
 

 

 

 

ABSTRACT 

Design and Development of Autonomous Electric Vehicles Capable of Following an 
EPA Drive Cycle on a Dynamometer Testbed and Navigating an On-Road Obstacle 

Course 
 

Ezekiel B. Brown, Ph.D. 

Advisor: Annette von Jouanne, Ph.D. 
 
 

 This dissertation presents the background, research and further advancement of 

the design and development of an autonomous electric vehicle that can follow an 

Environmental Protection Agency (EPA) drive cycle on a dynamometer testbed. Design, 

development, and test data collected, analyzed, presented, and referred to in this 

dissertation stems from an all-electric Chevy Bolt and an electric converted Chevy 

Tahoe. The work done on the Chevy Bolt enables the vehicle with the capability to 

autonomously follow an EPA drive cycle on a dynamometer and the work done on the 

Chevy Tahoe advances on the autonomous acceleration system, incorporating 

autonomous steering and sensory integration, enabling the vehicle to follow a path 

autonomously. The programmable throttle and the programmable brake research on the 

all-electric Bolt are discussed followed by the implementation of a programmable 

acceleration system, programmable steering, and the development of a sensory system on 

an all-electric converted Chevy Tahoe. 
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CHAPTER ONE 

Introduction 
 
 

Motivation 

In order to improve safety, transportation efficiency and reduce the carbon 

emissions from transportation, electric vehicles are being researched and developed by 

many different automotive companies, such as Tesla, Lexus, BMW, Mercedes, Volvo, 

and more. In development, it is important to be able to carefully quantify the energy 

efficiency of the vehicle, which is standardly done by driving the electric vehicle through 

a drive profile on a dynamometer through what are known as EPA drive cycles. 

However, these are currently accomplished by having a human driver in control of the 

vehicle and so results vary from more than just the vehicle but also from driver to driver 

that may make conclusions from data less convincing or reliable. That is a significant 

motivation for developing autonomous acceleration and braking systems that can give 

reliable, consistent, and very accurate data to make much clearer conclusions and 

evaluations of the electric vehicle’s performance. In addition, autonomous vehicles would 

enable the aging population to continue to be independent. These are some of the driving 

forces for the research and development of autonomous vehicles for transportation that 

will be further detailed in the following sections. 

 
Background 

An autonomous acceleration system was developed on a Chevy Bolt all-electric 

vehicle and will be referred to as programmable throttle and brake throughout this 
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dissertation.  In the work pertaining to the programmable throttle and brake, the research 

was conducted on the all-electric Chevy Bolt, which was placed on a dynamometer as the 

test bed. A dynamometer is shown as the platform the vehicle is resting on in Fig. 1.1, 

which is essentially a treadmill for vehicles, allowing the vehicle to accelerate and 

decelerate within a fixed location.  

 

 
 

Figure 1.1. Converted all-electric Chevy Tahoe on the red and black Dynamometer. 
 
 

Dynamometers are commonly used for vehicle testing by running various vehicles 

through EPA drive cycles. An EPA drive cycle puts a vehicle through a driving routine 

that simulates what a driver may experience in a city with stop lights and lower speed 

driving, as well as highway driving [1]. With the programmable throttle and 

programmable brake, an electric vehicle like the Chevy Bolt, which was used in this 
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research, can be put through a drive cycle for hours and do so with machine precision and 

consistency. The data collected from the Chevy Bolt was consistent and reliable, so when 

subjecting the car to differing charging applications, the effects the charging has on the 

battery can be analyzed and reliable conclusions and observations can be made. With the 

data gathered, the progression of electric vehicles may be furthered with consistent and 

reliable test results. The EPA has regulations for both on-road and non-road vehicles and 

has differing expectations and criterion to be met based on the vehicle’s classification 

such as passenger vehicles, commercial trucks and buses, and motorcycles. The criterion 

to be met includes smog, soot, and other air pollution emissions from the vehicle in 

question. When testing and judging these vehicles, they put them through a drive cycle on 

a dynamometer and have professional drivers follow the speed the drive cycle indicates. 

This is done with city and highway drive cycles to simulate realistic driving patterns, and 

these tests can take hours to complete. The tolerance for the drivers is to maintain within 

3 MPH above or below the drive cycle’s indicated speed at all times. With there being 

different drivers, the data gathered during these drive cycles may not be consistent which 

can cloud inferences and conclusions. To solve this problem, the ideas of programmable 

throttle and brake were proposed by Dr. von Jouanne. Being able follow EPA drive 

cycles with reliable accuracy, consistent data can be obtained and makes observations 

and conclusions clearer and more reliable. 

In many electric vehicles, there is a regenerative braking feature that is very 

important for the design and performance of the vehicle as stated in [2]. In the 

infrastructure of an electric vehicle there is a motor that produces the traction force or 

propulsion force to the wheels of the vehicle; this motor can usually also act as a 
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generator. This means as the motor produces power, it can also generate power. When the 

throttle pedal is released completely, the electric motor now acts as a generator and the 

power is transferred to the battery by the inverter [3]. The inverter controls and 

transforms the electric power necessary in running the motor. The inverter also takes the 

power generated by the motor and converts and transfers this power to the battery storage 

unit when in regenerative braking mode. When the throttle pedal is released, the kinetic 

energy stored in the rotating inertia of the motor is taken and harnessed by the motor, 

converting this energy to electrical energy. This slows down the car without the use of 

traditional friction brakes [4]. Regenerative braking is very important for electric 

vehicles, reducing greatly the handicap of low specific energy density of electric vehicle 

batteries compared with traditional gasoline. This braking helps increase the range of the 

vehicle without adding more batteries and much extra weight or size to the vehicle. When 

driving, friction brakes are needed much less, and may hardly be needed while driving. 

 
 

Literature Review 

 According to the National Highway Transportation Safety Administration 

(NHTSA) in [5], 90% of all serious car accidents and between 94% and 96% of all 

vehicle accidents occur due to human error, so displacing the human component will 

eliminate the human error and result in a drastic increase to transportation safety. These 

human errors can occur for various reasons, the more serious and frequent offenses 

include texting while driving and driving while under the influence. Also, for trucks 

carrying cargo, driverless trucks can travel longer distances without breaks, lowering 

delivery times with a reduced chance of monetary loss involved with accidents. In 
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addition, autonomous vehicles would enable the aging population to continue to be 

independent. These are some of the driving forces for the research and development of 

autonomous vehicles for transportation. Autonomous systems are systems characterized 

as capable of making decisions partially or completely independently of human 

interference, but unlike mere automation, they are able and expected to make these 

decisions while facing uncertainties. Uncertainties are what make development of these 

vehicles difficult, because if not designed properly, disasters can happen given vehicles 

with a rather large mass moving at high speeds. Such vehicles need to be carefully 

programmed and capable of virtually handling any scenario that can happen on the road. 

