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Committee Chairperson: William C. Anderson, Ph.D.

A great deal of literature has been published regarding the impact of complex

roughness on turbulent flow. However, the topic of transverse variations in surface

roughness, has received relatively little attention. In this thesis, large-eddy simulation

is used to investigate the effects on turbulent, high Reynolds number flow, caused by

periodic step-changes in aerodynamic roughness length, which persist in the stream-

wise direction. A parametric study is conducted with respect to the ratio of high

to low roughness length and the transverse width of high roughness regions. Results

show that lateral momentum flux across shear layers, generates secondary flows in the

vicinity of transverse transitions in roughness. These secondary flows form boundary

layer scale, counter-rotating vortices, which redistribute turbulence and momentum

throughout the entire domain and create time-invariant regions of relatively low and

high momentum, above low and high surface roughness, respectively.
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CHAPTER ONE

Introduction

Heterogeneous surface roughness is a common feature throughout many nat-

ural and man-made surfaces. Roughness heterogeneities may take the form of any-

thing from patches of corrosion on metal plating, to entire cities or forests. Making

an assumption of uniform surface roughness is convenient for the sake mathemati-

cal simplicity, when analyzing many turbulent flow scenarios. However, care must

be taken because realistically, few examples of truly homogeneous surface roughness

exist. For this reason, a more complete understanding of the way in which complex

surface roughness interacts with turbulent, flow, is a topic of serious interest to both

the scientific and engineering communities.

There has been a great deal of both numerical and experimental research that

has sought to identify flow effects, caused by rapid changes in surface roughness length.

The case in which flow encounters a forward step-change from a surface with relatively

low roughness length, z0,L, to an adjacent surface with relatively high roughness

length, z0,H , (as is illustrated in Figure 1.1) has been given particular attention [1–5].

The considerable amount of attention paid to this specific roughness configuration

is logical simply from an intuitive standpoint, as one might expect streamwise step-

changes in roughness to produce the most dramatic effects on incoming flow. It has

been shown that forward step-changes in roughness give rise to the formation of an

internal boundary layer (IBL), δi. Beyond the roughness step-change, the IBL has

been shown to grow in the streamwise, x1, direction according to the Wood model [4]:
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δi(x1, z0,H) = Cz0,H

(
x1

z0,H

)n
, (1.1)

where it has been experimentally determined that C=0.28 and n ≈ 0.28 [6]. Such a

sudden rise in surface roughness also results in increased turbulence and stress directly

downstream of the transition [2, 6–9]

Aerodynamic (or momentum) roughness length, z0, represents the theoretical

elevation at which logarithmic velocity profiles reach zero, when extrapolated below

the height where the law-of-the-wall can be accurately applied. Roughness lengths

are often defined with respect to other scalar quantities such as heat or humidity

and these alternately defined roughness lengths differ in value form aerodynamic

roughness length [10, 11]. Such scalar roughness lengths correspond with the wall-

normal distance at which the scalar quantity theoretically reaches it’s surface value,

rather than zero. However, please note that all references to roughness and roughness

length hereafter will exclusively refer to surface roughness associated with momentum.

High roughness Low roughness 

δi (x1) ~ x1
n 

Flow direction 

X1 

X2 

X1 

X3 

High roughness 
Low roughness 

Flow direction 

High roughness 

Figure 1.1: Illustration of flow past a perpendicularly aligned step-change in rough-
ness. Top image shows overhead view, bottom image shows side view with internal
boundary layer.
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The Figure 1.1, IBL scenario is an adequate approximation of many realistic

surfaces and certainly merits the attention it has received. However, it assumes a

prevailing flow direction which is aligned at precisely a perpendicular angle with

respect to the transition in surface roughness. Of course, in reality, many applications

must deal with streamwise flow that may approach from all possible directions. Yet

relatively little literature currently exists concerning flow with non-normal orientation

to roughness step-changes and to the authors knowledge no such studies have been

preformed numerically. Due to the lack of previous research on this topic, the specific

scenario considered in this thesis, is streamwise flow, aligned parallel to step-changes

in roughness, as illustrated in Figure 1.2.

Low roughness 

High roughness 

X1 

X2 

Flow direction 

High roughness 

Figure 1.2: Illustration of flow past a parallel aligned step-change in roughness.

1.1 Study Overview and Objectives

In order to address the current lack of numerical studies regarding the general

effects of transverse variations in surface roughness, one primary and several sec-

ondary suites of large eddy simulations (LES) have been run, which consist of fully

turbulent, high Reynolds number flow. The code used here was developed at Johns

3



Hopkins University and relevant details pertaining to the code are provided in Chap-

ter 2. Figure 1.3 provides a sketch of the roughness configuration used in the primary

LES set. These primary LES consist of two, equally spaced, elevated roughness strips

which are aligned parallel to the streamwise flow direction. Detailed results and anal-

ysis of these primary simulations are located in Chapter 3, while results and discussion

of secondary cases may be found in Chapter 4. Secondary simulations are intended to

provide further analysis of transverse roughness transitions, by exploring the effects

caused by specific modifications to the lower LES boundary conditions, as sketched in

Figure 1.3. The information gained from secondary simulations is intended to sup-

port and further build upon the conclusions derived from primary simulation results.

The advantage of a numerical study such as this one, is the ability to consider a highly

controlled environment with easily adjustable parameters. The primary parameters

of interest here are: the ratio of high to low surface roughness lengths λ = z0H/z0L,

and the width of the high roughness strips, Ls/δ, where δ represents the vertical

extent of all simulation domains.

In short, the primary objectives of this study are to:

1. Provide a parametric study of the effects, caused by transverse variations in

surface roughness, on turbulent, high Reynolds number flow.

2. Accurately predict statistical effects and coherent structures produced by trans-

verse roughness variations and offer some insight into the underlying mecha-

nisms responsible for them.

1.1.1 Application

As a result of periodic boundary conditions, surfaces shown in Figure 1.3 are

equivalent to an infinite number of infinitely long high roughness strips. Therefore,
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  Z0,H   Z0,H 
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X1 

X2 
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Figure 1.3: Illustration of the basic roughness configuration considered in this thesis.

it must be made clear that this roughness configuration is an idealization and is not

intended to correspond precisely with any actual surfaces. Instead the goal here is

to investigate the theoretical limits of flow over transverse roughness transitions that

extend over large distances, with the understanding that shorter strips will likely

produce milder effects. However, there are a wide range of potential applications

which may be approximated by the scenario presented in Figure 1.3.

Many land-surfaces exposed to atmospheric flow, exhibit abrupt roughness

changes due to variations in vegetation density, bodies of water (such as lakes and

rivers) bordered by forests, urban environments and roadways. In fact all natural sur-

faces which may be approximated by Figure 1.1 may also, at times, be approximated

by Figure 1.2, depending on the currently prevailing wind direction.
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The vast majority of turbulent momentum, heat and mass transport from

land-surfaces are determined by the dynamics of flow located in the lower section of

the atmospheric boundary layer (ABL), because this is where the greatest amount of

turbulent mixing occurs [12]. Thus this topic is of particular interest to all classes

of atmospheric sciences, such as hydrology, meteorology and climatology. Figure 1.3

could also be representative of a wide range of mechanical and aerospace engineering

applications such as naval architecture, wind farms (such as those considered by

Baidya-Roy [13]) or turbine blade roughness. Although the results presented below

deal only with momentum transfer, it is believed that they may have significant

implications for both heat and mass transfer, due to enhancement of turbulent mixing

and large-scale vortices at the surface.
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CHAPTER TWO

Simulatioin Details

2.1 Approaches to Turbulent Simulation

Numerical simulations of turbulent flow, such as those in this thesis, are typi-

cally carried out using one of three approaches.

1. Direct Numerical Simulation (DNS).

2. Reynolds Averaging of the Navier Stokes equations (RANS).

3. Large Eddy Simulation (LES).

2.1.1 DNS

During DNS, momentum transport equations are directly integrated, both

temporally and spatially, over all scales of turbulence. This makes DNS the most

accurate method available, but also the most computationally expensive. As new

technology allows computational power to progress, DNS is becoming an increasingly

viable option for many applications and gaining more wide spread use. However,

DNS is currently not reasonable for the present study which considers high Reynolds

number atmospheric flow with Re v 108 (where v denotes order of magnitude).

It has been shown that the number of degrees of freedom required to apply DNS

to a three-dimensional flow can be related to Reynolds number through: (number of

degrees of freedom) ≈ Re9/4 [14]. Because the present work deals with high Reynolds

numbers on the order of 108, v 1018 degrees of freedom would need to be accounted

for in order to apply DNS. Unfortunately, this is far beyond what is currently feasible

for this work.
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2.1.2 RANS

The RANS method of simulating turbulence, relies on temporal averaging of flow

properties (velocity, pressure, etc.) to eliminate instantaneous fluctuations caused by

turbulence. Instead of resolving all scales of turbulence like DNS, RANS does not

resolve turbulence at all. Instead, the effects of turbulence are entirely accounted for

by a closure model, which relies upon pre-existing knowledge of flow conditions for

calibration. Therefore, RANS is not well-suited to the current study, because the

ability to capture instantaneous data is desired and because a lack of pre-existing

data is, in fact, one of the primary reasons that this problem is of interest in the first

place.

2.1.3 LES

Large eddy simulation was introduced by Joseph Smagorinsky in 1963 [15].

The fundamental idea behind LES is to resolve only large scales of turbulent eddies

in the flow and use a model to account for small scales. This is acceptable because

in turbulent flow, most energy associated with momentum is contained in the largest

scales of turbulence, while the great majority of energy dissipation occurs at the

smallest scales. LES first applies a filter to separate large and small scales of turbu-

lence based on a specified grid size, ∆. Then scales larger than ∆ are resolved (i.e.

solved through integration of the momentum equations), while scales smaller than ∆

are modeled through a subgrid-scale (SGS) closure model. The filtering process can

be described by

ũ(x) =

∫
u(x′)F∆(x− x′)dx′. (2.1)

Where F∆ is a filter function for scale ∆. u(x) is the velocity vector, {u(x) =

u1, u2, u3}, for flow at a location determined by spatial coordinates {x = x1, x2, x3}.
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ũ(x) is the “resolved” velocity vector {ũ(x) = ũ1, ũ2, ũ3}, which is locally evaluated

at {x}. Instantaneous velocity values can then be expressed as

ui = ũi + uSGSi , i = 1, 2, 3 (2.2)

Where ui represents total velocity, ũi represents the resolved component of velocity

and uSGSi is the unresolved component of velocity which requires modeling. For this

study LES is clearly the best suited approach as it requires significantly less compu-

tational expense than DNS and offers more accuracy and flexibility than the RANS

approach.

2.2 Code Details

The code used for all simulations presented in this thesis is the Johns Hop-

kins University, Large Eddy Simulation (JHU-LES) code. This code has been used

numerous times in previous literature [e.g., Albertson and Parlange 1999a [10], Bou-

Zeid et al 2005 [16], Anderson 2012 [17] and Porté-Agel et al. 2000 [18]]. For a more

detailed description of this code see Albertson 1999b [19]. This code was developed

specifically for simulation of flow in the atmospheric boundary layer over large land

surfaces. However, all results here are output in non-dimensional form to facilitate

application at any desired scale.

The governing equations used for these simulations are the incompressible

continuity equation and the three dimensional momentum transport equations. Note

that terms due to Coriolis accelerations have been omitted and effects of viscosity are

considered negligible due to high Reynolds number. Using the definition of velocity

given in Equation 2.2 these equation are written as:

∂ũi
∂xi

= 0, (2.3)

∂ũi
∂t

+ ũj

(
∂ũi
∂xj
− ∂ũj
∂xi

)
= −1

ρ

∂p̃∗

∂xi
− ∂jτij

∂xj
− δi1

1

ρ

∂P

∂x1

. (2.4)
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Here δij is the Kronecker delta where (δij = 1 for i = j and δ = 0 for i 6= j), ∂P/∂x1 is

a streamwise pressure gradient and ρ is fluid density. The SGS stress tensor, defined

by

τij = ũiuj − ũiũj, (2.5)

is decomposed into its trace, τkk, and deviatoric component, τ dij such that

τ dij = τij −
1

3
τkkδij. (2.6)

p̃∗ is a modified pressure term and can be written as

p̃∗ = p̃+
1

3
ρτkk +

1

2
ρũjũj (2.7)

where (p̃/ρ) is the Boussinesq kinematic pressure and (1
3
τkk) is the removed trace of

τij taken from the second term on the right of Equation 2.4. 1
2
ũjũj is included so that

Equation 2.4 may be written in rotational form, which is needed for conservation of

kinetic energy and mass [20]. With Equation 2.3 and the divergence of Equation 2.4,

a pressure Poisson equation is obtained and solved dynamically for p̃∗. As a note on

notation, the superscript ˜ is used here to represent filtering at the grid scale while ̂̃
represents filtering at twice the grid scale, 2∆.

