

ABSTRACT

Design and Development of Autonomous Electric Vehicles Capable of Following an
EPA Drive Cycle on a Dynamometer Testbed and Navigating an On-Road Obstacle

Course

Ezekiel B. Brown, Ph.D.

Advisor: Annette von Jouanne, Ph.D.

 This dissertation presents the background, research and further advancement of

the design and development of an autonomous electric vehicle that can follow an

Environmental Protection Agency (EPA) drive cycle on a dynamometer testbed. Design,

development, and test data collected, analyzed, presented, and referred to in this

dissertation stems from an all-electric Chevy Bolt and an electric converted Chevy

Tahoe. The work done on the Chevy Bolt enables the vehicle with the capability to

autonomously follow an EPA drive cycle on a dynamometer and the work done on the

Chevy Tahoe advances on the autonomous acceleration system, incorporating

autonomous steering and sensory integration, enabling the vehicle to follow a path

autonomously. The programmable throttle and the programmable brake research on the

all-electric Bolt are discussed followed by the implementation of a programmable

acceleration system, programmable steering, and the development of a sensory system on

an all-electric converted Chevy Tahoe.

Design and Development of Autonomous Electric Vehicles Capable of Following an

EPA Drive Cycle on a Dynamometer Testbed and Navigating an On-Road Obstacle

Course

by

Ezekiel B. Brown, B.S., M.S.

A Dissertation

Approved by the Department of Electrical and Computer Engineering

Kwang Lee, Ph.D., Chairperson

Submitted to the Graduate Faculty of

Baylor University in Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

Approved by the Dissertation Committee

Annette von Jouanne, Ph.D., Chairperson

Alex Yokochi, Ph.D.

Emmanuel Agamloh, Ph.D.

Mack Grady, Ph.D.

Accepted by the Graduate School

May 2023

J. Larry Lyon, Ph.D., Dean

Page bearing signatures is kept on.file in the Graduate School.

Copyright © 2023 by Ezekiel B. Brown

All rights reserved

iv

TABLE OF CONTENTS

LIST OF FIGURES .. v

CHAPTER ONE ... 1
Introduction ..1

Motivation ...1
Background ..1

 Literature Review ...4

CHAPTER TWO .. 13
Batteries and Battery Management Systems..13

Batteries ..13
Battery Management Systems ...16

CHAPTER THREE .. 24
Chevy Bolt’s Autonomous Vehicle Speed System ...24

Programmable Throttle ..24
Programmable Brake ...33

CHAPTER FOUR .. 40
Electric-Converted Tahoe’s Autonomous Vehicle Speed Control System 40

Throttle And Brake Setup ...40
Power System Safety Design ..47

 Pid Tuning For Vehicle Speed ..50

CHAPTER FIVE .. 56
Sensor Implementation ...56

Global Positioning System (Gps) ...56
Ultrasonic Sensors ...57

 Camera And Yolo (You Only Look Once) ...59

CHAPTER SIX .. 63
Programmable Steering And Data Analysis ...63

Steering Rack Control ..63
Data Gathering ..72

CHAPTER SEVEN .. 74
Conclusions And Future Work ...74

Conclusions ..74
Future Work ..76

REFERENCES ... 81

v

LIST OF FIGURES

Figure 1.1. Converted all-electric Chevy Tahoe on the red and black Dynamometer 2

Figure 1.2. Autonomous vehicle sensors ..6

Figure 1.3. Autonomous levels ...7

Figure 1.4. Encoder ...8

Figure 1.5. Neural Network ..9

Figure 1.6. Map drawing of the data coverage using crowdsourcing 11

Figure 1.7. Another map drawing of the data coverage using crowdsourcing 12

Figure 2.1. Original battery case donated by Proterra’s electric bus 13

Figure 2.2. Lithium titanate 10-cell battery module ...14

Figure 2.3. Chevy Tahoe’s traction battery pack containers ..15

Figure 2.4. Closer view of a battery case and BMS ..16

Figure 2.5. 100A DALY BMS ..17

Figure 2.6. Right-side up view of traction battery case with BMS18

Figure 2.7. 300A LTO DALY BMS ...19

Figure 2.8. 300A Smart BMS communication screen 3 ..20

Figure 2.9. 300A Smart BMS communication screen 1 ..21

Figure 2.10. 300A Smart BMS communication screen 2 ..22

Figure 3.1. Programmable throttle connected to Chevy Bolt ...25

Figure 3.2. Programmable throttle user interface ...26

Figure 3.3. Example notepad drive cycle file to be uploaded into LabView 27

vi

Figure 3.4. Example drive cycle displayed in LabView ...28

Figure 3.5. Road load forces ...30

Figure 3.6. Autonomous acceleration system block diagram ...31

Figure 3.7. Programmable brake ...34

Figure 3.8. Data Acquisition (DAQ) setup ...35

Figure 4.1. Motor rpm to speed in MPH ...41

Figure 4.2. Throttle VCU setup ..41

Figure 4.3. Arduino to digital potentiometer to voltage decipher43

Figure 4.4. Arduino to digital potentiometer (AD5206) to voltage decipher schematic ..43

Figure 4.5. Serial interface of VCU AF trace output ...44

Figure 4.6. Predicted range of vehicle ..44

Figure 4.7. UQM diagnostic software ...45

Figure 4.8. VCU wiring diagram ..46

Figure 4.9. Power vs. motor rpm graph ..48

Figure 4.10. Traction battery pack on/off switch ..49

Figure 4.11. Servos and VCU battery supplies on/off switch ...50

Figure 4.12. Tuned PID constants with a negative I constant ..51

Figure 4.13. Same PID values as Fig. 36 with completely different results52

Figure 4.14. Tuning PID with values: .5, .01, and 3.2 ...53

Figure 4.15. Tuning PID with values: .7,0,3.2 ...54

Figure 4.16. Tuned PID with nonzero P and D constants and 0 for the I constant55

Figure 5.1. GPS unit ..57

Figure 5.2. Chevy Tahoe sporting ultrasonic sensors ...58

vii

Figure 5.3. YOLO object detector and classifier ..60

Figure 5.4. Stop sign for obstacle course put through YOLO analysis 61

Figure 5.5. Statistics on the YOLO analysis shown in Fig. 44 ..61

Figure 6.1. High torque servo motor and steering connection ..64

Figure 6.2. Steering fluid pump system ..65

Figure 6.3. Lower torque servo motor ..66

Figure 6.4. Dyno ultrasonic sensor EMI ...69

Figure 6.5. Autonomous steering guidance ..70

Figure 6.6. Obstacle course ...71

Figure 7.1. EMI shielding ...76

Figure 7.2. Different sensors used to detect objects around it ..77

Figure 7.3. Future conference seating arrangement ..78

Figure 7.4. Parallel component to make BMS able to monitor battery strings 79

Figure 7.5. Parallel battery management systems’ schematic ..80

 1

CHAPTER ONE

Introduction

Motivation

In order to improve safety, transportation efficiency and reduce the carbon

emissions from transportation, electric vehicles are being researched and developed by

many different automotive companies, such as Tesla, Lexus, BMW, Mercedes, Volvo,

and more. In development, it is important to be able to carefully quantify the energy

efficiency of the vehicle, which is standardly done by driving the electric vehicle through

a drive profile on a dynamometer through what are known as EPA drive cycles.

However, these are currently accomplished by having a human driver in control of the

vehicle and so results vary from more than just the vehicle but also from driver to driver

that may make conclusions from data less convincing or reliable. That is a significant

motivation for developing autonomous acceleration and braking systems that can give

reliable, consistent, and very accurate data to make much clearer conclusions and

evaluations of the electric vehicle’s performance. In addition, autonomous vehicles would

enable the aging population to continue to be independent. These are some of the driving

forces for the research and development of autonomous vehicles for transportation that

will be further detailed in the following sections.

Background

An autonomous acceleration system was developed on a Chevy Bolt all-electric

vehicle and will be referred to as programmable throttle and brake throughout this

 2

dissertation. In the work pertaining to the programmable throttle and brake, the research

was conducted on the all-electric Chevy Bolt, which was placed on a dynamometer as the

test bed. A dynamometer is shown as the platform the vehicle is resting on in Fig. 1.1,

which is essentially a treadmill for vehicles, allowing the vehicle to accelerate and

decelerate within a fixed location.

Figure 1.1. Converted all-electric Chevy Tahoe on the red and black Dynamometer.

Dynamometers are commonly used for vehicle testing by running various vehicles

through EPA drive cycles. An EPA drive cycle puts a vehicle through a driving routine

that simulates what a driver may experience in a city with stop lights and lower speed

driving, as well as highway driving [1]. With the programmable throttle and

programmable brake, an electric vehicle like the Chevy Bolt, which was used in this

 3

research, can be put through a drive cycle for hours and do so with machine precision and

consistency. The data collected from the Chevy Bolt was consistent and reliable, so when

subjecting the car to differing charging applications, the effects the charging has on the

battery can be analyzed and reliable conclusions and observations can be made. With the

data gathered, the progression of electric vehicles may be furthered with consistent and

reliable test results. The EPA has regulations for both on-road and non-road vehicles and

has differing expectations and criterion to be met based on the vehicle’s classification

such as passenger vehicles, commercial trucks and buses, and motorcycles. The criterion

to be met includes smog, soot, and other air pollution emissions from the vehicle in

question. When testing and judging these vehicles, they put them through a drive cycle on

a dynamometer and have professional drivers follow the speed the drive cycle indicates.

This is done with city and highway drive cycles to simulate realistic driving patterns, and

these tests can take hours to complete. The tolerance for the drivers is to maintain within

3 MPH above or below the drive cycle’s indicated speed at all times. With there being

different drivers, the data gathered during these drive cycles may not be consistent which

can cloud inferences and conclusions. To solve this problem, the ideas of programmable

throttle and brake were proposed by Dr. von Jouanne. Being able follow EPA drive

cycles with reliable accuracy, consistent data can be obtained and makes observations

and conclusions clearer and more reliable.

In many electric vehicles, there is a regenerative braking feature that is very

important for the design and performance of the vehicle as stated in [2]. In the

infrastructure of an electric vehicle there is a motor that produces the traction force or

propulsion force to the wheels of the vehicle; this motor can usually also act as a

 4

generator. This means as the motor produces power, it can also generate power. When the

throttle pedal is released completely, the electric motor now acts as a generator and the

power is transferred to the battery by the inverter [3]. The inverter controls and

transforms the electric power necessary in running the motor. The inverter also takes the

power generated by the motor and converts and transfers this power to the battery storage

unit when in regenerative braking mode. When the throttle pedal is released, the kinetic

energy stored in the rotating inertia of the motor is taken and harnessed by the motor,

converting this energy to electrical energy. This slows down the car without the use of

traditional friction brakes [4]. Regenerative braking is very important for electric

vehicles, reducing greatly the handicap of low specific energy density of electric vehicle

batteries compared with traditional gasoline. This braking helps increase the range of the

vehicle without adding more batteries and much extra weight or size to the vehicle. When

driving, friction brakes are needed much less, and may hardly be needed while driving.