Some of the technology incorporated within an autonomous vehicle’s design 

include lidar, radar, cameras, and a Global Positioning System (GPS) system [6]. An 

example of how these systems could be incorporated onto a vehicle is shown in Fig. 1.2. 

Lidar sensors are used for determining distances, recognizing road lines and edges by 

shooting pulses of light around the vehicle [7]. Lidar is very accurate and gives a detailed 

and a more thorough description or “view” of the vehicles’ surroundings than radar, 

however complex data analysis techniques are required for lidar and it is not as reliable as 

radar including the fact that lidar does not work very well in adverse conditions such as in 

rain or fog [8]. Radar works by emitting pulses of radio waves that travel very fast and 

bounces and returns to the sensor, and can determine the distance between an object and 

the sensor along with the speed of the object [9,10].  

Cameras are also used for object detection and will be instrumental for the vehicle 

to operate and adhere to road signs in addition to avoiding cars and other objects on the 

road. Ultrasonic sensors are also utilized in autonomous vehicles to help determine the 



 6 

surroundings of the vehicle at very close range. Cameras and ultrasonic sensors are often 

implemented in standard vehicles so this technology is not uncommon. Many people 

have cars, SUVs, and trucks that use cameras for extra rear-view support when in reverse, 

with some vehicle packages having cameras on top, sides, and front of these vehicles as 

well, in order to aid with parking. These cameras are often coupled with ultrasonic 

sensors to help the driver in providing greater visibility around the car and alert the driver 

if the vehicle is approaching any objects. Often the sensor data is mapped on some 

display screen where the camera feed is in the vehicle along with a beeping sound 

corresponding to the distance from a nearby object determined by the ultrasonic sensors. 

The closer the vehicle gets to an object detected by the ultrasonic sensors, the beeping 

frequency increases. Taking this to a more advanced application, an increasing number of 

vehicles are offering “assisted parking” where the vehicle uses cameras, sensors, and 

actuators for the vehicle to autonomously park itself into a parking space.  

 
 

 
 

Figure 1.2. Autonomous vehicle sensors [11]. 
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There are 5 levels in autonomous vehicles for determining how far removed they 

are from needing human assistance when operating as shown in Fig. 1.3 [12]. The goal of 

this work is to develop a level 5 autonomous vehicle, i.e., one not needing human 

assistance when operating. Currently, Tesla is at level 2 in its Model 3 where it can drive 

roads and highways as long as the human driver is alert at all times monitoring 

throughout the trip. 

 

    Figure 1.3. Autonomous levels [12]. 
 
 

For a vehicle to rely on cameras to observe the environment and the objects in the 

vicinity of the vehicle, the data gathered must be very reliably analyzed for the vehicle to 

operate properly and most importantly, safely. The computer system in which the vehicle 

is operating from must be able to do this under various weather conditions, extreme or 

not. Otherwise, autonomous vehicles would be too unreliable and dangerous to operate in 
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practice. To aid in this, the computer system can use a neural network to clean up images 

fed in from the cameras when analyzing before making decisions as seen from the 

encoder shown in Fig. 1.4 [13]. 

Figure 1.4. Encoder. 
 
 

The use of a neural network can greatly increase the reliability of the image 

analysis using cameras [14]. In addition, traffic signs, objects, and lights emitted from 

traffic lights can be read and analyzed properly so the vehicle can be operated as 

expected. For example, a Convolutional Neural Network (ConvNet/CNN) is a deep 

learning algorithm that can take in an input image, assign importance (learnable weights 

and biases) to various aspects/objects in the image and be able to differentiate one from 

the other as shown in Fig. 1.5 [15].  
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Figure 1.5. Neural Network. 
 

 
Fig. 1.5 illustrates the purpose of a neural network to be used for data analysis in 

the computer system, especially for the cameras’ input as discussed above. The number 2 

on the very left represents data input as an image and goes through the neural network 

process where the system at the end to the right recognizes the number 2 is the input and 

so the output would be 2 [15,16]. This can also be applied with traffic signs and other 

specific objects. The vehicle’s cameras can feed in a traffic sign image to the neural 

network input as seen in Fig. 1.5 after removing noise by running it through an auto 

encoder as shown in Fig. 1.4. The image will be processed through the neural network 

process shown above and the output of what the sign is will match the input, and that 

output will be passed to the vehicles control system input that will affect the behavior and 

path planning of the vehicle. Deep Learning is also used by the on-board autonomous 

vehicle computer system to predict the trajectory of the path the vehicle should follow 

[17]. For example, it would be able to see the road path ahead like a wide bend and 

calculate how it should turn at a specific position on the road. 
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Some autonomous vehicles are programmed to abide by an accurate map of its 

surroundings before actually driving on autopilot, this is done by 3rd party companies 

driving highways and main roads throughout the region and selling the data to vehicle 

companies [18]. An alternate approach being developed is where a source of data some 

companies use falls under crowdsourcing, where data from a company’s vehicles on the 

road harvest this data and analyzes it to get a depiction of the surroundings [19]. 

Crowdsourcing seems to be most useful for determining changes in a vehicle’s 

population‘s behavior such as roadblocks, construction, or traffic delays. With this data 

acquisition software being in more and more vehicles, projections of the coverage 

crowdsourcing can have show that as time goes on, mapping data will be harvested on 

most major roads [18]. The idea in using mapping in programming an autonomous 

vehicle is that the vehicle would have less data to compute and process in real time and in 

turn being able to make decisions faster, resulting in a smoother driving experience. The 

tradeoff is being able to activate autopilot only on roads and highways that it already has 

data on instead of being able to react to its environment in real-time, whereas a real-time 

algorithm can operate on autopilot in the gaps between the black paths displaying the 

road and highways with mapping data as described in Fig. 1.6 [18] and Fig. 1.7 [19]. 
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Figure 1.6. Map drawing of the data coverage using crowdsourcing. 
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Figure 1.7.  Map drawing of the data coverage using crowdsourcing. 
 

