
Recommendations Made Easy ∗

[Extended Abstract]
†

Darren Guinness
Baylor University

One Bear Place 97356
Waco, TX 76798

{darren_guinness

Paniz Karbasi
Baylor University

One Bear Place 97356
Waco, TX 76798
paniz_Karbasi

Rovshen Nazarov
Baylor University

One Bear Place 97356
Waco, TX 76798

rovshen_nazarov

Greg Speegle
Baylor University

One Bear Place 97356
Waco, TX 76798

Greg_Speegle}@baylor.edu

ABSTRACT
Fueled by ever-growing data, the need to provide recommen-
dations for consumers, and the considerable domain knowl-
edge required to implement distributed large scale graph
solutions we sought to provide recommendations for users
with minimal required knowledge. For this reason in this
paper we implement a generalizable ‘API-like’ access to col-
laborative filtering. Three algorithms are introduced with
three execution plans in order to accomplish the collabora-
tive filtering functionality. Execution is based on memory
constraints for scalability and our initial tests show promis-
ing results. We believe this method of large-scale generalized
‘API-like’ graph computation provides not only good trade-
off between performance and required knowledge, but also
the future of distributed graph computation.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Databases;Distributed Networks;Distributed Applications; D.2
[Software Engineering]: Data Abstraction; Information
Hiding

General Terms
Collaborative Filtering, Distributed Computation, API,

1. INTRODUCTION
∗(Does NOT produce the permission block, copyright
information nor page numbering). For use with
ACM PROC ARTICLE-SP.CLS. Supported by ACM.
†A full version of this paper is available as Author’s Guide to
Preparing ACM SIG Proceedings Using LATEX2ε and BibTeX
at www.acm.org/eaddress.htm

Making recommendations of products like music, movies,
toys, and other products is a common operation for busi-
nesses today. For businesses like Netflix, and Amazon these
recommendations are a critical part of their services. Col-
laborative Filtering is a technique used to provide these rec-
ommendations based on users previous history [7]. However
this process of making recommendations equates to a graph
problem. Because of this fact the seemingly small scale oper-
ation of providing product recommendations to users quickly
turns into a “Big Data” problem of finding recommendations
within large graphs. This gives rise to the need for large scale
solutions to Collaborative Filtering.

In the ‘Big Data’ era, easily writing applications which pro-
cess huge sets of data in a quick, reliable manner is of great
importance. Many ‘Big Data’ problems including Collabo-
rative Filtering require simple graph operations to be done
across a data set that is too large to fit into current mem-
ory constraints. In previous years developers would require
“Super Computers” to perform large scale graph processing,
which was too costly for most researchers, and businesses
[10]. Because of the need for larger data queries, busi-
nesses have been constructing and maintaining data centers
for large scale requests, and processing. These data centers
combine readily available computers into large systems that
can operate in parallel to perform much of what previously
was performed in ”Super Computers” [10].

These new data centers created a need for software to take
advantage of their large scale distributed architecture. Be-
cause of this frameworks like PEGASUS,Stratosphere, Hama,
Giraph, Graphlab, and Hadoop were developed [2], [5]. Each
of these frameworks offer up large scale distributed process-
ing on data, or graphs. However these tools are very new
and documentation tends to be poor, offering a challenge to
businesses trying to provide recommendations. Conversely
operations on these huge graphs such as Collaborative Fil-
tering are becoming more and more common and requires
many developers that smaller scale businesses cannot afford.
With these constraints in mind we see the need for collab-
orative filtering toolkits that require minimal programming
domain knowledge.

In this paper we attempt to provide this scalable ‘API-like’
collaborative filtering using industry standard toolkits. We
have selected from the previously mentioned frameworks
Hadoop for it’s advantages in large scale data processing
[13], and GraphLab for it’s ability to perform fast graph
operations [2]. We then combine these large scale process-
ing tools to provide a method of large scale collaborative
filtering and offer access to recommendations with minimal
necessary knowledge to remove much of the need for learning
these difficult algorithms and tools.

2. RELATED WORK
In this section we introduce the tools leveraged in our project
specifically Hadoop and GraphLab, as well as summarize
related work in the applications of these tools. We then
attempt to show concepts that our project uses out of each
area.