Literature Review

 According to the National Highway Transportation Safety Administration

(NHTSA) in [5], 90% of all serious car accidents and between 94% and 96% of all

vehicle accidents occur due to human error, so displacing the human component will

eliminate the human error and result in a drastic increase to transportation safety. These

human errors can occur for various reasons, the more serious and frequent offenses

include texting while driving and driving while under the influence. Also, for trucks

carrying cargo, driverless trucks can travel longer distances without breaks, lowering

delivery times with a reduced chance of monetary loss involved with accidents. In

 5

addition, autonomous vehicles would enable the aging population to continue to be

independent. These are some of the driving forces for the research and development of

autonomous vehicles for transportation. Autonomous systems are systems characterized

as capable of making decisions partially or completely independently of human

interference, but unlike mere automation, they are able and expected to make these

decisions while facing uncertainties. Uncertainties are what make development of these

vehicles difficult, because if not designed properly, disasters can happen given vehicles

with a rather large mass moving at high speeds. Such vehicles need to be carefully

programmed and capable of virtually handling any scenario that can happen on the road.

Some of the technology incorporated within an autonomous vehicle’s design

include lidar, radar, cameras, and a Global Positioning System (GPS) system [6]. An

example of how these systems could be incorporated onto a vehicle is shown in Fig. 1.2.

Lidar sensors are used for determining distances, recognizing road lines and edges by

shooting pulses of light around the vehicle [7]. Lidar is very accurate and gives a detailed

and a more thorough description or “view” of the vehicles’ surroundings than radar,

however complex data analysis techniques are required for lidar and it is not as reliable as

radar including the fact that lidar does not work very well in adverse conditions such as in

rain or fog [8]. Radar works by emitting pulses of radio waves that travel very fast and

bounces and returns to the sensor, and can determine the distance between an object and

the sensor along with the speed of the object [9,10].

Cameras are also used for object detection and will be instrumental for the vehicle

to operate and adhere to road signs in addition to avoiding cars and other objects on the

road. Ultrasonic sensors are also utilized in autonomous vehicles to help determine the

 6

surroundings of the vehicle at very close range. Cameras and ultrasonic sensors are often

implemented in standard vehicles so this technology is not uncommon. Many people

have cars, SUVs, and trucks that use cameras for extra rear-view support when in reverse,

with some vehicle packages having cameras on top, sides, and front of these vehicles as

well, in order to aid with parking. These cameras are often coupled with ultrasonic

sensors to help the driver in providing greater visibility around the car and alert the driver

if the vehicle is approaching any objects. Often the sensor data is mapped on some

display screen where the camera feed is in the vehicle along with a beeping sound

corresponding to the distance from a nearby object determined by the ultrasonic sensors.

The closer the vehicle gets to an object detected by the ultrasonic sensors, the beeping

frequency increases. Taking this to a more advanced application, an increasing number of

vehicles are offering “assisted parking” where the vehicle uses cameras, sensors, and

actuators for the vehicle to autonomously park itself into a parking space.

Figure 1.2. Autonomous vehicle sensors [11].

 7

There are 5 levels in autonomous vehicles for determining how far removed they

are from needing human assistance when operating as shown in Fig. 1.3 [12]. The goal of

this work is to develop a level 5 autonomous vehicle, i.e., one not needing human

assistance when operating. Currently, Tesla is at level 2 in its Model 3 where it can drive

roads and highways as long as the human driver is alert at all times monitoring

throughout the trip.

 Figure 1.3. Autonomous levels [12].

For a vehicle to rely on cameras to observe the environment and the objects in the

vicinity of the vehicle, the data gathered must be very reliably analyzed for the vehicle to

operate properly and most importantly, safely. The computer system in which the vehicle

is operating from must be able to do this under various weather conditions, extreme or

not. Otherwise, autonomous vehicles would be too unreliable and dangerous to operate in

 8

practice. To aid in this, the computer system can use a neural network to clean up images

fed in from the cameras when analyzing before making decisions as seen from the

encoder shown in Fig. 1.4 [13].

Figure 1.4. Encoder.

The use of a neural network can greatly increase the reliability of the image

analysis using cameras [14]. In addition, traffic signs, objects, and lights emitted from

traffic lights can be read and analyzed properly so the vehicle can be operated as

expected. For example, a Convolutional Neural Network (ConvNet/CNN) is a deep

learning algorithm that can take in an input image, assign importance (learnable weights

and biases) to various aspects/objects in the image and be able to differentiate one from

the other as shown in Fig. 1.5 [15].

 9

Figure 1.5. Neural Network.

Fig. 1.5 illustrates the purpose of a neural network to be used for data analysis in

the computer system, especially for the cameras’ input as discussed above. The number 2

on the very left represents data input as an image and goes through the neural network

process where the system at the end to the right recognizes the number 2 is the input and

so the output would be 2 [15,16]. This can also be applied with traffic signs and other

specific objects. The vehicle’s cameras can feed in a traffic sign image to the neural

network input as seen in Fig. 1.5 after removing noise by running it through an auto

encoder as shown in Fig. 1.4. The image will be processed through the neural network

process shown above and the output of what the sign is will match the input, and that

output will be passed to the vehicles control system input that will affect the behavior and

path planning of the vehicle. Deep Learning is also used by the on-board autonomous

vehicle computer system to predict the trajectory of the path the vehicle should follow

[17]. For example, it would be able to see the road path ahead like a wide bend and

calculate how it should turn at a specific position on the road.

 10

Some autonomous vehicles are programmed to abide by an accurate map of its

surroundings before actually driving on autopilot, this is done by 3rd party companies

driving highways and main roads throughout the region and selling the data to vehicle

companies [18]. An alternate approach being developed is where a source of data some

companies use falls under crowdsourcing, where data from a company’s vehicles on the

road harvest this data and analyzes it to get a depiction of the surroundings [19].

Crowdsourcing seems to be most useful for determining changes in a vehicle’s

population‘s behavior such as roadblocks, construction, or traffic delays. With this data

acquisition software being in more and more vehicles, projections of the coverage

crowdsourcing can have show that as time goes on, mapping data will be harvested on

most major roads [18]. The idea in using mapping in programming an autonomous

vehicle is that the vehicle would have less data to compute and process in real time and in

turn being able to make decisions faster, resulting in a smoother driving experience. The

tradeoff is being able to activate autopilot only on roads and highways that it already has

data on instead of being able to react to its environment in real-time, whereas a real-time

algorithm can operate on autopilot in the gaps between the black paths displaying the

road and highways with mapping data as described in Fig. 1.6 [18] and Fig. 1.7 [19].

 11

Figure 1.6. Map drawing of the data coverage using crowdsourcing.

 12

Figure 1.7. Map drawing of the data coverage using crowdsourcing.

For the contributions in this paper, ultrasonic sensors were used as ping sensors,

and a neural network, “you only look once” (YOLO), was interfaced with a camera

where each image is processed for object and classification directly without using an

encoder.

 13

CHAPTER TWO

Batteries and Battery Management Systems

Batteries

An electric bus was donated to Baylor’s Energy and Renewable Systems research

lab by Proterra. The bus was striped for the Lithium-titanate batteries, permanent magnet

motor and inverter. The batteries were encased, with each case containing 10 battery

modules, which is a little over 23V in each along with 50Ah in capacity. Each case is

designed for coolant to run through the tubes running throughout the case keeping the

batteries cool, as well as a battery management system (BMS) on each case shown in Fig.

2.1 and Fig. 2.2.

Figure 2.1. Original battery case donated by Proterra’s electric bus.

 14

Figure 2.2. Lithium titanate 10-cell battery module.

The BMS has been disconnected for proprietary reasons. 12 battery modules were taken

from the cases and connected in series and placed in the target vehicle’s battery container

in Fig. 2.3.

 15

Figure 2.3. Chevy Tahoe’s traction battery pack containers.

 16

Figure 2.4. Closer view of a battery case and BMS.

 On the dynamometer test-bed is a 2001 Chevy Tahoe that has had its internal

combustion engine and transmission stripped and replaced with the electric bus’s

permanent magnet motor and inverter. Currently, the Chevy Tahoe is stripped down to its

skateboard chassis platform with a wooden platform mounted on top of it to secure the

inverter and have somewhere to sit when testing until the original body is placed back

unto the vehicle as shown in Fig. 2.4.

Battery Management Systems

Battery management systems (BMSs) are used to regulate the battery modules in

the battery pack used for traction power. Using an actual motor rpm vs. current graph, the

 17

maximum speed the vehicle can go and stay within the current limitations of the lithium-

titanium-oxide (LTO) BMS available of 100A is 19 MPH (Fig. 2.5). Already having a

300A 24V LTO BMS as seen as the biggest BMS in Fig. 2.6 and Fig. 2.7, 9 other BMSs

were ordered to manage the other 11 battery modules. Two of these BMSs are 100A 48V

LTO BMSs and can each manage 2 battery modules and the rest are 100A 24V LTO

BMSs that each manage 1 battery module.

Figure 2.5. 100A DALY BMS.

 18

Figure 2.6. Right-side up view of traction battery case with BMS.

 19

Figure 2.7. 300A LTO DALY BMS.

The BMSs are connected in series with the modules for short circuit protection

and overcurrent protection. Cell balancing wires (red) are connected to the positive of

every individual cell and the ground pin (black). The BMS blue B- cable connects to the

negative of the battery module it is managing and the black P- cable connects to the

battery with a lower potential difference from its positive lead to ground, or to the

inverter negative rail in the case of the first module in series as shown in Fig. 2.4. The

BMS also trips if the battery is below or above its lowest or highest threshold voltage,

being undervoltage and overvoltage. If these conditions occur the battery module/cell will

need to be brought back to its required voltage range and the BMS will have to be reset

by shorting the blue B- and black P- cables to reactivate. The BMS are needed to keep the

battery modules and cells within the modules balanced to avoid battery damage while

charging and discharging while the vehicle is and is not in operation [20,21]. The BMS

 20

will be regulating the current flow [22] into and out of the batteries keeping it within

100A and monitors the temperature of the battery packs. The three figures below are the

user interface screens for monitoring and altering parameters set within the 300A smart

BMS.

Figure 2.8. 300A Smart BMS communication screen 3.

 21

Figure 2.9. 300A Smart BMS communication screen 1.

 22

Figure 2.10. 300A Smart BMS communication screen 2.