 
For the contributions in this paper, ultrasonic sensors were used as ping sensors, 

and a neural network, “you only look once” (YOLO), was interfaced with a camera 

where each image is processed for object and classification directly without using an 

encoder.  
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CHAPTER TWO  

Batteries and Battery Management Systems 
 
 

Batteries 

An electric bus was donated to Baylor’s Energy and Renewable Systems research 

lab by Proterra. The bus was striped for the Lithium-titanate batteries, permanent magnet 

motor and inverter. The batteries were encased, with each case containing 10 battery 

modules, which is a little over 23V in each along with 50Ah in capacity. Each case is 

designed for coolant to run through the tubes running throughout the case keeping the 

batteries cool, as well as a battery management system (BMS) on each case shown in Fig. 

2.1 and Fig. 2.2. 

 
 

 

Figure 2.1. Original battery case donated by Proterra’s electric bus. 



 14 

 

Figure 2.2. Lithium titanate 10-cell battery module. 
 
 

The BMS has been disconnected for proprietary reasons. 12 battery modules were taken 

from the cases and connected in series and placed in the target vehicle’s battery container 

in Fig. 2.3.  



 15 

 

Figure 2.3. Chevy Tahoe’s traction battery pack containers. 



 16 

 

Figure 2.4. Closer view of a battery case and BMS. 
 
 

 On the dynamometer test-bed is a 2001 Chevy Tahoe that has had its internal 

combustion engine and transmission stripped and replaced with the electric bus’s 

permanent magnet motor and inverter. Currently, the Chevy Tahoe is stripped down to its 

skateboard chassis platform with a wooden platform mounted on top of it to secure the 

inverter and have somewhere to sit when testing until the original body is placed back 

unto the vehicle as shown in Fig. 2.4.   

 
 

Battery Management Systems 

Battery management systems (BMSs) are used to regulate the battery modules in 

the battery pack used for traction power. Using an actual motor rpm vs. current graph, the 
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maximum speed the vehicle can go and stay within the current limitations of the lithium-

titanium-oxide (LTO) BMS available of 100A is 19 MPH (Fig. 2.5). Already having a 

300A 24V LTO BMS as seen as the biggest BMS in Fig. 2.6 and Fig. 2.7, 9 other BMSs 

were ordered to manage the other 11 battery modules. Two of these BMSs are 100A 48V 

LTO BMSs and can each manage 2 battery modules and the rest are 100A 24V LTO 

BMSs that each manage 1 battery module.  

 
 

 

Figure 2.5. 100A DALY BMS. 
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Figure 2.6. Right-side up view of traction battery case with BMS. 
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Figure 2.7. 300A LTO DALY BMS. 
 
 

The BMSs are connected in series with the modules for short circuit protection 

and overcurrent protection. Cell balancing wires (red) are connected to the positive of 

every individual cell and the ground pin (black). The BMS blue B- cable connects to the 

negative of the battery module it is managing and the black P- cable connects to the 

battery with a lower potential difference from its positive lead to ground, or to the 

inverter negative rail in the case of the first module in series as shown in Fig. 2.4. The 

BMS also trips if the battery is below or above its lowest or highest threshold voltage, 

being undervoltage and overvoltage. If these conditions occur the battery module/cell will 

need to be brought back to its required voltage range and the BMS will have to be reset 

by shorting the blue B- and black P- cables to reactivate. The BMS are needed to keep the 

battery modules and cells within the modules balanced to avoid battery damage while 

charging and discharging while the vehicle is and is not in operation [20,21]. The BMS 
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will be regulating the current flow [22] into and out of the batteries keeping it within 

100A and monitors the temperature of the battery packs. The three figures below are the 

user interface screens for monitoring and altering parameters set within the 300A smart 

BMS.  

 

 

Figure 2.8. 300A Smart BMS communication screen 3.  
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Figure 2.9. 300A Smart BMS communication screen 1.  
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Figure 2.10. 300A Smart BMS communication screen 2.  
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The individual cells’ voltage within a battery module is indicated, highlighting the 

highest and lowest cells. If one of the cells is above or below the acceptable threshold of 

2.85V and 1.7V respectively shown in Fig. 2.8, the BMS actively balances the cells to 

evenly distribute the state of charge (SOC) of each cell by transferring energy from 

higher charged cells to lower charged cells to the other cells [23]. These BMSs use active 

balancing vs. passive balancing because active balancing conserves energy within the 

battery whereas the resistors are used to dissipate energy of higher charged cells to keep 

the cells relatively even. Balancing the cells are important in battery longevity and also 

battery capacity as the battery only has as much energy capacity as the cell with the 

lowest charged cell [24]. This only occurs when the differences between cells is above 

the threshold parameter, which is set as .002V as shown in Fig. 2.9 and Fig. 2.10. The 

other 100A BMSs are doing this as well but with a third of the current rating and cannot 

be communicated with like the 300A smart BMS. For instance, its parameters are set in 

factory and cannot be changed or even viewed whereas the smart BMS configuration, 

parameters, and status can be monitored in real time, in this case using Bluetooth. The 

temperature inside the battery cases is displayed as well. When a condition occurs that 

causes the BMS to “trip”, the BMS opens the circuit where they would need to be reset to 

be able to draw power from the traction battery pack. 
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CHAPTER THREE  

Chevy Bolt’s Autonomous Vehicle Speed System 
 
 

Programmable Throttle 

Kenneth Ulibarri and Patrick Brantz were previous M.S. students working with 

Dr. von Jouanne on the programmable throttle project and I assisted. The testbed for the 

programmable throttle consisted of a Chevy Bolt placed on the dynamometer and a 

computer connected to the electric vehicle through a USB to the on-board diagnostics 

(OBD) port. The Chevy Bolt uses a sensor for reading throttle input by the driver. 

Electrical signals are sent to the car’s electric control unit (ECU) that then commands the 

car to accelerate corresponding to the signals received by the ECU [25,26]. The pedal is 

not reading or calculating force, but instead the ECU is only reading the position of the 

throttle pedal. With that being the case, Kenneth and Patrick disconnected the factory 

throttle pedal from the car and connect the ECU with the specially designed and built 

programmable throttle. The programmable throttle is contained in a small grey box and 

has a silver lever on the inside, where its position will act as the pedal’s position. The 

lever is manipulated with a small servo that runs on 5V and is only in contact and can 

interact with the lever when the solenoid, located on the outside of the grey box shown in 

Fig. 3.1, is  
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Figure 3.1. Programmable throttle connected to Chevy Bolt. 
 