In order to obtain a closed form solution for the deviatoric part of the SGS

stress, τ dij, the classic Smagorinsky model is applied [15]

τ smagij = −2νT S̃ij (2.8)

where the value S̃ij represents the resolved strain rate tensor which can be expressed

as

S̃ij = 0.5

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(2.9)

νT is the turbulent eddy-viscosity and is given by

νT = (Cs∆)2|S̃| (2.10)
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where |S̃| =
√

2S̃ijS̃ij is the magnitude of the strain rate tensor. The Smagorinsky

coefficient, Cs, is simply assigned a constant value of 0.16 for the present study, based

on the work of Lilly [21]. A number of modified Smagorinsky models which use more

sophisticated selection methods for Cs values have been developed. For example, the

dynamic Smagorinsky model introduced by Germano et al. [22], which allows values of

Cs to be dynamically updated during simulation. Bou-Zeid et al. 2005 [23] presented

a scale-dependent, Lagrangian dynamic model, which adds on to the work of Germano

et al. by accounting for the effects of scale-dependence and employing Lagrangian

averaging to allow consideration of more complex geometries with heterogeneous flow

field directions [23]. However, it is undesirable to use either planar or Lagrangian

averaging for the current simulations, due to abrupt spanwise variations in surface

roughness, which cause increased error for any spatial averaging performed in non-

streamwise directions. Therefore, it is believed that using a constant Smagorinsky

coefficient value is the only viable option for the surfaces under consideration in this

thesis.

Forcing is applied using an imposed streamwise pressure gradient of ∂P/∂x1 =

u2
τ/δ, where uτ is shear velocity and δ is the domain height. Derivatives in the hori-

zontal directions are solved using pseudo-spectral methods (see Orzarg 1971 [24,25])

and vertical derivatives are solved using a centered second order finite-differencing

scheme (see Monin et al. 1978 [26]). In order to step through time, a fully explicit

second-order Adams-Bashforth scheme is used which can be written as:

ũt+∆t
i − ũti

∆t
=

3

2
RHSti −

1

2
RHSt−∆t

i , (2.11)

Where RHS represents the right hand side of Equation 2.4, solved for ∂ũi/∂t in

discrete form. Convection terms of Equation 2.4 are de-aliased using the 3/2 padding
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rule which is necessary to avoid contamination of the smallest resolved scales of flow,

due to the use of fast Fourier transforms.

2.3 Domain Details

Throughout all following chapters the notation i=1,2,3 corresponds with stream-

wise, transverse and vertical directions, respectively. Accordingly x1, x2 and x3 rep-

resent streamwise, transverse and vertical coordinates, respectively, and Lx1, Lx2 and

Lx3 are used to denote streamwise, transverse and vertical domain extents, respec-

tively. Likewise grid-spacing and node number are described by {∆1,∆2, ∆3}, and

{Nx1, Nx2, Nx3}, respectively. A staggered grid was employed for ũ1 and ũ2 data

points, so that their lowest values are calculated at ∆3/2, while the lowest non-zero

values of ũ3 are placed at ∆3. All lengths associated with the domain shown in fig-

ure 1.3 are non-dimensionalized by the domain height δ which physically represents

1000 meters. This significant height is desired in order to capture the entire inter-

nal boundary layer. All velocity values are non-dimensionalized by a single friction

velocity uτ = 0.45m/s.

The horizontal domain lengths, Lx1 and Lx2 were assigned equal values of

2π/δ. Values of high roughness length, z0H , are given a value of 1.0/δ and held con-

stant throughout all cases regardless of λ or Ls/δ, so that changing the value of λ is

equivalent to changing values of low roughness length, z0L. This particular z0,H value

was chosen in order to create substantial, but not physically unrealistic effects on the

flow. In earlier stages of this research, comparison was made between cases, with dif-

ferent values of z0,H . These cases were vastly different than those considered in this

thesis and thus, are not presented here. But it was observed that changing values of

z0,H has relatively little effect compared to changing values of λ and Ls/δ. Rough-

ness length ratios over three orders of magnitude were considered ranging from 2 to
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900. Table 2.1 lists physical interpretations of surface roughness lengths, although

as discussed previously, the results presented here may be applied to a wide range of

length scales due to their non-dimensional form. Three strip widths of ≈ 0.2δ, ≈ 0.6δ

and ≈ 1.0δ were used for the primary cases. The exact location of the high roughness

strips can be described as: z0 = z0,H , if (1/4Lx2 − 1/2Ls) ≤ x2 ≤ (1/4Lx2 + 1/2Ls)

or (3/4Lx2 − 1/2Ls) ≤ x2 ≤ (3/4Lx2 + 1/2Ls) and z0 = z0,L at all other locations.

Table 2.1: Physical Interpretations of Roughness Lengths for Homogeneous
Surfaces (Taken From Wieringa 1993 [27])

Surface type z0 (cm)
Sea, loose sand 0.02

Concrete, flat desert, tidal flat 0.02-0.05
Flat snow field 0.01-0.07
Rough ice field 0.1-1.2
Fallow ground 1-0.4

Short grass and moss 0.8-3.0

z0 (m)
Long grass, and heather 0.02-0.06

Low mature agricultural crops 0.04-0.09
High mature agricultural crops (grain) 0.12-0.18

Continuous bush land 0.35-0.45
Mature pine forest 0.8-1.6

Tropical forest 1.7-2.3
Dense low buildings (suburb) 0.4-0.7

Regular-built large town 0.7-1.5

2.3.1 Boundary Conditions

Boundary conditions in the horizontal directions are periodic for both ve-

locity and pressure, which is necessitated by the use of pseudo-spectral methods.

At the domain’s top boundary, zero stress and normal velocity are applied so that

ũ3|x3=δ = ∂ũ3/∂x3|x3=δ = 0. Pressure at the top and bottom boundaries are assigned
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as ∂p̃∗/∂x3|x3=0 = 0 and p̃∗/∂x3|x3=δ = 0. At the surface, zero normal velocity is im-

posed, and aerodynamic drag is applied to the flow using the equilibrium logarithmic

law [28]. Assuming a neutrally stratified turbulent boundary layer with zero buoyant

forces, the components of drag acting on the streamwise and transverse components

of velocity at the wall, τw13 and τw12, are given as:

τw13

ρ
= −

[
κU

ln(x3/z0(x1, x2))

]2 ˆ̃u1

U
, (2.12)

τw23

ρ
= −

[
κU

ln(x3/z0(x1, x2))

]2 ˆ̃u2

U
, (2.13)

Where κ is the Von Kármán constant, U is the magnitude of the horizontal velocity

components, U = (ˆ̃u2
1 + ˆ̃u2

2))1/2, and z0(x1, x2) is the local surface roughness length.

The superscript w indicates that statistics are taken at the lowest computational level.

Filtering of velocity at twice the grid scale is used in Equations 2.3-2.4 because it has

been shown to help reduce undesirable fluctuations [2]. In order to ensure that the

flow is fully turbulent, random, low amplitude values are added to the initial velocity

field. Because of this, simulations returns unique result each time they are run and

some amount of asymmetry is introduced into the flow statistics.

It should be kept in mind that the effects caused by each high roughness strip

are not decoupled from the effects of the two neighboring strips on either side. This

is the result of induced secondary flows, which are discussed further in Chapters

3 and 4. It was originally desired to consider only a single transverse roughness

transition per domain. But isolating the effects of an individual roughness transition,

while maintaining acceptable mesh resolution, was found to be impractical and this

ultimately led to the adoption of the current scenario shown by Figure 1.3. While this

change may result in somewhat less general results, it is believed to be more realistic

for many practical applications, since very large regions of completely homogeneous
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roughness are uncommon in most engineering applications and natural land-surfaces.

The domain size and specific configuration depicted in Figure 1.3, has been selected

(primarily through trial and error) as a means of clearly illustrating the effects of these

periodic, parallel aligned surface roughness transitions. The use of two strips here is

admittedly redundant due to the periodic boundary conditions, but the addition of a

second strip was found to be useful for visualization of various flow characteristics.

2.3.2 Averaging

The notation used here to denote averaging is 〈...〉x,y,z where x, y and z are

arbitrary constants which define the sequence of averaging operations used, in order

from inner to outer subscripts. All flow statistics presented in this thesis, were ac-

quired at steady state conditions. During simulation velocity and stress values were

averaged in time for a sufficient duration to ensure temporal statistical homogene-

ity. The code then continues to run beyond this point until enough data has been

collected for accurate temporal averaging. As a result of periodic boundary condi-

tions and uniform surface roughness in the x1 dimension, spatial averaging may be

done along the streamwise direction. However, no other form of spatial averaging is

valid for these simulations, due to the transverse heterogeneities in surface roughness.

Because of the staggered grid used by the code, local values of ũ3 are defined as av-

erages between x3 nodes to ensure that all velocity statistics are taken at identical

locations. Also, gradients of streamwise velocity in the transverse direction are com-

puted using central differencing to allow for comparison with other statistics, located

at computational nodes.

As a final but important note on averaging, Equation 2.14 defines total values

of Reynolds stress (i.e. the sum of SGS and resolved Reynolds stress components) as

〈Tij〉t = 〈τij〉t + 〈ũ′iũ′j〉t, (2.14)
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where 〈τij〉t is the SGS component of Reynolds stress and 〈ũ′iũ′i〉t is the resolved

component. In Equation 2.14 the prime notation refers to local deviation from the

streamwise mean so that ũ′i = ũi − 〈ũi〉1.
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CHAPTER THREE

Primary Simulation Results

The primary suite of LES, with a total of eighteen simulations is presented

and discussed in this Chapter. Table 3.1 gives a complete summary of these cases

and the relevant parameters associated with them. Figures 3.1-3.6 present contours

of streamwise velocity averaged in time and the streamwise direction. Vectors con-

structed from the secondary velocity components 〈ũ2〉t,1/uτ and 〈ũ3〉t,1/uτ have been

superimposed to indicate mean secondary flow directions and white, dashed lines are

used to to provide reference for the x2 locations of the roughness transitions at the

surface. Note that this convention of dashed lines over locations of spanwise rough-

ness transition, is continued throughout the results presented in this Chapter as well

as Chapter 4. These images provide a good sense of the general flow characteristics

caused by the periodic step-changes in surface roughness, shown in Figure 1.3. In or-

der to demonstrate the amount of variability in LES results for the given parameters

listed in Table 3.1, every simulation in Table 3.1 has been included in Figures 3.1-3.6.

Table 3.1: Summary of Primary Simulation Cases

Case λ ≈ Ls/δ
A1, A2, A3 2 0.2, 0.6, 1.0
B1, B2, B3 10 0.2, 0.6, 1.0
C1, C2, C3 25 0.2, 0.6, 1.0
D1, D2, D3 100 0.2, 0.6, 1.0
E1, E2, E3 500 0.2, 0.6, 1.0
F1, F2, F3 900 0.2, 0.6, 1.0
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Figure 3.1: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases A1-3. White dotted lines
indicate x2/δ locations of transverse variations in surface roughness.
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Figure 3.2: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases B1-3.
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Figure 3.3: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases C1-3.
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Figure 3.4: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases D1-3.
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Figure 3.5: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases E1-3.
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Figure 3.6: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases F1-3.
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Figures 3.1-3.6 illustrate two particularly striking characteristics of the LES

flowfields:

1. The periodic formation of high and low momentum pathways, which consistently

form above the high roughness length, z0H , and low roughness length, z0L,

surface regions, respectively.

2. Counter rotating, boundary layer scale vortices, which develop on both sides of

the high roughness strips.

These two characteristics can often be seen, even for roughness strips with low values

of λ such as those shown in Figure 3.1-3.2. The terminology high momentum pathway

(HMP) and low momentum pathway (LMP), was introduced by Mejia-Alvarez et

al., [29] to describe experimental results observed in flow over heterogeneous turbine

blade roughness and is quite appropriate for results shown in Figures 3.1-3.6.

These two prominent flow features will be discussed individually in greater

detail, but it should be initially pointed out that there is a strong correlation between

them. Close inspection of Figures 3.1-3.6 show that without exception, boundary

layer scale vortices rotate into low momentum pathways and away from high mo-

mentum pathways along the surface. Identification of the underlying mechanisms

responsible for these two flow characteristics has been and continues to be one of the

primary points of emphasis for this research.

3.1 Low and High Momentum Pathways

The formation of instantaneous, low velocity streaks in turbulent flow, has been

observed frequently in previous literature [30–33]. What makes the results shown in

Figures 3.1-3.6 unique from the bulk of previous studies, is that the observed high and

low velocity streaks do not meander or change with time. Instead, the development
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of “pathways” is observed, and these pathways are approximately stationary with

respect to both space and time.

It must be noted that these findings are not by any means unprecedented for

flow over complex surface roughness. In particular there have been several recent

experimental studies performed by Nugroho et al. [34] and Barros and Christensen

[29, 35, 36], which also note spanwise deviations in the mean velocity of turbulent

flows and are qualitatively similar to the results shown here. The specific roughness

configurations used in these works is however, quite distinct from that shown in Figure

1.3. Nugroho et al. [34] for example, investigated flow over a converging-diverging

riblet patterns which created periodic, preferential pathways in the flow, thus causing

equivalent effects to those of the current LES through different means.