2.1 Hadoop
Hadoop MapReduce is a software framework that allows for
easily writing applications which process vast amounts of
data in-parallel on large clusters of commodity hardware in
a reliable, fault-tolerant manner. Hadoop uses a new type
of file system, known as Hadoop Distributed File System
(HDFS) which distributes data across multiple machines
that allows for file system access. Hadoop is not replacement
for conventional Relational Database Management System
(RDBMS), but a supplement to it. It is mainly designed
to process extremely large data sets in batches. Hadoop’s
final dataset results are expected to be read many times,
but written only once. Hadoop is designed to work well
on unstructured or semi-structured data, which is not very
suitable for RDBMS [6].

In the paper ”Parallel Data Processing with MapReduce” [6]
the author discusses advantages of the Hadoop MapReduce
functionality. He lists immense data processing, simplicity
and ease of use highlighting the facts that developers are
only required to write are map and reduce tasks, flexibility
for input type which can be either irregular or unstructured
data, storage independence meaning that it can use with
different storage tables, fault tolerance due to replications,
and high scalability as more nodes can easily be added as
needed.

One interesting paper similar in spirit to the project we are
working on was by Cornell University researchers [12]. They
too have discussed the possibility of combining bulk data
processing powers of Hadoop and the in memory iterative
processing of data in GraphLab. The interest in such combi-
nation was motivated by GraphLab’s capability to capture
interesting data dependencies. The problem that this pa-
per addressed related to processing huge graphs, which are
harder to process as they cannot fit in memory.

2.2 GraphLab
As mentioned earlier, one of the major tools in our project
is GraphLab. In 2010 GraphLab, a parallel framework ma-
chine learning was developed by Yucheng Low et al. [9].
GraphLab targets improving upon an abstraction like MapRe-
duce by expressing iterative algorithms with sparse compu-
tational dependencies and achieving a high degree of parallel

performance. The paper also demonstrated the expressive-
ness of the GraphLab framework by designing and imple-
menting parallel versions of belief propagation, Gibbs sam-
pling, Co-EM, Lasso and Compressed Sensing [9]. They
showed that using GraphLab, a good parallel performance
is achieved on large-scale real-world problems using a 16-
core computer with 4 AMD opteron 8384 processors and 64
GB of RAM. In their experiments, they developed an opti-
mized shared memory implementation which is now known
as GraphLab [9].

GraphLab, supports the representation of structured data
dependencies, iterative computation, and flexible schedul-
ing. The GraphLab abstraction uses a data graph to encode
the computational structure and data dependencies of the
problem. It also represents local computation in the form
of update functions which transform the data on the graph.
Since it is possible that update functions modify overlap-
ping states, the GraphLab framework provides a set of data
consistency models which enables the user to specify the
minimal consistency requirements of their application with-
out having to build their own complex locking protocols. To
manage sharing and aggregation of global state, GraphLab
provides a powerful sync mechanism. Also, for managing
the scheduling of dynamic iterative parallel computation,
GraphLab provides a collection of of parallel schedulers en-
compassing a wide range of ML algorithms [9].

2.3 Applications
In this section, we describe some of the most important ap-
plications of large-scale graph applications in different areas.

2.3.1 Big graph mining: algorithms and discoveries
[4] founded PEGASUS, one of the first major frameworks
built on top of the MapReduce platform. PEGASUS used
Hadoop’s MapReduce to create and implement large scale
graph mining algorithms that linearly scale on the number
of machines [4]. This work is important to our research
because it demonstrates that MapReduce can be leveraged
for large scale graph operations, this is necessary for our
pure Hadoop approach described later.

2.3.2 Empirical Analysis of Predictive Algorithms for
Collaborative Filtering

In this paper, Breese, Heckerman, and Kadie examine com-
mon collaborative filtering techniques and algorithms in-
cluding Correlation, Vector Similarity, Bayesian network,
and Bayesian Clustering [1]. The paper also describes ”De-
fault Voting” a method utilized in our collaborative filtering
implementation to rank common items between user sets
when only one user has reviewed the item. Each algorithm
was tested on the MS Web, Neilson Ratings, and EachMovie
standard data sets for accuracy in collaborative filtering.
Correlation and Bayesian Networks performed the best and
won 10 out of the 16 cases [1]. For this reason we chose a
naive version of Correlation collaborative filtering with de-
fault voting for our recommendation system.