 23

The individual cells’ voltage within a battery module is indicated, highlighting the

highest and lowest cells. If one of the cells is above or below the acceptable threshold of

2.85V and 1.7V respectively shown in Fig. 2.8, the BMS actively balances the cells to

evenly distribute the state of charge (SOC) of each cell by transferring energy from

higher charged cells to lower charged cells to the other cells [23]. These BMSs use active

balancing vs. passive balancing because active balancing conserves energy within the

battery whereas the resistors are used to dissipate energy of higher charged cells to keep

the cells relatively even. Balancing the cells are important in battery longevity and also

battery capacity as the battery only has as much energy capacity as the cell with the

lowest charged cell [24]. This only occurs when the differences between cells is above

the threshold parameter, which is set as .002V as shown in Fig. 2.9 and Fig. 2.10. The

other 100A BMSs are doing this as well but with a third of the current rating and cannot

be communicated with like the 300A smart BMS. For instance, its parameters are set in

factory and cannot be changed or even viewed whereas the smart BMS configuration,

parameters, and status can be monitored in real time, in this case using Bluetooth. The

temperature inside the battery cases is displayed as well. When a condition occurs that

causes the BMS to “trip”, the BMS opens the circuit where they would need to be reset to

be able to draw power from the traction battery pack.

 24

CHAPTER THREE

Chevy Bolt’s Autonomous Vehicle Speed System

Programmable Throttle

Kenneth Ulibarri and Patrick Brantz were previous M.S. students working with

Dr. von Jouanne on the programmable throttle project and I assisted. The testbed for the

programmable throttle consisted of a Chevy Bolt placed on the dynamometer and a

computer connected to the electric vehicle through a USB to the on-board diagnostics

(OBD) port. The Chevy Bolt uses a sensor for reading throttle input by the driver.

Electrical signals are sent to the car’s electric control unit (ECU) that then commands the

car to accelerate corresponding to the signals received by the ECU [25,26]. The pedal is

not reading or calculating force, but instead the ECU is only reading the position of the

throttle pedal. With that being the case, Kenneth and Patrick disconnected the factory

throttle pedal from the car and connect the ECU with the specially designed and built

programmable throttle. The programmable throttle is contained in a small grey box and

has a silver lever on the inside, where its position will act as the pedal’s position. The

lever is manipulated with a small servo that runs on 5V and is only in contact and can

interact with the lever when the solenoid, located on the outside of the grey box shown in

Fig. 3.1, is

 25

Figure 3.1. Programmable throttle connected to Chevy Bolt.

energized. When energized, the solenoid pushes the servo arm in reach of the lever,

where the solenoid is the long silver piece in the bottom right of the grey box and the

servo is the black unit in the same grey box. When a command is sent to the servo from

the LabView software on the laptop to increase vehicle speed, power is supplied to the

solenoid and the servo lowers the silver lever proportionately to the acceleration demand

signal calculated by LabView. Conversely, to reduce vehicle speed, the signal sent to

servo will raise the servo arm, raising the lever and reducing the acceleration of the

vehicle. The silver lever is constantly being pushed upward by a spring, where without

the servo resisting it, the lever would return to the initial position of no torque demand

 26

from the vehicle. This is an important concept for fail safety. As discussed above, for the

servo arm to even come into contact with the lever, the solenoid has to be energized, so

unless the vehicle is actively running the solenoid is disengaged by default. However, the

user can use the interface to manually engage and disengage the solenoid at will

independent of the simulation for system checks. By default, once the drive cycle

simulation ends, the solenoid disengages and the lever is returned to the initial zero

torque demand position by the spring. If there is an error like a missing system

connection, LabView generates an error code and disengages the solenoid, which returns

the vehicle to the initial zero torque demand position. Also, the user can click stop on the

user interface, shown in Fig. 3.2, to disengage the solenoid or even physically press the

big red button on the top of the circuit box that is drilled on the side of the table closest to

the Dynamometer to stop and disengage the solenoid. The user interface displays values

such as vehicle speed and target drive cycle speed. Also, the user can manually toggle the

“Enable Throttle” button to engage (bright green) or disengage (dark green as shown in

the Fig. 3.2) the programmable throttle on the Chevy Bolt, engaging the solenoid and

disengaging the solenoid.

 27

Figure 3.2. Programmable throttle user interface.

A drive cycle simulation works by creating a sequence of speeds of various durations and

uploading the notepad file (shown in Fig. 3.3) into LabView. Once uploaded the user can

click “start schedule” on the interface on the laptop. LabView takes the data points of

(time, speed) and interpolates them for a continuous drive cycle schedule as shown in

Fig. 3.4.

Figure 3.3. Example notepad drive cycle file to be uploaded into LabView.

 28

A white dot represents the vehicle speed on a graph at a specific time

superimposed with the blue line representing the speed of the uploaded drive cycle at any

given time point shown in Fig. 3.4.

Figure 3.4. Example drive cycle displayed in LabView.

The goal is for the white dot to follow the speed profile throughout the entire

drive cycle, which means that the actual vehicle speed is following the drive cycle speed

at every point during the drive cycle. If the dot is below or above the blue line, there is a

vehicle speed error that is fed into the proportional integral (PI) controller module in

LabView to minimize the absolute value of the error. The acceptable error limits in

vehicle speed when running the simulation are +/- 3 MPH above or below the drive cycle

speed. To achieve the desired speed at all times, LabView is constantly reading in the

vehicle speed from the Chevy Bolt’s OBD through the black cable connected to the grey

box in Fig. 3.1 and comparing it to the target speed at a given time in the drive cycle.

 29

With the Chevy Bolt being an all-electric vehicle, it utilizes regenerative braking and so

when implementing the programmable throttle, as long as the decrease in target vehicle

speed of the drive cycle is not too steep, the regenerative braking was sufficient in

following a drive cycle in acceleration and deceleration.

When testing the programmable throttle in LabView, there are modules used and

dedicated for theoretical simulation and not experimental testing. There was a dry-run

simulator module that looks and behaves somewhat similarly in overview to the testing

user interface. However, the main simulator module uses the programmable throttle only

and is also independent of the vehicle. This module allows for testing the programmable

throttle’s theoretical performance when given a drive cycle and vehicle’s characteristics.

During this non-testing simulation, the programmable throttle is disconnected from the

Chevy Bolt and the grey box containing the servo, solenoid, and such and can be seen

and observed as a drive cycle is simulated. Since the programmable throttle works on

values and feedback from a vehicle’s OBD to function properly in a drive cycle, a

LabView module uses a road load equation to simulate the road load forces that a vehicle

would experience like aerodynamic drag and friction shown in Fig. 3.5, then feed in the

theoretical vehicle speed of the vehicle to the processing system. A lot of the values used

to simulate the Chevy Bolt in preliminary testing without having to actually utilize the car

for road load and air resistance forces, were provided by the vehicle’s company. Again,

to find the coefficient for drag, the Chevy Bolt was taken on the highway and was put in

neutral, to avoid regenerative braking, after speeding up to 60 MPH to see how long it

took to drop 10 MPH in speed to 50 MPH. Using this data, the coefficient of drag was

found.

 30

Figure 3.5. Road load forces [27].

In the beginning of the testing, the vehicle’s speed oscillated around the target

speeds very violently with much excess of overshoot when simulating a short and simple

drive cycle. The first part of the problem was the dynamometer; it resisted the vehicle’s

change in speed in unexpected and unintended ways, resisting the electric vehicle

excessively to keep the car from accelerating properly. When the car attempted to

accelerate, the dynamometer treated the Chevy Bolt as though it was a very heavy vehicle

and provided large road load forces in reaction. Additional tests and troubleshooting were

conducted and eventually this undesired behavior was corrected by contacting the

dynamometer’s developers and having them run testing and they helped setup the

software that solved this issue. After several iterations of troubleshooting, the test bed

was properly able to simulate proper road load forces like rolling friction force and

aerodynamic drag force. Eventually, the Chevy Bolt’s velocity increased and so did the

 31

aerodynamic drag force applied by the dynamometer by increasing the resistance of the

dynamometer’s grey rollers the tires rest on as shown in Fig. 1.1.

The other reason contributing to the oscillating vehicle speeds in attempting to

match the target vehicle speeds, which is obtained from the drive cycle, was the tuning of

the proportional integral derivative (PID) controller aiding in vehicle speed control ￼A

PID controller was used in the control system to accurately have the vehicle’s speed track

the drive cycle speed at some point in time within 3 MPH over or under the target speed,

using the programmable throttle. An example illustration is shown in Fig. 3.6 [28].

Figure 3.6. Autonomous acceleration system block diagram.

In Fig. 3.6 the box labeled step would be the input target speed from the speed

limit that is compared with current vehicle speed and that error is passed to the PID

control and to the plant function that would include the voltage sent to the inverter from

the digital potentiometer that controls the motor, where the output is the vehicle speed

that is fed back to compare with the target speed. After some testing the derivative

 32

constant was set to zero effectively making the PID controller into a PI controller. In the

beginning tests, the controller constants were very small and the vehicle was not ideal

with quite amount of over and undershoot error due to the system not being responsive

enough with the PID values. With trial and error, many tests were observed and the

controller constants were adjusted. ￼Also, the min and maximum throttle demand that

can be accessed by the programmable throttle was also adjusted in these trial and error

debugging sessions. Lowering the maximum throttle demand accessible did virtually

eliminate the oscillations, however, the actual speed of the vehicle was constantly 5 MPH

under the target values. Adjusting the minimum throttle demand accessible did not reduce

oscillations or solve the constant 5 MPH error between vehicle and target speed. In most

of the times adjusting the controller constants, the integral constant was left at 0.01 and

the proportional constant was increased and decreased. The smaller P constant values led

to the vehicle’s speed oscillating with smaller amplitude but with larger frequency when

compared to that of larger proportional constants tested.

 For a very responsive system, a very large proportional constant was tried, but

the vehicle’s speed continued to over-oscillate for all of the drive cycle. Then, the integral

constant was adjusted, trying values such as 0.1 and 1.0. These I-values seemed to make

the oscillations worse. After more trial and error, the final constant I-value chosen was

0.045. The change in the integral constant is really small but makes a very large impact in

the results. Using these constant PI values, the oscillations virtually stopped and the

vehicle’s speed tracks very closely to the target speeds, well within the 3 MPH over or

under the drive cycle EPA constraint throughout a drive cycle. Also, there was some

delay in between the drive cycle and the programmable throttle reaction, which

 33

accounted for some difference error between the vehicle and target speed. This was

caused from the vehicle’s OBD saying the acceleration pedal position (APP) demand

(value representing how much throttle is being used) was about 11.4 even when the car is

not moving. This affected the programmable throttle from reacting as it should until

overcoming that initial APP demand value. When the target speed increased beyond the

vehicle speed, there was a delay before the programmable throttle reacted and increased

the throttle. The delay was caused by the time it took for the torque demand needed to

exceed the APP demand from the OBD, which needed a big enough difference between 0

MPH and the target speed. Once an offset was added to the APP demand in the vehicle

speed control system to account for this, the delay problem was solved.