Christensen et al. [29,35,36] looked at flow over surfaces with complex rough-

ness, modeled after actual roughness from a damaged turbine blade. They observed

the noted, high and low momentum pathways and showed that LMPs correspond

with spanwise locations of low roughness (in a mean streamwise sense), similar to

LES results. This is intriguing because the current LES deals with an idealized sur-

face consisting of clearly defined roughness transitions and a large range of roughness

ratios. The results found by Christensen et al. are particularly encouraging, because

they not only indicate that the current LES results are physically realistic, but also

that even for less organized surfaces with small roughness ratios, similar results may

be observed.

Some amount of asymmetry is not uncommon in the LES statistics, particu-

larly for cases with low values of λ. For instance, Figure 3.1 (a) and (b), and Figure

3.2 (a) clearly demonstrate asymmetric behavior and exhibit HMPs which are not lo-

cated over the z0H surface regions. It has been observed that re-running cases under

22



the same initial conditions will often result in noticeably different locations of the low

momentum pathways and associated counter rotating vortices. In fact, asymmetry

is sometimes observed, slanting in the opposite direction, from that of the previous

simulation. However, this should not be entirely surprising due to the turbulence

present in the LES flow fields. Because of the low-amplitude random number distri-

butions associated with the initial LES velocity fields, each individual case tends to

incline at least slightly in either the positive or negative x2 direction. This causes

preferential pathways to develop, which often persist for large amounts of time af-

ter the simulation begins. It has also been shown from instantaneous data, that the

HMP-LMP pattern can translate somewhat in a random manner with time. But,

from past experience with running the LES code, it is know that restarting a specific

case and running it for additional time steps, yields much less disparity in results

than resetting the initial velocity field distribution. Thus the asymmetry in time av-

eraged statistics is mostly attributed to the initial velocity field distribution and not

to meandering of the pathways over time.

It should also be noted that asymmetry in general is less likely and less dra-

matic as the values of both λ and Ls/δ increase. This also is not surprising because

(as will be discussed in subsequent sections) larger values of λ result in stronger trans-

verse mixing at the surface and thus have a greater effect on the flow. While larger

values of Ls/δ result in smaller regions of z0L and thus afford less room for the vortices,

which flank the high roughness strips, to drift along the transverse, dimension.

3.2 Coherent Structures

Boundary layer scale, counter-rotating vortices invariably rotate away from

z0H roughness strips and into the base of low momentum pathways at the sur-

face. These results are consistent with previous experimental works, which also note
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counter-rotating vortex pairs flowing into the base of low momentum regions [33–41].

Although, hairpin structures also consist of counter-rotating vortices which rotate

into an induced, low-speed flow region [42], a distinction must be made between

the counter-rotating vortices in the present study and those often associated with

hairpin structures [43–45]. Hairpin structures are short lived and can be detected

only through instantaneous data, whereas almost all results presented in the current

study, undergo extensive temporal and spatial averaging which makes detection of

hairpin structures impossible. This is certainly not to say that hairpin structures do

not occur instantaneously in the LES flowfields, but rather that the boundary layer

scale counter-rotating vortices shown in Figures 3.1-3.6 are too well structured and

stationary to be associated with hairpins.

3.2.1 Vortex Cores

To further illustrate the counter-rotating vortex pairs present in Table 3.1

cases, Figure 3.7 shows contours of “swirling strength”, with vectors of secondary

flow superimposed for reference. Swirling strength, λci, is a visualization technique

introduced by Adrian et al. [46] in order to identify vortex cores from two-dimensional

flow data. Here λci is evaluated locally as the imaginary component of the complex

eigenvalue obtained from the following matrix:

D23 =


∂〈ũ2〉t,1
∂x2

∂〈ũ2〉t,1
∂x3

∂〈ũ3〉t,1
∂x2

∂〈ũ3〉t,1
∂x3

 . (3.1)

To denote rotational direction of the flow, swirling strength values shown in Figure

3.7, λci have been signed with the polarity of streamwise vorticity. Thus blue and

red λci values, correspond with clockwise and counter-clockwise rotation, respectively.

As expected λci matches well with the counter-rotating vortices shown by secondary
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flow vectors. To avoid redundancy only cases D1-3 have been shown in Figure 3.7,

but similar results are observed with respect to λci throughout cases listed in Table

3.1. Images of swirling strength reveal small vortex cores in the immediate vicin-

ity of the roughness transitions, which rotate in the opposite direction of the large

scale, secondary vortices. These small vortex cores are thought to be caused by the

turbulent mixing processes taking place at roughness transitions.

Note that Figure 3.7 (b) and (c) shows vortices which come into direct contact

with each other, approximately half way between the high roughness strips. However

when Ls/δ ≈ 0.2 in panel (a), the vortices forming on either side of the high rough-

ness strips, are too far apart to come directly into contact with each other. This

has no effect on vertical momentum over z0,H roughness, which is driven by mixing

at roughness transitions. But as a consequence of decoupled vortices such as those

in Figure 3.7 (a), transverse flow is relatively small for cases with Ls/δ ≈ 0.2, com-

pared to those with Ls/δ ≈ 0.6 and 1.0. The reason for this is that whether vortices

meet over the center of z0,L or not, angular momentum of the vortices appears to be

unaffected. However, the total, horizontal distance traveled by mean secondary flow

around the vortices, becomes longer when the vortices extend to the center of the low

roughness regions. Thus greater horizontal momentum is required for coupled, than

for decoupled voretices.

One quantity that is commonly of interest when describing the effects of local

surface heterogeneities is the blending height, hb [47], defined as the elevation at

which effects of local surface heterogeneities are blended out by turbulent mixing [2].

Determination of a blending height is sometimes desired for ABL flows, because it is

useful for predicting the elevation at which Monin-Obukhov similarity theory (MOS)

[28] may be accurately applied. However, because the vortices observed here are on
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Figure 3.7: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of swirling strength, λci, from cases D1-3.

the order of the boundary layer, it is clear that effects of the spanwise varying surface

roughness, affect the flow to some extent throughout the entire domain. Therefore

it is concluded that any estimation of a blending height is not valid for the current

domain height. There have been a number of studies, that have considered flow over

perpendicularly aligned step-changes in roughness (as in Figure 1.3) and found hb

values, that are equivalently much lower than the domain height used in the present

simulations [2, 3, 16, 48–50]. This seems to imply that the effects of parallel aligned

roughness may actually be detected, at elevations even farther from the surface than

those of perpendicular alignment.

3.2.2 Induced Mean Flow Deviations

Figures 3.8-3.10 provide linear profiles of all three velocity components, at

elevations of ≈ 0.004δ (left panels: a, d, and g), ≈ 0.035δ (center panels: b, e, and

h) and ≈ 0.075δ (right panels: c, f, and i). These profiles demonstrate the effects of
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λ and Ls/δ, close to the surface. Notice that for all values of λ and Ls/δ the profiles

at the lowest height (panels a, d and g) are monotonic. But as data is taken farther

from the surface, the values become increasingly less monotonic due to the weaker

influence of surface stress.

From Figures 3.8-3.10 (a)-(c), it can be seen that spanwise locations with

roughness length, z0H , cause dramatic decreases in streamwise velocity near the sur-

face. These sharp drops in velocity attenuate higher in the domain and are indistin-

guishable at only ≈ 7.5% of the domain height. It is observed that maximum values

of ũ1 increase monotonically with increasing λ, but decrease as values of Ls/δ are

raised. The reason for this is that a constant surface area is used throughout all sim-

ulations. The drag imposed on the flow is directly dependent on the value of Ls/δ

and thus as Ls/δ increases, the maximum values of ũ1 located above z0L roughness

regions are lowered by the rise in total drag. This brings to light a key feature of

these flows, which is that as Ls/δ is increased the impact of λ is diminished due to

smaller transverse velocity gradients.

Profiles of flow in the transverse, ũ2 direction (shown in panels d-f of Figure

3.8-3.10), exhibit large positive and negative values, on the large and small x2 coordi-

nate sides of z0H strips, respectively. This corresponds with the presence of counter-

rotating vortices discussed previously, which rotate away from the high roughness

surface regions. Profiles of ũ2 have some characteristics in common with those of ũ1,

such as monotonic profiles near the surface which increase with λ, and also atten-

uating gradients at higher elevations. Interestingly though, dips in |ũ2| profiles are

observed above roughness transition locations in Figures 3.9 and 3.10. This may be

attributed to turbulent mixing taking place at the transitions, which has been shown

by Figure 3.7 to cause relatively small vortices that rotate in the opposite direction
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of the boundary layer scale, counter-rotating flow structures. Nevertheless, it is clear

that the mean transverse flow, results in horizontal momentum flux away from high

roughness regions, for all cases. As expected, ũ2 values are smaller with Ls/δ ≈ 0.2

in Figures 3.8 (d-f) than with Ls/δ ≈ 0.6 and 1.0 in Figure 3.9 and 3.10, respectively.

Again this is due to the decoupling of the boundary layer scale, vortices, over z0,L

roughness, on either side of the high roughness strips and it shows that this decoupling

takes place consistently for cases A-F1.

Profiles of vertical velocity at the surface, seen in Figures 3.8-3.10 (g), show

monotonically increasing absolute values with respect to increasing λ and decreas-

ing Ls/δ. This is consistent with the rises observed in profiles of ũ1 and shows that

all velocity components are directly influenced by both λ and Ls/δ. One notable

difference seen in the ũ3 profiles however, is that the extreme values of ũ3 increase

significantly at locations farther away from the surface (shown in panels h and i of

Figures 3.8-3.10). This again is consistent with the boundary layer scale counter-

rotating vortex pattern discussed previously. It is clear, upon inspection, that the

positive and negative swells of 〈ũ3〉t,1/uτ profiles in Figures 3.8-3.10 (h) and (i), con-

form to the notion of vortices which rotate downward towards z0,H roughness and

upwards over z0L roughness.

Another feature of the ũ3 profiles to take note of, is that there are noticeable

decreases in ũ3 located over low roughness, just beyond transition lines in Figures

3.8-3.10 (g). This is to be expected based on the counter-rotating vortices flowing

downwards over transition locations. Yet just inside the transition lines, over high

roughness, there are actually small increases in 〈ũ3〉t,1/uτ profiles. This again is likely

due to turbulent mixing at the roughness transitions which opposes the motion of the

28



0 2 4 6
0

10

20

30
〈ũ
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Figure 3.8: Profiles of velocity components from cases A1 (solid black), B1 (dashed
black), C1 (solid red), D1 (dashed red), E1 (solid blue) and F1 (dashed blue) taken
at heights of x3/δ ≈ 0.001 (panels a, d and g), x3/δ ≈ 0.02 (panels b, e and h) and
x3/δ ≈ 0.04 (panels c, f and i). This color assignment scheme for λ is continued
throughout Chapter 3. Thin, dashed black lines placed at 0.0 on vertical axes and
at roughness transitions, for reference.
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Figure 3.9: Profiles of velocity components from cases A-F2 taken at heights of
x3/δ ≈ 0.001 (panels a, d and g), x3/δ ≈ 0.02 (panels b, e and h) and x3/δ ≈ 0.04
(panels c, f and i).
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Figure 3.10: Profiles of velocity components from cases A-F3 taken at heights of
x3/δ ≈ 0.001 (panels a, d and g), x3/δ ≈ 0.02 (panels b, e and h) and x3/δ ≈ 0.04
(panels c, f and i).
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Figure 3.11: Profiles of transverse gradients, in streamwise velocity, from cases A-F1
(panels a, d and g), A-F2 (panels (b,e and h) and A-F3 (panels c, f and i) taken at
heights of x3/δ ≈ 0.001 (panels a-c), x3/δ ≈ 0.02 (panels d-f) and x3/δ ≈ 0.04 (panels
g-i).
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boundary layer scale counter-rotating vortices and causes the observed upwards flows

to be seen, just within the high roughness regions. Figure 3.11 shows profiles of

transverse gradients in streamwise velocity, δ
uτ
∂〈ũ1〉t,1/∂x2, averaged in time and the

streamwise direction. These profiles demonstrate the relative impact of both λ and

Ls/δ on velocity gradients at the same elevations as profiles in Figures 3.8-3.10. Pro-

files of δ
uτ
∂〈ũ1〉t,1/∂x2 show dramatic positive and negative peaks at the high and low

x2 sides of z0H strips, respectively. Note that this corresponds with the sizable drops

and rises found in Figures 3.8-3.10 (a)-(c). As with profiles of ũ1 and ũ3, the effects on

δ
uτ
∂〈ũ1〉t,1/∂x2 become monotonically more dramatic as λ increases and less dramatic

as Ls/δ increases. It is further noted that as δ
uτ
∂〈ũ1〉t,1/∂x2 moves farther from the

surface in Figure 3.11 (d)-(f), the extreme values located at the transitions become

much less prominent and by only ≈ 7.5% of the domain height in Figure 3.11 (g)-(i)),

δ
uτ
∂〈ũ1〉t,1/∂x2 profiles are nearly uniform. Upon close inspection, it is seen that at

a certain point the maximum absolute values of δ
uτ
∂〈ũ1〉t,1/∂x2 tend to shift away

from above the roughness transitions to locations near the center of the z0L regions.