2.3.3 An Evaluation Study of BigData Frameworks
for Graph Processing

[2] provides the first evaluation study of the newest big data
frameworks of Stratosphere, Hama, Giraph, Graphlab, com-
pared to the traditional Map-Reduce paradigm. The study
is conducted to test these frameworks against each other
with the task of finding a k-core decomposition of a large
graph using Amazon’s EC2 service, a common industry op-
tion for big data processing [2]. This study showed some in-
teresting results. First Hadoop proved to be inferior to the
new graph based frameworks, and second GraphLab was
the fastest of all evaluated frameworks [2]. For this rea-
son our project one of our execution plans uses Hadoop’s
Map-Reduce only for pre-processing and graph creation and
GraphLab for fast graph operations.

3. ALGORITHMS
We constructed three algorithms in order to perform Collab-
orative Filtering. Input to these algorithms was the QueryUser
who we were trying to find recommendations for, the num-
ber of recommendations requested, and the raw review data.
The first algorithm was a pre-processing step that extracted
unique key-value pairs from Amazon customer review data.
The algorithm would output two key-value pair files the
first being product centered meaning that the keys con-
sisted of products with corresponding degree 1 connected
users as values. The second file was user centered meaning
that the keys were users with degree 1 connected products
as values. The second algorithm used these files to gener-
ate a bipartite graph of users with degree one connections
to the QueryUser. The third algorithm used the Bipartite
graph generated to find recommendations based on similar
users which were degree 2 connections in the bipartite graph.
These similar users were then sorted based on the Jaccard
Index between the similar user and the QueryUser. After
the sorting the set difference was calculated between the
top most similar users and the QueryUser the results were
then recommended to the QueryUser until the number of
recommendations had been satisfied, or we had exhausted
all similar users’s products. The algorithms and their exe-
cution plans are described in more detail below.

Figure 1: Bipartite Graph of Users and Products
modified from the Public Domain

3.1 Pre-Processing
The first is a pre-processing algorithm designed to take in
Amazon customer reviews and extract the items required
for the computation. The Amazon customer review data
consisted of 10 lines of data per review. The data lines
were productID, productTitle, price, userID, profileName,
helpfulness, rating, time, summary, and text. From this we
needed productID, userID, and rating so we created a pre-
processing algorithm using Hadoop MapReduce to extract
this data. Hadoop’s Map Phase was used to create key value
pairs where there were non-unique keys. The Reduce phase
took keys that were non-unique and merged them until we
had a key-value pairs. There were two key-value pair files
created in this step. The first had products as keys, and
users as values. This product centered graph is shown in
figure 2 The second had users as keys, and products as val-
ues, an example of this user centered graph is shown in figure
3. The resulting data was then ready to be input into the
Bipartite Graph constructor shown in algorithm 2.

Prod 1

User 1

User 2

Figure 2: Product Centered graph

3.2 Bipartite Graph Generation
The second algorithm depicted in 2 generated the Bipartite
graph. The input was the QueryUser, and the two key-
value pair files(Product centered, and user centered files)

Data: Product Review raw data
Result: prodCentered, userCentered
while not reviewRaw.end do

userIdToIntMap=<uID, uniqueIntUId>
productIdToIntMap=<pID, uniqueIntPId>

end
foreach user and product <user id, product id, rating> do

uniqueIntUId=userIdToIntMap.find(user)
uniqueIntPId=productIdToIntMap.find(product)
write to cleanedReviewFile: <uniqueIntPId,
uniqueIntUId, rating>

end
while not cleanedReviewFile.end do

MapPhase Get <Product ID, User ID>
conetxt.write(< Product ID , User ID >)
ShuffleSort < Product ID , {User} >
ReducePhase result.write(< Product ID , {User ID} >)

end
while not cleanedReviewFile.end do

MapPhase Get <Product ID, User ID>
conetxt.write(< User ID , Product ID >)
ShuffleSort < User ID , {Product ID} >
ReducePhase result.write(< User ID , {Product ID} >)

end
Algorithm 1: Preprocessing Algorithm

User 1

Prod 1

Prod 2

Figure 3: User centered graph

generated in the previous step. The algorithm searched the
user centered file for the QueryUser, obtained the prod-
ucts he/she had purchased and then proceeded to search
the product centered file for the users associated with these
products. The algorithm’s output was the generated the
Bipartite graph and a file of similar users.