Programmable Brake

A different approach was used in designing and implementing the programmable

brake compared with the programmable throttle. As mentioned earlier, the Chevy Bolt

uses electrical sensors to control the accelerator. The physical force required to push the

throttle down to change the position of the pedal, but the force itself is not the main

concern for the Chevy Bolt’s throttle system. The signals that are sent to the electronic

control unit (ECU) based on the position read in by the sensor measuring the position of

the pedal shown in Fig. 18 as the white component connected on the outside of the grey

box that connects to the vehicle’s black component sporting a red tab. The position

signals are what are really important for this accelerating system. The force is necessary

for driver to ECU communication. If the throttle pedal were stiffer or looser, the system

would work in the same manner; by the position of the pedal. The only thing that changes

 34

are how easy or hard it is for a driver to put the throttle in a certain position. Therefore,

the throttle was removed and the position sensor was hooked onto something like a

microcontroller to send the sensor signals, the vehicle would be able to accelerate

accordingly to the signals rather than mechanical force. This is the basis used for

designing the programmable throttle. However, for the programmable brake, physical

force is needed which is why a linear actuator was chosen, so it could depress and release

the brake pedal using physical contact.

The linear actuator is propped up on wooden blocks, which are mounted on a

wooden board and is attached to the physical brake system on the vehicle as shown in

Fig. 3.7. The wooden board is placed in front of the driver’s seat and fastened.

Figure 3.7. Programmable brake.

 35

When the linear actuator is fully extended, at the furthest position the brake

position can go, it is physically impossible for the programmable brake to depress the

brake pedal too far in error and damage the pedal. The wooden board is fastened on the

car seat rails using bolts, screws, and Unistrut nuts on each side to support the linear

actuator. The actuator is propped onto wooden blocks so the actuator can be about level

with the brake pedal. The base of the actuator that is attached to wood is able to rotate

freely, so as the brake is depressed and is tilted, the actuator will rotate mechanically with

the brake pedal. The power and ground wires are connected to the motor driver for

changing voltage polarity of the actuator. The motor driver is also connected to the 12 V

power supply and the National Instruments data acquisition (DAQ) as shown in Fig. 3.8

for the pulse width modulation (PWM) for the linear actuator and an output pin that

determines the polarity of how the power is supplied to the linear actuator, thus

determining the direction of the actuator.

 36

Figure 3.8. Data Acquisition (DAQ) setup.

The approach used for the programmable throttle could not be used to design the

programmable brake. The Chevy Bolt uses a traditional braking system that is essentially

a hydraulic system. This process is not electrically or computer based like the throttle

system, but mostly mechanical. The force applied to the brake pedal is the principle in

this system, where the amount of force necessary was determined by using a weight scale

while applying pressure on it while it rested on the brake pedal to give an idea of the kind

of linear actuator that was chose. Applying force to the brake pedal, pushes down on a

lever attached to the brake in the vehicle. The force then goes through mechanical

operations, multiplying the force on the brake pedal several times over onto the brake

pads. The brake pads then clamp on to the vehicle’s wheels, applying friction to the

wheels to stop or slow down the vehicle [29]. The more force applied to the brake, the

more friction applied to the vehicle’s tires, and the faster the vehicle will decelerate if

 37

moving. With this said, the design for the programmable throttle is centered around the

necessary force needed to stimulate the brakes and complete the autonomous driving

system for EPA drives cycles on a testbed.

The programmable throttle works very well in following a drive cycle with very

little error with that error occurring on sharp transitions. When there is overshoot or the

vehicle target speed decreases, the throttle approaches “0” position. This works very well,

however when the target speed decreases sharply, faster than the regenerative braking can

reduce the vehicle speed, the programmable brake is needed to completely and accurately

follow an EPA drive cycle. In pursuit of altering a vehicle capable of following a drive

cycle accurately and consistently without a driver, programmable brake and throttle

systems need to be as separate as possible. With the programmable throttle already built

and well-tuned to follow a drive cycle minus sharp deceleration, the goal is to minimally

alter the throttle code when adding the brake to the system. For example, if the vehicle

overshoots the target speed using the programmable throttle, the programmable brake is

deactivated, and the throttle control system handles it using regenerative braking. The

programmable brake should only enable when the programmable throttle cannot match

the target speed at the times indicated by a drive cycle because of a decrease in speed at a

rate that is steeper than the deceleration rate of regenerative braking. The regenerative

braking affects the vehicle with a constant deceleration rate and this rate was used in the

LabView code to determine when programmable brake needs to kick in. This value was

found using an acceleration module in LabView with regenerative braking active. In Lab

View, using the PID module, essentially the brake system does not need to activate unless

the module output is negative. The more negative the PID output, the more the linear

 38

actuator should depress the brake, and vice versa, the less negative the PID output

becomes, the more the actuator should let off the brake until the brake pedal is no longer

depressed. In keeping the brake and throttle systems from being activated simultaneously,

the program is made through LabView to disengage one of the systems before engaging

the other no matter the PID output. The throttle system is “disengaged” when the silver

lever in the gray programmable throttle box is returned to its initial zero torque demand

position, and the programmable brake system is “disengaged” when the brake pedal is no

longer depressed.

The linear actuator extends when power is applied red-to-red and black-to black

(red is positive and black is negative) and will continue to extend until either the power is

cut off or the actuator hits the limit switch. The actuator has two limit switches, where

one is at the maximum length the actuator can extend and the other is at the maximum

that the actuator can retract. Once either of these limit switches is reached, the actuator no

longer allows power to be supplied to it in that direction, therefore halting movement. To

retract, a red-to-black and red-to-black connection has to be made when applying power.

This change in polarity is the reason why the motor driver is used. With this said, after

the brake has been active and now needs to deactivate, the throttle needs to activate,

which is when the PID output becomes positive, power must be applied in opposite

polarity in retracting configuration until the linear actuator no longer presses on the

brake. Again, only after the brake is no longer being pressed down, will the autonomous

system allow the throttle to activate and vice versa. This function is achieved in LabView

by using flags that are enabled and disabled with these conditions being met. One of the

obstacles of the brake system was the linear actuator not having position feedback like

 39

the servo used for the throttle did. This is because it would be less than desirable for the

actuator to depress the brake pedal too far or retract too far to be effective in proper

braking on time without knowing how far extended or retracted the actuator is. As

mentioned earlier, the idea is for the actuator to retract if the output of the PID module is

positive and the programmable throttle system is disengaged, but stop retracting right

when it ceases to depress the brake pedal. This is important because if the actuator

retracts too much, when a steep deceleration happens on a drive cycle; there will be

relatively significant delay between the command to engage the brake system and the

programmable brake actually reducing the vehicle’s speed. Thus, LabView commands

the actuator to only retract if the PID output is positive when the vehicle speed is below 2

MPH. A positive PID output means throttle is needed. When the vehicle is below 2 MPH

the programmable brake must be depressing the brake pedal because that is the speed it

maintains without depressing the throttle or brake while in drive.

 40

CHAPTER FOUR

Electric-Converted Tahoe’s Autonomous Vehicle Speed Control System

Throttle and Brake Setup

The goal with the Chevy Tahoe was to expand upon the work that Ken, Patrick,

and I had done on the Chevy Bolt with adding programmable steering and sensors. With

the Chevy Tahoe being different from the Chevy Bolt architecturally, the approach for

the throttle and braking system will be different but the idea will be somewhat similar.

Firstly, the throttle will be controlled using the vehicle control unit (VCU) purchased for

the Chevy Tahoe from Thunderstruck. The VCU has been configured to communicate

through MATLAB so that all parts of the systems can communicate effectively (throttle,

brake, steering, and sensors) and the user can monitor these systems, effectively tying

these systems together. As been tested, MATLAB will send commands to the VCU,

constantly requesting and reading in revolutions per minute (rpm) for vehicle speed and

other variables used for calculations and decision making such as inverter current,

voltage, and time stamp of each data output to MATLAB though a USB serial

connection. This rpm value is converted to MPH by doing a gear ratio analysis,

calculations shown in Fig. 4.1, from motor shaft to the wheels.

 41

Figure 4.1. Motor rpm to speed in MPH.

For the programmable throttle implemented on the Chevy Bolt, the silver lever

controls the electrical signals sent to the ECU determining the torque demand to be sent

to the motor. Looking at the throttle pedal in Fig. 4.2, there are wires connected to the

VCU from the pedal for the converted Chevy Tahoe. The throttle pedal is a transducer

that outputs a voltage level depending on the how much the pedal is depressed.

Figure 4.2. Throttle VCU setup.

 42

The voltage decipher is disconnected from the converted Chevy Tahoe throttle pedal

shown above and sent the required voltages to the VCU through these wires dictated by

how much torque demand is desired from system code running in MATLAB without the

need of the pedal or some sort of mechanical lever. In essence this approach is bypassing

the mechanical workings that correspond to the electrical signals sent to the ECU, but

sending the ECU the signals directly from the system software. The same approach is

used for the braking system. Currently the vehicle’s brakes are composed solely of

regenerative braking. Voltage signals are sent to the VCU to request varying amounts of

counter torque to slow down the motor depending on the signal voltage.

To send the analog voltage signal to the VCU to control the AC motor’s speed

and acceleration, an Arduino was connected to MATLAB and a digital 6-channel

potentiometer to get an analog range of the voltage output (0V-5V) from the digital

output ports of the Arduino (Fig. 4.3 and Fig. 4.4). With the throttle pedal shown in Fig.

4.2, voltage decipher is disconnected and the throttle wiper (white wire) connection from

the VCU input connected to the channel 1 wiper of the digital potentiometer, the vehicle

speed and acceleration is manipulated.

 43

Figure 4.3. Arduino to digital potentiometer to voltage decipher.

Figure 4.4. Arduino to digital potentiometer (AD5206) to voltage decipher schematic.

 44

MATLAB communicates with the VCU by USB serial communication, constantly

updating its asset framework (AF) message string shown in Fig. 4.5. This message

outputs: a time stamp, voltage, current, torque, and motor rpm. MATLAB takes this data

and calculates the vehicle speed in MPH from the motor rpm (Fig. 4.1), takes voltage and

current at each iteration and multiply the two to get instantaneous power at that iteration

and subtract it from energy of the working energy from the traction battery pack to

predict the range of the vehicle (Fig. 4.6). The program also calculates the relative range

which means the range from fully charged (288V) until the motor will no longer operate,

which is under 230V instead of the range variable which the range of the vehicle it the

motor works on the full 288V to 0V voltage range. The UQM software in Fig. 4.7 is a

screenshot of the UQM electric motor software program which gives greater insight into

the status of the inverter for instance indicating if there is a fault with the inverter setup

that will cripple operation of the motor and what kind of fault it is.

Figure 4.5. Serial interface of VCU AF trace output.

Figure 4.6. Predicted range of vehicle

 45

Figure 4.7. UQM diagnostic software.

The inverter also logs data including operation failures. High fidelity motor

operational data such as currents, voltage, torque, rpm and can be used for a higher

degree of troubleshooting such as communication errors; the VCU rather than the UQM

software because the UQM software doesn’t output the desired data needed that can be

extracted serially that be readily accessible.