Figure 3.11 (i), which shows visibly detectable dips and rises in profiles near the do-

main center, moving in the positive x2 direction. These variations in | δ
uτ
∂〈ũ1〉t,1/∂x2|

at higher elevations (where |...| indicates absolute value), correspond with the pres-

ence of low momentum pathways. To further illustrate this phenomenon, Figure 3.12

plots absolute x2/δ distance of max(|∂〈ũ1〉t,1/∂x2|) from the nearest roughness transi-

tion, for case C2. This figure indicates that mixing between high and low momentum

flows, across roughness transitions, is not significant for this case, above ≈ 10-15% of

the domain height.

Another consequence of the counter-rotating vortices is vertical momentum

flux which effectively “pulls” high momentum down towards the high roughness and

31



0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

|(x2,max − Lx2/4)/δ|

x
3
/δ

Figure 3.12: Absolute value of transverse distance between Lx2/(4δ) and location of
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“pumps” low momentum up away from the low roughness. The result of this is the

formation of the noted HMP-LMP pattern and also local variations of the boundary

layer, as will be shown further on in this chapter. In Figure 3.13 actual streamwise

velocity values are compared as a function of height, with theoretical values found

using the logarithmic law of the wall:

uLog =
uτ
κ

ln

[
x3

z0

]
. (3.2)

3.3 Stress Effects

3.3.1 Surface Stress

It must be emphasized that spanwise variations in surface roughness length are

the only requirement for creating all flow effects described in this chapter. Therefore

all mean secondary flows and transverse variations in streamwise momentum, found in
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〈ũ
1
〉 t
,1
/u

L
og
,z

0
,L

x3/δ

10
−2

10
0

1

1.5

2

10
−2

10
0

0.6

0.8

1

x3/δ

10
−2

10
0

1

1.5

2

10
−2

10
0

0.6

0.8

1

x3/δ

Figure 3.13: Ratios of streamwise LES velocity, 〈ũ1〉t,1/uτ and log-law velocity, uLog.
Top images taken over z0,L roughness at x2/δ = π/2 and bottom images taken over
z0,H roughness at x2/δ = π/4. Figures (a) and (d) show cases A-F1, figures (b) and
(e) show A-F2 and figure (c) and (f) show A-F3

Table 3.1 cases, are ultimately the result of discontinuities in surface stress. Note that

the term “surface stress” is used to refer to vertical stress on streamwise momentum

at the lowest computational level of the LES. To gain further insight into the origin of

the flow effects, which have been described up to this point, Figures 3.14 show profiles

of surface stress for each case listed in Table 3.1. Dotted lines have been added to the

vertical axis of Figures 3.14, in order to compare the observed surface stress values

with analytical predictions for flow over uniform roughness.

These profiles show sudden rises in magnitude at locations corresponding with

high surface roughness, particularly near the roughness transitions. Absolute values

of surface stress monotonically increase with λ and decrease with Ls/δ, just as was

observed in Figure 3.8-3.10 (a)-(c) profiles, of streamwise velocity near the surface.

This is not surprising because stress is assigned at the domain surface using Equations
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2.12-2.13 and thus has a direct dependence on velocity. Through lateral momentum

flux above the roughness transitions, streamwise flow is sped up near the edges of the

z0,H strips and therefore, the largest absolute values of 〈τw13〉t,1/u2
τ are located in the

vicinity of the roughness transitions.

Although 〈τw13〉t,1/u2
τ follows the same trends with respect to λ and Ls/δ as

ũ1, δ
uτ
∂〈ũ1〉t,1/∂x2 etc. it should be pointed out that the locations with greatest

dependence on λ in Figure 3.14, are located over z0H roughness. However, recall that

roughness length is constant for every case in Table 3.1. Therefore the dependence on

λ over the z0H strips must be entirely attributed to deviations in streamwise velocity

from their logarithmic profiles (described in Figure 3.13), which is caused by lateral

momentum flux, initiated by transverse mixing at the roughness transitions.
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3.3.2 Transverse Surface Stress

Figure 3.14 (d)-(f) contains profiles of transverse surface stress, 〈τw23〉t,1/u2
τ .

〈τw23〉t,1/u2
τ is dependent on ũ2 according to Equation 2.13 and thus follows similar

trends to those found in Figures 3.8-3.10 (d). As in profiles of 〈ũ2〉t,1/uτ , drops in

|〈τw23〉t,1/u2
τ | are seen at transition locations and generally smaller |〈τw23〉t,1/u2

τ | is seen

for Ls/δ ≈ 0.2, in panel (d). Profiles in Figure 3.14 (d), are highly inconsistent with

those in panels (e) and (f), at locations over the z0,H roughness regions. A possible

explanation for this is that Ls/δ ≈ 0.2 is not sufficiently wide for the largest scales of

mixing taking place at roughness transitions, to be decoupled across z0,H roughness

strips. This is consistent with Figure 3.7 (a), which shows widened, overlapping vor-

tex cores associated with mixing. Thus mixing may affect mean secondary flow near

the surface, across the entire z0,H strips, rather than only the roughness transitions,

for cases with Ls/δ ≈ 0.2.

3.3.3 Transverse Shear Stress

In the proximity of the roughness transitions, discontinuities in surface stress

impose large spanwise gradients on streamwise velocity as shown by profiles in Fig-

ure 3.15. This creates turbulent shearing layers between the adjacent flow regions

over high and low roughness. Such shearing between parallel flows has been consid-

ered extensively in previous literature [51, 52]. Vermaas et al. [53] conducted open

channel flow experiments using acoustic Doppler velocimetry, to investigate the lat-

eral exchange of streamwise momentum caused by a parallel roughness transition.

These roughness transitions are similar to those considered in the present study, al-

though only a single transition was used rather than a transversely periodic pattern.

They also, noted significant increases in horizontal shear stress in the vicinity of their

roughness transitions, consistent with those encountered here.
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Figure 3.15 considers profiles of 〈T12〉t,1/u2
τ (where 〈T12〉t values are obtained

through Equation 2.14) for all cases in Table 3.1 and reveals a large amount of trans-

verse shearing, generated in close proximity to each roughness transition. The trans-

verse shearing here corresponds with locally increased production of turbulence at the

roughness transitions, similar to the findings of Vermaas 2011 [53], Hoagland 1960 [54]

and Hinze 1967 [55]. This horizontal shearing is also the driving force behind all tur-

bulent mixing taking place at roughness transitions.
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Figure 3.15: Profiles of transverse shear stress, from cases A-F1 (panels a, d and g),
A-F2 (panels (b,e and h) and A-F3 (panels c, f and i) taken at heights of x3/δ ≈ 0.001
(panels a-c), x3/δ ≈ 0.02 (panels d-f) and x3/δ ≈ 0.04 (panels g-i).

〈T12〉t,1/u2
τ profiles show positive and negative peak locations, which are oppo-

site of those found in the δ
uτ
∂〈ũ1〉t,1/∂x2 profiles of Figure 3.11. This indicates that

transverse shear stress is directly caused by transverse gradients of streamwise veloc-

ity, which are in turn caused by spanwise heterogeneities in surface stress, 〈τw13〉t,1/u2
τ .

As seen frequently in preceding statistics, such as 〈ũ1〉t,1/uτ , δ
uτ
∂〈ũ1〉t,1/∂x2 and

〈τw13〉t,1/u2
τ , the maximum and minimum peaks of 〈T12〉t,1/u2

τ are observed to increase
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Figure 3.16: Solid black line denoting height of local boundary layer thickness, su-
perimposed over contours of streamwise velocity, for cases D1 (figure a), D2 (figure
b) and D3 (figure c).

and decrease with λ and Ls/δ, respectively, and to swiftly attenuate with increasing

distance from the surface. This further supports the idea that 〈T12〉t,1 is driven by

∂〈ũ1〉t,1/∂x2 and that 〈T12〉t,1/u2
τ profiles are ultimately caused by the same under-

lying mechanisms as those of 〈ũ1〉t,1/uτ , δ
uτ
∂〈ũ1〉t,1/∂x2 etc., namely, step-changes in

surface roughness length.

3.4 Variations of Local Boundary Layer Thickness

One aspect of the flows fields shown by Figures 3.8-3.10 which may be somewhat

counterintuitive at first glance, is the location of HMPs and LMPs, over z0H and z0L

roughness regions, respectively. It has been shown in Figure 3.8-3.10 that velocity

profiles at the surface, experience sharp drops over z0H roughness due to increased

drag, and one might intuitively expect this trend to continue throughout the entire

domain. However, due to secondary flow, caused by mixing above the roughness
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transitions, it turns out that this is not the case. The boundary layer scale, counter-

rotating vortices transport momentum vertically throughout the domain, which re-

sults in spanwise variation of local boundary layer thickness. This effect was noted

previously by Nugroho et al. [34] in their study of flow over converging-diverging

riblets.

Figure 3.16 shows several cases depicting streamwise averaged contours of

boundary layer height. Local boundary layer height is defined here as the lowest x3/δ

location at which 〈ũ1〉t,1/uτ = 0.98U∞, where U∞ represents free stream velocity and

is defined as the mean streamwise velocity at the top of the domain. Local boundary

layer heights are denoted by continuous black lines, superimposed over contours of

〈ũ1〉t,1/uτ . Figure 3.16 shows that the large scale secondary flows, generally result in

local decreases of the boundary layer thickness above z0H roughness and local increases

of the boundary layer thickness above z0L roughness. This explains the observed

pattern of high and low momentum pathways, located over high and low surface

roughness, respectively. Flow over z0H roughness is actually outside the boundary

layer and has reached free stream velocity, while flow over z0L roughness has essentially

been pulled deeper inside the boundary layer, thus resulting in the observed flow

features. Note that despite local thinning of boundary layers, δi/z0H ratios are still

comfortably above ≈ 80 at all points, this is important because for δi/z0H / 80 the

simulations could be considered flow over obstacles rather than surface roughness [12].

3.5 Turbulence Effects

Figures 3.17-3.19 shows profiles of Reynolds normal stress, 〈Tii〉t,1/u2
τ , where

Reynolds stress components are obtained through Equation 2.14. Reynolds normal

stresses are shown at the same three elevations as profiles of Figures 3.8-3.10, with

ascending values moving from the left to right side of each figure. All profiles taken at
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the lowest elevation (Figure 3.17-3.19 a, d and g), exhibit sharp rises in normal stress

around the roughness transitions. This confirms that the formation of shearing layers

and transverse mixing in this area, corresponds with enhanced turbulence production

over z0,H roughness. As could be expected based on Equation 2.14, rises in 〈T11〉t,1/u2
τ

and 〈T22〉t,1/u2
τ shown in Figure 3.17-3.19 (a), (d) and (g) correspond with rises in

the absolute value of Figure 3.15 (a), (d) and (g). The maximum absolute values

in normal stress, increase with larger λ and decrease with larger Ls/δ, except for

〈T22〉t,1/u2
τ in Figure 3.17 (d)-(f), due to the lower transverse momentum shown in

Figure 3.8 (d)-(f). This demonstrates a correlation between absolute values of shear

stress profiles and the generation of turbulence in the lower section of the domain.

Normal stresses are notably smaller over the high roughness regions in panels (a),

(d) and (g) of Figures 3.17-3.19. This is due to the sharp decreases in momentum

at these locations, shown in Figures 3.8-3.10 (a). But note that proportionally equal

growth takes place in normal stresses at this elevation, on both sides of the roughness

transitions.

As elevation increases, profiles of normal stresses become increasingly smooth

and no longer show abrupt growth at roughness transition locations. This corre-

sponds with the weakening of shear layers with distance from the surface, as shown

in Figure 3.15. In Figures 3.17-3.19 panels (b), (c), (e), (f), (h) and (i), normal stress

profiles are shown to increase and decrease over high and low roughness, respectively,

as the value of λ is raised. It is not surprising that larger normal stresses would be

seen for larger λ, above z0,H roughness, due to stronger shearing and mixing which

enhance turbulence. It is also not surprising to see lower normal stress values over

z0,L roughness, with higher λ, due to stronger secondary flows that pull turbulence

away from the low roughness surfaces. However, in Figures 3.17-3.19 panels (a), (d)
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and (g), monotonically larger values of normal stress are seen across the entire do-

main. This indicates that the influence of secondary flow is negligible compared to

that of aerodynamic drag, near the surface and is consistent with Figures 3.8-3.10

(g), which show low values of vertical flow in the vicinity of z0,L roughness.

Based on Figures 3.17-3.19, it is clear that transverse mixing at the rough-

ness transitions causes locally enhanced turbulence production in the vicinity of high

roughness strips. The locations of maximum 〈T11〉t,1/u2
τ are located directly over

roughness transitions, while maximum values of 〈T22〉t,1/u2
τ and 〈T33〉t,1/u2

τ take place

at some distance above the z0,H roughness, as shown in Figure 3.17-3.19 (f), and (i).

