21

2.1 Introduction

The memory effects of gravitational waves (GWs) have attracted a lot of at-

tention (see, for example, [13–16] and references therein), especially after the re-

cent observations of several GWs emitted from remote binary systems of either

black holes [17–20] or neutron stars [21]. Such effects might possibly be detected

by LISA [23] or even by the current generation of detectors, such as LIGO and

aVIRGO [24]. Recently, such investigations gained new momentum due to the close

relations between asymptotically symmetric theorems of soft gravitons and GW mem-

ory effects [25, 26]. The characteristic feature of these effects is the permanent dis-

placement of a test particle after the burst of a GW passes [27–32]. In addition,

the passage of the GW affects not only the position of the test particle, but also its

velocity. In fact, the change in the velocity of the particle is also permanent [33–37].

When far from the sources, the emitted GWs can be well-approximated by plane

GWs, a subject that has been extensively studied, including their nonlinear interac-

tions [38–40]. The spacetimes for plane GWs can be cast in various forms, depending

on the choice of the coordinates and gauge-fixing. One of these was originally due to

Baldwin, Jeffery and Rosen (BJR) [41,42]. Despite its several attractive features, the

system of the BJR coordinates is often singular within a finite width of a wave, and
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when studying the asymptotic behavior of the spacetime, an extension beyond this

singular surface is needed. In this, one can notice that there exist two kinds of singu-

larities in plane gravitational wave spacetimes, one represents coordinate singularities,

which can be removed by proper coordinate transformations, and the other represents

spacetime singularities, and physical quantities, such as distortions of test particles,

become infinitely large when such singularities are approaching. Therefore, in the

latter case these singularities already represent the boundaries of the spacetimes and

extensions beyond them are not only impossible, but also not needed. Since gravita-

tional memory effects and soft graviton theorems are closely related to the asymptotic

behaviors of plane GW spacetimes, in the latter the spacetimes cannot be used to

study such properties.

In general relativity, there are powerful Hawking-Penrose theorems [43], from

which one can see that spacetimes with quite “physically reasonable” conditions are

singular. However, the theorems do not tell the nature of the singularities, and Ellis

and Schmidt classified them into two different kinds, spacetime curvature singular-

ities and coordinate singularities [44]. Spacetime curvature singularities are further

divided into two sub-classes, scalar curvature singularities and non-scalar curvature

singularities. If any of the fourteen independent scalars [48] constructed from the 4-

dimensional Riemann tensor Rµνλσ and its derivatives is singular, then the spacetime

is said to be singular, and the corresponding singularity is a scalar one. If none of

these scalars is singular, spacetimes can be still singular. In particular, tidal forces

and/or distortions (which are the double integrals of the tidal forces), experienced

by an observer, may become infinitely large [49]. This kind of singularity is usually

referred to as a non-scalar curvature singularity.
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In the spacetimes of plane GWs, all the fourteen independent scalars vanish

identically [38, 39], so in such spacetimes the singularities can be either non-scalar

(but real spacetime) singularities or coordinate singularities. In this chapter, we shall

clarify this important point, by studying tidal forces and distortions of freely falling

observers. In particular, we find that the singularities can be in general characterized

by

χ(u) ≡ e−U(u)/2 =
(
u− us

)α
χ̂(u) (2.1)

where the plane GWs are moving along the null direction of u = Constant, χ(u) is

defined in Eq.(2.1), α > 0, and χ̂(u) is given by Eq.(2.25) with χ̂ 6= 0. The Einstein

vacuum field equations require 0 < α ≤ 1. Then, one finds that the tidal forces and

distortions are finite across the singular surface,

u = us, (2.2)

only in two particular cases,

(i) α =
1

2
, ∀ χn

(ii) α = 1, χi = 0 (i = 1, 2, 3), (2.3)

where χn are the coefficients appearing in the expansion in Eq.(2.25). Therefore, all

the plane GW spacetimes are physically singular at the focused point u = us, the only

exceptions being the ones with α = 1
2

or 1. As a result, all the plane GW spacetimes

cannot be used to study memory effects and soft graviton theorems, except the ones

with α = 1
2

, 1, as only these spacetimes can possibly be extended to null infinity,

whereby memory effects and soft graviton theorems can be studied.

It should be noted that, although the measurement of the physical states in

the parameter space α ∈ (0, 1] is infinitesimal, there still exist an infinite number of
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Figure 2.1: A plane gravitational wave moving along the null surfaces u = constant,
with support only in the region 0 ≤ u ≤ u0, where Ψ4 denotes the only non-vanishing
component of the Weyl tensor, and is given by Eq.(2.6) in the linearly polarized case.

solutions of the Einstein field equations, which satisfy the asymptotic properties of

Eq.(2.1) and (2.3) at the focusing point u = us. This can be seen clearly when one

works in the Brinkmann coordinates [51], as to be shown below.

2.2 Singularities in spacetimes of Plane Gravitational Waves

The spacetimes for plane GWs in BJR coordinates can be cast in the form [38–40],

ds2 = −2e−Mdudv+e−U
[
eV cosh(W )dy2−2sinh(W )dydz+e−V cosh(W )dz2

]
, (2.4)

where M , U , V and W are functions of u only. The spacetime in general represents a

plane GW moving along the null surfaces u = Constant with two polarizations, one

is along the y-axis, often referred to as the “+” polarization, and the other is along

an axis which is at a 45° angle with respect to the y-axis, often referred to as the “×”
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polarization. According to the Petrov classifications, the corresponding spacetimes

belong to Petrov Type N [38,39].

When the metric coefficients are functions of both u and v, an interesting phe-

nomenon arises, the gravitational Faraday rotation, in this case, the medium is pro-

vided by the nonlinear interaction of the oppositely moving gravitational wave [40,52,152].

2.3 Linearly Polarized Plane Gravitational Waves

Note that by rescaling the null coordinate u→ u′ =
∫
e−M(u)du, without loss

of the generality, one can always set,

M = 0, (2.5)

a gauge that will be adopted in this chapter. In addition, for our current purpose, it

is sufficient to consider only the linearly polarized case in which W = 0, so the metric

takes the simple form

ds2 = −2dudv + e−U(u)

(
eV (u)dy2 + e−V (u)dz2

)
. (2.6)

It can be shown that the corresponding Riemann tensor has only two independent

components, given, respectively, by

Ruyuy =
1

4
e−(U−V )

[
2(U ′′ − V ′′)− (U ′ − V ′)2

]
(2.7)

Ruzuz =
1

4
e−(U+V )

[
2(U ′′ + V ′′)− (U ′ + V ′)2

]
, (2.8)

where U ′ ≡ dU/du, etc. All the fourteen independent scalars [48], made of the

Riemann tensor and its derivatives, vanish identically [38, 39], so there are no scalar

singularities in the spacetimes of plane GWs.

Decomposing the Riemann tensor into the Weyl and Ricci tensor [38,39], each

has only one independent component. In particular, the independent component of
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the Ricci tensor is given by

Ruu = U ′′ − 1

2

(
U ′2 + V ′2

)
, (2.9)

while the independent component of the Weyl tensor is given by

Ψ4 ≡ −Cµναβnµm̄νnαm̄β = −1

2
A2
(
V ′′ − U ′V ′

)
(2.10)

which represents the plane GWs propagating along the hypersurfaces u = Const., as

illustrated in Figure 2.1, where

lµ ≡A−1δµv ,

nµ ≡Aδµu ,

mµ ≡ζ2δµ2 + ζ3δµ3 ,

m̄µ ≡ζ̄2δµ2 + ζ̄3δµ3 , (2.11)

form a null tetrad with A being an arbitrary function of u only, and

ζ2 ≡ e(U−V )/2

√
2

, ζ3 ≡ i
e(U+V )/2

√
2

. (2.12)

(an over bar denotes the complex conjugate). As noticed on various occasions, the

BJR coordinates are not harmonic, typically not global, and contain coordinate sin-

gularities, see, for example, [14,54,55]. To overcome these problems, the Brinkmann

coordinates (û, v̂, ŷ, ẑ) are often used, defined by

v̂ ≡v +
1

4
y2eV−U

(
V ′ − U ′

)
− 1

4
z2e−V−U

(
V ′ + U ′

)
,

û ≡u,

ŷ ≡e(V−U)/2y,

ẑ ≡e−(V+U)/2z, (2.13)
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in terms of which, the metric (2.6) takes the form [51]

ds2 = −2dûdv̂ + dŷ2 + dẑ2 +
1

2
A(û)

(
ŷ2 − ẑ2

)
dû2, (2.14)

where

A(û) ≡ 1

2

[
2
(
V ′′ − U ′′

)
+
(
V ′ − U ′

)2]
. (2.15)

As mentioned previously, this chapter serves to point out that these singularities

are not always due to the coordinates. In fact, all singularities are real spacetime

singularities at the focused point u = us, except the ones that asymptotically behave

as that given by Eqs.(2.1) and (2.3) at the neighborhood of the focused point. To

verify this claim, one finds that it is easier to work in the BJR coordinates. Since the

nature of singularities does not depend on the choice of coordinates, they must be

singular in any coordinate system, including the Brinkmann system of coordinates.

2.4 Spacetime Singularities

In the vacuum case, the Einstein field equations Rµν = 0 have only one in-

dependent component, given by Ruu = 0, and from Eq.(2.9) we find that it can be

written as

χ′′ + ω2χ = 0, (2.16)

where

χ ≡ e−U/2, ω ≡ 1

2
V ′. (2.17)

Then, from Eq.(2.16) one can see that, for any given initial value, χ(us) > 0, there

always exists a moment, say, u = us at which χ vanishes [14],

χ(us) = 0, or U(us) = +∞, (2.18)
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that is, a singularity of the metric (2.6) appears at u = us, which is surely not a

scalar singularity, since, as mentioned above, all the fourteen independent scalars

made of the Riemann tensor in such spacetimes vanish identically. Even from this,

one cannot immediately tell if the singularity is a coordinate or physical singularity,

as non-scalar spacetime singularities may be present [44]. In particular, distortions

of a freely falling observer, which is the double integral of the tidal force with respect

to the proper time of the observer, can diverge [49].

To calculate distortions of a freely falling observer, first consider the trajectory

of the observer. In the present chapter, we just consider trajectories in the (u, v)-

plane, that is, (u, v, y, z) = (u(λ), v(λ), y0, z0), where λ denotes the proper time of the

observer, and y0 and z0 are constants. Then, the time-like geodesics are simply given

by

u = γ0λ, v =
λ

2γ0
, , y = y0, z = z0, (2.19)

where γ0 is an integration constant. One will define eµ(0) ≡ dxµ/dλ, one can construct

a tetrad, eµ(a) (a = 0, 1, 2, 3) by

eµ(0) =γ0δ
µ
u +

1

2γ0
δµv ,

eµ(1) =γ0δ
µ
u −

1

2γ0
δµv ,

eµ(2) =e(U−V )/2δµy ,

eµ(3) =e(U+V )/2δµz , (2.20)

which satisfies the relations

eµ(α)e
ν
(β)gµν = ηαβ, e

µ
(α);ve

v
(0) = 0. (2.21)
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That is, they are unit orthogonal vectors and are parallelly transported along the

time-like geodesics, so that they form a freely falling frame [49]. Then, the projection

of the Riemann tensor onto this frame

R(a)(b)(c)(d) ≡ Rµνλρe
µ
(a)e

ν
(b)e

λ
(c)e

ρ
(d), (2.22)

yields two independent components:

R(0)(2)(0)(2) = γ20e
U−VRuyuy,

R(0)(3)(0)(3) = γ20e
U+VRuzuz, (2.23)

where Rµνλρ’s are given by Eqs.(2.7) and (2.8).

To study the nature of the singularities at u = us, one assumes that in the

neighborhood of u = us, the function χ takes the form,

χ(u) = (u− us)αχ̂(u), (2.24)

where α > 0 and χ̂(us) 6= 0. Thus, expanding it as

χ̂(u) =
∞∑
n=0

χn(u− us)n, (2.25)

one must assume that χ0 6= 0, since χ̂(us) 6= 0. Then, using Eqs.(2.16) and (2.17) it

is shown that,

V ′ =

(
− 4χ′′

χ

)1/2

=
2

u− us

[
α(1− α)− 2α(u− us)

χ̂′

χ̂
− (u− us)2

χ̂′′

χ̂

]1/2
,

U =− 2ln(χ) = −2αln(u− us)− 2ln
[
χ̂(u)

]
. (2.26)

Note that in writing the above expression for V ′ we had chosen the plus sign, without

loss of generality. To study the singular behavior of the solutions at the focused point
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further, it is found to be convenient to consider the cases with and without α = 1

separately.

2.4.1 α=1

In this case, inserting Eq.(2.25) into Eq.(2.26), one obtains,

V ′ =
2
√
−2χ1

χ0

(u− us)1/2
∞∑
n=0

vn(u− us)n,

V ′′ =
2
√
−2χ1

χ0

(u− us)3/2
∞∑
n=0

(
n− 1

2

)
vn(u− us)n,

U ′ =− 1

u− us

[
1 +

χ1

χ0

(u− us)−
χ2
1 − 2χ0χ2

χ2
0

(u− us)2 + ...

]
, (2.27)

where

v0 =1,

v1 =− χ2
1 − 3χ0χ2

2χ0χ1

,

v2 =
3χ4

1 − 10χ0χ
2
1χ2 − 9χ2

0χ
2
2 + 24χ2

0χ1χ3

8χ2
0χ

2
1

, (2.28)

and χn are coefficients appearing in Eq. (2.25). Hence, from Eqs.(2.7), (2.8) and

(2.23) one finds,

R(0)(2)(0)(2) = −R(0)(3)(0)(3) =
1

2
γ20(U ′V ′ − V ′′)

=
3
√
−χ1/(2χ0)γ

2
0

(u− us)3/2
+

3(χ2
1 + 5χ0χ2)γ

2
0

2χ2
0

√
−2χ1/χ0(u− us)1/2

+O
(

(u− us)1/2
)
,

(2.29)

and,∫
dλ

∫
dλR(0)(2)(0)(2)(λ) = 6

√
−2χ1γ0
χ0

(λ− λs)1/2 +O
(

(λ− λs)3/2
)
, (2.30)

which is finite as λ→ λs, where λs ≡ us/γ0.