The actual voltage range set in the VCU software for the throttle is 0.8V to 4.59V

where 0.8V is 0% throttle (APP) and 4.59V is 100% throttle (APP). A built-in inverter

safety feature is that if the throttle voltage is not 0% or slightly lower, the VCU will give

an error to open the high voltage contactor, denying high voltage and denying motoring.

Also, if there is a fault with the inverter, the contactor will open disabling the connection

with the high voltage input. To send the analog voltage signals to the VCU to slow down

 46

the motor, sending a negative torque demand to the motor, an analog voltage signal

between 0V and 5V is sent to the VCU through a separate channel of the potentiometer.

Based on to the configuration of the VCU connection to the Forward/Reverse/Neutral

input described in Fig. 4.2, removing the wiper F&R/brake VCU input and connecting it

to channel 2 wiper of the digital potentiometer, the amount of regenerative braking can be

requested to slow down the vehicle.

Figure 4.8. VCU wiring diagram [30].

Fig. 4.8 is a high-level architecture of the low voltage and high voltage

components of the converted Chevy Tahoe power train controls. In the inverter firmware,

 47

if a nonzero voltage signal is on the F&R/brake port on the VCU port shown in Fig. 4.8

while variable regenerative braking is set to active, the throttle signal is ignored because

regenerative braking occurs as the brake signal has a higher priority.

Power System Safety Design

 In addition to the BMS regulated voltage and current, MATLAB also monitors

the inverter voltage and current and ends the program in the case of overvoltage or

undervoltage and reduces the vehicle speed when the magnitude of the current goes

above 100A, setting a flag to let a passenger know that there is an issue and what issue it

is. Parameters are also set in the inverter software itself to avoid overcurrent such as

limiting the motor to 695 rpm. The value was calculated as the max rpm using the power

vs. motor rpm plot in Fig. 4.9, looking at the left most black linear curve with a zero rpm

starting speed to get the differential relationship to calculate the speed at maximum

power with the voltage being 288V and current being 100A (28.8kW), the black line was

used to get an estimate on the current rating of BMS needed to be purchased to be able

operate the vehicle properly.

 48

Figure 4.9. Power vs. motor rpm graph [31].

There are switches connected to the traction battery pack shown in Fig. 4.10 and Fig.

4.11 and the servos’ and VCU’s battery, 24V and 12V respectively. These switches are

for safety, for instance, cutting power from the VCU 12V supply opens the contactor that

allows the inverter to accept power from the traction battery pack; this is also true when

disconnecting the USB hub that contains the Arduino that is connected with the digital

potentiometer, because 0V is now across the throttle wiper and causes a fault with the

inverter. In case these shutdown methods fail, there is a switch for disconnecting the

traction pack battery entirely.

 49

Figure 4.10. Traction battery pack on/off switch.

 50

Figure 4.11. Servos and VCU battery supplies on/off switch.

PID Tuning For Vehicle Speed Control

Using the same dynamometer test bed setup as with the Chevy Bolt, the Chevy

Tahoe was pushed onto and strapped onto the dynamometer. In a similar testing process

as with the Chevy Bolt, the PID controller that was coded in MATLAB and tuned to get

some good values to get the vehicle to converge onto a target speed (MPH) as the

program iterations increase in a laboratory setting as shown below in Fig. 4.12:

Throttle_demand=Throttle_demand+Kp*error(count)+Ki*trapz(time,error)+Kd*((error(c

ount)-error(count-1))/(time(count)-time(count-1))). For the integral contribution in the

 51

PID controller, the trap function was used to integrate discrete data points. For the

derivative contribution, the program divides the speed difference between the current data

point and the previous data point by the difference in the time between the two.

Figure 4.12. Tuned PID constants with a negative I constant.

The results in Fig. 4.12 are with nonzero P and I constants with zero for the

derivative constant. Working with tuning both vehicles, one can very easily discern the

differences in the two vehicles. The Chevy Bolt was much more responsive with

increasing the throttle voltage. The Chevy Tahoe’s throttle demand had to be increased to

over 53% just to get the vehicle to roll and so that led the vehicle speed to overshoot and

then undershoot the target speed quite dramatically because of the error it accumulated

 52

starting from 0% throttle until it actually started moving. To remedy this, while running,

the 0% throttle was now set to the previous 53% throttle voltage. This, improved results

greatly and was able to achieve the convergence shown in Fig. 4.12. However, with the

Chevy Bolt being a commercially finished product, it behaved consistently when testing,

but initially, the Chevy Tahoe reacted with enough variance to get completely different

results as shown in Fig. 4.13 in subsequent runs of the vehicle under the same conditions.

Figure 4.13. Same PID values as Fig. 4.12 with completely different results.

The same exact program and PI constants were used but the results differed

greatly. For both Fig. 4.12 and Fig. 4.13, a negative I constant was used which helped

 53

eliminate the oscillations. With the way the PID control is written, the array holding the

error values over time are cleared when the vehicle speed equals the target speed or

crosses the target speed line as depicted as the red line in Fig. 4.12 and Fig. 4.13. So if the

vehicle speed can equal or be greater than the target speed by certain amount of

iterations, the array clears and the influence by the integral part of the PID controller is

minimum and the vehicle speed converges as desired as in Fig. 4.12. Conversely, if the

vehicle speed does not reach the target speed by a certain number of iterations, the array

continues to grow and the integral contributor of the PID controller becomes more

influential than the proportional piece, and with the I constant being negative, the

requested percent throttle will decrease as the iterations decrease. This is shown in Fig.

4.13 as the vehicle speed gets really close to the target speed but does not actually reach

the target speed. To fix such a drastic variance of results with just little vehicle behavior,

entering a D constant and making the I constant positive. Values chosen in Fig. 4.14 are

P-.5, I-.01, and D-3.2.

Figure 4.14. Tuning PID with values: 0.5, 0.01, and 3.2.

 54

In Fig. 4.14, the vehicle speed approaches the target speed slower than in Figs.

4.12 and 4.13 and overshoots the target value. Upon more testing, values: P-0.7, I-0, D-

3.2 were chosen; the idea was to reduce overshoot by eliminating the accumulation error

or integral I-term to increase the proportionate P-term to increase the responsiveness of

the system by being capable of converging to the target speed faster as well as the ability

to more quickly react and compensate for any overshoot and undershoot shown in Fig.

4.15.

Figure 4.15. Tuning PID with values: 0.7,0,3.2.

The performance of the autonomous acceleration system has improved with these

values, however, in an attempt to reduce the oscillation, more values were tested and the

final values landed on are P-1, I-0, D-3, increasing the systems responsiveness and

reducing the derivative terms which reduces rise time and with a lower derivative value,

 55

the vehicle has less oscillation about the target speed. The vehicle speed converges to

target speed consistently and reliably with very low oscillations as displayed in Fig. 4.16.

Figure 4.16. Tuned PID with nonzero P and D constants and 0 for the I constant.

 56

CHAPTER FIVE

Sensor Implementation

Global Positioning System (GPS)

For the vehicle to be able to know where it is in the world and where the

destination is, a GPS unit (Fig. 5.1) is used by integrating it into MATLAB. For the

vehicle to be able to sense and react to the environment around it, sensors are embedded

in the vehicle. Ultrasonic sensors are used to determine the distance of objects from the

vehicle. Serially connecting the GPS unit to MATLAB through USB, the module outputs

6 different GPS messages with no specific order or rhythm. MATLAB parses through the

$GPGGA, $GPGLL, and $GPRMC to find the latitude and longitude coordinates. The

other 3 coordinates do not give latitude and longitude of the module.

$GPGGA - Global Positioning System Fix Data

$GPGLL - Geographic position, latitude / longitude

$GPGSV - GPS Satellites in view

$GPVTG - Track made good and ground speed

$GPRMC - Recommended minimum specific GPS/Transit data

$GPGSA - GPS DOP and active satellites

 57

Figure 5.1. GPS unit.

Ultrasonic Sensors

Two Arduino boards are connected to MATLAB and 9 ultrasonic sensors are

connected to one of those boards. MATLAB commands the Arduino to send an ultrasonic

pulse and convert the reflected wave delay to a calculation of the distance to the target.

The range of each sensor is about 15 feet. The location of these is shown in Fig. 5.2.

 58

Figure 5.2. Chevy Tahoe sporting ultrasonic sensors.

Sensors labeled 1 and 9 are turned to the side and are oriented that way and placed

so low to detect curbs and other path trace makers. In addition to these sensors, the

onboard laptop connects to a USB camera with its images processed in MATLAB and

used for “you only look once” (YOLO) object detection and classification. In adding

ultrasonic sensors to the processor load, it is actually visually apparent that the program

processing speed decreases once adding over about 5 of these sensors. A lot of these

sensors were used to compensate for the narrow angular view that the sensors can

provide.

 59

Camera and YOLO (you only look once)

A USB camera is integrated in the control system for the vehicle to be able to

appropriately adhere to various different road signs a driver would need to abide by very

quickly and accurately. The classification neural networks, YOLO [32,33,34] object

detector and classifier as shown below in Fig. 5.3 completes an analysis and annotates on

each image fed into MATLAB, including boxes and labels around the objects in each

image. YOLO is used to recognize an object and to be able to differentiate between

different objects such as discerning between a stop sign and yield sign. YOLO scans an

image and places a box around a determined object and then displays a label for each

object, determining what kind of object it is, using a neural network as introduced in the

literature review, affecting the algorithm of how the vehicle will behave. For example, if

the vehicle recognizes a stop sign is a certain distance in front of it, it will come to a

complete stop and remain for 3 seconds and then continue to operate as normal. In this

case YOLO acts like an interrupt to the typical operation of the vehicle. Also, YOLO

only scans the image once and so this process is happening very quickly making it ideal

for vehicle implementation for autonomous application. YOLO has proven to be very

accurate in testing and demonstrating the viability [34].

 60

Figure 5.3. YOLO object detector and classifier [35].

In actual implementation of this project, YOLO through MATLAB was used to

detect a stop sign, feed that information to the rest of the program and make the

appropriate decisions from the information. For instance, once a stop sign is detected, the

program then decides when the vehicle should begin its decent to a stop by how large the

box outline is around the stop sign. This method of indirectly measuring the distance

between the vehicle and stop sign is used because adding too many ultrasonic sensors

will slow down processing speed and in turn disrupts the serial communication timing of

the other peripheral devices connected to the computer affecting every other system.

Also, the very narrow view of the ultrasonic sensor makes for a larger chance the stop

sign will not be detected reliably. To use a stop sign for the obstacle course setup, a stop

sign was purchased and fastened on a rail and an actual YOLO analysis done on the

onboard camera shown in Fig. 5.4 with some statistics on the image shown in Fig. 5.4

displayed in Fig. 5.5.

 61

Figure 5.4. Stop sign for obstacle course put through YOLO analysis.