 

energized. When energized, the solenoid pushes the servo arm in reach of the lever, 

where the solenoid is the long silver piece in the bottom right of the grey box and the 

servo is the black unit in the same grey box. When a command is sent to the servo from 

the LabView software on the laptop to increase vehicle speed, power is supplied to the 

solenoid and the servo lowers the silver lever proportionately to the acceleration demand 

signal calculated by LabView. Conversely, to reduce vehicle speed, the signal sent to 

servo will raise the servo arm, raising the lever and reducing the acceleration of the 

vehicle. The silver lever is constantly being pushed upward by a spring, where without 

the servo resisting it, the lever would return to the initial position of no torque demand 
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from the vehicle. This is an important concept for fail safety. As discussed above, for the 

servo arm to even come into contact with the lever, the solenoid has to be energized, so 

unless the vehicle is actively running the solenoid is disengaged by default. However, the 

user can use the interface to manually engage and disengage the solenoid at will 

independent of the simulation for system checks. By default, once the drive cycle 

simulation ends, the solenoid disengages and the lever is returned to the initial zero 

torque demand position by the spring. If there is an error like a missing system 

connection, LabView generates an error code and disengages the solenoid, which returns 

the vehicle to the initial zero torque demand position. Also, the user can click stop on the 

user interface, shown in Fig. 3.2, to disengage the solenoid or even physically press the 

big red button on the top of the circuit box that is drilled on the side of the table closest to 

the Dynamometer to stop and disengage the solenoid. The user interface displays values 

such as vehicle speed and target drive cycle speed. Also, the user can manually toggle the 

“Enable Throttle” button to engage (bright green) or disengage (dark green as shown in 

the Fig. 3.2) the programmable throttle on the Chevy Bolt, engaging the solenoid and 

disengaging the solenoid. 
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Figure 3.2. Programmable throttle user interface. 
 
 

A drive cycle simulation works by creating a sequence of speeds of various durations and 

uploading the notepad file (shown in Fig. 3.3) into LabView. Once uploaded the user can 

click “start schedule” on the interface on the laptop. LabView takes the data points of 

(time, speed) and interpolates them for a continuous drive cycle schedule as shown in 

Fig. 3.4. 

 

 

Figure 3.3. Example notepad drive cycle file to be uploaded into LabView.  
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A white dot represents the vehicle speed on a graph at a specific time 

superimposed with the blue line representing the speed of the uploaded drive cycle at any 

given time point shown in Fig. 3.4. 

 
 

 

Figure 3.4. Example drive cycle displayed in LabView. 
 
 

The goal is for the white dot to follow the speed profile throughout the entire 

drive cycle, which means that the actual vehicle speed is following the drive cycle speed 

at every point during the drive cycle. If the dot is below or above the blue line, there is a 

vehicle speed error that is fed into the proportional integral (PI) controller module in 

LabView to minimize the absolute value of the error. The acceptable error limits in 

vehicle speed when running the simulation are +/- 3 MPH above or below the drive cycle 

speed. To achieve the desired speed at all times, LabView is constantly reading in the 

vehicle speed from the Chevy Bolt’s OBD through the black cable connected to the grey 

box in Fig. 3.1 and comparing it to the target speed at a given time in the drive cycle. 
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With the Chevy Bolt being an all-electric vehicle, it utilizes regenerative braking and so 

when implementing the programmable throttle, as long as the decrease in target vehicle 

speed of the drive cycle is not too steep, the regenerative braking was sufficient in 

following a drive cycle in acceleration and deceleration. 

When testing the programmable throttle in LabView, there are modules used and 

dedicated for theoretical simulation and not experimental testing. There was a dry-run 

simulator module that looks and behaves somewhat similarly in overview to the testing 

user interface. However, the main simulator module uses the programmable throttle only 

and is also independent of the vehicle. This module allows for testing the programmable 

throttle’s theoretical performance when given a drive cycle and vehicle’s characteristics. 

During this non-testing simulation, the programmable throttle is disconnected from the 

Chevy Bolt and the grey box containing the servo, solenoid, and such and can be seen 

and observed as a drive cycle is simulated. Since the programmable throttle works on 

values and feedback from a vehicle’s OBD to function properly in a drive cycle, a 

LabView module uses a road load equation to simulate the road load forces that a vehicle 

would experience like aerodynamic drag and friction shown in Fig. 3.5, then feed in the 

theoretical vehicle speed of the vehicle to the processing system. A lot of the values used 

to simulate the Chevy Bolt in preliminary testing without having to actually utilize the car 

for road load and air resistance forces, were provided by the vehicle’s company. Again, 

to find the coefficient for drag, the Chevy Bolt was taken on the highway and was put in 

neutral, to avoid regenerative braking, after speeding up to 60 MPH to see how long it 

took to drop 10 MPH in speed to 50 MPH. Using this data, the coefficient of drag was 

found. 



 30 

 

 

 

Figure 3.5. Road load forces [27]. 
 
 

In the beginning of the testing, the vehicle’s speed oscillated around the target 

speeds very violently with much excess of overshoot when simulating a short and simple 

drive cycle. The first part of the problem was the dynamometer; it resisted the vehicle’s 

change in speed in unexpected and unintended ways, resisting the electric vehicle 

excessively to keep the car from accelerating properly. When the car attempted to 

accelerate, the dynamometer treated the Chevy Bolt as though it was a very heavy vehicle 

and provided large road load forces in reaction. Additional tests and troubleshooting were 

conducted and eventually this undesired behavior was corrected by contacting the 

dynamometer’s developers and having them run testing and they helped setup the 

software that solved this issue. After several iterations of troubleshooting, the test bed 

was properly able to simulate proper road load forces like rolling friction force and 

aerodynamic drag force. Eventually, the Chevy Bolt’s velocity increased and so did the 



 31 

aerodynamic drag force applied by the dynamometer by increasing the resistance of the 

dynamometer’s grey rollers the tires rest on as shown in Fig. 1.1.  

The other reason contributing to the oscillating vehicle speeds in attempting to 

match the target vehicle speeds, which is obtained from the drive cycle, was the tuning of 

the proportional integral derivative (PID) controller aiding in vehicle speed control ￼A 

PID controller was used in the control system to accurately have the vehicle’s speed track 

the drive cycle speed at some point in time within 3 MPH over or under the target speed, 

using the programmable throttle. An example illustration is shown in Fig. 3.6 [28]. 