27



2.4.2 α 6= 1

In this case, one can write the functions U and V as,

V ′ =
2

u− us

∞∑
n=0

vn(u− us)n,

V ′′ =
2

(u− us)2
∞∑
n=0

(n− 1)vn(u− us)n,

U ′ =− 2

u− us

[
α +

χ1

χ0

(u− us)−
χ2
1 − 2χ0χ2

χ2
0

(u− us)2 + ...

]
, (2.31)

but now with the coefficients defined as

v0 =
√
α(1− α),

v1 =− χ1α

χ0

√
α(1− α)

,

v2 =−
α
[
χ2
1α(2α− 1) + 2χ0χ2(1 + α− 2α2)

]
2χ2

0

[
α(1− α)

]3/2 . (2.32)

Clearly, to have the metric coefficient V be real, one must assume that 0 < α < 1.

Then, one can find

R(0)(2)(0)(2) = −R(0)(3)(0)(3) =
1

2
γ20(U ′V ′ − V ′′)

=
γ20(1− 2α)

√
α(1− α)

(u− us)2

+
2χ1α(2α− 1)γ20

χ0

√
α(1− α)(u− us)

− αγ20

2χ2
0

[
α(1− α)

]3/2{χ2
1α
(
− 7 + 12α− 8α2

)
+ 2χ0χ2

(
− 1 + α− 8α2 + 8α3

)}

+O(u− us). (2.33)

Note that only the first term leads to a divergence in the distortions. In fact, the

distortions are written as∫
dλ

∫
dλR(0)(2)(0)(2) = (2α−1)

√
α(1− α)ln(λ−λs)+O

[
(λ−λs)ln(λ−λs)

]
, (2.34)
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for 0 < α < 1. Clearly, the tidal forces are always singular unless α = 1/2. Combining

the above with the case α = 1, one concludes that unless

(i) α =
1

2
, or (ii) α = 1, (2.35)

the singularities located at the focused point u = us are always real spacetime singu-

larities.

2.5 Singularities in Brinkmann Coordinates

As mentioned previously, gravitational memory effects are frequently studied

in the Brinkmann coordinates. Thus, it is of interest to see how the metric behaves

in the neighborhood of u = us in the Brinkmann coordinates. From Eqs. (2.17) and

(2.24), it is found that

U =− 2αln(u− us)− 2ln
(
χ̂(u)

)
,

V ′2 =
4α(1− α)

(u− us)2
− 4

χ̂

(
χ̂′′ +

2αχ̂′

u− us

)
, (2.36)

where χ̂(u) is expanded in the neighborhood of u = us as given by Eq.(2.25).

In the vacuum, Rµν = 0, Eq.(2.16)) holds, from which it is written

2U ′′ − U ′2 = V ′2. (2.37)

Then, Eq.(2.15) reduces to,

A(u) = V ′′ − U ′V ′. (2.38)

Note that in writing the above expression one uses the coordinate transformations

(2.13), from which u = û. Inserting Eqs.(2.36) and (2.25) into Eq.(2.38), the behavior

of A(u) in the neighborhood of u = us can be found.

It is interesting to note that tidal forces between two nearby null geodesics of

v̂, ŷ, ẑ = Const. were studied in the Brinkmann coordinates (2.14) in [56], where it
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was determined that Ryûyû = A(û)/2 describes diffeomorphism-invariant curvature

information. Therefore, the divergence of A(û) at the focusing point u = us implies

the existence of a spacetime singularity. In the following it is shown that this is

consistent with the conclusions obtained in the last section for the case α = 1/2, and

helps to understand the case α = 1 in more detail. One finds that it is convenient to

consider the cases, (i) 0 < α < 1, α 6= 1/2; (ii) α = 1/2; and (iii) α = 1, separately.

2.5.1 0 < α < 1, α 6= 1/2

In this case, inserting Eqs.(2.36) and (2.25) into Eq.(2.15), one finds that,

A(u) =
∞∑

n=−2

An(u− us)n, (2.39)

where the first three coefficients that show the singular behavior of A(u) are given by

A−2 = −2(1− 2α)
√
α(1− α),

A−1 =
4χ1α(1− 2α)

χ0

√
α(1− α)

,

A0 = − α[
α(1− α)

]3/2
χ2
0

(
χ2
1α(7− 12α + 8α2)

+ 2χ0χ2(1− α + 8α2 − 8α3)

)
. (2.40)

Since 0 < α < 1 and α 6= 1/2, along with A−2 6= 0, the leading divergent term now is

(u− us)−2 , and A(u) behaves as

A(u) =
A−2(α)

(u− us)2
+

A−1(α)

(u− us)
+ A0(χ0, χ1, χ2) +O(u− us) (2.41)

in the neighborhood of u = us, where A−1(α) is a function of α only, which is also

non-zero for 0 < α < 1 and α 6= 1/2, as it can be seen from Eq.(2.40). As mentioned

in the last section, the spacetime now is singular, and no extension beyond this surface
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is possible, so u = us represents a real boundary of the spacetime. This is consistent

with the analysis in the Brinkmann coordinates given in [56].

From Eq.(2.36) it is shown that

U(u) =− 2αln(u− us) + Û(u),

V (u) =2
√
α(1− α)ln(u− us) + V̂ (u), (2.42)

where Û and V̂ are regular and finite functions of u across the hypersurface u = us.

Note that in writing down the above expressions, the positive sign of V̂ is used without

loss of generality, as was previously done. In addition, Û and V̂ are not independent,

as they must satisfy the field equation (2.37).

2.5.2 α = 1/2

In this case, the singularity at u = us is a coordinate singularity, which can

be removed by the coordinate transformations of Eq.(2.13), and the resulted metric

is the Brinkmann metric (2.14) with

A(u) =
∞∑
n=0

Bn(u− us)n, (2.43)

where the first term B0 is given by

B0 = −
6
(
χ2
1 + 2χ0χ2

)
χ2
0

. (2.44)

Clearly, in this case A(u) is well-behaved in the neighborhood of u = us, and the

Brinkmann metric (2.14) can be considered as its extension beyond the hypersurface

u = us. If A(u) is obtained in such a manner, then the extension is unique. Again,

this is consistent with the analysis in the Brinkmann coordinates presented in [56].
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On the other hand, from Eq.(2.36) one finds that

U(u) = −ln(u− us) + Û(u),

V (u) = ln(u− us) + V̂ (u), (α = 1/2), (2.45)

where Û and V̂ are regular and finite functions of u across the hypersurface u = us,

and are related each other through Eq.(2.37).

2.5.3 α = 1

In this case, from Eq.(2.36), it is found that,

U =− 2ln(u− us) + Û(u),

V ′2 =− χ̂′

χ̂

8

u− us
− 4

χ̂′′

χ̂
, (2.46)

where χ̂ takes the form of Eq.(2.25) with χ0 6= 0. Thus, depending on values of χ1,

χ2 and χ3, the function A(u) can have different singular behaviors. Therefore, in the

following, they will be considered separately. In the case that χ1 6= 0, one finds that

U =− 2ln(u− us) + Û(u),

V =4
√

2D1(u− us)1/2 +O
(

(u− us)3/2
)
,

A =
1

(u− us)3/2
∞∑
n=0

Cn(u− us)n, (2.47)

where, D1 ≡
√
−χ1/χ0, Û is regular and finite functions of u across the hypersurface

u = us, and the leading terms of Cn that clearly shows the singular behavior of A are

given by

C0 =3
√

2D2,

C1 =− 3√
2χ0D1

(
χ2
1 + 5χ0χ2

)
,

C2 =− 3

4
√

2χ4
0D3

1

(
9χ4

1 − 14χ0χ
2
1χ2 + 21χ2

0χ
2
2 − 56χ2

0χ1χ3

)
. (2.48)
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It is interesting to note that in the current case the Brinkmann metric is still

singular at u = us, although the distortions felt by the freely falling observers defined

by Eq.(2.19) are all finite. Hence, now there are two possibilities: (i) Distortions

felt by other freely falling observers diverge at u = us, so the singularity is a real

spacetime singularity, and the spacetime cannot be extended beyond this surface.

(ii) Distortions felt by any of freely falling observers are finite, and the singularity is

a coordinate one. The results given in [56], show that the current case belongs to the

first possibility, as the tidal forces for two nearby null geodesics of v̂, ŷ, ẑ = Constant

become unbounded at u = us.

The second case to consider is when χ1 = 0 and χ2 6= 0, from which one finds,

U =− 2ln(u− us) + Û(u),

V =2
√

6D2(u− us) +O
(

(u− us)2
)
,

A =
1

u− us

∞∑
n=0

Dn(u− us)n, (2.49)

where D2 ≡
√
−χ2/χ0, Û is regular and finite functions of u across the hypersurface

u = us, and the leading terms of Dn are given by

D0 = 4
√

6D2,

D1 =
6
√

6D2χ3

χ2

,

D2 = −4
√

2D3
2

χ3
2

(
3χ3

2 − 3χ0χ
2
3 + 10χ0χ2χ4

)
. (2.50)

Thus, the Brinkmann metric is now also singular near the hypersurface u = us, and

the corresponding spacetimes are physically singular at u = us.
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The next case is for χ1 = χ2 = 0 and χ3 6= 0 for which one finds,

U =− 2ln(u− us) + Û(u),

V =
8
√

3

3
D3(u− us)3/2 +O

(
(u− us)5/2

)
,

A =
1

(u− us)1/2
∞∑
n=0

En(u− us)n, (2.51)

where D3 ≡
√
−χ3/χ0 and

E0 =10
√

3D3,

E1 =
35D3χ4√

3χ3

. (2.52)

Again, in this case the Brinkmann metric is also singular, and a spacetime curvature

singularity is developed on the focusing hypersurface u = us.

The last case to look at is χ1 = χ2 = χ3 = 0 and χ4 6= 0, where it is found

that

U =− 2ln(u− us) + Û(u),

V =2
√

5D4(u− us)2 +O
(

(u− us)3
)
,

A =
∞∑
n=0

Gn(u− un)n, (2.53)

where D4 ≡
√
χ4/χ0 and G0 = 12

√
5D4. In this case, it is clear that the Brinkmann

metric becomes non-singular, and Eq.(2.13) represents an extension of the singular

BJR metric (2.6) beyond the hypersurface u = us. So, in this case it is sure that the

singularity encountered in the BJR metric is a coordinate one, and the Brinkmann

metric (2.14) is one of its extensions. Note that the extension will be unique, if A(u)

is analytical across u = us.
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2.6 Examples of A(u)

In the studies of gravitational wave memory effects, several interesting cases

have been considered. For example, in [14,57], the function A(u) was chosen as

A(u) =
1

2

d3e−u
2

du3
= 2u(3− 2u2)e−u

2

. (2.54)

With this definition of A(u), Eqs.(2.15) and (2.37) become

2(V ′′ − U ′′) + (V ′ − U ′)2 = 2A(u),

2U ′′ − U ′2 = V ′2, (2.55)

which can be solved to find U and V . However, due to the non-linearity of these

equations, usually it is difficult to find analytical solutions. In [14], it was numerically

found that the singularity in the BJR coordinates occurs at us ' 0.593342. From

Eq.(2.57) one can see that A(u) is finite and well behaved in the neighborhood of this

point. So, it must belong to either the case with α = 1/2, or the case with α = 1 and

χi = 0 (i = 1, 2, 3). Due to the high non-linearity between the BJR and Brinkmann

coordinates, it is difficult to get a definite answer. Some modified versions of the

above example were considered in [15,37,58].

Another example is the case with [16],

A(u) =
2

π

ε2

(u2 + ε2)2
, (2.56)

where ε is a constant. When ε is very small, the above expression gives rise to an

impulse of gravitational waves, recently studied in [58]. Clearly, in all of these models

A(u) is always finite and well-behaved across the singularity located at u = us in the

BJR coordinates, so they all belong to the non-singular cases presented in the current

chapter.
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CHAPTER THREE

Gravitational Wave Cosmology in the High Frequency Approximation

This chapter is published as [59]: J. R. Fier, X. Fang, B. Li, S. Mukohyama, A.
Wang, T. Zhu, Gravitational Wave Cosmology I: High Frequency Approximation,

[arXiv2102.08968]

3.1 Introduction

The detection of the first gravitational wave (GW) from the coalescence of two

massive black holes (BHs) by the advanced Laser Interferometer Gravitational-Wave

Observatory (aLIGO) marked the beginning of a new era, the GW astronomy [60].

Following this observation, soon more than 50 GWs were detected by the LIGO/Virgo

scientific collaboration [61–63]. The increased interest on GWs and BHs has further

gained momentum after the detection of the shadow of the M87 BH [64–69].

One of the remarkable observational results is the discovery that the mass of

an individual BH in these binary systems can be much larger than that which was

previously expected, both theoretically and observationally [70–72], leading to the

proposal and refinement of various formation scenarios (see, for example, [73–76], and

references therein). A consequence of this discovery is that the early inspiral phase

may also be detectable by space-based observatories, such as LISA [77], TianQin [78],

Taiji [79], and DECIGO [80], for several years prior to their coalescence [81,82]. Mul-

tiple observations with different detectors which are sensitive to different frequencies

in the signals from the same source can provide an excellent opportunity to study the

evolution of a binary in detail. Since different detectors observe at disjoint frequency

bands, together they cover different evolutionary stages of the same binary system.
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Each stage of the evolution carries information about different physical aspects of

the source. As a result, multi-band GW detections will provide an unprecedented

opportunity to test different theories of gravity in the strong field regime [83].

Recently, some of the present authors generalized the post-Newtonian (PN)

formalism to certain modified theories of gravity and applied it to the quasi-circular

inspiral of compact binaries. In particular, we calculated in detail the waveforms, GW

polarizations, response functions and energy losses due to gravitational radiation in

Brans-Dicke (BD) theory [84], screened modified gravity (SMG) [85–87], and gravi-

tational theories with parity violations [88–91] to the leading PN order, with which

we then considered projected constraints from the third-generation detectors. Such

studies have been further generalized to triple systems [92,93] in Einstein-aether (æ-)

theory [94–96]. When applying such formulas to the first relativistic triple system dis-

covered in 2014 [97], a study of the radiation power found that quadrupole emission

has almost the same amplitude as that in general relativity (GR), but the dipole emis-

sion can be as large as the quadrupole emission. This can provide a promising window

to place severe constraints on æ-theory with multi-band GW observations [98,99].