Figure 5.5. Statistics on the YOLO analysis shown in Fig. 5.4.

 62

The labels in Fig. 5.5 represent the list of all the classes of the objects the

computer recognizes with each image, in this case just the stop sign. The scores represent

the percentage of certainty the computer is that the object belongs to the displayed class,

which ranges from 0 to 1 with 0 being unsure and 1 being 100% certain. The computer is

99.95% sure that the object in Fig. 5.4 is a stop sign. The variable named boxes represent

the size and location of the rectangle placed around each object recognized, each object

recognized having four numbers that describes the rectangle encasing it. The first two

numbers are the x,y coordinates respectively of the bottom left corner and the last two

numbers are width and height of the box. In the function for the vehicle the program

looks at the third column of the boxes variable when it corresponds to a stop sign and

looks at the width and determines when to stop the vehicle based on the size of the width

of the stop sign. When the vehicle gets closer to the stop sign, the width of the rectangle

around increases and when it reaches the threshold, thus, the car is programmed to go

into a stopping protocol, pauses for three seconds and then continue along its path.

Unfortunately, when trying to incorporate the YOLO subsection in the larger

integrated program, the data processing was too intensive for the program not to have

adverse effect from slower processing. The image data acquired from the camera was a

very large matrix for each iteration, which means just acquiring the image at each

iteration was taking up too much time, so the camera and YOLO code was commented

out when running the program.

 63

CHAPTER SIX

Programmable Steering And Data Analysis

Steering Rack Control

For MATLAB to determine which direction and how far to turn the servo, to turn

the vehicle in order to drive on the correct side of a road, including road curvatures and

turns, MATLAB reads in the distances from ultrasonic sensors 1 and 9. “Mapping” is not

used in decision making for path planning of the vehicle, but instead the vehicle reacts to

the surrounding environment completely in real time. This allows the vehicle to be a lot

less rigid but a lot more dynamic and so this works very well in the nature of testing at

the Baylor Research and Innovation Center (BRIC) parking area having limited space.

This is because if mapping was used, for every path the vehicle could take, it would have

to be already driven through manually to gather data to then be used for autopilot driving.

With mapping the sensor values for each GPS location, there is a very limited

amount of different paths or obstacle courses that can be set up in testing how well the

car does in various road setups. But reacting to an obstacle course in real-time means one

can set up a virtually limitless number of different course setups to test the vehicle

performance with limited space and the vehicle can do this on the spot without any

manually driving prep time. On a macro scale, the “mapping” approach would limit

autopilot available areas due to the fact that sensor data would have to be gathered on

every location before the vehicle being able to drive autonomously at said location. This

would mean with mapping, a data gathering vehicle would have to drive down every road

 64

and highway manually first to operate which as the reader can imagine would be quite

unrealistic especially with the fact that any change in a road or highway like construction

would cripple the autopilot availability or require the need to remap the area. Conversely,

with good sensors, operating system, and efficient algorithm, a vehicle can be on

autopilot in a much greater range of driving areas and driving scenarios.

To get the vehicle to turn, a large gear is fastened on one high torque servo’s shaft

and the large gear turns a smaller gear attached to the steering rack’s shaft as shown in

Fig. 6.1.

 Figure 6.1. High torque servo motor and steering connection.

 65

The steering fluid tank and steering pump was reconnected on the vehicle along

with liquid tubes to keep the steering fluid in the vehicle system to keep the power

steering enabled to lower the torque needed to turn the vehicle steering rack. To introduce

and keep pressure in this steering fluid system, a high torque motor is connected to the

pump’s shaft shown in Fig. 6.2.

Figure 6.2. Steering fluid pump system.

The difference in using the pump was shown when just one lower torque servo

motor, shown in Fig. 6.3 was used to turn the steering rack while the front wheels were

jacked up and suspended off the ground. While connecting and using a drill gun to turn

the pump, the steering rack turned noticeably faster and the servo motor drew 1/3rd of the

current it did while not using the pump to pressurize the steering fluid system.

 66

Figure 6.3. Lower torque servo motor.

One of the higher torque servos wasn’t permanently coupled onto the steering

rack’s shaft. Due to the fact that the servo can only turn 360 degrees but the steering rack

turns about 2 ½ times from end to end, coupling the servo directly to the shaft would not

allow the servo to turn the wheels enough to get enough of the steering range and so a

gear was placed on the servos’ shaft and the steering rack, that was about twice the

diameter of the gear placed on the steering rack to allow for the full steering range and

this setup was replicated with the high torque servo.

During the setup of the high torque servo, the servo rotated the steering rack when

coupled, but when the server was uncoupled and the wheels were manually turned to find

 67

out how many rotations the steering rack has from end to end, some steering fluid shot

out of the steering pump fluid inlet. Due to this, after replacing the gear on the servo to

turn the steering rack, the servo burned out because the torque required was much greater

than before because the system was no longer pressurized and circulation of the fluid to

aid the vehicle in steering was absent. This experiment was indicative of how important

the pressurized steering fluid system was in aiding the steering of the vehicle especially at

low speeds.

The programmable steering system works similarly to the autonomous

acceleration system in terms of control, for instance, they both work on PID control

where the MATLAB uses Arduino to send a PWM signal to the servo motor that controls

the direction and angle of the rotation which in turn, turns the steering rack and vehicle

from left to right. The error of the difference between the intended distance from the

obstacles, gathered from the ultrasonic sensors, is fed into the PID control to hold a

position, turn left or right, and how much to turn in real time. Initially, the autonomous

steering system was programed to communicate with the VCU for a timestamp that was

used for time-integration for the PID integral term. However, when testing and PID

tuning the steering system outside using the obstacle course, the vehicle was not reacting

as desired or expected, which seemed like unideal P,I, and D constants were used or some

error in the algorithm. It also appeared as though the program was processing too slow to

make the proper decisions on time, greatly affecting the steering’s performance. In an

attempt to increase the processing speed, the steering program was rewritten to do the

same task but without the dependence of other USB serial communication devices

connected to MATLAB while running, which included an Arduino that controls the

 68

speed manually using a joystick that maps to the digital potentiometer analog voltage

range, another Arduino that has the ultrasonic connected to it, and a VCU.

The first Arduino and joystick is used to control speed manually to isolate the task

of tuning the steering PID controller. However, with the joystick setup, the voltage

decipher was connected to the throttle pedal as it has a more secure connection to the

inverter and is much less affected by electromagnetic interference (EMI) from the

inverter, which keeps the throttle enabled when driving the vehicle without malfunction.

This EMI issue was witnessed before ever leaving the laboratory when testing if the

joystick could properly control the speed and steering manually when transporting the

vehicle to and from the lab and the testing parking lot. Often with the joystick, while

steering and trying to add speed, the throttle signal from the digital potentiometer to the

VCU gets interrupted and disengages the throttle. For more consistent and safer

operation, the code still communicates with its devices but the VCU voltage decipher is

then connected to the throttle. Removing these serial connections speeds up the

processing about three times over, however, the vehicle still wouldn’t turn while moving

but only turns while the vehicle is stopped. After further investigation, the ultrasonic

sensors behave normally when not driving, but as soon as the inverter requests torque

from the motor, the EMI from the 3 switching wire outputs from the inverter would result

in poor performance from the sensors. This interference had the values of the ultrasonic

sensors each go to about zero, making the error of the steering appear to be zero as shown

in Fig. 6.4. Fig. 6.4 and Fig. 6.5 do not show the red marker because it is superimposed

by the blue marker because in the scenarios, the target left and right sensors equal each

other.

 69

 Figure 6.4. Dyno ultrasonic sensor EMI.

In Fig. 6.4 and Fig. 6.5, the black circles represent the left front sensor

(sensor 1) where the green circles represent the right front sensor (sensor 9) and

the blue asterisk represents the target distance of each sensor. The breaks in the

data where the blue and green circle suddenly decrease and approaches zero are the

points when the inverter gives the motor a torque demand. The interference of the

sensors was the main culprit of the steering program. To mitigate the issue of EMI

interference, Foil was used on the sensor wires and the inverter switching cables to shield

 70

the sensors against the EMI. This helps the sensor data significantly read data more

consistently and accurately. Also, the computer and Arduino and connected devices were

moved away from the inverter and this also helped. Both acceleration and steering

systems are both PD controllers and so when running the steering program with manual

control of the speed, the final values for the constants of the steering PD controller are

P=1.5, and D=1.5. The idea was to avoid oscillation in switching back and forth over the

target error line in the error curve in Fig. 6.5. Due to the latency of the servo when

changing direction, the program was intended to undershoot to avoid overshooting and

more error. The figure below is the autonomous steering performance of the vehicle as it

ran through an obstacle course with a path that starts straight, curves to the right and

curves to the left as shown in Fig. 6.6.

 Figure 6.5. Autonomous steering guidance.

 71

 Figure 6.6. Obstacle course.

The distance readings on the ultrasonic sensors which have seemingly random distance

points are noisy inputs from the smaller amount of EMI still observed from the inverter.

In Fig. 6.5, the control algorithm undershoots the target distance intentionally to slightly

increase the margin of safety in this research project. It was also noticed that occasionally

severe EMI occurred, corrupting the ultrasonic sensor readings. The dip at about 220

iterations in the Fig. 6.5 above occurs because of the much slower speed that was

 72

commanded manually while maneuvering through the obstacle course. The idea was to

have the vehicle center itself on the right side of the path to simulate how it behaves on

the road, however the performance of the sensors drop significantly outdoors and while

the vehicle is in motion so the obstacles were moved much closer together for much

better results. So instead of the vehicle centering itself on the right side of the road, it

centers itself in the middle because there is not much space between the obstacles to

operate so closely to one side. In addition, with EMI, the sensor performance increases

greatly with obstacles set closer to the ultrasonic sensors.

Data Gathering

In addition to the sensor data being used for real-time calculations and decisions,

other data can be logged and mined for further analysis. For instance, the current code

records all of the sensor data for every GPS location, with the measurements stored in a

.MAT file. If desired, this data can be readily used to create a detailed map of the

surroundings to then be used in decision making or planning in the future. One

application could be to process the information through an AI, like the CNN described

above, to both evaluate the performance of the driving, and continuously improve the

path planning such as adjusting the PID values of the vehicle speed and steering systems

to reduce unwanted error (wanted error includes the small error in the vehicle speed

control when a new target speed is set and the vehicle needs to change speed, the vehicle

does not need to accelerate to the new speed as fast as possible but at a smooth and yet

responsive pace). A driver traversing in a 20 MPH speed zone would not normally floor it

when reaching the 55MPH zone but accelerate at a reasonable pace, this will mean more

error because the target speed and vehicle speed will differ for a longer time when

 73

comfortably accelerating but this error is desired. The same is true for steering. When

changing lanes, drivers usually do not jerk their car as much as possible, but instead

smoothly move into a neighboring lane which causes more error but again, this error is

desired.