Streamwise averaged contours of TKE in Figure 3.20, show significantly larger values

above z0,H roughness than above z0,L roughness. TKE values becomes increasingly

large over z0,H roughness as λ is increased, even though z0,H values are identical

throughout all simulations, this must be entirely attributed to increased turbulence,

caused by increased mixing around roughness transitions. It has been speculated

that enhanced production of TKE in the vicinity of the high roughness regions, is the

direct cause of the boundary layer scale, counter-rotating vortices. Consistent with

the findings of Hinze 1967 [55], secondary flow is thought to be necessary as a means

of transporting high turbulence flow away from z0,H roughness regions and pulling low

turbulence flow towards z0,H roughness. At the present this is only theoretical, but

it is expected that in in future works, analysis of TKE budgets may provide crucial

insight into the driving forces, responsible for the observed flow field characteristics.

Due to the large scale, secondary flows which rotate downwards towards areas

of high roughness and upwards from areas of low roughness, momentum and tur-

bulence are redistributed throughout the entire domain. As shown by Figure 3.13,

flow over high roughness is pulled downwards towards the surface while flow over
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low roughness is pumped vertically away from the surface. High turbulence shows

similar effects to low momentum as a result of secondary flow. This is illustrated in

Figure 3.21 which shows root-mean-squared deviations in local velocity, from spanwise

averaged values, where root-mean-squared deviations are calculated as

ũ′RMS,1 =

√
[〈ũ1〉t − ũ1]2. (3.3)

Temporal averaging is used in Equation 3.3 in order to enable direct comparison

to experimental results such as those of Nugroho et al. [34]. Note that for uniform

surface roughness, Figure 3.21 would be expected to have uniform values of zero.

Near the surface, values in Figure 3.21 are positive and negative over high and low

roughness, respectively, which is consistent with Figures 3.17-3.20. However farther
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Figure 3.17: Profiles of Reynolds normal stress components, from cases A-F1 taken
at heights of x3/δ ≈ 0.001 (panels a-c), x3/δ ≈ 0.02 (panels d-f) and x3/δ ≈ 0.04
(panels g-i).
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Figure 3.18: Profiles of Reynolds normal stress components, from cases A-F2 taken
at heights of x3/δ ≈ 0.001 (panels a-c), x3/δ ≈ 0.02 (panels d-f) and x3/δ ≈ 0.04
(panels g-i).
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Figure 3.19: Profiles of Reynolds normal stress components, from cases A-F3 taken
at heights of x3/δ ≈ 0.001 (panels a-c), x3/δ ≈ 0.02 (panels d-f) and x3/δ ≈ 0.04
(panels g-i).

42



x
3
/δ

1
2 〈Ti,i〉t,1/u

2
τ

 

 

(a)

1 2 3 4 5 6

0.2
0.4
0.6
0.8

0

5

x
3
/δ

 

 

(b)

1 2 3 4 5 6

0.2
0.4
0.6
0.8

0

5

x2/δ

x
3
/δ

 

 

(c)

1 2 3 4 5 6

0.2
0.4
0.6
0.8

0

5
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from the surface, turbulence transport through secondary flows, causes values in Fig-

ure [34] to become locally positive and negative above the low and high roughness

surface regions, respectively. This reveals that in general, high and low momentum

pathways correspond with local reduction of turbulence, while low momentum path-

ways correspond with local elevation of turbulence. This is entirely consistent with

the findings of Nugroho et al.

3.6 Quadrant-Analysis

Quadrant-analysis is often used to determine the composition of Reynolds stress,

by comparing the relative contributions from the four possible quadrants of the {ũ′i-

ũ′j} plane : (ũ′i < 0, ũ′j < 0), (ũ′i > 0, ũ′j < 0), (ũ′i < 0, ũ′j > 0) and (ũ′i > 0, ũ′j > 0).

Near rough surfaces, wall stress dominates and therefore quadrant analysis is typically

done with respect to stress acting on streamwise velocity in the vertical direction

( i.e. the 〈ũ′1ũ′3〉t component of Reynolds stress) [56–60]. Turbulent events in the

second and fourth quadrants (ũ′1 < 1, ũ′3 > 1 and ũ′1 > 1, ũ′3 < 1), are classified as

“ejections” and “sweeps”, respectively. While events in the first and third quadrants

(ũ′1 > 1, ũ′3 > 1 and ũ′1 < 1, ũ′3 < 1), are classified as “outward interactions” and

“inward interactions”, respectively.

However, in the present study the quantity of greatest interest is the trans-

verse component of Reynolds stress, 〈ũ′1ũ′2〉t. Hence, an alternate quadrant splitting

scheme, which replaces fluctuations in wall-normal velocity with fluctuations in trans-

verse velocity, is used in an attempt to gain deeper insight into the effects of turbulence

and shearing layers in the present flow. Figure 3.22 provides an illustration of this

variation on the standard quadrant splitting scheme.

All velocity values are taken at locations directly above the transverse rough-

ness transitions at x2/δ ≈ (Lx2/4 + Ls/2)/δ and x2/δ ≈ (3Lx2/4 + Ls/2)/δ so that
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Figure 3.22: Overview of alternate quadrant splitting scheme used

positive values of ũ′2 correspond with instantaneous rises in transverse momentum,

directed away from the high roughness strips. Here sweeps and ejections are relative

to the shearing layer formed at the transition as opposed to the surface as for conven-

tional quadrant analysis. Note however, that because 〈ũ2〉t,1/uτ has positive values

at this location, negative ũ′2 does not necessarily correspond with flow towards the

shearing layers.

Figure 3.15 shows that the total transverse shear stress at x2/δ ≈ (Lx2/4 +

Ls/2)/δ and x2/δ ≈ (3Lx2/4 + Ls/2)/δ has negative values. Therefore it is to be

expected that Q2 and Q4 events would dominate over Q1 and Q3 events. This is

precisely what is observed in Figures 3.23, which shows probability profiles for trans-

verse stress occurring in each of the four quadrants, for cases A-F2. Though only

cases A-F1 are shown in Figure 3.23, note that similar trends are also observed in the

remaining cases as well. Ejections and sweeps are more numerous at low elevations,

as expected. However, at locations higher in the domain, this trend disappears and

in some cases, inward and outward flow interactions actually become more frequent
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Figure 3.23: Vertical probability profiles of 〈ũ′1ũ′2〉t,1/u2
τ quadrant events for cases

A-F1. Thin dashed/dotted black line is placed at Ni = 0.25 for reference.

due to the reduced influence of lower boundary conditions. Q4 events are in general

more numerous than those of Q2 and little consistency is observed in profiles with

respect to the effects of either Ls/δ or λ. This indicates that the intensity of mixing

at roughness transitions does not have a significant influence on the total number of

quadrant events.

Mean magnitude profiles of 〈ũ′1ũ′2〉t,1/u2
τ quadrant events, are plotted in Figure

3.24 at a constant Ls/δ value of ≈ 0.6. Unlike probability profiles in Figure 3.23, Q2

profiles in Figure 3.24 clearly surpass Q4 within the lower ≈ 10% of the domain.

Monotonically increasing values are observed for increasing λ and decreasing Ls/δ,

which simply implies that all four quadrants of shear stress are affected by higher

transverse momentum gradients, as would be anticipated. Near the surface, average
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Figure 3.24: Mean magnitude profiles of 〈ũ′1ũ′2〉t,1/u2
τ quadrant events, from cases

A-F2.

magnitudes of sweeps > ejections > outward interactions ≈ inward interactions. The

differences in magnitudes between Q2-Q4 and Q1-Q3 events, though not as extreme as

those typically observed in conventional quadrant analysis [56,57,59,60], are consistent

and become more dramatic for cases which feature large velocity gradients. This

confirms that these results are the direct consequence of transverse variations in

surface roughness.

In order to determine the relative impact of sweeps compared with ejections,

the total contributions of Q2/Q4 events are computed at all elevations, for all cases,

in Figure 3.25. These images show that below ≈ 0.1δ, sweeps make more significant

contributions to transverse Reynolds stress than ejections, but above ≈ 0.1δ the

opposite of this is found to be true. Because contributions of sweeps and ejections,
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Figure 3.25: Ratios of the total contribution to Reynolds shear stress by Q2 vs. Q4

events, from cases A-F1 (figure a), A-F2 (figure b) and A-F3 (figure c).

shown in Figure 3.25, are not significantly monotonic with respect to either λ or Ls/δ,

it may be inferred that the contributions from Q2 and Q4 events, scale proportionally

as shear layers become stronger. Thus the fundamental nature of the mixing process

does not appear to be dependent on either λ or Ls/δ.

These results are strikingly similar to quadrant analysis performed in previous

studies of flow over rough surfaces with the standard {ũ′1, ũ′3} quadrant splitting

scheme [56, 57, 59, 60]. It has been observed in studies such as these, that in flow

past rough surfaces, sweeps contribute more heavily to Reynolds stress than ejections

close to the wall, while farther from the wall, sweeps contribute less than ejections.

This implies that surface stress in general, tends to sweep high momentum inwards
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and eject low momentum outwards from the surface. The results shown in Figures

3.23- 3.25 indicate that an analogous process takes place at shear layers formed over

roughness transitions in the {x1/δ, x2/δ} plane. In this case, transverse shear stress

serves to sweep high momentum towards shear layers at roughness transitions and

eject low momentum outwards, away from the roughness transitions.

3.7 Turbulent Mixing Length

In order to further describe the mixing taking place near the roughness tran-

sitions, transverse turbulent mixing lengths have been calculated. Physically, these

mixing lengths represent the smallest scale of eddies, associated with the turbulent

mixing process. Mixing length here is calculated using a method similar to that of

Bai et al. [61] In their study, Bai et al. used particle image velocimetry to consider

the turbulent flow structure and mixing length associated with wakes, downstream

of a synthetic, fractal-like tree. They made use of the Boussinesq model [62], which

provides a basis for many turbulence models, to evaluate mixing length scales, rele-

vant to momentum transport. For incompressible flow, the Boussinesq model can be

expressed as:

Tij
ρ

= −νT
(
∂ũi
∂xj

+
∂ũj
∂xi

)
+

2

3
δijk, (3.4)

where Tij is the tensor for turbulent Reynolds stress, νT is turbulent eddy-viscosity,

δij is the Kronecker delta and k = 1
2
u′mu

′
m is turbulent kinetic energy. Considering

exclusively transport in the horizontal, x2, direction and recalling that all statistics

in the present study have uniform streamwise means, Equation 3.4 can be reduced to

〈T12〉t,1
ρ

= −νT
∂〈ũ1〉t,1
∂x2

. (3.5)

Equation 3.5 may be solved for νT to yield:

νT (x3) = −〈T12〉t,1
ρ

/
∂〈ũ1〉t,1
∂x2

. (3.6)
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Which implies the value of νT can be obtained through a simple linear relationship

between 〈T12〉t,1 and ∂〈ũ1〉t,1/∂x2, both of which are known quantities and have been

discussed in previous sections of this chapter. Therefore, from Equation 3.6, νT may

be obtained in non-dimensional form as a function of x3/δ, by plotting data points

of 〈T12〉t,1/u2
τ vs. δ

uτ
∂〈ũ1〉t,1/∂x2 and applying a linear least squared fit, to find the

negative value of the slope. Examples of such data fitting are shown in Figure 3.26

at x3/δ locations of ≈ 0.001, ≈ 0.035 and ≈ 0.075. These figures show steeper (more

negative) slopes at larger x3 positions, which indicates a rise in νT with distance from

the surface.

Profiles of νT are plotted in Figure 3.27 for each case in Table 3.1. In this

figure, νT is clearly shown to grow larger with increasing x3/δ, near the bottom of the

domain, in accordance with Figure 3.26. Figure 3.27 also shows values which increase

monotonically with λ at the surface, but become much less consistent by ≈ 15% of the

domain height and seem to actually demonstrate reverse trends (i.e. decreasing νT

with increasing λ values) above this. This is consistent with the results of 〈T12〉t,1/u2
τ

and δ
uτ
∂〈ũ1〉t,1/∂x2 shown in Figures 3.15 and 3.11, which do not maintain monotonic

trends at any locations other than those in the immediate vicinity of the surface.

Fortunately, the only values of real interest here, are those at low x3/δ positions,

because the transverse mixing length is only associated with the intense transverse

mixing process ongoing at roughness transitions.

The Equation used to calculate mixing lengths here, makes use of Prandtls

mixing length model, which states that

νT = luc (3.7)

where uc is a characteristic velocity and l is a length associated with scales of mixing.

The characteristic velocity is typically expressed as the product of l and the absolute
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Figure 3.26: Transverse shear stress plotted vs. streamwise velocity gradient with
least squared linear fits applied. Data points and lines taken at x3/δ ≈ 0.001 (black),
x3/δ ≈ 0.02 (red) and x3/δ ≈ 0.04 (blue) from cases D1 (figure a), D2 (figure b) and
D3 (figure c).

value of a velocity gradient, which would be 〈∂ũ1〉t,1/∂x2 in this instance. Thus

Equation 3.7 becomes

νT = l2
∂〈ũ1〉t,1
∂x2

. (3.8)

Recall form Figure 3.11 that ∂〈ũ1〉t,1/∂x2 profiles all reach maximum absolute values

at x2 locations directly over the roughness transitions. Because of this, mixing length

values can now be obtained by rearranging Equation 3.8 and taking the maximum
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Figure 3.27: Vertical profiles of turbulent eddy viscosity, νT/(δuτ ). For cases A-F1
(figure a), A-F2 (figure b) and A-F3 (figure c).

spanwise value of |∂〈ũ1〉t,1/∂x2| as shown in Equation 3.9:

l =

√
νT

max(|∂〈ũ1〉1,t/∂x2|)
. (3.9)

From Equation 3.9, the transverse turbulent mixing length is found at every x3/δ

location and profiles of l/δ are provided in Figure 3.28. The analytical mixing length

associated with the boundary layer, l = κx3, is also provided for reference.