More recently, the problem of a binary system of non-spinning bodies in a

quasi-circular inspiral within the framework of æ-theory [100–105], was examined

and the results provided the explicit expressions for the time-domain and frequency-

domain waveforms, GW polarizations, and response functions for both ground- and

space-based detectors in the PN approximation [106]. In particular, when going

beyond the leading order in the PN approximation, the non-Einsteinian polarization

modes contain terms that depend on both the first and second harmonics of the orbital

37



phase. With this in mind, an analytical calculation of the corresponding parameter-

ized post-Einsteinian parameters was made, generalizing the existing framework to

allow for different propagation speeds among scalar, vector and tensor modes, with-

out assuming the magnitude of the coupling parameters, and meanwhile allowing the

binary system to have relative motion with respect to the æther field. Such results

will in particular allow for the easy construction of Einstein-æther templates that

could be used in Bayesian tests of GR in the future.

It is remarkable to note that the space-based detectors mentioned above, to-

gether with the current and forthcoming ground-based ones, such as KAGRA [107],

Voyager [108], the Einstein Telescope (ET) [109] and Cosmic Explorer (CE) [110],

are able to detect GWs emitted from such systems with the redshift as great as

z ' 100 [111], which will have profound scientific consequences. In particular, GWs

propagating over such long cosmic distances will carry valuable information not only

about their sources, but also about the detail of the cosmological expansion and

inhomogeneities of the universe, whereby a completely new window to explore the

universe by using GWs is opened. So far our understanding of the universe comes

almost entirely from observations of electromagnetic waves (possibly with the impor-

tant exceptions of cosmic rays and neutrinos) [112].

In this chapter, a generalization is made of the studies above to the cases in

which the GWs are first generated by remote astrophysical sources and then propagate

in the inhomogeneous universe through cosmic distances before arriving at either

space- and/or ground-based detectors. It should be noted that such studies have

recently attracted lots of attention (see, for example, [113] and references therein).

In particular, using Isaacson’s high frequency GW formulas [114, 115], Laguna et
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al studied the gravitational analogue of the electromagnetic integrated Sachs-Wolf

(iSW) effects in cosmology, and found that the phase, frequency, and amplitude of

the GWs experience iSW effects, in addition to the magnifications on the amplitude

from gravitational lensing [116]. More recently, Bertacca et al connected the results

of Laguna et al obtained in real space frame to the observed frame, by using the

cosmic rulers formulas [117], whereby the corrections to the luminosity distance due

to velocity, volume, lensing and gravitational potential effects were calculated [118].

On the other hand, Bonvin et al [119] studied the effects of the universe on

the gravitational waveform, and found that the acceleration of the universe and the

peculiar acceleration of a binary with respect to the observer distort the gravitational

chirp signals from the simplest GR prediction, not only a mere time independent

rescaling of the chirp mass, but also the intrinsic parameter estimations for binaries

visible by LISA. In particular, the effect due to the peculiar acceleration can be much

larger than the one due to the universe acceleration. Moreover, peculiar accelerations

can introduce a bias in the estimation of parameters such as the time of coalescence

and the individual masses of the binary. An error in the estimation of the time

of coalescence made by LISA will have an impact on the prediction of the time at

which the signal will be visible by ground based interferometers, for signals spanning

both frequency bands. The correlations of such GWs with lensing fields from the

cosmic microwave background and galaxies were studied [120], which led to a new

window to explore our universe by gravitational weak lensing was proposed. Lately,

GWs propagating in the curved universe has been further generalized to scalar-tensor

theories [121], including Horndeski [122–124] and SMG [124] theories.
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It should be noted that in all these studies, the cosmological tensor perturba-

tions have been neglected. As observing primordial GWs (the tensor perturbations) is

one of the main goals in the current and forthcoming cosmological observations [125],

in this chapter we shall consider the cosmological background that consists of both the

scalar and tensor perturbations, but restrict ourselves only to Einstein’s theory, and

leave the generalizations to other theories of gravity to other occasions. To describe

the GWs propagating through the inhomogeneous universe from cosmic distances to

observers properly, we first introduce three scales, λ, Lc and L, which denote, respec-

tively, the typical wavelength of GWs, the scale of the cosmological perturbations,

and the size of the observable universe. For GWs to be detected by the current and

foreseeable detectors, we find that the condition

λ� Lc � L, (3.1)

always holds. Such GWs can be approximated as high-frequency GWs and the signals

can be well separated from the background γµν by averaging the spacetime curvatures

over a scale `, where λ� `� Lc, and the total metric of the spacetime is given by

gµν = γµν + εhµν , (3.2)

where ε ≡ λ/L, and γµν denotes the background, while hµν represents the GWs. In

order for the backreaction of the GWs to the background spacetimes to be negligible,

we must assume that |hµν | � 1, in addition to the condition ε � 1, which are also

the conditions for the linearized Einstein field equations for hµν to be valid.
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Such studies can be significantly simplified by properly imposing gauge condi-

tions, such as the spatial, traceless, and Lorenz gauges, given, respectively, by

χ0µ = 0, (3.3)

χ = 0, (3.4)

∇νχµν = 0, (3.5)

where

χµν ≡ hµν −
1

2
γµνh, h ≡ γµνhµν , (3.6)

and∇ν denotes the covariant derivative with respect to γµν . We show that these three

different gauge conditions can be imposed simultaneously, even when the background

is not vacuum, as long as the high-frequency GW approximations are valid.

However, to develop the formulas that can be applicable to as many cases as

possible, in this chapter the linearized Einstein field equations are written down ex-

plicitly for χµν by imposing only the spatial gauge. Applying these formulas together

with the geometrical optic approximations to such GWs, one finds that they still move

along null geodesics and the polarization bi-vector is parallel-transported, even when

both the cosmological scalar and tensor perturbations are present. In addition, the

gravitational integrated Sachs-Wolfe (iSW) effects was also calculated due to these

two kinds of perturbations, whereby the dependencies of the amplitude, phase and

luminosity distance of the GWs on these perturbations are read off explicitly.

Before proceeding to the next section, it should be noted that GWs produced

by remote astrophysical sources and then propagating through the homogeneous and

isotropic universe have been systematical studied by Ashtekar and his collaborators

through a series of papers [126–132], and various subtle issues were clarified in the
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deSitter background [133–135]. In particular, in this chapter the signature of the

metric is (-,+,+,+), while the Christoffel symbols, Riemann and Ricci tensors, as well

as the Ricci scalar, are defined in Chapter 1. The covariant derivative ∇α denotes

the full covariant derivative with respect to the metric gµν , and defines

(
∇µ∇ν −∇ν∇µ

)
Xα = Rα

βµνX
β. (3.7)

The Einstein field equations read

Rµν −
1

2
gµνR = κTµν , (3.8)

where κ ≡ 8πG, with G denoting the Newtonian constant, and c the speed of light.

In addition to ∇α, the covariant derivative is introduced as ∇̄α with respect to the

homogeneous metric γ̄µν , where

γµν = γ̄µν + εcγ̂µν , (3.9)

with εc ≡ Lc/L � 1. The conventions, A(µν) ≡
(
Aµν + Aνµ

)
/2 and A[µν] ≡

(
Aµν −

Aνµ
)
/2 are also adopted.

3.2 Gravitational Waves Propagating in an Inhomogeneous Universe

In this section, we shall consider GWs first produced by remote astrophys-

ical sources and then propagating in cosmic distances through the inhomogeneous

universe, before arriving at detectors. To study such GWs, first consider several

characteristic lengths that are highly relevant to their generations and propagation

and polarizations.
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3.2.1 Characteristic Scales of the Background

In this section, the inhomogeneous universe is to be considered the background

which includes two parts, the homogeneous and isotropic universe and its inhomo-

geneous perturbations, given by γ̄µν and γ̂µν , respectively, so the background metric

γµν can be written as

γµν =γ̄µν + εcγ̂µν +O
(
ε2c
)
,

γµν =γ̄µν − εcγ̂µν +O
(
ε2c
)
, (3.10)

where εc, |γ̂| � 1, and

γµλγνλ = δµν +O
(
ε2c
)
,

γ̄µλγ̄νλ = δµν +O
(
ε2c
)
,

γ̂µν ≡ γ̄µαγ̂αν ,

γ̂µν ≡ γ̄µαγ̄νβ γ̂αβ, (3.11)

and so on.

The size of the observational universe is about L ' 8.8×1026 m. On the other

hand, in the momentum space of the cosmological perturbations, Lc ' 1/k, where k

denotes the typical wavenumber of the perturbations, and Lc the length over which

the change of the cosmological perturbations becomes appreciable. When the modes

are outside the Hubble horizon, it can be shown that Lc/L ' 10−5. But, once they

re-enter the horizon these modes decay suddenly and then oscillate rapidly about a

minimum [146]. In addition, the density perturbation δρ is the order of δρ/ρ̄ ' 10−5.

So, it is quite reasonable to assume that,

εc '
Lc
L
� 1. (3.12)
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3.2.2 Typical Gravitational Wavelengths

For the second generation of the ground-based detectors, such as LIGO, Virgo,

and KAGRA, the wavelength of the detected GWs are λ ' 105 ∼ 107 m, while

the wavelength of GWs to be detected by the space-based detectors, such as LISA,

TianQin and Taiji, are λ ' 108 ∼ 1012 m. Therefore, the ground-based detectors have

ε ' λ/L ∈ (10−22, 10−20), while the space-based detectors have ε ∈ (10−19, 10−15).

Thus, for the GWs to be detected by the current and foreseeable detectors, the

following is always true:

λ

Lc
=

ε

εc
� 1. (3.13)

Therefore, all such GWs can be well approximated as high frequency GWs with respect

to the distance over which the inhomogeneities of the Universe change significantly.

3.2.3 Einstein Field Equations

Following the above analyses, one finds that λ, Lc and L denote, respectively,

the characteristic length over which hµν , γ̂µν or γ̄µν changes significantly. Thus, their

derivatives are typically of the orders

∂γ̄ ∼ γ̄

L
, ∂2γ̄ ∼ γ̄

L2
,

∂γ̂ ∼ γ̂

Lc
, ∂2γ̂ ∼ γ̂

L2
c

,

∂h ∼ h

λ
, ∂2h ∼ h

λ2
. (3.14)

To estimate orders of terms, following Isaacson [114], we regard L as order of unity,

and say that the metric (3.2) contains a high-frequency GW, if and only if there exists

a family of coordinate systems (related by infinitesimal coordinate transformations),
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in which one finds

ε� εc � 1, (3.15)

and

γ̄µν , γ̄µν,α, γ̄µν,αβ ' O(1),

γ̂µν ' O (γ̂) , γ̂µν,α ' O (γ̂/εc) ,

γ̂µν,αβ ' O
(
γ̂/ε2c

)
,

hµν ' O (h) , hµν,α ' O (h/ε) ,

hµν,αβ ' O
(
h/ε2

)
, (3.16)

where γµν,α ≡ ∂γµν/∂x
α, etc. Note that, in contrast to [114], here one does not assume

hµν ' O (1), in order to neglect the backreaction of the GWs to the background

spacetime γµν , as to be shown below.

Expanding the Riemann and Ricci tensors Rµναβ (gµν) and Rµν (gµν) in terms

of ε, one finds [114,145],

Rαβγδ (gµν) = Rαβγδ
(0) + εRαβγδ

(1) + ε2Rαβγδ
(2) +O

(
ε3
)
,

Rαβ (gµν) = Rαβ
(0) + εRαβ

(1) + ε2Rαβ
(2) +O

(
ε3
)
, (3.17)
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where

Rαβγδ
(0) = Rαβγδ (γµν) ,

Rαβγδ
(1) =

1

2

[
hβγ;αδ + hαδ;βγ − hαγ;βδ − hβδ;αγ

+Rασγδ
(0)hσβ −Rβσγδ

(0)hσα

]
, (3.18)

Rαβ
(0) = Rαβ (γµν) ,

Rαβ
(1) =

1

2
γρτ
(
hτα;βρ + hτβ;αρ

− hρτ ;αβ − hαβ;ρτ
)
, (3.19)

Rαβ
(2) =

1

4

{
hρτ ;βhρτ ;α + 2hρτ

(
hτρ;αβ + hαβ;τρ

− hτα;βρ − hτβ;αρ
)

+ 2hτβ
;ρ
(
hτα;ρ − hρα;τ

)
− (2hρτ ;ρ − h;τ )

(
hτα;β + hτβ;α − hαβ;τ

)}
. (3.20)

Here the semi-colon “;” denotes the covariant derivative with respect to the back-

ground metric γµν . For the sake of convenience, we shall also use ∇λ to denote

the covariant derivative with respect to γµν , so one finds hµν;λ ≡ ∇λhµν , etc. The

background metric γµν (γµν) is also used to lower (raise) the indices of hµν , such as

hµν ≡ γµαhαν = γναh
µα,

h ≡ hλλ = γαβhαβ, (3.21)

and so on.