 

 

Figure 3.6. Autonomous acceleration system block diagram. 
 
 

In Fig. 3.6 the box labeled step would be the input target speed from the speed 

limit that is compared with current vehicle speed and that error is passed to the PID 

control and to the plant function that would include the voltage sent to the inverter from 

the digital potentiometer that controls the motor, where the output is the vehicle speed 

that is fed back to compare with the target speed. After some testing the derivative 
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constant was set to zero effectively making the PID controller into a PI controller. In the 

beginning tests, the controller constants were very small and the vehicle was not ideal 

with quite amount of over and undershoot error due to the system not being responsive 

enough with the PID values. With trial and error, many tests were observed and the 

controller constants were adjusted. ￼Also, the min and maximum throttle demand that 

can be accessed by the programmable throttle was also adjusted in these trial and error 

debugging sessions. Lowering the maximum throttle demand accessible did virtually 

eliminate the oscillations, however, the actual speed of the vehicle was constantly 5 MPH 

under the target values. Adjusting the minimum throttle demand accessible did not reduce 

oscillations or solve the constant 5 MPH error between vehicle and target speed. In most 

of the times adjusting the controller constants, the integral constant was left at 0.01 and 

the proportional constant was increased and decreased. The smaller P constant values led 

to the vehicle’s speed oscillating with smaller amplitude but with larger frequency when 

compared to that of larger proportional constants tested. 

 For a very responsive system, a very large proportional constant was tried, but 

the vehicle’s speed continued to over-oscillate for all of the drive cycle. Then, the integral 

constant was adjusted, trying values such as 0.1 and 1.0. These I-values seemed to make 

the oscillations worse. After more trial and error, the final constant I-value chosen was 

0.045. The change in the integral constant is really small but makes a very large impact in 

the results. Using these constant PI values, the oscillations virtually stopped and the 

vehicle’s speed tracks very closely to the target speeds, well within the 3 MPH over or 

under the drive cycle EPA constraint throughout a drive cycle. Also, there was some 

delay in between the drive cycle and the programmable throttle reaction, which 
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accounted for some difference error between the vehicle and target speed. This was 

caused from the vehicle’s OBD saying the acceleration pedal position (APP) demand 

(value representing how much throttle is being used) was about 11.4 even when the car is 

not moving. This affected the programmable throttle from reacting as it should until 

overcoming that initial APP demand value. When the target speed increased beyond the 

vehicle speed, there was a delay before the programmable throttle reacted and increased 

the throttle. The delay was caused by the time it took for the torque demand needed to 

exceed the APP demand from the OBD, which needed a big enough difference between 0 

MPH and the target speed. Once an offset was added to the APP demand in the vehicle 

speed control system to account for this, the delay problem was solved. 

 
 

Programmable Brake 

A different approach was used in designing and implementing the programmable 

brake compared with the programmable throttle. As mentioned earlier, the Chevy Bolt 

uses electrical sensors to control the accelerator. The physical force required to push the 

throttle down to change the position of the pedal, but the force itself is not the main 

concern for the Chevy Bolt’s throttle system. The signals that are sent to the electronic 

control unit (ECU) based on the position read in by the sensor measuring the position of 

the pedal shown in Fig. 18 as the white component connected on the outside of the grey 

box that connects to the vehicle’s black component sporting a red tab. The position 

signals are what are really important for this accelerating system. The force is necessary 

for driver to ECU communication. If the throttle pedal were stiffer or looser, the system 

would work in the same manner; by the position of the pedal. The only thing that changes 
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are how easy or hard it is for a driver to put the throttle in a certain position. Therefore, 

the throttle was removed and the position sensor was hooked onto something like a 

microcontroller to send the sensor signals, the vehicle would be able to accelerate 

accordingly to the signals rather than mechanical force. This is the basis used for 

designing the programmable throttle. However, for the programmable brake, physical 

force is needed which is why a linear actuator was chosen, so it could depress and release 

the brake pedal using physical contact. 

The linear actuator is propped up on wooden blocks, which are mounted on a 

wooden board and is attached to the physical brake system on the vehicle as shown in 

Fig. 3.7. The wooden board is placed in front of the driver’s seat and fastened. 

 

 
Figure 3.7. Programmable brake. 
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When the linear actuator is fully extended, at the furthest position the brake 

position can go, it is physically impossible for the programmable brake to depress the 

brake pedal too far in error and damage the pedal. The wooden board is fastened on the 

car seat rails using bolts, screws, and Unistrut nuts on each side to support the linear 

actuator. The actuator is propped onto wooden blocks so the actuator can be about level 

with the brake pedal. The base of the actuator that is attached to wood is able to rotate 

freely, so as the brake is depressed and is tilted, the actuator will rotate mechanically with 

the brake pedal. The power and ground wires are connected to the motor driver for 

changing voltage polarity of the actuator. The motor driver is also connected to the 12 V 

power supply and the National Instruments data acquisition (DAQ) as shown in Fig. 3.8 

for the pulse width modulation (PWM) for the linear actuator and an output pin that 

determines the polarity of how the power is supplied to the linear actuator, thus 

determining the direction of the actuator. 
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Figure 3.8. Data Acquisition (DAQ) setup. 
 
 

The approach used for the programmable throttle could not be used to design the 

programmable brake. The Chevy Bolt uses a traditional braking system that is essentially 

a hydraulic system. This process is not electrically or computer based like the throttle 

system, but mostly mechanical. The force applied to the brake pedal is the principle in 

this system, where the amount of force necessary was determined by using a weight scale 

while applying pressure on it while it rested on the brake pedal to give an idea of the kind 

of linear actuator that was chose. Applying force to the brake pedal, pushes down on a 

lever attached to the brake in the vehicle. The force then goes through mechanical 

operations, multiplying the force on the brake pedal several times over onto the brake 

pads. The brake pads then clamp on to the vehicle’s wheels, applying friction to the 

wheels to stop or slow down the vehicle [29]. The more force applied to the brake, the 

more friction applied to the vehicle’s tires, and the faster the vehicle will decelerate if 
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moving. With this said, the design for the programmable throttle is centered around the 

necessary force needed to stimulate the brakes and complete the autonomous driving 

system for EPA drives cycles on a testbed.  