3.3 Collaborative Filtering
The final algorithm was the collaborative filtering algorithm.
The input to this algorithm was the Bipartite Graph and the
similar user file generated in the previous step, and the num-
ber of recommendations requested. The algorithm would
then calculate the Jaccard index on each similar user and
sort descending the users based on the index obtained. The
algorithm would then perform a set difference on each simi-
lar user and recommend the resulting items to the QueryUser.
This was repeated until the number of recommendations was
met or the set of similar users was exhausted. Code for this
algorithm is shown in algorithm 3.

3.4 Implementation and Communication

Data: QueryUser,Product Centered file, User Centered file
Result: Bipartite Graph, SimilarUser file
while notprodCentered.end do

MapPhase - Get <Product ID, User ID>
foreach currUserID in {UserID} do

if currUserID == queryUserID then
conetxt.write(< queryUserID, { Product ID :
{User ID}} >)

else

end

end
ShuffleSort < Product ID , {User} >
ReducePhase result.write(< queryUserID {Product ID
, {User ID};} >)

end
compute {relatedUserID} based on Bipartite Graph
while not userCentered.end do

MapPhase - Get <User ID, Product ID>
foreach curUserID in {relatedUserID} do

if curUserID == UserID then
multiFile.write(fileName=UserID, < UserID, {
Product ID} >)

else

end

end

end
Algorithm 2: Bipartite Graph Constructor

User 1

Prod 1User 2

Prod 2User 3

User 4

Figure 4: Generated Bipartite Graph

The algorithms were implemented on a 64-bit Linux clus-
ter running kernel 2.6.32. We limited the number of CPU’s
to 2 and had 4 gigabytes of available memory. Hadoop 2.2
and GraphLab 2.2 were used. The installation of both of
these tools was challenging process. Documentation was
poor for both with missing critical items such as navigat-
ing to the debug directory before the makes in GraphLab.
Documentation seemed to also use deprecated functionality
showing that the updates to the code base were ahead of the
documentation. This created some challenges for us when
attempting to learn the tools and only confirmed our belief
that the ’API-like’ large data solutions like the one proposed
in this paper were necessary. We installed the Hadoop MR
and Graphlab distributed highly parallelized toolkits on the
single machine cluster with the specifications defined above.
This is somewhat limited our testing and performance anal-

Data: Bipartite Graph (Fig. 1), similarUsers,
numRecommendations

Result: Recommended products
foreach user, u ∈ similarUsers do

compute similarityRating[u] ≡ |q ∩ g|
|q ∪ g|

end
sort similarityRatingMap <user ID, rating> by rating in
desc order
foreach relatedUser∈ similarUsers do

queryUser − queryUser ∩ relatedUser
end
while i < numRecommendations do

foreach user ∈ similarityRatingMap do
foreach product ∈ the set diff of similar user do

if i ≥ numReccomendations then
Do not add more products

else
recommendedProducts.add(p)
i + +

end

end

end

end
Algorithm 3: Collaborative Filtering Algorithm

Data: similarUsersList, queryUser
Result: similarityRatingMap <user ID, rating>
foreach similarUser ∈ similarUsersList do

unionSet ← queryUser ∪ similarUser
end
foreach similarUser ∈ similarUsersList do

intersectionSet ← queryUser ∩ similarUser
end
foreach similarUserID ∈ similarUsersList do

jaccardIndex ≡ |intersectionSet|
|unionSet|

simRatingMap.put(similarUserID, jaccardIndex)
end

Algorithm 4: Jaccard Index Algorithm

ysis capabilities as those tools are designed to be run in the
cluster environment with more than single node. However,
we believe based on other researchers experiments that our
solution will perform as good or better in the distributed
environment with multiple nodes for data processing.

After the installation the implementation of the hadoop part
of the query processing was written in JAVA. Several jobs
were written for different steps of the algorithms described
above for data pre-processing and for query processing. Graph-
Lab was implemented in C++. For the sake of generaliza-
tion we sought to make future changes easy using reusable
code. For Graphlab part of our model rather than writing a
fully optimized collaborative filtering algorithm, we have ex-
tended GraphLab functionality by creating Set Union, Set
Difference, and Set Intersection distributed toolkits which
were all used when computing the Jaccard index in the query
processing algorithm 3. As the GraphLab toolkit operated
on integers only and our data used strings for both user and
product ID’s, a basic mapping table was built to store the
integer keys and the string id they map to for both user and
product ID’s. Keeping the mapping was necessary to obtain

the original raw data item back after the recommendation
was made. The mapping algorithm was straight forward,
where we just map a unique string id to its index position
in the set. Thus we had two mapping tables for user id set
and for product id set. Both of the mappings were available
in HDFS for later conversion from integer id to string id.