The background curvatures Rαβγδ
(0)(γ) and Rαβ

(0)(γ) can be further expanded

in terms of εc, as

Rαβγδ
(0)(γ) = R̄αβγδ(γ̄) + εcR̂αβγδ(γ̂) + ε2cR̂

(2)
αβγδ(γ̂) +O

(
ε3c
)
,

Rαβ
(0)(γ) = R̄αβ(γ̄) + εcR̂αβ(γ̂) + ε2cR̂

(2)
αβ(γ̂) +O

(
ε3c
)
, (3.22)
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where

R̂αβγδ(γ̂) =
1

2

[
γ̂βγ|αδ + γ̂αδ|βγ

− γ̂αγ|βδ − γ̂βδ|αγ

+R̄ασγδγ̂
σ
β − R̄βσγδγ̂

σ
α

]
, (3.23)

R̂αβ(γ̂) =
1

2
γ̄ρτ
(
γ̂τα|βρ + γ̂τβ|αρ

− γ̂ρτ |αβ − γ̂αβ|ρτ
)
, (3.24)

and R̂
(2)
αβ(γ̂) is given by Eq.(3.20) with the replacement (hαβ,∇µ)→

(
γ̂αβ, ∇̄µ

)
. Here

the vertical bar “|” denotes the covariant derivative with respect to γ̄µν , which is

also denoted by ∇̄λ, so that γ̂ρτ |α ≡ ∇̄αγ̂ρτ , etc. Taking L ' O(1) and considering

Eq.(3.16) one finds

R̄α
βγδ, R̄αβ ' O(1), (3.25)

εcR̂
α
βγδ, εcR̂αβ ∼ O (γ̂/εc) ,

ε2cR̂
(2)
αβγδ, ε

2
cR̂

(2)
αβ ' O

(
γ̂2
)
, (3.26)

εRαβγδ
(1), εRαβ

(1) ' O (h/ε) ,

ε2Rαβγδ
(2), ε2Rαβ

(2) ' O
(
h2
)
. (3.27)

To write down the Einstein field equations, first note that

(∇α∇β −∇β∇α)χγδ = −Rσ
γαβ

(0)χσδ −Rσ
δαβ

(0)χγσ. (3.28)

Then, one finds that in terms of χµν , Rαβ
(1) is given by

Rαβ
(1) =

1

2

(
2Rγαβσ

(0)χγσ +Rσ
α
(0)χβσ +Rσ

β
(0)χασ

+∇α∇δχβδ +∇β∇δχαδ

)
− 1

2
�χαβ +

1

4
γαβ�χ, (3.29)
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where �χαβ ≡ γµνχαβ;µν , and

χµν ≡ hµν −
1

2
γµνh,

χ ≡ γµνχµν = −h. (3.30)

It should be noted that in [114] Isaacson considered the vacuum case, for which

Rαβ
(1) = 0, that is

�χαβ −
1

2
γαβ�χ−∇α∇δχβδ −∇β∇δχαδ

+ 2Rαγβσ
(0)χγσ −Rσ

α
(0)χβσ −Rσ

β
(0)χασ = 0, (3.31)

which is precisely Eq.(5.7) of [114], after the differences between the conventions used

here and the ones used in [114] are taken into account.

In the present chapter we consider the propagation of GWs through the inho-

mogeneous universe, which has non-zero Riemann and Ricci tensors. So, we expect

that the corresponding Einstein field equations for hµν are different from Eq.(3.31).

To see this, first note that

gµν = γµν − εhµν + ε2hµαh
αν +O

(
ε3
)
,

R ≡ gµνRµν = R(0) + εR(1) + ε2R(2) +O
(
ε3
)
, (3.32)

where

R(0) ≡ γµνR(0)
µν ,

R(1) ≡ γµνR(1)
µν − hµνR(0)

µν

= ∇α∇βχαβ − χαβR(0)
αβ +

1

2

(
� +R(0)

)
χ,

R(2) ≡ γµνR(2)
µν − hµνR(1)

µν + hµαh
ανR(0)

µν . (3.33)
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Inserting Eqs.(3.17) and (3.32) into the Einstein field equations, one finds that

R(0)
µν−

1

2
γµνR

(0) + ε

[
R(1)
µν −

1

2

(
γµνR

(1) + hµνR
(0)
)]

+ ε2
[
R(2)
µν −

1

2

(
γµνR

(2) + hµνR
(1)
)]

+O
(
ε3
)

= κ
(
T (0)
µν + εTµν

)
, (3.34)

where T
(0)
µν denote the energy-momentum tensor that produces the background, while

Tµν denotes the astrophysical source that produces the GWs.

3.2.4 Separation of GWs from the Background

To separate GWs produced by astrophysical sources from the inhomogeneous

background, one can average the field equations over a length scale `, which is much

larger than the typical wavelength of the GWs but much smaller than Lc,

λ� `� Lc. (3.35)

Then, this process will extract the slowly varying background from GWs, as the latter

will vanish when averaging over such a scale. In particular,

〈γµν〉 = γµν ,
〈
Rµναβ

(0)
〉

= Rµναβ
(0),〈

Rµν
(0)
〉

= Rµν
(0),

〈
Tµν

(0)
〉

= Tµν
(0), (3.36)

〈hµν〉 =
〈
Rµν

(1)
〉

=
〈
R(1)

〉
= 0, (3.37)〈

Rµν
(2)
〉

=
〈
Rµν

(2)
〉
`
,
〈
R(2)

〉
=
〈
R(2)

〉
`
,〈

hµνR
(1)
〉

=
〈
hµνR

(1)
〉
`
, 〈Tµν〉 = 〈Tµν〉` . (3.38)

Note that quadratic terms of hµν may survive such an averaging process, if two

modes are almost equal but with different signs, although each of them represents

a high frequency mode. For example, for hµν ∝ eiω1x and hαβ ∝ e−iω2x, one finds

49



hµνhαβ ∝ eiω12x, where ω12 ≡ ω1 − ω2. Thus, although ω1, ω2 � 1, one can have

ω12 � 1, if ω1 ' ω2. Therefore, due to the nonlinear interactions among different

modes, low frequency modes can be produced, which will survive with such averaging

processes. If one is only interested in the linearized Einstein field equations of hµν ,

such modes must be taken of care properly. With this in mind, taking the average of

Eq.(3.34) the equations are written as

R(0)
µν −

1

2
γµνR

(0) + ε2
〈
Gµν

(2)
〉
`

= κ
(
T (0)
µν + ε 〈Tµν〉`

)
, (3.39)

where

Gµν
(2) ≡ R(2)

µν −
1

2

(
γµνR

(2) + hµνR
(1)
)
, (3.40)

which is a quadratic function of hµν . Then, substituting Eqs.(3.39) and (3.40) back

to Eq.(3.34), the high-frequency part takes the form

R(1)
µν−

1

2

(
γµνR

(1) + hµνR
(0)
)

+ε
〈
G(2)
µν

〉high
= κ 〈Tµν〉high , (3.41)

where

〈
G(2)
µν

〉high ≡G(2)
µν −

〈
Gµν

(2)
〉
`
,

〈Tµν〉high ≡Tµν − 〈Tµν〉` . (3.42)

On the other hand, from Eqs.(3.25)-(3.27) one finds that

G(0)
µν ≡ R(0)

µν −
1

2
γµνR

(0) ' O (γ̂/εc) ,〈
Gµν

(2)
〉
`
' O

(
h2/ε2

)
, T (0)

µν ' O
(
ε−1c
)
. (3.43)

Note that, after introducing the cosmological perturbation scale Lc, the leading order

of G
(0)
µν becomes G

(0)
µν ' εcR̂µν ' O (γ̂/εc), instead of L−2 [121]. The same is true for
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T
(0)
µν , as it can be seen from Appendix A. Then, from Eq.(3.39) one finds that each

term has the following order

O (γ̂/εc) +O
(
h2
)

= O (γ̂/εc) + εO
(
〈Tµν〉`

)
. (3.44)

Therefore, to have the backreaction of the GWs to the background be negligible, so

that the background spacetime γµν is uniquely determined by T
(0)
µν , i.e.,

Rµν
(0) − 1

2
γµνR

(0) = κTµν
(0), (3.45)

one must assume that

h2 � γ̂

εc
, (3.46)

ε ·
∣∣〈Tµν〉`∣∣� γ̂

εc
. (3.47)

In addition, from Eq.(3.41) one finds that

ε
〈
G(2)
µν

〉high ' O (h2/ε) . (3.48)

Therefore, in order for the quadratic terms from G
(2)
µν not to affect the linear terms of

the leading orders h/ε2 and h/ε1 in Eq.(3.41), one must assume that

|h| � 1. (3.49)

With the above conditions, one finds that Eq.(3.41) can be written as

�χαβ+γαβ∇γ∇δχγδ −∇α∇δχβδ −∇β∇δχαδ

+2Rαγβσ
(0)χγσ = κ

(
Fαβ − 2 〈Tαβ〉high

)
. (3.50)
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where

Fαβ ≡
1

κ

{
Rσ

α
(0)χβσ +Rσ

β
(0)χασ − χαβR(0)

+ γαβχ
γδRγδ

(0)
}

=χβδT
δ
α

(0)
+ χαδT

δ
β

(0)
+ γαβχ

γδTγδ
(0)

− 1

2
γαβχT

(0). (3.51)

From the above derivations, one can see that the linearized Einstein field equations

(3.50) are valid only to the two leading orders, ε−2 and ε−1. For orders higher than

this, these equations are not applicable. This is particularly true for the zeroth-order

of ε. In addition, since ε−1c � ε−1, one finds that in Eq.(3.50) the term

Fαβ, 2Rαγβσ
(0)χγσ ' O(γ̂h/εc)� O(h/ε), (3.52)

can also be neglected in comparing the terms that are of orders ε−2 or ε−1. However,

in order to compare these results with the ones obtained in [114–116], we shall keep

it and drop the corresponding terms only at the end of our calculations.

3.2.5 The Inhomogeneous Universe

In this subsection, we shall give a very brief introduction over the flat FRW uni-

verse with its linear scalar and tensor perturbations, described by the metric (A.11).

In terms of the conformal coordinates xµ = (η, xi), (i = 1, 2, 3), the metrics are defined

as

γ̄µν = a2(η)ηµν ,

γ̄µν = a−2(η)ηµν , (3.53)

with ηµν = diag (−1,+1,+1,+1). The coordinate η is related to the cosmic time via

the relation, η =
∫

dt
a(t)

.
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Following the standard process, one decomposes the linear perturbations γ̂µν

into scalar, vector and tensor modes,

γ̂µν = a2(η)

 −2φ ∂iB − Si

sym −2ψδij + 2∂ijE + 2∂(iFj) +Hij

 , (3.54)

where,

∂iSi = ∂iFi = 0, ∂iHij = 0 = H i
i , (3.55)

with ∂i ≡ δij∂j and H i
j ≡ δikHkj. However, the vector mode will decay quickly with

the expansion of the universe, and can be safely neglected [147,148]. Then, using the

gauge transformations, as shown explicitly in Appendix A, one can always set

B = E = 0, (3.56)

in which the gauge is completely fixed. This is often referred to as the Newtonian

gauge, under which the gauge-invariant quantities defined in Eq.(A.11) become,

Φ = φ, Ψ = ψ, (B = E = 0), (3.57)

that is, in the Newtonian gauge, the potentials φ and ψ are equal to the gauge-

invariant ones, Φ and Ψ. Therefore, with this gauge and ignoring the vector part,

one finds,

γ̂µν = a2(η)

 −2φ 0

0 Hij − 2ψδij

 ,

γ̂µν = a−2(η)

 −2φ 0

0 H ij − 2ψδij

 . (3.58)

The rest of this chapter will be restricted to this gauge, and the values of the Christof-

fel symbols, Riemann tensors, Ricci tensors, and Ricci scalars can be found in Ap-

pendix B.
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3.3 Linearized Field Equations for GWs in an Inhomogeneous Universe

In this section, we shall consider the field equations for χµν given by Eq.(3.50)

in the inhomogeneous cosmological background of Eq.(3.9) with the Newtonian gauge

(3.56), by neglecting the vector perturbations, for which γ̂µν and γ̂µν are given by

Eq.(3.58).

3.3.1 Gauge Fixings fow GWs

Before writing down these linearized field equations explicitly, let us first con-

sider the gauge freedom for χµν . At the end of the last section, we had considered

the gauge transformations for the cosmological perturbations, and had already used

the gauge freedom

x̃µ = xµ + εcζ
µ, (3.59)

to set B = E = 0 [cf. Eq.(3.56)], the so-called Newtonian gauge, as shown explicitly

in Appendix A. These choices completely fix the gauge freedom for the cosmological

perturbations. In this subsection, we shall consider another kind of gauge transfor-

mations for the GWs, given by

x̌α = xα + εξα, (3.60)

where

ξα ' O (εh) , ξα;β ' O (h) , ξα;β;γ ' O (h/ε) . (3.61)

Since εc � ε, one can see that to the first order of εc, the background metric γµν does

not change under the coordinate transformations (3.60), that is,

γ̌µν = γµν +O
(
ε2c
)
, (3.62)
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a property that is required for the transformations (3.60) to be the gauge transfor-

mations only for the GWs. On the other hand, under the coordinate transformations

(3.60), the metric transforms as

ǧµν ≡γ̌µν + εȟµν +O
(
ε2
)

=γµν + ε (hµν − ξµ;ν − ξν;µ) +O
(
ε2
)
, (3.63)

that is,

ȟµν = hµν − 2ξ(µ;ν). (3.64)

Hence, one finds,

Ř
(1)

αβγδ −Rαβγδ
(1) = −LξRαβγδ

(0) = O (hγ̂/εc) ,

Ř
(1)

αβ −Rαβ
(1) = −LξRαβ

(0) = O (hγ̂/εc) , (3.65)

as can be seen from Eqs.(3.25)-(3.27), and (3.61), where Lξ denotes the Lie derivative.

Therefore, Eq.(3.50) is gauge-invariant only up to O (hγ̂/εc). However, since ε−1c �

ε−1, terms that are order of ε−2 and ε−1 are still gauge-invariant, while the ones of

order of ε0 are not. This is because in the scale λ the spacetime appears locally

flat, and the curvature is locally gauge-invariant. Thus, provided that the following

conditions hold,

|h|, |γ̂| � 1, ε� εc � 1, (3.66)

the GW produced by an astrophysical source can be considered as a high-frequency

GW, and their low-frequency components are negligible, so that the local-flatness

behavior carries over to the case in which the background is even curved.
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On the other hand, from the field equations (3.50) one can see that they will

be considerably simplified if the Lorenz gauge is chosen,

∇νχ̌µν = 0, (3.67)

where

χ̌µν ≡ȟµν −
1

2
γµν ȟ

=χµν − 2∇(µξν) + γµν∇λξ
λ, (3.68)

as it can be seen from Eq.(3.64), where ξµ ≡ γµνξ
ν . Then, one finds that the Lorenz

gauge (3.67) requires

�ξµ +R(0)ν

µξν = ∇νχµν . (3.69)

Note that R(0)ν

µξν ' O(hγ̂ε/εc) � O(h/ε), so it can be neglected to the order of

ε−1. Clearly, for any given χµν (with some proper continuous conditions [149], which

are normally assumed always to exist), the above equation in general has non-trivial

solutions [114].