Near the surface, mixing length values are approximately logarithmic and de-

crease monotonically with increasing λ and decreasing Ls/δ. But, these trends be-

come less consistent above approximately 0.15δ. Recall from Figure 3.11 that maxi-

mum values of |∂〈ũ1〉t,1/∂x2| are found over the roughness transitions near the surface,

but often shift towards the center of the domain at some height, due to the formation

of low momentum pathways above z0L roughness. Therefore, l/δ values ultimately

have no significance above approximately x3/δ = 0.15 anyway, because for most sim-

ulations, max(|∂〈ũ1〉t,1/∂x2|) shifts away from the roughness transitions around this
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Figure 3.28: Vertical profiles of transverse mixing length from cases A-F1 (figure a),
A-F2 (figure b) and A-F3 (figure c). Thick black line with circles indicates analytical
boundary layer mixing length.
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altitude, mixing remains substantially weaker than that of typical boundary layer

mixing in the vertical direction. just as the case shown in Figure 3.12 does. Figure

3.29 provides an example of how mixing length profiles deviate from their nearly

logarithmic form for all elevations above some shifting height of max(|∂〈ũ1〉t,1/∂x2|).

This proves that only mixing length values taken near the surface are valid. But as

with profiles of νT , this is acceptable since turbulent eddies associated with the most

intense transverse momentum exchange are located close to the surface. The trends

shown in Figure 3.28 reveal that smaller mixing lengths are associated with more

vigorous mixings, since l values monotonically decrease and increase with growing λ

and Ls/δ, respectively. Figure 3.28 also shows smaller length scales for eddies in the

{x1, x3} plane, which are associated with the turbulent boundary layer, than those

associated with transverse mixing in the {x1, x2} plane. It follows then, that in all

cases considered, transverse mixing remains substantially weaker than that of typical

boundary layer mixing in the vertical direction.
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CHAPTER FOUR

Secondary Simulation Results

In Chapter 3, a highly specific, idealized, roughness configuration is shown to

produce a particular set of flow features. However, this should not be interpreted

to mean that only this precise configuration is capable of producing such results.

Several alterations to this configuration have also been considered, which seem to

produce similar effects to those discussed in Chapter 3. Several examples of this are

discussed in this chapter and comparisons are made with respect to cases in Table

3.1. The purpose of this chapter is not to restate the statistics shown for the cases

in Table 3.1, but rather to investigate how they are effected by certain, modifications

to the surfaces considered in Chapter 3.

Table 4.1: Summary of Lower Resolution Cases

Case λ ≈ Ls/δ
a1, a2, a3 2 0.2, 0.6, 1.0
b1, b2, b3 10 0.2, 0.6, 1.0
c1, c2, c3 25 0.2, 0.6, 1.0
d1, d2, d3 100 0.2, 0.6, 1.0
e1, e2, e3 500 0.2, 0.6, 1.0
f1, f2, f3 900 0.2, 0.6, 1.0

The LES described in this chapter were run with the same code described in

Chapter 2. However, a coarser mesh of Nx1 = Nx2 = Nx3 = 64 was necessary in

order to allow for frequent adjustments to be made in the domains and parameters

without unacceptable computational expense. In order to confirm consistency be-

tween results acquired from this relatively low resolution and those in the preceding
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Figure 4.1: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases d1-3. White dotted lines
indicate x2/δ locations of transverse variations in surface roughness.

chapter, all cases in Table 3.1 have been replicated at the coarser resolution. Figure

4.1 shows velocity contours with superimposed secondary flow vectors similar to those

shown previously in Figures 3.1-3.6. The cases used in Figure 4.1 are analogous to

cases D1-3 and demonstrate the same counter-rotating vortex and LMP-HMP pat-

terns seen in the high resolution cases. This clearly demonstrates that low resolution

results are, at least, qualitatively equivalent those at higher resolutions.

Figure 4.2 compares profiles of surface stress, transverse velocity gradient and

transverse Reynolds stress taken at locations near the surface, for both the high and

low resolution cases. This figure is quite useful for demonstrating similarity between

high and low resolution cases because, as has been shown, heterogeneities in these

particular statistics are responsible for driving all flow features described in Chapter

3. From these profiles, it can be seen that statistics taken with the coarse resolution

are quantitatively similar, though of course, not identical, to high resolution statistics.
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Figure 4.2: Streamwise averaged profiles of: wallstress (figure a), transverse velocity
gradient (figure b) and transverse shear stress at x3 ≈ 0.01δ (figure c) for cases b2
(black line), B2 (dashed black line), d2 (red line), D2 (dashed red line), f2 (blue line)
and F2 (dashed blue line).

As anticipated, extreme values of 〈τw13〉t,1/u2
τ ,

δ
uτ
∂〈ũ1〉t,1/∂x2 and 〈Tw12〉t,1/u2

τ occur near

the transitions and monotonically increase and decrease in magnitude with growing

values of λ and Ls/δ, respectively. There is close quantitative agreement observed

between high and low resolution profiles of 〈τw13〉t,1/u2
τ and 〈Tw12〉t,1/u2

τ . However, in

general maximum values of δ
uτ
∂〈ũ1〉t,1/∂x2 profiles taken from Table 4.1 cases, are

lower than corresponding cases from Table 3.1. This is the simply the result of cen-

tral differencing, used to calculate profiles of δ
uτ
∂〈ũ1〉t,1/∂x2 that causes them to be
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particularly affected by changes in mesh resolution. This is certainly not to say that

the same driving mechanisms observed previously, are no longer captured at courser

resolution, but rather that profiles of transverse gradients appear smoother than those

from cases with finer meshes. This is only because averaging must be performed over

larger transverse surface areas for low resolution cases, in order to obtain data at

consistent locations with respect to all other statistics considered in this thesis.

Because nodes with discontinuous values of z0 are separated by spanwise grid-

spacing, ∆2, increasing cell size causes nodes, adjacent to the roughness transitions,

to become farther removed from the transition locations where shearing and mixing

effects are generated. Fortunately, it is anticipated that the shearing and resulting

secondary flows, caused by transverse roughness transitions would, if anything, be

understated rather than exaggerated as a result of lower resolution. Therefore based

on results shown in Figures 4.1 and 4.2, no reason is found to assume that the presence

of mixing and secondary flows, shown in cases at lower resolution, are physically

unrealistic.

4.1 Enhanced Strip Width

Up to this point there has been no consideration given to surfaces where the total

surface area of z0,H is equal to greater than the total surface area of z0,L, that is to

say, cases for which Ls/δ ≥ π/2. At such large values of Ls/δ, surface locations with

high roughness would more accurately be described as separate regions, as opposed

to merely strips. Table 4.2 shows cases with Ls/δ values of: π/2, ≈ 2.2 and ≈ 2.8 at

the same λ values as in Table 3.1. Note that, because cases in Table 4.2 have high

Ls/δ values, the effects of λ are weaker than those of Ls/δ for Table 4.2 cases.

Cases run with Ls/δ = π/2, such as case Dw1, shown in Figure 4.3 (a), still

show consistent formation of high and low momentum pathways, as well as symmetric,
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Table 4.2: Summary of Cases with Widened Strip Width

Case λ ≈ Ls/δ
Aw1, Aw2, Aw3 2 π/2,≈ 2.2,≈ 2.8
Bw1, Bw2, Bw3 10 π/2,≈ 2.2,≈ 2.8
Cw1, Cw2, Cw3 25 π/2,≈ 2.2,≈ 2.8
Dw1, Dw2, Dw3 100 π/2,≈ 2.2,≈ 2.8
Ew1, Ew2, Ew3 500 π/2,≈ 2.2,≈ 2.8
Fw1, Fw2, Fw3 900 π/2,≈ 2.2,≈ 2.8

well-structured counter-rotating vortices. However, for cases where Ls/δ is increased

to ≈ 2.2 as in Figure 4.3 (b), both the LMP-HMP patterns and secondary flow

structures tend to becomes somewhat less organized. Cases with Ls/δ ≈ 2.8, such

as Figure 4.3 (c), typically have significant asymmetry associated with both mean

and secondary flows. These results demonstrate that increasing Ls/δ above ≈ π/2,

causes increasingly inconsistent primary and secondary flow structures. Also for cases

with large Ls/δ values such as ≈ 2.8, the total surface drag is increased to the point

where transverse gradients are not large enough to produce consistent flow features

with those seen in Chapter 3. Figure 4.4, shows how 〈τw13〉t,1/u2
τ ,

δ
uτ
∂〈ũ1〉t,1/∂x2, and

Tw12/u
2
τ decrease monotonically as Ls/δ increases. These cases indicate that while

the addition of parallel, high roughness strips to surfaces composed of relatively low

roughness is capable of causing significant effects on the flow field, adding strips of

relatively low roughness to surfaces with relatively high roughness has substantially

less impact on the flow.

It is theorized that cases with equal surface areas of z0,L and z0,H may in fact,

be optimal for reducing asymmetry in the boundary layer scale, counter-rotating vor-

tices. For such cases, z0,L regions are wide enough to create flow gradients, capable of
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Figure 4.3: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases Dw1, Dw2 and Dw3.

driving secondary flows, yet narrow enough to constrain the LMPs and prevent signif-

icant drifting of counter-rotating vortices. Figure 4.5 shows cases Bw1, Dw1 and Ew1,

which again show only slight amounts of asymmetry. Precise prediction of counter-

rotating vortex locations could be quite useful in, for example, applications which

desire enhancement of heat transfer at a specific location. However, obtaining quan-

titative confirmation this hypothesis would require a tremendous number of additional

simulations, due to the inherent randomness associated with the high Reynolds num-

ber, turbulent flows under consideration and has not currently been undertaken.

4.2 Linearly Sloped Roughness

In order to explore the general effects of transverse roughness transitions, all

simulations to this point have been assigned constant, uniform roughness lengths for

high and low roughness regions. However, this approximation is not physically real-

istic for most examples of actual roughness because, as mentioned near the beginning
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Figure 4.4: Streamwise averaged profiles of: wallstress (figure a), transverse velocity
gradient (figure b) and transverse shear stress at x3 ≈ 0.01δ (figure c) for cases Dw1-3.

of this thesis, truly homogeneous roughness is rarely encountered in most engineer-

ing and scientific applications. Therefore, it is worthwhile to consider the somewhat

more physically realistic scenario, of cases with non-uniform, spanwise values of z0,H

roughness. In particular, it is of interest to determine whether the characteristics

of Table 3.1 flows may be produced by smoother increases in surface roughness, in-

stead of large step-changes. To this end, surfaces with linearly sloped z0,H values are

considered and summarized in Table 4.3.

For all cases listed in Table 4.3, z0,H values are set to 1.0/δ at Lx2/4 and

3Lx2/4, and decreased linearly from these points to the edges of ”elevated roughness”
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Figure 4.5: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases Bw1, Dw1 and Ew1.

regions. The remaining surface area is assigned uniform roughness lengths of z0 = z0,L

as before. In Table 4.3, Ls refers to the transverse width of the elevated roughness

regions and λ refers to the ratio of maximum to minimum roughness length values,

λ = z0,max/z0,min. Figure 4.6 images demonstrate the same general features as cases

listed in Table 4.1, with respect to secondary flow and LMP-HMP locations. Note

that Figure 4.6 (c) shows more consistent formation of counter-rotating vortices and

HMPs than does Figure 4.3 (c), despite having larger regions of increased roughness.

This is partially due to lower total drag imposed on the flow by the linearly sloped

roughness and partially due to the fact that mixing is created across the entire elevated

roughness regions, as opposed to only at isolated roughness transitions.

Figure 4.7 compares the effects of Ls/δ on cases with λ values of 100. This

figure shows that the most negative values of 〈τw13〉t,1/u2
τ are located in the centers
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Table 4.3: Summary of Linearly Sloped Roughness Cases

Case λ ≈ Ls/δ
AL1, AL2, AL3 2 1.0, 2.0, 3.0
BL1, BL2, BL3 10 1.0, 2.0, 3.0
CL1, CL2, CL3 25 1.0, 2.0, 3.0
DL1, DL2, DL3 100 1.0, 2.0, 3.0
EL1, EL2, EL3 500 1.0, 2.0, 3.0
FL1, FL2, FL3 900 1.0, 2.0, 3.0

of the elevated roughness regions, where roughness length is highest. However, the

largest gradients in 〈τw13〉t,1/u2
τ are still observed immediately beyond the edge of the

elevated roughness regions, just as they were for uniform z0,H cases. Note that in

Figure 4.7, changes in surface roughness at the edges of the sloped roughness strips

are no greater than those at any other x2 location along the elevated roughness

regions. Therefore, the reason for these large changes in 〈τw13〉t,1/u2
τ , is that near the

surface, spanwise locations with greatest streamwise momentum are still located over

z0,L roughness. Therefore locations with greatest transverse gradient in 〈τw13〉t,1/u2
τ are

located at the edges of these z0,L regions due, to the influence of ũ1 on τw13 described

by Equation 2.12.