The programmable throttle works very well in following a drive cycle with very 

little error with that error occurring on sharp transitions. When there is overshoot or the 

vehicle target speed decreases, the throttle approaches “0” position. This works very well, 

however when the target speed decreases sharply, faster than the regenerative braking can 

reduce the vehicle speed, the programmable brake is needed to completely and accurately 

follow an EPA drive cycle. In pursuit of altering a vehicle capable of following a drive 

cycle accurately and consistently without a driver, programmable brake and throttle 

systems need to be as separate as possible. With the programmable throttle already built 

and well-tuned to follow a drive cycle minus sharp deceleration, the goal is to minimally 

alter the throttle code when adding the brake to the system. For example, if the vehicle 

overshoots the target speed using the programmable throttle, the programmable brake is 

deactivated, and the throttle control system handles it using regenerative braking. The 

programmable brake should only enable when the programmable throttle cannot match 

the target speed at the times indicated by a drive cycle because of a decrease in speed at a 

rate that is steeper than the deceleration rate of regenerative braking. The regenerative 

braking affects the vehicle with a constant deceleration rate and this rate was used in the 

LabView code to determine when programmable brake needs to kick in. This value was 

found using an acceleration module in LabView with regenerative braking active. In Lab 

View, using the PID module, essentially the brake system does not need to activate unless 

the module output is negative. The more negative the PID output, the more the linear 
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actuator should depress the brake, and vice versa, the less negative the PID output 

becomes, the more the actuator should let off the brake until the brake pedal is no longer 

depressed. In keeping the brake and throttle systems from being activated simultaneously, 

the program is made through LabView to disengage one of the systems before engaging 

the other no matter the PID output. The throttle system is “disengaged” when the silver 

lever in the gray programmable throttle box is returned to its initial zero torque demand 

position, and the programmable brake system is “disengaged” when the brake pedal is no 

longer depressed. 

The linear actuator extends when power is applied red-to-red and black-to black 

(red is positive and black is negative) and will continue to extend until either the power is 

cut off or the actuator hits the limit switch. The actuator has two limit switches, where 

one is at the maximum length the actuator can extend and the other is at the maximum 

that the actuator can retract. Once either of these limit switches is reached, the actuator no 

longer allows power to be supplied to it in that direction, therefore halting movement. To 

retract, a red-to-black and red-to-black connection has to be made when applying power. 

This change in polarity is the reason why the motor driver is used. With this said, after 

the brake has been active and now needs to deactivate, the throttle needs to activate, 

which is when the PID output becomes positive, power must be applied in opposite 

polarity in retracting configuration until the linear actuator no longer presses on the 

brake. Again, only after the brake is no longer being pressed down, will the autonomous 

system allow the throttle to activate and vice versa. This function is achieved in LabView 

by using flags that are enabled and disabled with these conditions being met. One of the 

obstacles of the brake system was the linear actuator not having position feedback like 
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the servo used for the throttle did. This is because it would be less than desirable for the 

actuator to depress the brake pedal too far or retract too far to be effective in proper 

braking on time without knowing how far extended or retracted the actuator is. As 

mentioned earlier, the idea is for the actuator to retract if the output of the PID module is 

positive and the programmable throttle system is disengaged, but stop retracting right 

when it ceases to depress the brake pedal. This is important because if the actuator 

retracts too much, when a steep deceleration happens on a drive cycle; there will be 

relatively significant delay between the command to engage the brake system and the 

programmable brake actually reducing the vehicle’s speed. Thus, LabView commands 

the actuator to only retract if the PID output is positive when the vehicle speed is below 2 

MPH. A positive PID output means throttle is needed. When the vehicle is below 2 MPH 

the programmable brake must be depressing the brake pedal because that is the speed it 

maintains without depressing the throttle or brake while in drive.  
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CHAPTER FOUR  

Electric-Converted Tahoe’s Autonomous Vehicle Speed Control System 
 
 

Throttle and Brake Setup 

The goal with the Chevy Tahoe was to expand upon the work that Ken, Patrick, 

and I had done on the Chevy Bolt with adding programmable steering and sensors. With 

the Chevy Tahoe being different from the Chevy Bolt architecturally, the approach for 

the throttle and braking system will be different but the idea will be somewhat similar. 

Firstly, the throttle will be controlled using the vehicle control unit (VCU) purchased for 

the Chevy Tahoe from Thunderstruck. The VCU has been configured to communicate 

through MATLAB so that all parts of the systems can communicate effectively (throttle, 

brake, steering, and sensors) and the user can monitor these systems, effectively tying 

these systems together. As been tested, MATLAB will send commands to the VCU, 

constantly requesting and reading in revolutions per minute (rpm) for vehicle speed and 

other variables used for calculations and decision making such as inverter current, 

voltage, and time stamp of each data output to MATLAB though a USB serial 

connection. This rpm value is converted to MPH by doing a gear ratio analysis, 

calculations shown in Fig. 4.1, from motor shaft to the wheels. 
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Figure 4.1. Motor rpm to speed in MPH. 
 
 

For the programmable throttle implemented on the Chevy Bolt, the silver lever 

controls the electrical signals sent to the ECU determining the torque demand to be sent 

to the motor. Looking at the throttle pedal in Fig. 4.2, there are wires connected to the 

VCU from the pedal for the converted Chevy Tahoe. The throttle pedal is a transducer 

that outputs a voltage level depending on the how much the pedal is depressed. 

 

 
 

Figure 4.2. Throttle VCU setup. 



 42 

The voltage decipher is disconnected from the converted Chevy Tahoe throttle pedal 

shown above and sent the required voltages to the VCU through these wires dictated by 

how much torque demand is desired from system code running in MATLAB without the 

need of the pedal or some sort of mechanical lever. In essence this approach is bypassing 

the mechanical workings that correspond to the electrical signals sent to the ECU, but 

sending the ECU the signals directly from the system software. The same approach is 

used for the braking system. Currently the vehicle’s brakes are composed solely of 

regenerative braking. Voltage signals are sent to the VCU to request varying amounts of 

counter torque to slow down the motor depending on the signal voltage. 

To send the analog voltage signal to the VCU to control the AC motor’s speed 

and acceleration, an Arduino was connected to MATLAB and a digital 6-channel 

potentiometer to get an analog range of the voltage output (0V-5V) from the digital 

output ports of the Arduino (Fig. 4.3 and Fig. 4.4). With the throttle pedal shown in Fig. 