In addition, Eq.(3.69) does not completely fix the gauge. In fact, the gauge

residual,

ˇ̌xα = x̌α + εςα, (3.70)

exists, for which the Lorenz gauge (3.67) still holds,

∇ν ˇ̌χµν = 0, (3.71)

as long as ςα satisfies the conditions

�ςµ +R(0)ν

µςν = 0. (3.72)
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Again, in this equation the term R(0)ν

µςν ' O(hεγ̂/εc) is negligible compared with

�ςµ ' O(h/ε).

An interesting question is whether one can use this gauge residual further to

set

ˇ̌χ0µ = 0. (3.73)

To answer this question, it must first be noted that if this is the case, ςµ must satisfy

the additional conditions

∇0ςν +∇νς0 − γ0ν∇ας
α = χ̌0ν . (3.74)

Clearly, for any given γµν and χ̌µν (again with certain regular conditions [149]), in

general the above equation has solutions. However, ςν also needs to satisfy Eq.(3.72).

To see if these conditions are consistent, one will take the covariant derivative ∇µ in

both sides of Eq.(3.74), which results in

∇ν∇0ς
ν+�ς0 −∇0∇νς

ν

=�ς0 +R(0)
0ας

α = 0 = ∇νχ̌0ν . (3.75)

Therefore, we conclude that it is consistent to impose the Lorenz and spatial gauges

simultaneously, even when the background is curved [114].

Finally, we note that the traceless condition

χ = 0, (3.76)

was also introduced in [114]. In fact, provided that the Lorenz gauge ∇νχµν = 0

holds, from the field equations (3.50) one finds

�χ+ 2R
(0)

αβ χαβ = κγαβ
(
Fαβ − 2 〈Tαβ〉high

)
. (3.77)
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Note that the two terms Fαβ and 2Rγσ
(0)χγσ are of order hγ̂/εc, as shown above and

can be dropped in comparing them with terms of order h/ε. Therefore, far from

the source (Tαβ = 0), if the Lorenz gauge holds, one can also consistently impose

the traceless gauge. Together with the Lorenz and spatial gauges, it leads to the

well-known traceless-transverse (TT) gauge, frequently used when the background is

Minkowski [145,150,151].

It should be noted that in curved backgrounds the above three different gauge

conditions can be imposed simultaneously only for high frequency GWs, and are valid

only up to the order of ε−1 [114]. In other situations, when imposing them, one must

take great caution, as these constraints in general represent many more degrees than

the four degrees of the gauge freedom that the general covariance normally allows.

3.3.2 Field Equations for GWs

To write down explicitly the field equations (3.50) for χµν , and to make the

expressions as applicable as possible, in Appendix A, we only impose the spatial gauge

χ0µ = 0, (µ = 0, 1, 2, 3), (3.78)

and then calculate each term appearing in Eq.(3.50), before putting them together

to finally obtain the explicit expressions for each component of the field equations.

In particular, the non-vanishing components of Fαβ and 2Rγασβ
(0)χγσ are given by

Eqs. (B.2) and (B.10), while the ones of �χαβ are given by Eqs.(B.11) and (B.13).

The term γαβ∇γ∇δχγδ is given by Eqs.(B.15) and (B.16), while ∇α∇δχβδ is given by
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Eq.(B). Setting

Gαβ ≡�χαβ + γαβ∇γ∇δχγδ −∇α∇δχβδ −∇β∇δχαδ

+ 2Rαγβσ
(0)χγσ, (3.79)

one finds that the field equations (3.50) take the form

Gαβ = κ

(
Fαβ − 2 〈Tαβ〉high

)
, (3.80)

where the non-vanishing components of Gαβ are given by Eqs.(B.20) - (B.22).

3.4 The Geometrical Optics Approximation

To study the propagation of GWs in our inhomogeneous universe, first note

that, when far away from the source that produces the GWs, Tµν = 0. Then, Eq.(3.80)

reduces to

Gαβ = κFαβ, (Tµν = 0) . (3.81)

Following Isaacson [114] and Laguna et al [116], one considers the geometrical optics

approximation, defined as

χαβ = Re

(
Aαβe

iϕ/ε

)
= Re

(
eαβAeiϕ/ε

)
, (3.82)

where eαβ denotes the polarization tensor with

eαβe∗αβ = 1, (3.83)

and A and ϕ are real and characterize, respectively, the amplitude and phase of the

GWs with eαβ ≡ γαµγβνeµν . Note that in writing the above expression the change

ϕI → ϕ/ε is made by following Laguna et al [116], where ϕI is the quantity used by

Isaacson [114]. With this in mind, both the amplitude A and the phase ϕ are slowly
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changing functions [114],

∂αϕ ' O(1), Aαβ ;γ ' O(1). (3.84)

With the gauge (3.78) the approximation may follow

A0β = 0 = e0β. (3.85)

Moreover, as shown in the last section, in addition to the spatial gauge, one can

consistently impose the Lorenz and traceless gauges

∇νχµν = 0,

χ = 0. (3.86)

Then, from Eqs.(3.81) and (3.85) one finds that the Lorenz gauge yields

∇νAµν +
i

ε
kνAµν = 0, (3.87)

where kα ≡ ∇αϕ and kα ≡ γαβkβ. Considering Eq.(3.84) one finds that, to the

leading order (ε−1)

kνAµν = 0 ⇒ kνeµν = 0. (3.88)

Therefore, the propagation direction of the GW is orthogonal to its polarization plane

spanned by the bivector eµν . Note that the first term in Eq.(3.4) is of order ε0, and

should be discarded. Otherwise, it will lead to inconsistent results, as mentioned

above. Therefore, in the rest of this chapter we shall ignore such terms without

further notifications. See [114,116,121] for more details.

In addition, the traceless condition requires

γαβeαβ = 0. (3.89)
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Substituting Eq.(3.81) into Eq.(3.80) and considering Eq.(3.84) and the Lorenz gauge

(3.86), the field equations to the orders of ε−2 and ε−1 are given, respectively, by

ε−2 : kµkµAαβ = 0, (3.90)

ε−1 : kµ∇µeαβ +

(
kµ∇µ lnA+

1

2
∇µk

µ

)
eαβ = 0. (3.91)

Since Aµν 6= 0, from Eq.(3.90) one finds

kλkλ = 0. (3.92)

Then, for such a null vector kµ, one may always define a curve xµ = xµ(λ) by setting

dxµ(λ)

dλ
≡ kµ, (3.93)

where λ denotes the affine parameter along the curve. It is clear that such a defined

curve is a null geodesic

kλ∇µkλ = kλ∇λkµ = 0, (3.94)

where ∇µkλ = ∇µ∇λϕ = ∇λ∇µϕ = ∇λkµ, that is, GWs are always propagating

along null geodesics in our inhomogeneous universe, even when both the cosmologi-

cal scalar and tensor perturbations are all present, as long as the geometrical optics

approximation are valid.

On the other hand, multiplying eαβ on both sides of Eq.(3.91) and taking

Eq.(3.83) into account, one finds that

d

dλ
lnA+

1

2
∇µk

µ = 0, (3.95)

where d/dλ ≡ kν∇ν . Introducing the current Jµ ≡ A2kµ of the gravitons moving

along the null geodesics, the above equation can be written in the form

∇µJ
µ = 0. (3.96)
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Therefore, the current of the gravitons moving along the null geodesics defined by kµ

is conserved, even when the primordial GWs (or cosmological tensor perturbations)

are present (Hij 6= 0). Inserting Eq.(3.95) into Eq.(3.91), one finds that

kµ∇µeαβ = 0. (3.97)

Thus, the polarization bivector eαβ is still parallel-transported along the null geodesics,

even when the primordial GWs are present.

It is interesting to note that Eqs.(3.4)-(3.97) hold not only for the inhomoge-

neous universe, but also for any curved background, as long as the geometrical optics

approximation are applicable to the high frequency GWs.

To study the GWs further, one can expand χµν in terms of εc as,

χ̂µν = χ(0)
µν + εcχ

(1)
µν +O

(
ε2c
)
, (3.98)

and then consider them order by order.

3.4.1 GWs Propagating in a Homogeneous and Isotropic Background

To the zeroth-order of εc, the background metric is γµν ' γ̄µν = a2ηµν , and

χµν ' χ(0)
µν +O (εc) , (3.99)

where the geometric optics approximation is set as

χ(0)
µν ≡ A(0)

µν e
iϕ(0)/ε = e(0)µνA(0)eiϕ

(0)/ε. (3.100)

Then, from Eqs.(3.96) and (3.97) one immediately obtain

∇̄ν

(
A(0)2k(0)ν

)
= 0, (3.101)

d

dλ
e
(0)
ij = 0, (3.102)

where k
(0)
µ ≡ ∇̄µϕ

(0) =
(
ϕ(0)

,η, ϕ
(0)

,i

)
, and k(0)µ ≡ γ̄µνk

(0)
ν .
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3.4.2 Gravitational iSW Effects

The derivation of the iSW effect in cosmology is based on the fact that electro-

magnetic radiation propagates along null geodesics in the inhomogeneous universe.

Laguna et al [116] took advantage of the fact that GWs are also propagating along

null geodesics and derived the gravitational iSW effect for GWs when only the cos-

mological scalar perturbations are present (Hij = 0). In this subsection, we shall

generalize their studies further to the case where both the cosmological scalar and

tensor perturbations are present. As shown by Eq.(3.92), even when both of them

are present, the GWs produced by astrophysical sources are still propagating along

the null geodesics. Therefore, such a generalization is straightforward.

In particular, one can first introduce the conformal metric γ̃µν by

ds̃2 =γ̃µνdx
µdxν ≡ a−2γµνdx

µdxν

=− (1 + 2εcφ) dη2 +
[

(1− 2εcψ) δij +Hij

]
dxidxj. (3.103)

Since γµν and γ̃µν are related to each other by a conformal transformation, the null

geodesics xµ(λ) in the γµν spacetime are the same as x̃µ(λ̃) in the γ̃µν spacetime,

where

dλ = adλ̃, kµ =
1

a2
k̃µ, (3.104)

and λ̃ is the affine parameter of the null geodesics x̃µ in the spacetime of γ̃µν .

The advantage of working with the metric γ̃µν is that the zeroth-order space-

time now becomes the Minkowski spacetime, and the corresponding null geodesics

are the straight lines given by

dx̃(0)µ(λ̃)

dλ̃
≡ k̃(0)µ. (3.105)

63



Figure 3.1: A gravitational wave is propagating along the spatial direction k̃(0)i ≡ −ni
to the observer located at the origin.

Thus, to simplify our calculations, γ̃µν will be used as the background metric. In

particular, to the zeroth-order of εc, the wavevector is

k̃(0)µ =
(
1,−ni

)
, (3.106)

where k̃(0)i ≡ −ni represents the spatial direction of the GWs from the source prop-

agating to the observer [cf. Fig. 3.1]. Then, from Eq.(3.101),

d

dλ̃
ln
(
aA(0)

)
= −1

2
k̃(0)ν,ν = 0, (3.107)

which implies that the quantity defined by

Q ≡ RA(0), (3.108)

is constant along the GW path, and will be determined by the local wave-zone

source solution, where R ≡ ar denotes the physical distance between the ob-

server and the source, while r denotes the comoving distance, given by r ≡√
(xe − xr)2 + (ye − yr)2 + (ze − zr)2, where xie ≡ (xe, ye, ze) and xir ≡ (xr, yr, zr)

are the spatial locations of the source and observer, respectively.
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In the following, we shall set up the coordinates as follows [116]: The observer is

located at the origin with its proper time denoted by τ and world line xµ(τ). Denoting

the time to receive the GW by τr, this event will be recorded as xµ(τ) = (τr, ~o). The

emission time of the GW by an astrophysical source corresponds to the proper time

τe of the observer with xµ(τ) = (τe, ~o). Then, the GW will move along the null

geodesics, described by x̃µ(λ̃) = x̃(0)µ(λ̃) + εcx̃
(1)µ(λ̃), which corresponds to the wave

vector k̃µ(λ̃) = k̃(0)µ(λ̃) + εck̃
(1)µ(λ̃), where x̃(0)µ(λ̃) =

(
λ̃, (λ̃r − λ̃)ni

)
, and λ̃r is the

moment when the GW arrives at the origin with τ(λ̃r) = τr.

The effects of the scalar and tensor perturbations are manifested from the per-

turbations of the null geodesics. Considering the fact Γ̃
(0)µ
νλ = 0 in the γ̃µν spacetime,

one finds that, to the first-order of εc, k̃
(1)µ(λ̃) is given by

dk̃(1)µ

dλ̃
+ Γ̃

(1)µ
αβ k̃(0)αk̃(0)β = 0, (3.109)

where Γ̃
(1)µ
αβ denotes the Christoffel symbols of the first-order of εc. As mentioned

previously, for the scalar perturbations, one shall not assume that ψ = φ, that is, the

trace of the anisotropic stress of the universe does not necessarily vanish, as shown

by Eq.(A.15) in Appendix A. Then, for µ = 0 Eq.(3.109) is written as

d

dλ
k̃(1)0 =∂τ (φ+ ψ)− 2

dφ

dλ
− 1

2
nknl∂τHkl, (3.110)

where

dΦ

dλ
≡
(
∂τ − ni∂i

)
Φ. (3.111)

Thus, integrating Eq.(3.110) the wavevector is written as

k̃(1)0 =− (φ+ ψ)|λe +
1

2
nknlHkl|λe

− 2 φ|λλe + I
(s)
iSW −

1

2
I
(t)
iSW , (3.112)

65



where I
(s)
iSW represents the gravitational iSW effect due to the cosmological scalar

perturbations, and was first calculated in [116]. The new term I
(t)
iSW is the gravita-

tional integrated effect due to the cosmological tensor perturbations. They are given,

respectively, by

I
(s)
iSW ≡

∫ λ

λe

∂τ (φ+ ψ)dλ′, (3.113)

I
(t)
iSW ≡n

knl
∫ λ

λe

∂τHkldλ
′. (3.114)

On the other hand, the spatial components of the wave-vector are given by

d

dλ
k̃
(1)i
‖ =− ni

[
∂τ (φ+ ψ) +

d

dλ
(φ− ψ)

− 1

2
nknl

(
dHkl

dλ
+ ∂τHkl

)]
, (3.115)

d

dλ
k̃
(1)i
⊥ =− ⊥ij

[
∂j(φ+ ψ)− nk dHjk

dλ

− 1

2
nknl∂jHkl

]
, (3.116)

where the wavevector is split into parallel and perpendicular modes k̃(1)i = k̃
(1)i
‖ +k̃