To create our collaborative filtering algorithm we developed
several bash scripts that utilize widely available and enabled
by default script based linux languages, such as awk and
bash. Those scripts were used to process data on HDFS,
to move files, prepare intermediate results and print final
results. Several scripts were made for each execution plan
Hadoop only, Hadoop + GraphLab, and GraphLab only.
The decision to run any of the 3 implementations was made
based on memory constraints further described below. All
scripts were designed to log critical sections for later result
analysis. Some automation test scripts for one fold valida-
tion were written for Hadoop MR, MR only and Graphlab
only algorithms to allow easy testing.

3.5 Execution Plans
We used three execution plans for our collaborative filter-
ing query. Each execution plan was based on memory con-
straints in order to allow for scaling, and when applicable
optimize runtime. The Pure Hadoop (3.1) execution plan is
for vast datasets too large to fit into memory and thus uses
only Hadoop. The Hadoop + GraphLab (3.2) execution plan
used the MapReduce functionality in Hadoop to reduce the
data so that it would fit into memory for GraphLab opera-
tions. Lastly the Pure GraphLab (3.3) execution plan was
executed when the data given is a size that can already be
fit into memory. As GraphLab already had a Collaborative
Filtering toolkit we used this directly rather than implement
our own version. Each approach is described in more detail
below.

3.5.1 Pure Hadoop
In this approach the algorithm is executed solely in Hadoop.
The input consisting of QueryUser or the user we are find-
ing recommendations for, numRecommendations being the
number of recommendations we would like to obtain, and re-
view data is first fed into Hadoop where we use the MapRe-
duce functionality to extract 2 maps from our review data
via the preprocessing algorithm. The first map is “product
centered” consisting of products as our keys, and their im-
mediate connected users as the values. The second map is
“user centered” with users as our keys, and a list of prod-
ucts as their values. We next use these maps to construct a
bipartite graph with each product connected only to users,
and each user connected only to products. Then we begin
the collaborative filtering algorithm by finding all first de-
gree similar users to QueryUser via examining each product
that our QueryUser has reviewed and making a list of users
who have also reviewed that product. Given this list of sim-
ilar users, we then use a well known similarity index The
Jaccard Index [3], a well known function for finding similar
sets to obtain the most similar user to the QueryUser in our
list of similar users. The Jaccard index ranges from 0 to 1
with 0 being the non similar and 1 being completely similar
[3]. Once we have computed the similarity index for each
user we find the largest indices that are not 1 meaning a
user that is most similar but still has items that were not

within QueryUser’s set to recommend. We then add each of
these items to our list of items to recommend until we have
reached numRecommendations or there is no more products
to recommend. We then output the recommendations for
the user.

3.5.2 Hadoop + GraphLab
In this approach we utilize both Hadoop and GraphLab to
tackle our collaborative filtering problem. This approach is
meant to utilize the power in both tools meaning Hadoop’s
highly distributed large scale data processing, and GraphLab’s
in memory data processing. Initially, Hadoop is once again
used to implement the pre-processing algorithm to construct
the two maps, and the bipartite graph from our review data
in the same fashion as the above. In the Collaborative Fil-
tering algorithm Hadoop then provides the similar userList
to GraphLab. We then use developed for GraphLab vertex
intersection and union toolkits to process each similar user
graph with query user graph. Then we perform the Jac-
card Index of the QueryUser’s graph and each user’s graph
in the userList. Again we find the largest similarity indices
that are not 1, and append non-shared items from the user
to our recommendedProducts list and once we have reached
our number of Recommendations required. Then we output
our recommendations for the user.

3.5.3 Pure GraphLab
In the pure GraphLab approach our review data is small
enough to fit into memory to begin with. As GraphLab al-
ready had a Collaborative Filtering toolkit we chose to use
the toolkit in this approach. We utilized the Alternating
Least Squares (ALS) method because of it’s ability to pro-
vide quick recommendations on relatively large scale data
sets. This method is used in the Results section as a base-
line comparison for our two custom execution plans.

3.6 GraphLab Toolkits
In Algorithm 3, in order to compute similarityRating and
setDifference, we wrote three GraphLab toolkits - union,
intersection, and setDifference.