4.2, voltage decipher is disconnected and the throttle wiper (white wire) connection from 

the VCU input connected to the channel 1 wiper of the digital potentiometer, the vehicle 

speed and acceleration is manipulated. 



 43 

 

Figure 4.3. Arduino to digital potentiometer to voltage decipher. 

 

Figure 4.4. Arduino to digital potentiometer (AD5206) to voltage decipher schematic. 
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MATLAB communicates with the VCU by USB serial communication, constantly 

updating its asset framework (AF) message string shown in Fig. 4.5. This message 

outputs: a time stamp, voltage, current, torque, and motor rpm. MATLAB takes this data 

and calculates the vehicle speed in MPH from the motor rpm (Fig. 4.1), takes voltage and 

current at each iteration and multiply the two to get instantaneous power at that iteration 

and subtract it from energy of the working energy from the traction battery pack to 

predict the range of the vehicle (Fig. 4.6).  The program also calculates the relative range 

which means the range from fully charged (288V) until the motor will no longer operate, 

which is under 230V instead of the range variable which the range of the vehicle it the 

motor works on the full 288V to 0V voltage range. The UQM software in Fig. 4.7 is a 

screenshot of the UQM electric motor software program which gives greater insight into 

the status of the inverter for instance indicating if there is a fault with the inverter setup 

that will cripple operation of the motor and what kind of fault it is. 

 

 
 

Figure 4.5. Serial interface of VCU AF trace output. 
 
 

 

Figure 4.6. Predicted range of vehicle 
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Figure 4.7. UQM diagnostic software. 
 
 

The inverter also logs data including operation failures. High fidelity motor 

operational data such as currents, voltage, torque, rpm and can be used for a higher 

degree of troubleshooting such as communication errors; the VCU rather than the UQM 

software because the UQM software doesn’t output the desired data needed that can be 

extracted serially that be readily accessible. 

The actual voltage range set in the VCU software for the throttle is 0.8V to 4.59V 

where 0.8V is 0% throttle (APP) and 4.59V is 100% throttle (APP). A built-in inverter 

safety feature is that if the throttle voltage is not 0% or slightly lower, the VCU will give 

an error to open the high voltage contactor, denying high voltage and denying motoring. 

Also, if there is a fault with the inverter, the contactor will open disabling the connection 

with the high voltage input. To send the analog voltage signals to the VCU to slow down 
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the motor, sending a negative torque demand to the motor, an analog voltage signal 

between 0V and 5V is sent to the VCU through a separate channel of the potentiometer. 

Based on to the configuration of the VCU connection to the Forward/Reverse/Neutral 

input described in Fig. 4.2, removing the wiper F&R/brake VCU input and connecting it 

to channel 2 wiper of the digital potentiometer, the amount of regenerative braking can be 

requested to slow down the vehicle. 

 

 

Figure 4.8. VCU wiring diagram [30]. 
 
 

Fig. 4.8 is a high-level architecture of the low voltage and high voltage 

components of the converted Chevy Tahoe power train controls. In the inverter firmware, 
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if a nonzero voltage signal is on the F&R/brake port on the VCU port shown in Fig. 4.8 

while variable regenerative braking is set to active, the throttle signal is ignored because 

regenerative braking occurs as the brake signal has a higher priority.   

 
 

Power System Safety Design 

 In addition to the BMS regulated voltage and current, MATLAB also monitors 

the inverter voltage and current and ends the program in the case of overvoltage or 

undervoltage and reduces the vehicle speed when the magnitude of the current goes 

above 100A, setting a flag to let a passenger know that there is an issue and what issue it 

is. Parameters are also set in the inverter software itself to avoid overcurrent such as 

limiting the motor to 695 rpm. The value was calculated as the max rpm using the power 

vs. motor rpm plot in Fig. 4.9, looking at the left most black linear curve with a zero rpm 

starting speed to get the differential relationship to calculate the speed at maximum 

power with the voltage being 288V and current being 100A (28.8kW), the black line was 

used to get an estimate on the current rating of BMS needed to be purchased to be able 

operate the vehicle properly.   
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Figure 4.9. Power vs. motor rpm graph [31]. 
 
 

There are switches connected to the traction battery pack shown in Fig. 4.10 and Fig. 

4.11 and the servos’ and VCU’s battery, 24V and 12V respectively. These switches are 

for safety, for instance, cutting power from the VCU 12V supply opens the contactor that 

allows the inverter to accept power from the traction battery pack; this is also true when 

disconnecting the USB hub that contains the Arduino that is connected with the digital 

potentiometer, because 0V is now across the throttle wiper and causes a fault with the 

inverter. In case these shutdown methods fail, there is a switch for disconnecting the 

traction pack battery entirely. 
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Figure 4.10. Traction battery pack on/off switch. 
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Figure 4.11. Servos and VCU battery supplies on/off switch. 

 

PID Tuning For Vehicle Speed Control 

Using the same dynamometer test bed setup as with the Chevy Bolt, the Chevy 

Tahoe was pushed onto and strapped onto the dynamometer. In a similar testing process 

as with the Chevy Bolt, the PID controller that was coded in MATLAB and tuned to get 

some good values to get the vehicle to converge onto a target speed (MPH) as the 

program iterations increase in a laboratory setting as shown below in Fig. 4.12:  

Throttle_demand=Throttle_demand+Kp*error(count)+Ki*trapz(time,error)+Kd*((error(c

ount)-error(count-1))/(time(count)-time(count-1))). For the integral contribution in the 
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PID controller, the trap function was used to integrate discrete data points. For the 

derivative contribution, the program divides the speed difference between the current data 

point and the previous data point by the difference in the time between the two. 

 

 

Figure 4.12. Tuned PID constants with a negative I constant. 
 
 

The results in Fig. 4.12 are with nonzero P and I constants with zero for the 

derivative constant. Working with tuning both vehicles, one can very easily discern the 

differences in the two vehicles. The Chevy Bolt was much more responsive with 

increasing the throttle voltage. The Chevy Tahoe’s throttle demand had to be increased to 

over 53% just to get the vehicle to roll and so that led the vehicle speed to overshoot and 

then undershoot the target speed quite dramatically because of the error it accumulated 
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starting from 0% throttle until it actually started moving. To remedy this, while running, 

the 0% throttle was now set to the previous 53% throttle voltage. This, improved results 

greatly and was able to achieve the convergence shown in Fig. 4.12. However, with the 

Chevy Bolt being a commercially finished product, it behaved consistently when testing, 

but initially, the Chevy Tahoe reacted with enough variance to get completely different 

results as shown in Fig. 4.13 in subsequent runs of the vehicle under the same conditions.  