(1)i
⊥ ,

with the parallel component of the spatial wave-vector being defined by k̃
(1)i
‖ =

ninj k̃
(1)j, and the perpendicular component by k̃

(1)i
⊥ =⊥ij k̃(1)j. The projection oper-

ator ⊥ij is defined by ⊥ij= δij−ninj, with ni ≡ δikn
k. After integrating the above two

66



equations yield

k̃
(1)i
‖ =− ni

[
(ψ − φ)|λλe −

1

2
nknlHkl|λλe

+ I
(s)
iSW −

1

2
I
(t)
iSW

]
, (3.117)

k̃
(1)i
⊥ =− ⊥ij

[∫ λ

λe

∂j(φ+ ψ)dλ′ − nkHjk|λλe

− 1

2
nknl

∫ λ

λe

∂jHkldλ
′

]
. (3.118)

The GW phase is then given by

dϕ

dλ
= φ+ ψ − 1

2
nknl

∫ λ

λe

Hkldλ
′, (3.119)

which leads to

δϕ = ϕ− ϕe =

∫ λ

λe

(φ+ ψ)dλ′

− 1

2
nknl

∫ λ

λe

Hkldλ
′. (3.120)

The frequency of the GW is defined as ω = −uµkµ, where uµ is the 4-velocity of the

fluid of the universe, from which one finds that the ratio of receiving and emitting

frequencies is given by

ωr
ωe

=
1−Υ

1 + z
, (3.121)

where 1 + z ≡ ar/ae, and

Υ ≡φ|λrλe + vini +
1

2
nknlHkl|λrλe

− I(s)iSW |λr +
1

2
I
(t)
iSW |λr . (3.122)

In addition, setting A = A(0)(1 + ξ), from Eq.(3.101) one gets

−2
dξ

dλ
= ∂τ k̃

(1)0 + ∂ik̃
(1)i
‖ + ∂ik̃

(1)i
⊥ + Γ̃(1)µ

µν k̃(0)ν , (3.123)
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where

∂τ k̃
(1)0 =∂τ

(
−2φ+ I

(s)
iSW −

1

2
I
(t)
iSW

)
,

∂ik̃
(1)i
‖ =

d

dλ

(
ψ − φ+ I

(s)
iSW

)
− ∂τ

(
ψ − φ+ I

(s)
iSW

)
− 1

2

d

dλ

(
nknlHkl + I

(t)
iSW

)
+

1

2
∂τ

(
nknlHkl + I

(t)
iSW

)
,

∂ik̃
(1)i
⊥ =− ⊥ij

[ ∫ λ

λe

∂i∂j(φ+ ψ)dλ′

− nk∂iHkj −
1

2
nknl

∫ λ

λe

∂i∂jHkldλ
′
]
,

Γ̃(1)µ
µν k̃(0)ν =

d

dλ
(φ− 3ψ). (3.124)

Notice that in the last term there are no contributions from the tensor perturbations.

Collecting all of this together, Eq.(3.124) yields

−2
dξ

dλ
=− ∂τ (φ+ ψ) +

d

dλ

(
−2ψ + I

(s)
iSW

)
− ⊥ij

∫ λ

λe

∂i∂j(φ+ ψ)dλ′

+
1

2
nknl∂τHkl −

1

2

d

dλ

(
nknlHkl + I

(t)
iSW

)
+ ⊥ij nk∂iHjk

+
1

2
⊥ij nknl

∫ λ

λe

∂i∂jHkldλ
′, (3.125)

which has the general solution

ξ =− ψ|λλe +
1

2
⊥ij

∫ λ

λe

∫ λ′

λe

∂i∂j(φ+ ψ)dλ′dλ′′

− 1

2
nk

[
− 1

2
nlHkl|λλe+ ⊥

ij

∫ λ

λe

∂iHjkdλ
′

+
1

2
⊥ij nl

∫ λ

λe

∫ λ′

λe

∂i∂jHkldλ
′dλ′′

]
. (3.126)
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In terms of the gravitational tensorial iSW effect defined by Eq.(3.114), the above

expression can be written in the form

ξ =

(
ψ − 1

4
nknlHkl

)∣∣∣∣λ
λe

+
1

2
I
(t)
iSW

− 1

4
⊥ij

∫ λ

λe

∫ λ′

λe

∂i∂j

[
nknlHkl − 2 (φ+ ψ)

]
dλ′′dλ′

− 1

2
nk
∫ λ

λe

∂lHkldλ
′. (3.127)

Combining all of our results together, one can construct the gravitational waveform

through Eq.(3.81), from which it is written as

hµν = χµν −
1

2
χγµν = eµν h̃,

h̃ ≡ Aeiϕ =
(1 + z)Q

dL
(1 + ξ)ei(ϕe+δϕ), (3.128)

where δϕ and ξ are given, respectively, by Eqs.(3.120) and (3.127), and dL ≡ (1+z)R

is the luminosity distance. Note that in writing the expression for the response

function h̃ the smallness parameter is set to ε = 1.

For a binary system, the values Q and ϕe are written as [116,151]

Q =Me (πfeMe)
2/3 ,

ϕe =ϕc − (πfeMe)
−5/3 , (3.129)

where Me and fe denote, respectively, the intrinsic chirp mass and frequency of the

binary, and φc is the value of the phase at the merge, at which f = ∞. Therefore,

the function h̃ for a binary system can be cast in the form

h̃ =
Mr

DL

(πfrMr)
2/3ei(ϕe+δϕ), (3.130)
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where the modified luminosity distance DL and the chirp mass Mr measured by the

observer are given, respectively, by

DL ≡
dL

1−Υ− ξ
, Mr ≡

(
1 + z

1−Υ

)
Me, (3.131)

where Υ is given by Eq.(3.122).
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CHAPTER FOUR

Conclusions and Closing Remarks

4.1 Gravitational Theory

In this dissertation, we discussed the nature of GWs as they propagate through

the universe. We looked at the effects of singularities and tidal forces produced by

GWs, and how early universe scalar and tensor perturbations affect GWs as they

propagate in an inhomogeneous universe.

The memory effects of gravitational waves are tightly related to the asymp-

totical properties of the spacetime at the future null infinity (see Ref. [16,23,37] and

references therein), and so are the soft gravitons and black holes [25, 26]. However,

it is well-known that in the BJR coordinates Eq.(2.6), the metric coefficients often

become singular, and extensions beyond the singularities are needed before studying

these important issues.

In Chapter 2, we have first pointed out that such extensions are not always

possible, as some of these singularities are physically real singularities. In particular,

distortions experienced by freely falling observers in the (u, v)-plane can be divergent,

and any objects trying across the singular surface will be destroyed by these distor-

tions. As a result, in these cases the singularities actually represent the boundaries of

the spacetimes. In particular, if the metric coefficient e−U vanishes at the singularity

u = us as,

χ−U/2 = (u = us)
αχ̂(u),
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where α ∈ (0, 1], which is required for the metric coefficients to be real, and χ̂(us) ' 0,

we found that distortions experienced by such freely falling observers always diverge,

unless α = 1/2 or α = 1. Therefore, only in the cases where α = 1/2 or 1, the

spacetimes at u = us are possibly non-singular, and extensions of the spacetimes

beyond this surface is needed, whereby we are able to study the memory effects of

gravitational waves and soft gravitons and black holes.

Coordinate transformations from the BJR coordinates to the Brinkmann coor-

dinates are carried out by Eq.(2.13). It is interesting to note that in the Brinkmann

coordinates there is only one unknown function A, while in the BJR coordinates

there are two, U and V . However, the vacuum Einstein field equation (3.2) relates

U to V , so finally there is only one independent component in that system too. In

fact, for any given V , from Eq.(2.37) one can find U , and then the function A is

uniquely determined by Eq.(2.38). It is also interesting to note that the inverse is not

unique, that is, for any given A(u), Eq.(2.56) will have a family of solutions of the

form, U(u, u1, u2) and V (u, v1, v2), where ui’s and vi’s are the integration constants.

With the above in mind, we find that A is finite and well-behaved across u = us for

α = 1/2 for any given χn, where χn are the expansion coefficients of χ̂(u), given in

Eq.(2.25). However, in the case α = 1, we found that A is finite and well-behaved

across u = us only when χ1 = χ2 = χ3 = 0. If any of these three coefficients is

not zero, A(u) will be singular across u = us, although the distortions of the freely

falling observers considered in this chapter are finite. There are two possibilities for

these cases: (i) The corresponding spacetimes are indeed singular, and distortions

become unbounded across u = us for other kinds of observers. (ii) The correspond-

ing singularities are coordinate ones, but the proper coordinate transformations are
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not given by Eq.(2.13), and instead they are given by something else. The results on

the studies of the tidal forces between two nearby null geodesics in the Brinkmann

coordinates presented in [56] show that the possibility (i) is the right answer, as the

tidal forces will diverge when A(u) does. Therefore, it is concluded that only in

the two cases given by Eq.(2.1) are the spacetimes not singular at the focusing sur-

face u = us, and extensions beyond the hypersurface are needed, in order to obtain

maximal spacetimes.

Finally we note that our results are expected to be valid when both of the two

polarizations exist, that is, W ' 0 in Eq.(2.4), although in the this chapter we only

considered the case W = 0.

In Chapter 3, we have systematically studied GWs, which are first produced

by some remote compact astrophysical sources, and then propagate in our inhomoge-

neous universe through cosmic distances before arriving at the detectors. Such GWs

will carry valuable information of both their source and the cosmological expansion

and inhomogeneities of the universe, whereby a completely new window to explore

our universe by using GWs is opened. As the third generation (3G) detectors, such

as the space-based ones, LISA [77], TianQin [78], Taiji [79], DECIGO [80], and the

ground-based ones, ET [109] and CE [110], are able to detect GWs emitted from

such sources as far as at the redshift z ' 100 [111], it is very important and timely

to carry out such studies systematically. Such studies were already initiated some

years ago [116, 118, 119] in the framework of Einstein’s theory, and more recently in

scalar-tensor theories [121–124,124].

In order to effectively characterize such systems, we first introduced three

scales, λ, Lc and L, which represent, respectively, the typical wavelength of the
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GWs, the scale of the cosmological perturbations, and the size of our observable

universe. For GWs to be detected by the current and foreseeable (both ground- and

space-based) detectors, in Chapter 3.2 we showed that the relation

λ� Lc � L,

is always true, that is, such GWs can be well approximated as high frequency GWs,

for which the general formulas were already developed by Isaacson more than half

century ago [114,115].

However, Isaacson considered only the case where the background is vacuum,

while in [116,118,119] only the cosmological scalar perturbations were considered. In

this chapter, we considered the most general case in which the background also in-

cludes the cosmological tensor perturbations. The inclusion of the latter is important,

as now one of the main goals of cosmological observations is the primordial GWs (the

tensor perturbations) [125]. In the non-vacuum case, (in Ch.3.2) we showed explicitly

that the conditions

|hµν | � 1, ε� εc � 1,

must hold, in order for the backreaction of the GWs to the background to be neglected,

and the linearized Einstein field equations given by Eq.(3.50) to hold, where the total

metric of the spacetime is expanded as gµν = γµν + εhµν , with γµν(≡ γ̄µν + εcγ̂µν)

representing the background.

In Ch.3.3, we considered the gauge choices, and found that the three different

gauge conditions, spatial, traceless, and Lorenz, given respectively by Eqs.(3.3) - (3.5),

can be still imposed simultaneously, even when both the cosmological scalar and
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tensor perturbations are present, as long as the GWs can be approximated as the high-

frequency GWs. However, by imposing only the spatial gauge (3.3), the linearized

Einstein field equations (3.50) are explicitly given in Appendix B. If χµν is decomposed

into two parts,

χµν = χ(0)
µν + εcχ

(1)
µν +O

(
ε2c
)
,

the field equations for χ
(1)
µν are given explicitly in Appendix C.

As an application of the general formulas developed in Ch.3.2 and 3.3, in Ch.

3.4 we studied the GWs by using the geometrical optics approximation,

χαβ = eαβAeiϕ/ε,

where eαβ represents the polarization tensor, A and ϕ denote, respectively, the am-

plitude and phase of the GWs. We showed explicitly that even when both the cos-

mological scalar and tensor perturbations are present, such GWs are still propagating

along null geodesics, and the current of gravitons moving along the null geodesics is

conserved, and the polarization tensor is parallel-transported, i.e.,

kλ∇λk
µ = 0, kλ∇λeαβ = 0, ∇λJλ = 0,

where kµ ≡ ∇µϕ, Jµ ≡ A2kµ. In fact, these are true for any curved background,

provided that: (a) the GWs can be considered as high-frequency GWs; and (b) the

geometrical optics approximation are valid.

With these remarkable features, we calculated the effects of the cosmological

scalar and tensor perturbations on the amplitudeA and phase ϕ, given by Eqs.(3.120),

(3.127) and (3.128). Restricting to GWs produced by a binary system, the effects of

the cosmological perturbations, both scalar and tensor, on the luminosity distance
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and the chirp mass are given explicitly by Eq.(3.131), which represent a natural gener-

alization of the results obtained in [116,118,119] to the case in which the cosmological

tensor perturbations are also present.

The applications of our general formulas developed in this chapter to other

studies are immediate, including the gravitational analogue of the electromagnetic

Faraday rotations [143,144,152,153], and their detections by the space- and ground-

based detectors. We wish to return to these important issues in the near future.

It would be also very important to extend such studies to include the relations be-

tween the GWs and their sources, high-order corrections to the geometrical optics

approximations, and more interestingly the non-high frequency GWs.
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APPENDIX A

Decomposition of Cosmological Perturbations and Gauge Choices

Following [147, 148], the linear perturbations γ̂µν can be decomposed into

scalar, vector and tensor modes, and given explicitly by Eq.(3.54).