 74

CHAPTER SEVEN

Conclusions and Future Work

Conclusions

In this work, autonomous electric vehicle capabilities were developed enabling an

EPA drive cycle to be followed on a dynamometer testbed by a modified Chevy Bolt and

navigation through an on-road obstacle course by a converted electric Chevy Tahoe. The

acceleration system on the Chevy Bolt relies on the connection to the vehicle’s OBD

communication and the timing of this communication with several safety factors built in

and inherent in its design. The OBD outputs speed, time, and APP to give the LabView

the necessary values to operate and additional variables like APP for feedback to

compare with LabView; the APP is for further debugging capabilities which was helpful

and useful as discussed in Chapter 3. After developing both the Chevy Bolt and Tahoe’s

autonomous acceleration systems, the inherent safety features of the Bolt’s was a great

design with having physical mechanical parts to control the throttle such as the servo and

solenoid that disengages if something goes wrong with the program including cords being

disconnected. Having mechanical parts in the program makes for complexity but makes

for solid disconnect, in addition to the digital stop button and big E-stop. This is very

useful because many unexpected problems can arise.

The acceleration system implemented for the Tahoe also works on many

shutdown contingencies, by monitoring current and voltage levels being read in to

MATLAB by the VCU. The program can be shutdown if throttle is too low by the

 75

inverter firmware or having a wire or chord disconnected. The brake by wire works in the

same way as the throttle by sending a voltage signal from a digital potentiometer which

keeps things pretty seamless; the two work together, whereas with the Bolt, the

regenerative braking was constant and in order to control the brakes better, the physical

brakes were used by using mechanical interaction with the linear actuator.

Setting up the steering system for the Tahoe was a challenging accomplishment

because mounting the servo to be able to make contact with the aligning gear with the

steering rack shaft, and to do so consistently, considering the servo was skipping teeth

due to unstable alignment. The angle of the steering rack shaft was a simple but difficult

problem to solve long term. Even after monitoring correctly, just getting the gear on the

servo shaft was difficult to keep tightened while operating. The shaft had to be drilled

into so that the set screws from the gear can grip the shaft better which helped

tremendously.

With processing speed and EMI being the two most limiting factors in this

project, the decision was made to separate autonomous acceleration and steering systems,

which noticeably improved in both of these categories. It is like night and day after

splitting the work between two different laptops and Arduinos with the autonomous

steering system. The EMI is very minimal in comparison as it was before the EMI

shielding precautions were taken. The concern is with the autonomous acceleration

system; EMI significantly affects the performance and consistency of this system. Even

just running the acceleration system in isolation on the dyno testbed as in Chapter 4 of

this paper, the results may vary and the operation is very rough as if the inverter is

turning off and on. The EMI affects the signals controlling the digital potentiometer

 76

resulting in some unpredictable and unexpected behavior even after foil and tape EMI

shielding several cords and cables and moving the computers and Arduinos further away

from the inverter and placing the Arduinos and digital potentiometer inside a metal box

shown in Fig. 7.1

Figure 7.1. EMI shielding

In an attempt to keep the programs running quickly to operate properly on both

computers, the GPS and YOLO systems were commented out when running the large

integrated programs, also preventing more EMI in the system than already present.

Future Work

A potential future use for this autonomous vehicle is to become an autonomous

shuttle between the BRIC and Baylor’s campus. The sensors need to be upgraded to

 77

make this possible. The ultrasonic sensors used should be replaced with radar/lidar and

long-range radar shown in Fig. 7.2.

Figure 7.2. Different sensors used to detect objects around it [36].

This way the vehicle can get a full 360-degree field of vision that can allow for a

higher resolution decision algorithm. Lane detection will need to be an added feature.

The YOLO neural network can be added upon, in addition to detecting and classifying

objects, by training it to recognize lane and road lines and make use of this feature in the

vehicle’s path planning. Of course, the vehicle needs headlights and taillights with turn

signals and hazard light programmed with them. A device like a WIFI extender that can

enable the vehicle to access the internet should be put into the vehicle so any updates to

the code can be updated between trips and if there is a fleet of these vehicles at some

point, they all can be monitored and updated remotely. When connected to the internet,

the status of speed, voltage, current, direction, and more can be monitored in real time

remotely while the vehicle is connected to the internet using the MATLAB drive

connector application that automatically updates the files in the MATLAB drive folder,

when connected to the internet and to every computer connected on that MathWorks

 78

account. The values of the variable desired to be monitored can be saved as a .MAT file

in the MATLAB drive folder and constantly read in values can be sent to another

computer remotely that can even take some of the processing load off the main onboard

computer. With being able to remotely share data, another computer can take data and do

processes like graphing them for the riders to view during a trip while the main onboard

computer does the essential real-time and time-sensitive data analysis during a driving

trip. The original Chevy Tahoe body can be put back on, including the seats and seatbelts,

or a new body can be constructed with conference style seating similar to Fig. 7.3.

Figure 7.3. Future conference seating arrangement [37].

Airbags need to be installed; imagine seating around some table like the figure above

with a circular dashboard with airbags all around. Another string of batteries should be

 79

added to double the energy capacity of the car, doubling its mile range. In having another

string of batteries there will need to be a parallel BMS that will keep the power drawn

from each string, an example of this is shown in Fig. 7.4 and Fig. 7.5.

Figure 7.4. Parallel component to make BMS able to monitor battery strings [38].

 80

Figure 7.5. Parallel battery management systems’ schematic [38].

Also, with the abundance of the lithium titanate-oxide (LTO) batteries from

Proterra, battery swapping is very viable, but a more readily swappable case will have to

be developed along with an autonomous battery case swapper. Alternatively, with the

available power in the laboratory, fast charging is also a good option and can be used

while the battery swapping technology is being developed. Potentially, the BMS can be

upgraded to be capable of handling more amps and in turn being able to achieve higher

vehicle speeds, this can also be achieved by charging each of the battery modules above

their nominal 24V with the maximum voltage being 29V for each module. Finally, a

BMS should be purchased and connected to the LTO battery modules used to power the

servo motors and VCU.

 81

REFERENCES

[1] Emission Test Cycles, “EPA Highway Fuel Economy Test Cycle (HWFET),”
available:
https://dieselnet.com/standards/cycles/hwfet.php#:~:text=The%20Highway%20F
uel%20Economy%20Test,on%20the%20FTP%2D75%20test.

[2] Lizzy Rosenberg, “What Is Regenerative Braking? Here’s Why It’s So Important

to EV Drivers,” 2021, Available: https://www.greenmatters.com/p/regenerative-
braking

[3] The brake report, “DEMONSTRATING CHEVY BOLT REGEN BRAKING,”

2021. Available: https://thebrakereport.com/demonstrating-chevy-bolt-regen-
braking/

[4] Christopher Lampton, “How Regenerative Braking Works,” 2021. Available:

https://auto.howstuffworks.com/auto-parts/brakes/brake-types/regenerative-
braking.htm

[5] Caroselli, Beachler, Coleman, “What Percentage of Car Accidents Are Caused by

Human Error?,” 2021. Available: https://www.cbmclaw.com/what-percentage-of-
car-accidents-are-caused-by-human-
error/#:~:text=A%202016%20study%20by%20the,96%25%20of%20all%20auto
%20accidents.

[6] David Atkinson, “Autonomous Vehicles,” 2021. Tu simple: pp.

[7] American geosciences institutes, “What is Lidar and what is it used for?,”

Available: https://www.americangeosciences.org/critical-issues/faq/what-lidar-
and-what-it-
used#:~:text=%22LIDAR%2C%20which%20stands%20for%20Light,variable%2
0distances)%20to%20the%20Earth.

[8] Merrill I. Skolnik, “radar,” available:

https://www.britannica.com/technology/radar/Transmitters

[9] The News Wheel, “How Do Radar Detectors Work?,” 2019. Available:

https://thenewswheel.com/how-do-radar-detectors-work/

https://dieselnet.com/standards/cycles/hwfet.php#:%7E:text=The%20Highway%20Fuel%20Economy%20Test,on%20the%20FTP%2D75%20test
https://dieselnet.com/standards/cycles/hwfet.php#:%7E:text=The%20Highway%20Fuel%20Economy%20Test,on%20the%20FTP%2D75%20test
https://www.greenmatters.com/p/regenerative-braking
https://www.greenmatters.com/p/regenerative-braking
https://thebrakereport.com/demonstrating-chevy-bolt-regen-braking/
https://thebrakereport.com/demonstrating-chevy-bolt-regen-braking/
https://auto.howstuffworks.com/auto-parts/brakes/brake-types/regenerative-braking.htm
https://auto.howstuffworks.com/auto-parts/brakes/brake-types/regenerative-braking.htm
https://www.cbmclaw.com/what-percentage-of-car-accidents-are-caused-by-human-error/#:%7E:text=A%202016%20study%20by%20the,96%25%20of%20all%20auto%20accidents
https://www.cbmclaw.com/what-percentage-of-car-accidents-are-caused-by-human-error/#:%7E:text=A%202016%20study%20by%20the,96%25%20of%20all%20auto%20accidents
https://www.cbmclaw.com/what-percentage-of-car-accidents-are-caused-by-human-error/#:%7E:text=A%202016%20study%20by%20the,96%25%20of%20all%20auto%20accidents
https://www.cbmclaw.com/what-percentage-of-car-accidents-are-caused-by-human-error/#:%7E:text=A%202016%20study%20by%20the,96%25%20of%20all%20auto%20accidents
https://www.americangeosciences.org/critical-issues/faq/what-lidar-and-what-it-used#:%7E:text=%22LIDAR%2C%20which%20stands%20for%20Light,variable%20distances)%20to%20the%20Earth
https://www.americangeosciences.org/critical-issues/faq/what-lidar-and-what-it-used#:%7E:text=%22LIDAR%2C%20which%20stands%20for%20Light,variable%20distances)%20to%20the%20Earth
https://www.americangeosciences.org/critical-issues/faq/what-lidar-and-what-it-used#:%7E:text=%22LIDAR%2C%20which%20stands%20for%20Light,variable%20distances)%20to%20the%20Earth
https://www.americangeosciences.org/critical-issues/faq/what-lidar-and-what-it-used#:%7E:text=%22LIDAR%2C%20which%20stands%20for%20Light,variable%20distances)%20to%20the%20Earth
https://www.britannica.com/technology/radar/Transmitters

 82

[10] Shannon Mattern, “Mapping’s Intelligent Agents,” 2017. Available:
https://placesjournal.org/article/mappings-intelligent-
agents/?gclid=EAIaIQobChMIpLyRs6CX9wIVS21vBB0BsQEJEAAYASAAEg
KqxfD_BwE

[11] Robson Forensic, “The Functional Components of Autonomous Vehicles,” 2020.