The intersection toolkit, took two graphs as the input, and
calculated the intersection of the graphs into the HDFS. We
used the graph vertex join class which provides the ability
to pass information between vertices of two different graphs.

For the union toolkit, we used the latest feature of GraphLab,
the Warp system. The basic design of the Warp system lies
in use of fine-grained user-mode threading to hide communi-
cation latency of blocking calls; and as such expose a more
intuitive and easy to use API Interface. One of the key
functions of the Warp engine is a parfor over all vertices,
which enables excuting a single function on all vertices. We
used this feature in our union toolkit. This toolkit, took
two graphs as the input and after finding the union set of
the two graphs, once finished the result was written to the
HDFS.

The setDifference toolkit, used both the features mentioned
above - graph vertex join class and the Warp engine. This
toolkit took two graphs as input, computed the intersection
of the graphs using graph vertex join class and then with

the help of Warp system, checked the vertices of the second
graph, and appended those vertices not in the intersection
set, to the set difference set. The result set was once again
written to the HDFS.

3.7 Query Processing
In the algorithms described in this section, we used two
major components: MapReduce and GraphLab. In order
to utilize our ’API-like’ framework, we needed an interface
for calling our collaborative filtering algorithm. By using
a simple Analytic Query Language (AQL) , we were able
to effectively reduce the need for collaborative filtering and
distributed tool specific knowledge.

The AQL engine inspired by concurrent research in ongoing
in our department was extended to accommodate the col-
laborative filtering queries. The AQL algorithm has syntax
close to other Query Languages such as SQL and is designed
to hide the complex program and script structures from the
user similar to that of SQL.

SELECT n recommendation

FROM {g}

WHERE userID= ‘X,Y’

We used HDFS as shared storage between the MapReduce
and GraphLab components. Several bash scripts were writ-
ten to handle the integration between two toolkits. What
those scripts do is simply run one tool, then use the output
of the first tool as the input to another tool. In some cases
result pre-processing or in memory storage was needed. For
example the related users’s ids are stored in memory while
the bash script for related users’s graphs is executing. Re-
lated users list was also used for accessing each related user’s
graph while computing Jaccard index and Set difference.

The bash script uses bash commands for generating arrays,
copying files, checking file size and file existence. AWK com-
mands were used for processing file per line to retrieve im-
portant file related data for later use in the bash processing.
Both bash script and awk script were applied to potentially
small files, e.g. related user graph, which size depends on
the number of products that a user has reviewed.

We have bash script to map AQL command into bash script
commands to start an algorithm chosen by the query pro-
cessing logic. Query processing function chooses the exe-
cution algorithm based on the graph size using the logic
explained below.

Based on the size of the input graph, one of the three ap-
proaches - Pure Hadoop MR, Hadoop MR + GraphLab, or
Pure GraphLab was selected. To determine whether the
graph would fit into memory (RAM available in the cluster)
we used a hard-coded low level threshold value of 1 GB. If
the Free memory minus the size of the graph was ≥ 1 GB
the Graphlab only approach was used, if it was smaller we
employed a GraphLab + Hadoop MR approach. If the free
memory and graph size difference was below 0 and the graph
size was bigger than graph size threshold (could be 20 GB),
then Hadoop MR only approach with large enough (based

MR only GLMR ALS Baseline
Hold out Index Score Index Score Index Score

5915 8 .4 8 0.4 78 -1.784
2781 10 .4 10 0.4 17 1.176
9425 41 .28714 41 0.287 65 -0.952
11071 19 .28714 19 0.287 47 -0.370

Table 1: Cross Validation over one user

on the number of machines) cluster will be used. The hard
coded 1 GB however was not an optimal solution, rather the
proper strategy would be to compute the following:

FreeMem−Memg −Memthreshold > 0

where FreeMem is the memory available in the cluster sys-
tem, Memg is the size of the graph g, and Memthreshold is
a given threshold to allow the OS to perform computation.

4. RESULTS
4.1 Datasets
The primary source of data for our project was Amazon,
from which we obtained about 34 million reviews. To extract
the reviews data that we needed for experiments, we started
with bigger dataset obtained from the Internet Archive
footnotehttp://snap.stanford.edu/data/web-Amazon-links.html.