The energy-momentum tensor Tµν
(0) of a fluid takes the form [147],

T µν
(0) = (ρ+ p)uµuν + pδµν + πµν , (A.1)

where uµ is the 4-velocity of the fluid, ρ and p are its energy density and isotropic

pressure, respectively, and πµν is the anisotropic stress tensor, which has only spatial

components, i.e., πµ0 = 0. Setting

ρ = ρ̄+ εcδρ, p = p̄+ εcδp,

uµ = ūµ + εcδu
µ, (A.2)

where ūµ = a−1δµη is the 4-velocity of the fluid of the homogeneous and isotropic

universe, and ρ̄ and p̄ are its energy density and isotropic pressure, respectively, we

find that δuµ can be decomposed as

δuµ =
1

a

(
−φ, ∂iv + vi

)
, (A.3)

where ∂iv
i = 0. Then, from uµ ≡ γµνu

ν = ūµ + εcδuµ, we find that,

δuµ = a (−φ, ∂iv + ∂iB + vi − Si) , (A.4)

which leads to uµuµ = −1 +O (ε2c), as expected.
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On the other hand, setting πji = εcπ̂
j
i , similar to γ̂µν , the anisotropic stress

tensor π̂ji can be decomposed into scalar, vector and tensor modes,

π̂ji =

(
∂j∂i −

1

3
δji ∂

2

)
Π +

1

2

(
∂iΠ

j + ∂jΠi

)
+ Πj

i,

(A.5)

where ∂iΠ
i = 0 = Πi

i, ∂jΠ
j
i = 0, Πi ≡ δikΠk, Πi

j ≡ δikΠkj, ∂
2 ≡ ∂i∂i, etc. Then,

we find that

T 0
0
(0)

= −ρ̄− εcδρ,

T 0
i
(0)

= εc (ρ̄+ p̄) [∂i(v +B) + vi − Si] ,

T i 0
(0)

= −εc (ρ̄+ p̄)
(
∂iv + vi

)
,

T i j
(0)

= p̄δij + εc
(
δpδij + π̂ij

)
. (A.6)

Considering the gauge transformations,

η̃ = η + εcζ
0, x̃i = xi + εc

(
∂iζ + ζ i

)
, (A.7)

where ∂iζ
i = 0, we find that,

φ̃ = φ−Hζ0 − ζ0′, ψ̃ = ψ +Hζ0,

B̃ = B + ζ0 − ζ ′, Ẽ = E − ζ,

δ̃ρ = δρ− ζ0ρ̄′, δ̃p = δp− ζ0p̄′,

ṽ = v + ζ ′, (A.8)

F̃i = Fi − ζi, S̃i = Si + ζ ′i,

ṽi = vi + ζ i
′
, (A.9)

H̃ij = Hij, π̃ij = πij, (A.10)
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where H ≡ a′/a with a′ ≡ da/dη. From the above gauge transformations we can see

that the following quantities are gauge-invariant,

Φ ≡ φ+H (B − E ′) + (B − E ′)′ ,

Ψ ≡ ψ −H (B − E ′) ,

Φi ≡ Si + F ′i . (A.11)

On the other hand, if we choose ζ = E, ζ0 = E ′ −B and ζi = Fi, we have

B̃ = Ẽ = 0, F̃i = 0, (A.12)

in which the gauge is completely fixed. This is often referred to as the Newtonian

gauge. Then, we are left with six scalars, (φ, ψ, v, δρ, δp,Π), two vectors, (Si, vi), and

two tensors, (Hij,Πij). However, the vector part decreases rapidly with the expansion

of the universe, so we can safely set them to zero [147,148],

Si = Fi = vi = Πi = 0. (A.13)

Then, for the scalar perturbations, there are six-independent equations, given,

respectively, by [147],

ψ′′ + 2Hψ′ +Hφ′ +
(
2H′ +H2

)
φ

= 4πGa2
(
δp+

2

3
∇2Π

)
, (A.14)

ψ − φ = 8πGa2Π, (A.15)

3H (ψ′ +Hφ)−∇2ψ = −4πGa2δρ, (A.16)

ψ′ +Hφ = −4πGa2 (ρ̄+ p̄) v, (A.17)

δρ′ + 3H (δρ+ δp) = (ρ̄+ p̄)
(
3ψ′ −∇2v

)
, (A.18)

[(ρ̄+ p̄) v]′ + δp+
2

3
∇2Π− (ρ̄+ p̄) (φ+ 4Hv) . (A.19)
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Note that Eqs.(A.14) and (A.15) are obtained from the linearized (i, j)-components of

the Einstein field equations, and Eqs.(A.16) and (A.17) are the energy and momentum

constraints, while Eqs.(A.18) and (A.19) are obtained from the conservation of the

energy-momentum tensor.

For the tensor perturbations, we have

H ′′ij + 2HH ′ij −∇2Hij = 16πGa2Πij, (A.20)

which is obtained from the equations δG(0)i

j = κδT (0)i

j.

It must be noted that in writing the linearized field equations, (A.14) - (A.19),

we had implicitly assumed that the quadratic terms ε2cR̂
(2)
µν (γ̂) ' O(γ̂2)� 1, which is

equivalent to

γ̂ � 1, (A.21)

where R̂
(2)
µν (γ̂) is given by Eq.(3.20) with the replacement (hµν ,∇α)→

(
γ̂µν , ∇̄α

)
. Oth-

erwise, these quadratic terms cannot be neglected from the Einstein field equations

for the background spacetimes,

Ḡµν(γ̄) + εcĜµν(γ̂) + ε2cĜ
(2)
µν (γ̂) = κT (0)

µν , (A.22)

where,

Ḡµν(γ̄) ' O(1), εcĜµν(γ̂) ' O(γ̂/εc),

ε2cĜ
(2)
µν (γ̂) ' O(γ̂2), (A.23)

as can be seen from Eq.(3.26).
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APPENDIX B

Decomposition of Cosmological Perturbations and Gauge Choices

In this Appendix, we shall calculate all the components of the quantities ap-

pearing in the field equations (3.80) for χαβ, by imposing only the spatial gauge,

χ0µ = 0.

In particular, to calculate the non-vanishing components of the tensor Gαβ, we first

note that,

χij ≡ γiµγjνχµν = γikγjlχkl =
1

a2

{
δikδjl + εc

[
4ψδikδjl −

(
δikHjl + δjlH ik

)] }
χ̂kl,

γijχ
ij = χ̂+ εc

(
2ψχ̂−Hklχ̂kl

)
, χ ≡ γµνχµν = γijχij = γijχ

ij,

γijχ
ikπ̂jk =

[
π̂kl + εc

(
2ψπ̂kl − π̂kmHml

) ]
χ̂kl,

χγσTγσ
(0) − 1

2
χT (0) =

1

2
(ρ̄− p̄) χ̂+

1

2
εc

[
(ρ̄− p̄)

(
2ψχ̂−Hklχ̂kl

)
+ (δρ− δp) χ̂+ 2π̂klχ̂kl

]
, (B.1)
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where χ̂ ≡ δijχ̂ij, χij ≡ a2χ̂ij, π̂ij ≡ δikπ̂
k
j , etc. We find that the terms Fµν take the

form,

F00 =− a21

2

{
(ρ̄− p̄)χ̂

+ εc
[
(ρ̄− p̄)

(
2(ψ + φ)χ̂−Hklχ̂kl

)
+ (δρ− δp)χ̂+ 2π̂klχ̂kl

]}
,

F0i =− a2ε
(
ρ̄+ p̄

)
χ̂ik∂

kv,

Fij =a2
1

2

[
4p̄χ̂ij + (δρ− δp)χ̂δij

]
+ a2

1

2
εc

{[
4δρχ̂ij + (δρ− δp)χ̂δij

]
+ (ρ̄− p̄)

(
χ̂Hij −Hklχ̂klδij

)
+ 2
(
π̂ki χ̂jk + π̂kj χ̂ik + π̂klχ̂klδij

)]}
. (B.2)

The Christoffel symboles are defined as,

Γµνλ (γαβ) = Γ̄µνλ + εcDµνλ, (B.3)

Where Γ̄µνλ is our background Christoffel symbol composed of only of the zeroth-order

background metric, γ̄µν , and Dµνλ is defined as,

Dµνλ ≡
1

2
γ̄µσ (γ̂σλ,ν + γ̂νσ,λ − γ̂νλ,σ)− Γ̄σνλγ̂

µ
σ . (B.4)

The non-vanishing terms of the Christoffel symbols are then,

Γ̄0
00 =H, Γ̄0

ij = Hδij, Γ̄i0j = Hδij,

D0
00 =φ′, D0

0i = φ,i,

D0
ij =H [Hij − 2 (ψ + φ) δij] +

1

2

(
H ′ij − 2ψ′δij

)
,

Di00 =∂iφ, Di0j =
1

2

(
H i
j

′ − 2ψ′δij

)
,

Dkij =Hk
(i,j) − 2ψ(,iδ

k
j) −

1

2
∂k (Hij − 2ψδij) . (B.5)

The covariant derivative is then defined as,

∇αχµν = ∂αχµν −
(
Γ̄σαµχσν + Γ̄σανχµσ

)
− εc

(
Dσαµχσν +Dσανχµσ

)
. (B.6)
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Then, we find that the non-vanishing (independent) components of the Riemann

tensor,

Rµναβ
(0) = R̄µναβ + εcR̂µναβ, (B.7)

are given, respectively, by

R̄0i0j = a2
(
H2 − a′′

a

)
δij,

R̄minj = a2H2 (δijδmn − δinδmj) , (B.8)

and

R̂0i0j =a2

{
φ,ij +Hφ′δij +

[
(ψ′′ +Hψ′) + 2

(
a′′

a
−H2

)
ψ

]
δij

− 1

2

[
(Hij

′′ +HHij
′) + 2

(
a′′

a
−H2

)
Hij

]}
,

R̂0ijk =a2
[
H (φ,jδik − φ,kδij) +

(
ψ′,jδik − ψ′,kδij

)
+

1

2

(
H ′ij,k −H ′ik,j

) ]
,

R̂ijkl =− 2a2H2φ (δikδjl − δilδjk)

− a2
[

(δjkψ,il + δilψ,jk − δikψ,jl − δjlψ,ik) + 2H (ψ′ + 2Hψ) (δikδjl − δilδjk)
]

+
1

2
a2

{
(Hjk,il +Hil,jk −Hik,jl −Hjl,ik)−H

[
δil
(
H ′jk + 2HHjk

)
+ δjk (H ′il + 2HHil)− δjl (H ′ik + 2HHik)− δik

(
H ′jl + 2HHjl

) ]}
. (B.9)
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Hence, we find that,

2R0i0j
(0)χij =2

(
a′′

a
−H2

)
χ̂+ εc

{
2
(
∂i∂jφ

)
χ̂ij + 2Hφ′χ̂

+ 2
(
ψ′′ +Hψ′

)
χ̂− 4

(
a′′

a
−H2

)
ψχ̂

−
(
H ij ′′ +HH ij ′)χ̂ij + 2

(
a′′

a
−H2

)
H ijχ̂ij

}
,

2R0jik
(0)χjk =2εc

{
H
[
(∂iφ) χ̂−

(
∂kφ
)
χ̂ik
]

+ (∂iψ
′) χ̂−

(
∂kψ′

)
χ̂ik

+
1

2

[(
∂kHj

i

′
)
−
(
∂iH

jk ′
)]
χ̂jk

}
,

2Rikjl
(0)χkl =2H2

(
δijχ̂− χ̂ij

)
+ εc

{
4H2φ (χ̂ij − χ̂δij) + 4Hψ′ (χ̂ij − χ̂δij)

+ 2
[

(∂i∂jψ) χ̂+
(
∂k∂lψ

)
χ̂klδij −

(
∂k∂iψ

)
χ̂jk −

(
∂k∂jψ

)
χ̂ik

]
− 2H2Hklχ̂klδij + 2H2Hijχ̂− 2HHk

(i

′
χ̂j)k

+HHij
′χ̂+HHkl′χ̂klδij +

(
2∂(i∂

lHk
j) − ∂k∂lHij − ∂i∂jHkl

)
χ̂kl

}
.

(B.10)

On the other hand, similar to the above expression, writing �χαβ in the form,

�χαβ ≡ �̄χαβ + εc�̂χαβ, (B.11)

we find they are given, respectively, by

�̄χ00 = 2H2χ̂,

�̄χ0i = −2H∂jχ̂ij,

�̄χij = −χ̂′′ij − 2Hχ̂′ij + ∂2χ̂ij + 2H2χ̂ij, (B.12)
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and,

�̂χ00 =− 2H
[
2 (ψ′ −Hψ) χ̂−

(
H ij ′ −HH ij

)
χ̂ij

]
,

�̂χ0i =
(
∂jφ′

)
χ̂ij + 2

(
∂jφ
) (
χ̂′ij +Hχ̂ij

)
+
(
∂jψ′

)
χ̂ij + 2 (ψ′ − 2Hψ) ∂jχ̂ij

+ 2H
[(
∂jψ

)
χ̂ij − (∂iψ) χ̂

]
−
(
Hjk ′ − 2HHjk

)
∂kχ̂ij +H

(
∂iH

jk
)
χ̂jk,

�̂χij =2φχ̂′′ij + (φ′ + 4Hφ) χ̂′ij +
(
∂kφ
)
∂kχ̂ij − 4H2φχ̂ij

+ 2ψ∂2χ̂ij + 4∂(iψ∂
kχ̂j)k + 3

(
∂kψ

)
∂kχ̂ij − 4

(
∂kψ

)
∂(iχ̂j)k

+ 2∂k∂(iψχ̂j)k + 2
(
∂2ψ

)
χ̂ij − 2∂(i∂

kψχ̂j)k − ψ′χ̂′ij − 2 (ψ′′ + 4Hψ′) χ̂ij

−Hkl∂k∂lχ̂ij − 2∂lHk
(i∂lχ̂j)k − 2∂(iH

kl∂lχ̂j)k

+ 2∂kH l
(i∂lχ̂j)k + 2Hk

(i
′χ̂′j)k +Hk

(i
′′χ̂j)k + 4HHk

(i
′χ̂j)k − ∂2Hk

(iχ̂j)k, (B.13)

where 2∂k∂(iψχ̂j)k ≡
(
∂k∂iψ

)
χ̂jk+

(
∂k∂jψ

)
χ̂ik, that is, the partial derivative acts only

to the first function. The same is true for other terms, for example, 2∂lHk
(i∂lχ̂j)k ≡(

∂lHk
i

)
∂lχ̂jk +

(
∂lHk

j

)
∂lχ̂ik.