Based on the form of these 〈τw13〉t,1/u2
τ profiles, the trends observed in profiles

of δ
uτ
∂〈ũ1〉t,1/∂x2 and 〈Tw12〉t,1/u2

τ are not surprising. Because ũ1 and τw13 are inter-

dependent, ∂〈ũ1〉t,1/∂x2 reaches its most extreme values at the same x2 locations

where 〈τw13〉t,1/u2
τ profiles experience the sharpest changes. The maximum absolute

values in 〈Tw12〉t,1/u2
τ are also located at the edges of the sloped roughness, but in these

cases, a greater amount of horizontal shearing and mixing exists throughout the en-

tire elevated roughness regions. Greater values of Ls/δ result in smoother profiles of

〈τw13〉t,1/u2
τ and as a result, smoother profiles of δ

uτ
∂〈ũ1〉t,1/∂x2 and 〈Tw12〉t,1/u2

τ also.
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Figure 4.6: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases BL1, DL1 and EL1.

Thus, unlike Table 4.3 cases, shearing and mixing are not exclusively created at the

roughness transitions, but throughout the z0,H roughness regions. This leads to more

consistent secondary flow than for analogous cases with uniform roughness.

4.3 Sinusoidal Roughness

It has been shown that the flow characteristics produced by Table 3.1 cases,

may be reproduced more consistently at large values of Ls/δ, if z0,H roughness regions

consist of continuous changes in roughness length rather than uniform values. Here

consideration is given to surfaces with no uniform roughness at all, by using a sine

wave pattern for roughness length, along the entire spanwise dimension. A sinusoidal

distribution of roughness seems well suited for producing the secondary flow effects of

interest here. It offers more distinction between high and low roughness regions than

a linear roughness distribution, but still creates continuous gradients in surface stress

along the entire x2 dimension. A summary of these cases is given in Table 4.4, where
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Figure 4.7: Streamwise averaged profiles of: surface stress (figure a), transverse ve-
locity gradient (figure b) and transverse shear stress at x3 ≈ 0.01δ (figure c) for cases
DL1 (black), DL2 (red) and DL3 (blue).

as in Table 4.3, λ = z0,max/z0,min. Local roughness values are assigned according to:

z0(x2) =

(
sin

((
2π

x2

Lx2

)
2− π/2

)(
0.5− z0,Lδ

2

)
+ 0.5 +

z0,Lδ

2

))
z0,H , (4.1)

so that z0 values range from z0,H at Ls = Lx2/(4δ) and Ls = 3Lx2/(4δ) to z0,L at

Ls = 0 and Ls = Lx2/(2δ). Figure 4.8 shows velocity contours and secondary flow

vectors for cases S1, S2 and S4 from Table 4.4. Dashed white lines, which correspond

with values of z0δ/10 are are superimposed onto Figure 4.8 for reference. Figure 4.8

shows that Table 4.4 surfaces are also able to produce consistent mean and secondary

flow structures with those of cases in Table 3.1.
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Table 4.4: Summary Sinusoidal Roughness Cases

Case λ
S1 2
S2 10
S3, 25
S4 100
S5 500
S6 900

These results are similar to what was seen in cases with linearly sloped rough-

ness lengths. But it should be noted, that in Table 4.4 cases, secondary flow is in

no way effected by total surface drag, because no z0,L regions are present. There-

fore secondary flow is generated over sinusoidal roughness length, exclusively through

transverse mixing spread throughout the entire domain.
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〈ũ1〉t,1/uτ

 

 

(a)

1 2 3 4 5 6

0.2
0.4
0.6
0.8

10

15

20

x
3
/δ

 

 

(b)

1 2 3 4 5 6

0.2
0.4
0.6
0.8

10

15

20

x2/δ

x
3
/δ

 

 

(c)

1 2 3 4 5 6

0.2
0.4
0.6
0.8

10

15

20

Figure 4.8: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ}, su-
perimposed over contours of streamwise velocity for cases S1, S2 and S4. White
dotted lines indicate local values of surface roughness length z0δ/10.
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Figure 4.9: Streamwise averaged profiles of: surface stress (figure a), transverse ve-
locity gradient (figure b) and transverse shear stress at x3 ≈ 0.01δ (figure c) for cases
S2 (black line), S4 (red line) and S5 (blue line).

In Figure 4.9, profiles of surface stress, transverse velocity gradient and trans-

verse shear stress, show that sinusoidal roughness cases show little dependence on λ.

This is to be expected, because these sinusoidal roughness patterns cover the entire

domain surface area and the impact of λ is dependent on the width of regions with

uniform z0,L. However, this is an important result, because it shows that subtle, but

continuous gradients in roughness length, are able to produce well ordered flow fea-

tures even at relatively low values of λ. This is confirmed in Figures 4.8 which shows

good HMP-LMP symmetry and well ordered formation of counter-rotating vortices

even for cases S1 and S2 in panels (a) and (b).
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There is no single location in Figure 4.9 (a), which exhibits a dramatic increase

in surface stress, as has been the case throughout results in previous sections. Instead,

as with cases AL-FL3, transverse velocity gradient and shear stress are entirely due to

subtle changes in roughness found across the entire domain surface. Absolute values

of δ
uτ
∂〈ũ1〉t,1/∂x2 increase in an almost linear manner from ≈ 0 at local maxima in

surface roughness, to maximum absolute values at local minima in surface roughness.

This can be attributed to continuous, transverse shearing and mixing across the

entire surface, which drives secondary flow at all spanwise locations and therefore

causes acceleration of secondary flow, as it moves from high to low roughness. In

general, the results from Table 4.4 cases suggest, that not only are large step-changes

in roughness not required to produce the flow feature, discussed in Chapter 3, but it is

possible that they may not even be the most effective method of doing so consistently.

4.4 Discontinuous High Roughness Strips

To ensure that mixing processes caused by transverse step-changes in rough-

ness are fully developed, all strips of high roughness to this point have been con-

tinuous and infinite in the streamwise direction. This is of course, another idealized

assumption that is not physically realistic for many practical applications. Therefore

it is considered worthwhile to investigate the effects caused by high roughness strips

with finite, rather than infinite lengths. The LES surfaces summarized in this sec-

tion are all equivalent to those of Table 4.1, except that high roughness strips have

been shortened to a streamwise length of Lz0,H where 0 < Lz0,H < Lx1. A sketch

of the described roughness configuration is provided in Figure 4.10 and Table 4.5

summarizes properties of the eight cases considered.

Figures 4.11 and 4.12 show streamwise velocity contours and vectors of sec-

ondary flow components, taken at x1 = Lz0,H , where transverse mixing effects have
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had greatest streamwise distance to develop. A qualitative analysis of Figures 4.11-

4.12 shows that secondary flow structures become increasingly less organized as Lz0,H

is reduced. It can be inferred from Figure 4.11-4.12 that for well-structured
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Figure 4.10: Illustration of basic surface roughness configuration used for cases in
Table 4.4. Two strips of relatively high roughness length, z0,H , are centered at Lx2/4
and 3Lx2/4 with length Lz0,H and width Ls.

counter-rotating vortices and LMP-HMP patterns to form consistently, streamwise

transition lengths of Lz0,H > δ are typically required. Unfortunately, defining a pre-

cise Lz0,H value for which consistent vortex cores form, is not reasonable due to

the inherent randomness of the turbulent flow considered here. Nevertheless, from

Figures 4.11-4.12 alone, it can be reasonably stated that extremely long transition

lengths are not necessary to produce the same flow features seen in Chapter 3.
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Table 4.5: Summary of Discontinuous Strip Cases

Case λ Ls/δ Lz0,h

G1, 100 0.6 0.875Lx1

G2, 100 0.6 0.750Lx1

G3, 100 0.6 0.625Lx1

G4, 100 0.6 0.500Lx1

G5, 100 0.6 0.375Lx1

G6, 100 0.6 0.250Lx1

G7, 100 0.6 0.125Lx1

G8, 100 0.6 0.016Lx1

Figure 4.13 plots streamwise profiles of 〈τw13〉t,1/u2
τ ,

δ
uτ
∂〈ũ1〉t,1/∂x2 and

〈Tw12〉t,1/u2
τ , taken at {x2 = Lx2/4 − Ls/2, x3 ≈ 0.01}. Only cases G1, G4 and G7

are used in Figure 4.13 to enhance clarity of results, but it should be noted that

the trends observed in Figure 4.13 are monotonic for all cases in Table 4.5. Vertical

dotted lines are placed at x1 = Lz0,H to show the endpoints of z0,H strips. Note that

the beginning of the high roughness strips, takes place at x1/δ = 0.0 and accounts

for the seemingly discontinuous changes in the profiles across the periodic boundary.

Figure 4.13 (c) shows sustained turbulent mixing continuing for over 3δ down-

stream of x1 = Lz0,H . As a result, residual downstream shear stress, in cases with

small Lz0,H such as G7 (and even to some extent G4), does not dissipate fully by

the end boundary. Therefore all profiles of case G7 experience the least dramatic

drops, out of the three profiles considered, at x1 = 0.0. Maximum absolute values

of profiles in Figure 4.13 (a) are located at x1 = 0.0. This is consistent with the

observations found in literature regarding perpendicularly aligned roughness transi-

tions [e.g. Bou-Zeid et al. 2004 [2]]. It can be clearly seen that the abrupt changes

in 〈τw13〉t,1/u2
τ correspond exactly with changes in the slopes of δ

uτ
∂〈ũ1〉t,1/∂x2 and

〈Tw12〉t,1/u2
τ profiles. This simply confirms that the transverse mixing, which leads to
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Figure 4.11: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ},
superimposed over contours of streamwise velocity for cases G1 (figure a), G2 (figure
b), G3 (figure c) and G4 (figure d). White dotted lines indicate x2/δ locations of
transverse variations in surface roughness.

momentum transport are initiated by variations in surface stress. But Figure 4.13

(b) and (c) indicate that, while shear stress develops more rapidly as transverse ve-

locity gradient is increased, there is not a direct correlation between values of the two

quantities. For example, at the streamwise location x1 = 0.125Lx1, case G3 has ap-

proximately the same value of δ
uτ
∂〈ũ1〉t,1/∂x2 as the other two cases shown in Figure

4.13 (b), yet it clearly has the least extreme value of 〈Tw12〉t,1/u2
τ in Figure 4.13 (c).

Because secondary flow structures become more consistent at x1 = Lz0,H as the value

of Lz0,H is increased (as shown by Figures 4.11-4.12), it is clear that 〈T12〉t,1/u2
τ is

more directly responsible for secondary flow generation than ∂〈ũ1〉t,1/∂x2.
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Figure 4.12: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ},
superimposed over contours of streamwise velocity for cases G5 (figure a), G6 (figure
b), G7 (figure 7) and G8 (figure8).

With the current, periodic boundary conditions, the use of smaller Lz0,H leads

to larger streamwise gradients in all three quantities compared by Figure 4.13, at

x1/δ = 0.0. This is because more shear stress is transported downstream to x1/δ=0.0

when Lz0,H is increased and as Figure Figure 4.13 images show, this results in less

dramatic changes of flow statistics. Nevertheless, total shear stress (and thus both

primary and secondary flow consistency) is seen to be greater for larger values of

Lz0,H . In these cases, shear layer strength appears to plateau after approximately 3-

4δ downstream of x1 = 0.0, but it is not possible to determine how (if at all), this dis-

tance might change without the initial presence of residual, downstream shear stress

caused by the periodic boundary conditions. Nonetheless, the fact that transverse
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Figure 4.13: Profiles of surface stress (figure a), transverse velocity gradient (figure b)
and transverse shear stress (figure c) taken at {(x2 = Lx2/4− Ls/2)/δ, x3/δ ≈ 0.01}
from cases G1 (blue line), G4 (red line) and G7 (black line). Dashed lines indicate
Lz0,H .

variations in roughness length need not be continuous in the streamwise direction

for shearing and secondary flow to be produced, is an important point to note. This

could have significant importance to applications that deal with either a single patch

of roughness, or intermittent patches of roughness in the streamwise direction.

4.5 Immersed Objects

As described in Chapter 3, it is currently believed that transverse velocity gra-

dients, caused by step-changes in surface roughness, are responsible for creating shear

stress, turbulent mixing and ultimately the LMP-HMP patterns shown throughout
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this thesis. Assuming that this is indeed the case, it stands to reason that any rel-

atively low momentum event, located at or near a rough surface, should be able to

produce similar effects. A number of previous studies have shown counter-rotating

secondary flows caused by heterogeneities in surface elevation [39, 40, 45]. It would

make sense that similar results to those caused by transverse variations in roughness,

may also be obtained from flow over immersed objects, because they serve to obstruct

flow and act as ”low momentum events”. In order to confirm this, a small suit of

LES were run for flow past immersed objects. These objects are assigned lengths

of only ≈ 0.01δ in the x1 direction, in order to isolate effects caused by the objects

as much as possible from the periodic streamwise boundary conditions used. The

objects are placed at equivalent x2 locations to the z0,H strips of Table 3.1 cases.