To test the performance of both of our algorithms we con-
ducted two tests. The first was a Leave-One-Out Cross Vali-
dation on one user in order to gauge whether the algorithms
would recommend the product back to the user. There were
4 rounds where in each round one product was held out and
recommendations were made using the resulting subgraph.
Table 1 illustrates the results of this test. The second test
was designed to assess the runtime of the algorithms. The
test measured the runtime of a Leave-One-Out Cross Vali-
dation over 3 users. Results of this test are shown in Table
2. We also used another collaborative Filtering technique
for comparison known as Alternating Least Squares(ALS).
The algorithm won the Netflix contest providing recommen-
dations in 2008 [14]. Our algorithm used the Jaccard index
so our scoring ranged from 0 ≤ x ≤ 1, where 0 indicates
no similarity and 1 indicates maximal similarity. The ALS
algorithm uses −∞ ≤ x ≤ ∞, where a negative value indi-
cates non-similarity and a positive value indicate similarity.
The number’s distance from 0 indicates the degree to which
the user would prefer the item. As the two algorithms used
different scoring ranges we used recommendation indicies to
make a comparison.

4.2 Cross Validation
As each product was purchased by the user and had a rating
above 4 as previously noted in the pre-processing stage we
expect to be recommended these items when we use Leave-
One-Out Cross Validation. Table 1 shows that our algo-
rithms had higher ranked recommendations for each of the
held out items than ALS algorithm. Interestingly enough
the ALS algorithm had negative scores for most of the items
that were held out, indicating a negative suggestion. A po-
tential reason for this could be that the ALS method which

compares both users and products does not find a correla-
tion between the users’s history. This may be because of
the small amount of historical data that was used during
the run.

4.3 Processing Time
User
ID

Pure
Hadoop

HD
+

GL
ALS #Products

Related
Users

45 467 168 8 5 59
1696 528 188 6 5 67
8509 135 41 6 7 12

Table 2: Cross Validation Duration measured in
minutes

As we can see in table 2, the GraphLab only approach is
considerably faster in processing time. GraphLab’s compu-
tation operates primarily in memory [8] and the Hadoop
MapReduce algorithm stores intermediate results on HDFS
and MR on each iteration preforms expensive set up and
tear down. Thus the Graphlab’s approach is much faster,
if the graph can feet in the memory. For small graphs a
GraphLab only approach would be optimal. However this
represents a comparison of a parallel in-memory solution
versus a distributed big-data processing tool. An in-memory
approach is expected to outperform an approach that stores
intermediate results in the HDFS and performs computa-
tion in parallel in the distributed manner with very little
shared data. The distributed nature of MapReduce allows
processing big data in parts. The number of parts define how
many machines are needed for faster data processing. On
the other hand big datasets (in Terabytes or Petabytes) can-
not reasonably fit into memory even when using distributed
hardware with shared memory as required by Graphlab. For
this reason GraphLab will fail when attempting to operate
on large graphs that are unable to fit into memory. We saw
this in several test cases, where the Hadoop + GraphLab
approach was able to run and provide recommendations the
GraphLab only approach failed due to memory constraints.

User
ID

Pure
HD

HD + GL ALS # Prod
of Rel
Users

45 99 min 39 min 51 sec 5 59
1696 112 min 51 min 52 sec 5 67
8509 22 min 10 min 52 sec 7 12
Total 233 min 100 min 155 sec 17 138

Table 3: Single User ID based AQL query processing
time

As we can see in table 3, the same AQL query:

SELECT 100 recommendation

FROM {Bipartite User Product Graph}

WHERE userID= ‘45,1696,8509’

The above query was run using three processing algorithms
to make a comparison of the running time as shown in 3
table. As we can see from the table the GraphLab only ap-
proach is considerably faster in processing time. As GraphLab’s

computation operates primarily in memory [8] and the Hadoop
MapReduce algorithm processing input in parts on different
machines with little shared memory. Moreover, Hadoop MR
approach requires file operations in HDFS for either MR
only or Graphlab + MR approach to store intermediate re-
sults. As we can see the MR only is twice as slow as Mr +
Graphlab approach as MR requires more storing intermedi-
ate results on HDFS for each iteration, which requires more
disk I/O. This results in longer processing per iteration of
computing Jaccard index [3], while Graphlab performs in
memory computations, which requires less expensive I/Os.