On the other hand, defining

G(1)αβ ≡ γαβ∇γ∇δχγδ, (B.14)

we find that

G(1)00 =− G(1)0 − εc
(

2φG(1)0 + G(1)1

)
, G(1)0i = G1i0 = 0,

G(1)ij =δijG(1)0 + εc

[
δij

(
G(1)1 − 2ψG(1)0

)
+HijG(1)0

]
, (B.15)
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where,

G(1)0 ≡Hχ̂′ +
(
a′′

a
+H2

)
χ̂+ ∂i∂jχ̂ij,

G(1)1 ≡− 2Hφχ̂′ −
[
2

(
a′′

a
+H2

)
φ+Hφ′

]
χ̂+ 2

(
∂iφ
) (
∂jχ̂ij

)
+
(
∂i∂jφ

)
χ̂ij

− (ψ′ − 2Hψ) χ̂′ −
[
ψ′′ + 3Hψ′ − ∂2ψ − 2

(
a′′

a
+H2

)
ψ

]
χ̂

+ (∂iψ)∂iχ̂+ 4ψ∂i∂jχ̂ij −
(
∂i∂jψ

)
χ̂ij

+
1

2

{(
H ij ′ − 2HH ij

)
χ̂′ij +

[
H ij ′′ − 2

(
a′′

a
+H2

)
H ij − ∂2H ij

]
χ̂ij

− 4H ik∂k∂
jχ̂ij −

(
∂kH

ij
) (
∂kχ̂ij

)
− 2

(
∂iHjk

)
(∂kχ̂ij)

}
. (B.16)

On the other hand, defining,

G(2)αβ ≡ ∇α∇δχβδ, (B.17)
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we find that it has the following non-vanishing components,

G(2)00 =− a′

a
χ̂′ −

(
a′′

a
− 2H2

)
χ̂

+ εc

[
Hφ′χ̂−

(
∂iφ
)
∂kχ̂ik + (ψ′ − 2Hψ) χ̂′ + (ψ′′ − 3Hψ′) χ̂− 2

(
a′′

a
− 2H2

)
ψχ̂

− 1

2

(
H ij ′ − 2HH ij

)
χ̂′ij −

1

2

(
H ij ′′ − 3HH ij ′

)
χ̂ij +

(
a′′

a
− 2H2

)
H ijχ̂ij

]
,

G(2)0i =∂kχ̂′ik −H∂kχ̂ik + εc

[ (
∂jφ
)
χ̂′ij +

(
∂jφ′ −H∂jφ

)
χ̂ij +H (∂iφ) χ̂

+ 2ψ∂kχ̂′ik −
(
∂kψ

)
χ̂′ik + (3ψ′ − 2Hψ) ∂kχ̂ik + (∂iψ) χ̂′

−
(
∂kψ′ −H∂kψ

)
χ̂ik + (∂iψ

′ −H∂iψ) χ̂

−Hjk∂kχ̂
′
ij −

(
Hjk ′ −HHjk

)
∂kχ̂ij −

1

2
Hj
i

′
∂kχ̂jk

− 1

2
Hjk
,i χ̂

′
jk −

1

2

(
Hjk ′ −HHjk

)
,i
χ̂jk

]
,

G(2)i0 =−H
(
∂kχ̂ik + ∂iχ̂

)
+ εc

[
H (∂iφ) χ̂−H

(
∂kφ
)
χ̂ik

+ (ψ′ − 2Hψ)
(
∂kχ̂ik + ∂iχ̂

)
+H

(
∂kψ

)
χ̂ik + (ψ′ − 3Hψ),i χ̂

− 1

2

(
Hjk ′ − 2HHjk

)
∂iχ̂jk −

1

2
Hj
i

′
∂kχ̂jk

+HHjk∂kχ̂ij −
1

2

(
Hjk ′ − 3HHjk

)
,i
χ̂jk

]
,

G(2)ij =∂i∂
kχ̂jk +H2χ̂δij + εc

[ (
∂kφ
)
∂iχ̂jk +

(
∂i∂

kφ
)
χ̂jk − 2H2φχ̂δij

− ∂i
[(
∂kψ

)
χ̂jk
]

+ ∂i [(∂jψ) χ̂] + 2∂i(ψ∂
kχ̂jk) + (∂iψ) ∂kχ̂jk

+ (∂jψ) ∂kχ̂ik −
(
∂kψ

)
∂lχ̂klδij − 2Hψ′χ̂δij

− ∂i(Hkl∂lχ̂jk)−
1

2
∂i
[(
∂jH

kl
)
χ̂kl
]

+
1

2

(
∂kHij −Hk

i,j −Hk
j,i

)
∂lχ̂kl

+
1

2
H
(
Hkl′ − 2HHkl

)
χ̂klδij +

1

2
H
(
H ′ij + 2HHij

)
χ̂

]
. (B.18)
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Note that G(2)αβ is not symmetric, G(2)αβ 6= G
(2)
βα , as can be seen from its definition given

by Eq.(B.17).

Finally, defining Gαβ as

Gαβ ≡ �χαβ + γαβ∇γ∇δχγδ −∇α∇δχβδ −∇β∇δχαδ + 2Rαγβσ
(0)χγσ, (B.19)

we find that its non-vanishing components are given by,

G00 =Hχ̂′ −
(
a′′

a
+H2

)
χ̂− ∂i∂jχ̂ij

+ εc

{
Hφ′χ̂+

(
∂i∂jφ

)
χ̂ij − 2φ

(
∂i∂jχ̂ij

)
+

[
ψ′′ + 7Hψ′ − 2

(
a′′

a
+H2

)
ψ − ∂2ψ

]
χ̂

−
(
ψ′ − 2Hψ

)
χ̂′ +

(
∂i∂jψ

)
χ̂ij − 4ψ

(
∂i∂jχ̂ij

)
−
(
∂kψ

)
∂kχ̂

− 1

2

[(
H ij ′′ − ∂2H ij

)
+ 4HH ij ′ − 2

(
a′′

a
+H2

)
H ij

]
χ̂ij

+
1

2

(
H ij ′ − 2HH ij

)
χ̂′ij + 2H i

k(∂
k∂jχ̂ij) +

1

2
(∂kH ij)∂kχ̂ij + (∂iHjk)∂kχ̂ij

}
,

(B.20)

G0i =H∂iχ̂− ∂jχ̂′ij

+ εc

{(
∂jφ
)
χ̂′ij + 2H

(
∂jφ
)
χ̂ij − 2ψ′(∂jχ̂ij) + 2H(∂iψ)χ̂− 2ψ(∂jχ̂′ij)

+ (∂jψ)χ̂′ij − (∂iψ)χ̂′ − (ψ′ − 2Hψ)∂iχ̂−H(∂iH
jk)χ̂jk +

(
∂kHj

i

′
)
χ̂jk

+Hj
i

′ (
∂kχ̂jk

)
+Hjk

(
∂kχ̂

′
ij

)
+

1

2
(∂iH

jk)χ̂′jk +
1

2
Hjk ′(∂iχ̂jk)−HHjk(∂iχ̂jk)

}
,

(B.21)
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Gij =− χ̂′′ij + ∂2χ̂ij − 2Hχ̂′ij +Hδijχ̂′ + δij

(
a′′

a
+H2

)
χ̂+ ∂k∂lχ̂klδij − ∂i∂kχ̂jk − ∂j∂kχ̂ik

+ εc

{
2φχ̂′′ij +

(
φ′ + 4Hφ

)
χ̂′ij −

[
Hφ′ + 2

(
a′′

a
+H2

)
φ

]
δijχ̂− 2Hφδijχ̂′

− (∂j∂
kφ)χ̂ik − (∂i∂

kφ)χ̂jk + (∂kφ)∂kχ̂ij + 2(∂kφ)∂lχ̂klδij − (∂kφ)∂iχ̂kj

− (∂kφ)∂jχ̂ik + (∂k∂lφ)χ̂klδij

+ 2
(
∂2ψ − ψ′′ − 2Hψ′

)
χ̂ij +

(
∂2ψ − ψ′′ − 3Hψ′

)
χ̂δij − ψ′

(
χ̂′ij + χ̂′δij

)
+ 2ψ∂2χ̂ij

+ ∂kψ
(
3∂kχ̂ij + ∂kχ̂δij − ∂iχ̂jk − ∂jχ̂ik + 2∂lχ̂klδij

)
+ 2ψ∂k∂lχ̂klδij + (∂k∂lψ)χ̂klδij

− 4∂(iψ∂
kχ̂j)k − 2∂(i∂

kψχ̂j)k − 4ψ∂(i∂
kχ̂j)k − 2∂(iψ∂j)χ̂

+
1

2

(
Hkl′ − 2HHkl

)
χ̂′klδij +

[
1

2
Hkl′′ −

(
a′′

a
+H2

)
Hkl

]
χ̂klδij +Hk

(i

′′
χ̂j)k + 2HHk

(i

′
χ̂j)k

+ 2Hk
(i

′
χ̂′j)k +

[
Hχ̂′ +

(
a′′

a
+H2

)
χ̂+ ∂k∂lχ̂kl

]
Hij − 2Hjk∂k∂

mχ̂lmδij

− 1

2
∂2Hklχ̂klδij −

1

2
∂mH

kl∂mχ̂klδij − 2∂lHk
(i∂lχ̂j)k + 2∂kH l

(i∂lχ̂j)k

− ∂2Hk
(iχ̂j)k + ∂(iH

kl∂j)χ̂kl + ∂(iH
k
j)∂

lχ̂kl + 2∂(i∂
lHk

j)χ̂kl − ∂k∂lHijχ̂kl

− ∂kHij∂
lχ̂kl + 2Hkl∂(i∂lχ̂j)k − ∂kHml∂mχ̂klδij −Hkl∂k∂lχ̂ij

}
. (B.22)
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APPENDIX C

Decomposition of Cosmological Perturbations and Gauge Choices

Following Eq.(3.98), we write χ̂αβ in the form,

χ̂αβ ' χ̂
(0)
αβ + εcχ̂

(1)
αβ +O

(
ε2c
)
, (C.1)

where to the zeroth-order, the TT gauge,

χ̂
(0)
0β = 0, χ̂(0) = 0, ∂iχ̂

(0)
ij = 0, (C.2)

will be chosen. But, to the first order, we shall not impose the traceless and Lorentz

gauge conditions. The only gauge that now we choose is,

χ̂
(1)
0β = 0. (C.3)

With this gauge choice, to the first-order of εc, the non-vanishing components of the

tensor Gαβ given by Eqs.(B.20)-(B.22) yield,

G(1)00 =Hχ̂′(1) −
(
a′′

a
+H2

)
χ̂(1) − ∂i∂jχ̂(1)

ij +
[
∂i∂j (φ+ ψ)

]
χ̂
(1)
ij + Ĝ(1)00 , (C.4)

G(1)0i =H∂iχ̂(1) − ∂jχ̂′(1)ij + Ĝ(1)0i , (C.5)

G(1)ij =− χ̂′′(1)ij + ∂2χ̂
(1)
ij − 2Hχ̂′(1)ij +Hδijχ̂′(1) + δij

(
a′′

a
+H2

)
χ̂(1)

+ ∂k∂lχ̂
(1)
kl δij − ∂i∂

kχ̂
(1)
jk − ∂j∂

kχ̂
(1)
ik + Ĝ(1)ij , (C.6)
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where,

Ĝ(1)00 =− 1

2

[(
H ij ′′ − ∂2H ij

)
+ 4HH ij ′ − 2

(
a′′

a
+H2

)
H ij

]
χ̂
(0)
ij

+
1

2

(
H ij ′ − 2HH ij

)
χ̂
′(0)
ij +

1

2

(
∂kH ij

)
∂kχ̂

(0)
ij +

(
∂iHjk

)
∂kχ̂

(0)
ij , (C.7)

Ĝ(1)0i = +
(
∂jφ
)
χ̂
′(0)
ij + 2H

(
∂jφ
)
χ̂
(0)
ij +

(
∂jψ

)
χ̂
′(0)
ij

−H
(
∂iH

jk
)
χ̂
(0)
jk +

(
∂kH ′ji

)
χ̂
(0)
jk +Hjk

(
∂kχ̂

′(0)
ij

)
+

1

2
H ′jk

(
∂iχ̂

(0)
jk

)
−HHjk

(
∂iχ̂

(0)
jk

)
, (C.8)

Ĝ(1)ij = + 2φχ̂
′′(0)
ij + (φ′ + 4Hφ) χ̂

′(0)
ij −

(
∂j∂

kφ
)
χ̂
(0)
ik −

(
∂i∂

kφ
)
χ̂
(0)
jk (C.9)

+
(
∂kφ
)
∂kχ̂

(0)
ij −

(
∂kφ
)
∂iχ̂

(0)
kj −

(
∂kφ
)
∂jχ̂

(0)
ik +

(
∂k∂lφ

)
χ̂
(0)
kl δij

+ 2
(
∂2ψ − ψ′′ − 2Hψ′

)
χ̂
(0)
ij − ψ′χ̂

′(0)
ij + 2ψ∂2χ̂

(0)
ij

+ ∂kψ
(

3∂kχ̂
(0)
ij − ∂iχ̂

(0)
jk − ∂jχ̂

(0)
ik

)
+
(
∂k∂lψ

)
χ̂
(0)
kl δij

+
1

2

(
Hkl′ − 2HHkl

)
χ̂
′(0)
kl δij +

[
1

2
Hkl′′ −

(
a′′

a
+H2

)
Hkl

]
χ̂
(0)
kl δij

+Hk
(i

′′
χ̂
(0)
j)k + 2HHk

(i

′
χ̂
(0)
j)k + 2Hk

(i

′
χ̂
′(0)
j)k −

1

2
∂2Hklχ̂

(0)
kl δij −

1

2
∂mH

kl∂mχ̂
(0)
kl δij

− 2∂lHk
(i∂lχ̂

(0)
j)k + 2∂kH l

(i∂lχ̂
(0)
j)k − ∂

2Hk
(iχ̂

(0)
j)k + ∂(iH

kl∂j)χ̂
(0)
kl + 2∂(i∂

lHk
j)χ̂

(0)
kl

− ∂k∂lHijχ̂
(0)
kl + 2Hkl∂(i∂

lχ̂
(0)
j)k − ∂

kHml∂mχ̂
(0)
kl δij. (C.10)
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