All domains are assigned uniform roughness lengths of 0.2/δ across the entire lower

boundary. Table 4.6 describes the five cases presented here, where Ls/δ denotes the

non-dimensionalized object widths and “H” denotes the object heights. Figure 4.14

provides a general sketch of cases described by Table 4.6. Unlike all previous simula-

tions in this thesis, these cases were run using an immersed boundary method, which

is described in detail by Anderson 2013 [63].

Table 4.6: Summary of Immersed Object Cases

Case H/δ Ls/δ
O1 0.050 0.2
O2 0.010 0.6
O3 0.025 0.6
O4 0.050 0.6
O5 0.100 0.6
O6 0.050 1.0
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Figure 4.14: Illustration of basic surface configuration used for cases in Table 4.6.
Two rectangular objects, are centered at Lx2/4 and 3Lx2/4 with streamwise length
≈ 0.015δ and width Ls.

Mean velocity values used in Figure 4.15 are taken, only from x1 locations

up to ≈ 1.0δ downstream of the immersed objects. Though not as symmetric and

well organized as most cases presented in previous sections, flow structures depicted

in Figure 4.15 still clearly show the presence of low and high momentum pathways

flanked by counter-rotating vortices. This is a noteworthy result, because it shows

that only a single pair of immersed objects can generate flow features that are con-

sistent with all others presented in this thesis. This also supports the theory, that

any low momentum event, whether caused by heterogeneous surface roughness, het-

erogeneous surface elevation, or any other source of local reduction in streamwise

momentum, will produce equivalent statistical results.
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In order to verify that these immersed objects not only produce similar sec-

ondary flow structures, but are also initiated in equivalent manner to Chapter 3 cases,

profiles of transverse velocity gradient and transverse shear stress are shown in Figure

4.16. Values in Figure 4.16 are taken over the same streamwise distance as those of

Figure 4.15. These profiles show close qualitative agreement with trends previously

noted for flow over heterogeneous roughness. Comparison of values in Figure 4.16

with those from Figures 3.11 and 3.15 shows that peaks in gradients and shear stress

are less extreme for these immersed object cases. This is not at all surprising, because

Table 4.6 cases only have low momentum events at a single streamwise location, as

opposed to the infinite strips of high roughness in Table 3.1 cases. It is therefore not

entirely unexpected to see that profiles in Figure 4.16 are not perfectly monotonic.

Nonetheless, it does appear that increasing the object heights has a similar effect to

increasing λ in previous cases. This is because taller objects produce larger wakes

and it is these low momentum wakes, trailing downstream from the immersed objects,

which impose transverse gradients on streamwise velocity.

Extreme values in Figure 4.17 show no consistent trends such as those seen in

previous results. This is a notable distinction between the effects caused by immersed

objects and those of elevated roughness regions. Because of the uniform roughness

used in Table 4.6 cases, The total drag imposed on flow by the surface is approximately

constant, regardless of the objects width. As a consequence, gradients in streamwise

velocity and thus shear stress, are affected only by the object heights and not by the

object widths.

Figure 4.18 (a) and (b) plots δ
uτ
∂〈ũ1〉t,1/∂x2 and 〈Tw12〉t,1/u2

τ at: {x2/δ = π/2−

Ls/(2δ), x3/δ ≈ 0.01δ}. As with Figure 4.16 perfectly monotonic results are not

observed here due to weaker shear layers. Figure 4.18 (a) and (b), show that the
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Figure 4.15: Black vectors of secondary flow components, {〈ũ2〉t,1/uτ , 〈ũ3〉t,1/uτ},
superimposed over contours of streamwise velocity for cases O1, O4 and O5. White
dotted lines indicate x2/δ locations of transverse variations in surface roughness.
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Figure 4.16: Streamwise averaged profiles of: transverse velocity gradient (figure a)
and transverse shear stress at x3 ≈ 0.01δ (figure b) from cases O2 (black line), O3
(dashed black line), O4 (red line) and O5 (blue line). Dotted lines show spanwise
locations of object endpoints.
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Figure 4.17: Streamwise averaged profiles of: transverse velocity gradient (figure a)
and transverse shear stress at x3 ≈ 0.01δ (figure b) for cases O1 (black line), O4 (red
line) and O6 (blue line).
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Figure 4.18: Profiles of transverse velocity gradient (figure a) and transverse shear
stress (figure b) taken at {(x2 = Lx2/4−Ls/2)/δ, x3/δ ≈ 0.01} from cases O2 (black
line), O3 (dashed black line), O4 (red line) and O5 (blue line).
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gradients and shear layers caused by the object wakes, persist to some extent for over

3.0δ beyond the objects. This is roughly equal to the downstream reach of effects

cause by roughness transitions in Figure 4.13. However, due to differences in initial

magnitudes and amount of decoupling from upstream effects, a direct comparison is

difficult to make between results in Table 4.6 and those in Table 4.5. Indeed, much

more consideration of immersed objects is required to effectively compare the effects

caused by such cases, with those caused by roughness transitions. However, it has

at least been shown here, that the results presented throughout this thesis may be

produced through other means than variations in surface roughness.
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CHAPTER FIVE

Conclusions and Recommendations

5.1 Conclusions

Large eddy simulation has been used to predict three dimensional, fully tur-

bulent, high Reynolds number flow, over surfaces exhibiting, transverse variations in

aerodynamic surface roughness length. A single, primary set of LES was considered,

which consisted of eighteen cases, all of which contained two equally spaced strips

of relatively high roughness, oriented parallel to the streamwise direction and each

other. A parametric study was performed with respect to two parameters: λ and

Ls/δ, where λ represents the ratio of high to low surface roughness lengths and Ls/δ

represents the spanwise width of the high roughness regions.

LES results showed that transverse variations in surface roughness induce the

formation of high and low momentum pathways located above surface regions with

high and low roughness, respectively. These pathways are approximately stationary

with respect to time and spanwise position and are flanked by boundary layer scale,

counter-rotating vortices, which rotate away from strips of high roughness and into the

base of low momentum pathways, near the surface. This general pattern is observed

for all values of λ and Ls/δ considered, but becomes less well structured and more

asymmetric as values of λ increase and values of Ls/δ decrease.

These phenomenon are generated by transverse gradients in surface stress,

caused by the heterogeneities in surface roughness length. Locally heightened sur-

face roughness imposes greater drag on flow according to the logarithmic law of the

wall. This creates large gradients in streamwise velocity near the surface, between

80



low momentum flow over high roughness and high momentum flow over low rough-

ness. As a consequence of high transverse velocity gradients at roughness transitions,

profiles of transverse shear stress also show large peaks at the same spanwise loca-

tions. This indicates the formation of shearing layers forming between the high and

low momentum flow regions. Shear layers drive transverse momentum flux, which

occurs continuously across all roughness transitions and causes boundary layer scale,

secondary flows to form, on either side of high surface roughness regions.

Boundary layer scale vortices cause vertical momentum flux, which effectively

”pumps” low momentum and turbulence upwards from regions of low surface rough-

ness and ”pulls” high momentum and turbulence downwards towards regions of high

surface roughness. As a result, local turbulent boundary layer heights become thick-

ened and thinned over low and high surface roughness, respectively. This accounts

for the observed locations of high and low momentum pathways, because flow in low

momentum pathways have been essentially pulled farther inside the boundary layer,

while flow in high momentum pathways is actually outside of the boundary layer

entirely.

Values of Reynolds normal stress and turbulent kinetic energy revealed that

significantly greater turbulence is produced over high roughness strips and at rough-

ness transition locations. Turbulence is shown to be increased and decreased in low

and high momentum pathways, respectively, due to vertical transport of turbulence

by boundary layer scale, secondary flows. Quadrant analysis of transverse Reynolds

stress was performed and it was show that shearing along roughness transitions acts

in an analogous manner to streamwise surface stress, with respect to relative quadrant

contributions.
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Prandtls mixing length, associated with turbulent mixing at roughness tran-

sitions, l/δ, is calculated using the Boussinesq eddy viscosity model. In all cases it

is found that smaller mixing length values correspond with more intense turbulent

mixing. Profiles of l/δ increase and decrease with increasing and decreasing values

of λ and Ls/δ, respectively, and grow in an approximately logarithmic manner with

distance from the surface.

Five secondary suites of LES, run at coarser resolution were also presented and

discussed. In order to justify the use of lower resolution, analogous cases to those in

the primary set of LES are briefly presented and shown to exhibit reasonably good

qualitative and quantitative agreement with results obtained at higher resolution.

Cases are considered where surface area of high roughness length, z0,H , is equal to or

greater than that of low roughness length, z0,L. It is found that for cases where surface

area with z0,H is greater than surface area with z0,L, shearing is significantly reduced

and flow features become less well organized. This is the result of higher total drag

imposed on the flow by the widened, high roughness regions. It is speculated that

Ls/δ = π/2 may provide optimal conditions for reduction of asymmetry in secondary

flows.

A suite of cases was considered, where uniform values of high roughness length,

z0,H , are replaced with linearly decreasing values, from the center to the edges of

”elevated roughness regions”. These cases demonstrated that transverse changes in

roughness length, need not be abrupt to create well-organized primary and secondary

flow structures. These cases also showed more consistent flow structures than those

with uniform z0,H and similar Ls/δ values. Extending this to surfaces with non-

uniform roughness across the entire domain. A suite of LES was run using a sinu-

soidal distribution of roughness length along the extent of the transverse dimension.
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These simulations produced well-structured primary and secondary flow, by creat-

ing transverse velocity gradients across the entire surface, rather than exclusively at

roughness transitions.

Another suite of LES, with roughness strips extending only a fraction of the

streamwise domain length, were also considered. These cases show that, while the

idealized case of infinite roughness strip length is not necessary, shear layers do in-

crease in strength as strip length (denoted by Lz0,H) is increased. Further, it is

observed that residual shearing effects continue to affect the flow over streamwise dis-

tances of more than 3δ beyond x1 = Lz0,H . The use of periodic streamwise bound-

ary conditions, results in more dramatic effects on 〈τ13〉t,1/u2
τ ,

δ
uτ
∂〈ũ1〉t,1/∂x2 and

〈T12〉t,1/u2
τ for smaller values of Lz0,H , but more total 〈T12〉t,1/u2

τ and thus more well-

organized primary and secondary flow structures, for larger values of Lz0,H .

Finally, an immersed boundary method was used to compare the use of wakes,

trailing behind immersed objects, rather than spanwise roughness changes to create

streamwise velocity gradients. Results, although not perfectly monotonic, are similar

results to those seen in all other LES considered in this thesis, with respect to sec-

ondary flow structures and also formation of high and low momentum pathways. This

indicates that any low momentum producing event placed at the surface is capable

of producing the effects detailed in this thesis.

5.2 Futures Recommendations

There is a great deal of work that can be done with this research moving for-

ward. It is believed that through balancing turbulent kinetic energy and streamwise

vorticity budgets, deeper insight may be gained about these flows from a mathemati-

cal perspective. Particularly with respect to the way in which turbulent anisotropies

generate secondary flow throughout the entire flowfields.
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Another topic of interest is the effect of roughness transitions at angles, neither

parallel nor perpendicular to streamwise flow. Certainly, all actual applications deal-

ing with rough surfaces exposed to atmospheric flow, may encounter flow approaching

from any angle. It is theorized that such flow may be decomposed into normal and

tangent velocity components and modeled such that the normal component behaves

similar to flow over forward step-changes in roughness (discussed extensively in ex-

isting literature) and the tangent component experiences the effects described in this

work. To date, all preliminary attempts to test this prediction have yielded incon-

clusive results.

Although the resolutions used in this study are believed to be sufficient to

capture all relevant flow features, running both primary and secondary cases at higher

resolutions could be worthwhile for validation purposes. It may be possible that

higher resolution, particularly in the vicinity of the transverse transitions in surface

roughness, could reveal some small scale flow features which are not resolved by the

current LES.

It is also believed that cases with immersed objects merit much more consid-

eration. A more comprehensive comparison between the effects caused by immersed

objects and variations in roughness should be considered as well as the fundamen-

tal flow mechanics which drive them. Additionally, cases with smaller streamwise

distance between objects could prove informative, due to enhancement of velocity

gradients, caused by residual effects from upstream objects.

Coriolis forces are not considered in this work. However, this is an assumption

which introduces some error into results when applied to flow over large-scale land

surfaces. Therefore it is believed that future work should, if possible take the effects

of Coriolis forces into account.
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Finally, it is recommended that consideration be given to the effects of heat

transfer caused by the counter-rotating secondary flows and local variations in tur-

bulence described above. No effects of temperature or heat flux are considered by

the current LES code. However, the enhancement of heat transfer that is expected

to result from the counter-rotating, time-invariant vortices and local variations in

turbulence, are likely some of the most useful and practically applicable features of

this research.
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