5. DISCUSSION AND FURTHER WORK
The performance of our algorithms versus the GraphLab
ALS baseline condition showed adequate results. In terms
of runtime the GraphLab ALS algorithm boasted good per-
formance. This however is expected due to the in-memory
approach and has been declared infeasible for large scale
graph problems [11]. The Hadoop + GraphLab approach
had poor performance in runtime. This is due large number
of high cost I/O operations and MR per iteration set up and
tear down cost. The Pure Hadoop approach performed the
worst in terms of runtime. In the Pure Hadoop approach
there were even more MR runs, which results in more I/O
operations and thus poor performance. It should be noted
that MR only or MR + GL algorithms would be able to
process larger scale graphs which cannot fit into memory.

In terms of the recommendation performance our algorithms
actually beat out the ALS baseline condition. This shows
that our algorithms were not only extendable to graphs that
are too large to fit into memory, but also that the recommen-
dations when tested using Leave-One-Out cross validation
had better estimation of the user’s preferences. We expected
this was due to the small amount of historical data which
poses a problem to the ALS algorithm. Since our algorithm
used the Jaccard Index and a Bipatite Graph small amount
of training data was necessary to make predictions.

The algorithm is not heavily optimized and thus can be im-
proved further. Further works will optimize graph gener-
ation and similar user collection which we noticed to be a
large portion of the computation. Also we plan to imple-
ment other similarity indices other than the Jaccard index
in an effort to provide a more generalized solution.

6. CONCLUSION
In this paper we have presented a new algorithm for collab-
orative filtering with two execution plans. The algorithm
was meant to be a proof of concept that large-scale collabo-
rative filtering can be done in a generalizable API-like man-
ner. We accomplished this using AQL a new query language
for distributed large-scale computation which mimicked SQL
queries and hid the algorithm and it’s execution plans from
the user. In doing this we allow non-programmers to pro-
vide recommendations to their customers/users with little
background knowledge. Overall the algorithms performed
adequately but can be further improved in both runtime
and recommendation generation. Future large scale graph
operations should seek API-like interfaces in an effort to re-
duce the time and knowledge it takes to implement these
solutions.

7. REFERENCES
[1] J. S. Breese, D. Heckerman, and C. Kadie. Empirical

analysis of predictive algorithms for collaborative
filtering. In Proceedings of the Fourteenth conference
on Uncertainty in artificial intelligence, pages 43–52.
Morgan Kaufmann Publishers Inc., 1998.

[2] B. Elser and A. Montresor. An evaluation study of
bigdata frameworks for graph processing. In Big Data,
2013 IEEE International Conference on, pages 60–67.
IEEE, 2013.

[3] P. Jaccard. Nouvelles recherches sur la distribution
florale. 1908.

[4] U. Kang and C. Faloutsos. Big graph mining:
Algorithms and discoveries. ACM SIGKDD
Explorations Newsletter, 14(2):29–36, 2013.

[5] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
Pegasus: A peta-scale graph mining system
implementation and observations. In Data Mining,
2009. ICDM’09. Ninth IEEE International Conference
on, pages 229–238. IEEE, 2009.

[6] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and
B. Moon. Parallel data processing with mapreduce: a
survey. AcM sIGMoD Record, 40(4):11–20, 2012.

[7] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: item-to-item collaborative filtering.
Internet Computing, IEEE, 7(1):76–80, Jan 2003.

[8] Y. Low. GraphLab: A Distributed Abstraction for
Large Scale Machine Learning. PhD thesis, University
of California, 2013.

[9] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A new
framework for parallel machine learning. arXiv
preprint arXiv:1006.4990, 2010.

[10] J. Rattner. Concurrent processing: A new direction in
scientific computing. Managing Requirements
Knowledge, International Workshop on, 0:157, 1985.

[11] A. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun.
Distributed message passing for large scale graphical
models. In Computer Vision and Pattern Recognition
(CVPR), 2011 IEEE Conference on, pages 1833–1840.
IEEE, 2011.

[12] G. Wang, W. Xie, A. J. Demers, and J. Gehrke.
Asynchronous large-scale graph processing made easy.
In CIDR, 2013.

[13] T. White. Hadoop: The Definitive Guide: The
Definitive Guide. O’Reilly Media, 2009.

[14] Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan.
Large-scale parallel collaborative filtering for the
netflix prize. In Algorithmic Aspects in Information
and Management, pages 337–348. Springer, 2008.