Available: https://www.robsonforensic.com/articles/autonomous-vehicles-
sensors-expert

[12] Accolade Technology, “5 Levels of Autonomy (L1 and L2),” available:
https://accoladetechnology.com/5-levels-of-autonomy-l1-and-l2/

[13] Jeremy Jordan, “Introduction to autoencoders.,” 2018. Available:

https://www.jeremyjordan.me/autoencoders/

[14] Charter Global, “USING AUTOENCODERS FOR IMAGE

CLASSIFICATION,” Available: https://www.charterglobal.com/using-
autoencoders-in-ai-for-image-classification/

[15] Sumit Saha, “A Comprehensive Guide to Convolutional Neural Networks — the

ELI5 way,” 2018. Available: https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[16] Oliver Knocklein, “Classification Using Neural Networks,” 2019. Available:

https://towardsdatascience.com/classification-using-neural-networks-
b8e98f3a904f

[17] IEEE Xplore, “Trajectory Prediction of Vehicles Based on Deep Learning,”

Available: https://ieeexplore.ieee.org/document/8880168

[18] ADAS & Autonomous Vehicle INTERNATIONAL, “The road to everywhere:

are HD maps for autonomous driving sustainable?,” Available:
https://www.autonomousvehicleinternational.com/features/the-road-to-
everywhere-are-hd-maps-for-autonomous-driving-sustainable.html

[19] MDPI, “Visualization of Urban Mobility Data from Intelligent Transportation

Systems,” 2019. Available: https://www.mdpi.com/1424-8220/19/2/332

[20] Battle Born Batteries, “What Is A BMS (Battery Management System)?,” 2021.

Available: https://battlebornbatteries.com/battery-management-
system/#:~:text=The%20primary%20function%20of%20the,loose%20connection
s%20and%20internal%20shorts.

[21] Synopsys, “What is a Battery Management System?,” available:

https://www.synopsys.com/glossary/what-is-a-battery-management-system.html

https://placesjournal.org/article/mappings-intelligent-agents/?gclid=EAIaIQobChMIpLyRs6CX9wIVS21vBB0BsQEJEAAYASAAEgKqxfD_BwE
https://placesjournal.org/article/mappings-intelligent-agents/?gclid=EAIaIQobChMIpLyRs6CX9wIVS21vBB0BsQEJEAAYASAAEgKqxfD_BwE
https://placesjournal.org/article/mappings-intelligent-agents/?gclid=EAIaIQobChMIpLyRs6CX9wIVS21vBB0BsQEJEAAYASAAEgKqxfD_BwE
https://www.robsonforensic.com/articles/autonomous-vehicles-sensors-expert
https://www.robsonforensic.com/articles/autonomous-vehicles-sensors-expert
https://accoladetechnology.com/5-levels-of-autonomy-l1-and-l2/
https://www.jeremyjordan.me/author/jeremy/
https://www.jeremyjordan.me/autoencoders/
https://www.charterglobal.com/using-autoencoders-in-ai-for-image-classification/
https://www.charterglobal.com/using-autoencoders-in-ai-for-image-classification/
https://medium.com/@_sumitsaha_?source=post_page-----3bd2b1164a53--------------------------------
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://medium.com/@oliverknocklein?source=post_page-----b8e98f3a904f--------------------------------
https://towardsdatascience.com/classification-using-neural-networks-b8e98f3a904f
https://towardsdatascience.com/classification-using-neural-networks-b8e98f3a904f
https://ieeexplore.ieee.org/document/8880168
https://www.autonomousvehicleinternational.com/features/the-road-to-everywhere-are-hd-maps-for-autonomous-driving-sustainable.html
https://www.autonomousvehicleinternational.com/features/the-road-to-everywhere-are-hd-maps-for-autonomous-driving-sustainable.html
https://battlebornbatteries.com/battery-management-system/#:%7E:text=The%20primary%20function%20of%20the,loose%20connections%20and%20internal%20shorts
https://battlebornbatteries.com/battery-management-system/#:%7E:text=The%20primary%20function%20of%20the,loose%20connections%20and%20internal%20shorts
https://battlebornbatteries.com/battery-management-system/#:%7E:text=The%20primary%20function%20of%20the,loose%20connections%20and%20internal%20shorts
https://www.synopsys.com/glossary/what-is-a-battery-management-system.html

 83

[22] David Wenzhong Gao, “Interfacing Between an ESS and a Microgrid,” 2015.
Available: https://www.sciencedirect.com/topics/engineering/battery-
management-system

[23] NXP, “Active Cell Balancing in Battery Packs,” 2012. Available:

https://www.nxp.com/docs/en/application-note/AN4428.pdf

[24] Analog Devices, “ Passive Battery Cell Balancing,” available:
https://www.analog.com/en/technical-articles/passive-battery-cell-balancing.html

[25] ECU Testing, “ECU EXPLAINED,” Available:
https://www.ecutesting.com/categories/ecu-explained/

[26] Mobility Insider, “What Is an Electrical Control Unit?,” 2020. Available:

https://www.aptiv.com/en/insights/article/what-is-an-electronic-control-unit

[27] Dr. Rahul Ahlawat, Dr. Jürgen Bredenbeck, and Mr. Tatsuo Ichige, “Estimation

of Road Load Parameters via On-road Vehicle Testing,” 2013. Available:
https://www.aandd.jp/support/dsp_papers/estimation.pdf

[28] Semantic Scholar, “PID controller design for cruise control system using genetic
algorithm,” 2016. Available: https://www.semanticscholar.org/paper/PID-
controller-design-for-cruise-control-system-Rout-
Sain/7bc1fd91e1c71d7f427fe1fbbf86d992037f1e2a

[29] Know Your Parts, “From Pedal to Pads: Brake Systems Explained,” available:

https://www.knowyourparts.com/technical-resources/brakes-and-brake-
components/from-pedal-to-pads-brake-systems-explained/

[30] Thunderstuck Motors, “Thunderstruck Motors Vehicle Control Unit v3.1,”

available: http://www.thunderstruck-
ev.com/images/companies/1/DD_VCUv3.1R3.pdf?1605898763828

[31] UQM Technologies, “PowerPhase 100 Traction System,” available:

http://www.thunderstruck-
ev.com/images/companies/1/UQMPP100DataSheet.pdf?1550791147819

[32] Open Data Science, “Overview of the YOLO Object Detection Algorithm,” 2018.
Available: https://odsc.medium.com/overview-of-the-yolo-object-detection-
algorithm-
7b52a745d3e0#:~:text=YOLO%20is%20a%20clever%20convolutional,and%20p
robabilities%20for%20each%20region.

https://www.sciencedirect.com/science/article/pii/B9780128033746000032
https://www.sciencedirect.com/topics/engineering/battery-management-system
https://www.sciencedirect.com/topics/engineering/battery-management-system
https://www.nxp.com/docs/en/application-note/AN4428.pdf
https://www.ecutesting.com/categories/ecu-explained/
https://www.aptiv.com/en/insights/article/what-is-an-electronic-control-unit
https://www.knowyourparts.com/technical-resources/brakes-and-brake-components/from-pedal-to-pads-brake-systems-explained/
https://www.knowyourparts.com/technical-resources/brakes-and-brake-components/from-pedal-to-pads-brake-systems-explained/
http://www.thunderstruck-ev.com/images/companies/1/DD_VCUv3.1R3.pdf?1605898763828
http://www.thunderstruck-ev.com/images/companies/1/DD_VCUv3.1R3.pdf?1605898763828
https://odsc.medium.com/?source=post_page-----7b52a745d3e0--------------------------------
https://odsc.medium.com/overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0#:%7E:text=YOLO%20is%20a%20clever%20convolutional,and%20probabilities%20for%20each%20region
https://odsc.medium.com/overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0#:%7E:text=YOLO%20is%20a%20clever%20convolutional,and%20probabilities%20for%20each%20region
https://odsc.medium.com/overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0#:%7E:text=YOLO%20is%20a%20clever%20convolutional,and%20probabilities%20for%20each%20region
https://odsc.medium.com/overview-of-the-yolo-object-detection-algorithm-7b52a745d3e0#:%7E:text=YOLO%20is%20a%20clever%20convolutional,and%20probabilities%20for%20each%20region

 84

[33] Manish Chablani, “YOLO — You only look once, real time object detection
explained,” 2017. Available: https://towardsdatascience.com/yolo-you-only-look-
once-real-time-object-detection-explained-492dc9230006

[34] Hmrishav Bandyopadhyay, “YOLO: Real-Time Object Detection Explained,”

2022. Available: https://www.v7labs.com/blog/yolo-object-detection

[35] Sreedhar Achari, “Practical Implementation of Object Detection On Video with

OpenCV and Yolo v3 pre-trained weights on coco data,” 2020. Available:
https://medium.com/@vsreedharachari/practical-implementation-of-object-
detection-on-video-with-opencv-and-yolo-v3-pre-trained-weights-a2d2995aac41

[36] Iqbal Husain, “Electric and Hybrid Vehicles,” third edition.

[37] CanStockPhoto, “Business Meeting Seats' Layout In Autonomous Car,” available:

https://www.canstockphoto.com/business-meeting-seats-layout-in-43320146.html

[38] Aliexpress, available:
https://www.aliexpress.us/item/3256803539838087.html?spm=a2g0o.detail.0.0.4
ebe27acBf1wvK&gps-
id=pcDetailBottomMoreThisSeller&scm=1007.13339.274681.0&scm_id=1007.1
3339.274681.0&scm-url=1007.13339.274681.0&pvid=3b14a23e-7701-4e49-
8bf6-3ee35f4c1f6f&_t=gps-id%3ApcDetailBottomMoreThisSeller%2Cscm-
url%3A1007.13339.274681.0%2Cpvid%3A3b14a23e-7701-4e49-8bf6-
3ee35f4c1f6f%2Ctpp_buckets%3A668%232846%238110%231995&pdp_ext_f=
%7B%22sku_id%22%3A%2212000026947445393%22%2C%22sceneId%22%3
A%223339%22%7D&pdp_npi=2%40dis%21USD%21%2131.7%21%21%21%2
1%21%402101d1b116579146649473889e171b%2112000026947445393%21rec
&gatewayAdapt=glo2usa&_randl_shipto=US

https://medium.com/@ManishChablani?source=post_page-----492dc9230006--------------------------------
https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-492dc9230006
https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-492dc9230006
https://www.v7labs.com/authors/hmrishav-bandyopadhyay
https://www.v7labs.com/blog/yolo-object-detection
https://medium.com/@vsreedharachari?source=post_page-----a2d2995aac41--------------------------------
https://medium.com/@vsreedharachari/practical-implementation-of-object-detection-on-video-with-opencv-and-yolo-v3-pre-trained-weights-a2d2995aac41
https://medium.com/@vsreedharachari/practical-implementation-of-object-detection-on-video-with-opencv-and-yolo-v3-pre-trained-weights-a2d2995aac41
https://www.amazon.com/Iqbal-Husain/e/B001KI9AIY/ref=dp_byline_cont_book_1