 

 

Figure 4.13. Same PID values as Fig. 4.12 with completely different results. 
 
 

The same exact program and PI constants were used but the results differed 

greatly. For both Fig. 4.12 and Fig. 4.13, a negative I constant was used which helped 
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eliminate the oscillations. With the way the PID control is written, the array holding the 

error values over time are cleared when the vehicle speed equals the target speed or 

crosses the target speed line as depicted as the red line in Fig. 4.12 and Fig. 4.13. So if the 

vehicle speed can equal or be greater than the target speed by certain amount of 

iterations, the array clears and the influence by the integral part of the PID controller is 

minimum and the vehicle speed converges as desired as in Fig. 4.12. Conversely, if the 

vehicle speed does not reach the target speed by a certain number of iterations, the array 

continues to grow and the integral contributor of the PID controller becomes more 

influential than the proportional piece, and with the I constant being negative, the 

requested percent throttle will decrease as the iterations decrease. This is shown in Fig. 

4.13 as the vehicle speed gets really close to the target speed but does not actually reach 

the target speed. To fix such a drastic variance of results with just little vehicle behavior, 

entering a D constant and making the I constant positive. Values chosen in Fig. 4.14 are 

P-.5, I-.01, and D-3.2. 

 

 

Figure 4.14. Tuning PID with values: 0.5, 0.01, and 3.2. 
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In Fig. 4.14, the vehicle speed approaches the target speed slower than in Figs. 

4.12 and 4.13 and overshoots the target value. Upon more testing, values: P-0.7, I-0, D-

3.2 were chosen; the idea was to reduce overshoot by eliminating the accumulation error 

or integral I-term to increase the proportionate P-term to increase the responsiveness of 

the system by being capable of converging to the target speed faster as well as the ability 

to more quickly react and compensate for any overshoot and undershoot shown in Fig. 

4.15.  

 

 

Figure 4.15. Tuning PID with values: 0.7,0,3.2. 
 
 

The performance of the autonomous acceleration system has improved with these 

values, however, in an attempt to reduce the oscillation, more values were tested and the 

final values landed on are P-1, I-0, D-3, increasing the systems responsiveness and 

reducing the derivative terms which reduces rise time and with a lower derivative value, 
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the vehicle has less oscillation about the target speed. The vehicle speed converges to 

target speed consistently and reliably with very low oscillations as displayed in Fig. 4.16.  

 

  

Figure 4.16. Tuned PID with nonzero P and D constants and 0 for the I constant. 
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CHAPTER FIVE  

Sensor Implementation 
 
 

Global Positioning System (GPS) 

For the vehicle to be able to know where it is in the world and where the 

destination is, a GPS unit (Fig. 5.1) is used by integrating it into MATLAB. For the 

vehicle to be able to sense and react to the environment around it, sensors are embedded 

in the vehicle. Ultrasonic sensors are used to determine the distance of objects from the 

vehicle. Serially connecting the GPS unit to MATLAB through USB, the module outputs 

6 different GPS messages with no specific order or rhythm. MATLAB parses through the 

$GPGGA, $GPGLL, and $GPRMC to find the latitude and longitude coordinates. The 

other 3 coordinates do not give latitude and longitude of the module.  

 

$GPGGA - Global Positioning System Fix Data     

$GPGLL - Geographic position, latitude / longitude  

$GPGSV - GPS Satellites in view 

$GPVTG - Track made good and ground speed 

$GPRMC - Recommended minimum specific GPS/Transit data 

$GPGSA - GPS DOP and active satellites 
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Figure 5.1. GPS unit. 

 

Ultrasonic Sensors 

Two Arduino boards are connected to MATLAB and 9 ultrasonic sensors are 

connected to one of those boards. MATLAB commands the Arduino to send an ultrasonic 

pulse and convert the reflected wave delay to a calculation of the distance to the target. 

The range of each sensor is about 15 feet. The location of these is shown in Fig. 5.2.  
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Figure 5.2. Chevy Tahoe sporting ultrasonic sensors. 
 
 

Sensors labeled 1 and 9 are turned to the side and are oriented that way and placed 

so low to detect curbs and other path trace makers. In addition to these sensors, the 

onboard laptop connects to a USB camera with its images processed in MATLAB and 

used for “you only look once” (YOLO) object detection and classification. In adding 

ultrasonic sensors to the processor load, it is actually visually apparent that the program 

processing speed decreases once adding over about 5 of these sensors. A lot of these 

sensors were used to compensate for the narrow angular view that the sensors can 

provide.  
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Camera and YOLO (you only look once) 

A USB camera is integrated in the control system for the vehicle to be able to 

appropriately adhere to various different road signs a driver would need to abide by very 

quickly and accurately. The classification neural networks, YOLO [32,33,34] object 

detector and classifier as shown below in Fig. 5.3 completes an analysis and annotates on 

each image fed into MATLAB, including boxes and labels around the objects in each 

image. YOLO is used to recognize an object and to be able to differentiate between 

different objects such as discerning between a stop sign and yield sign. YOLO scans an 

image and places a box around a determined object and then displays a label for each 

object, determining what kind of object it is, using a neural network as introduced in the 

literature review, affecting the algorithm of how the vehicle will behave. For example, if 

the vehicle recognizes a stop sign is a certain distance in front of it, it will come to a 

complete stop and remain for 3 seconds and then continue to operate as normal. In this 

case YOLO acts like an interrupt to the typical operation of the vehicle. Also, YOLO 

only scans the image once and so this process is happening very quickly making it ideal 

for vehicle implementation for autonomous application. YOLO has proven to be very 

accurate in testing and demonstrating the viability [34]. 
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Figure 5.3. YOLO object detector and classifier [35]. 
 
 

In actual implementation of this project, YOLO through MATLAB was used to 

detect a stop sign, feed that information to the rest of the program and make the 

appropriate decisions from the information. For instance, once a stop sign is detected, the 

program then decides when the vehicle should begin its decent to a stop by how large the 

box outline is around the stop sign. This method of indirectly measuring the distance 

between the vehicle and stop sign is used because adding too many ultrasonic sensors 

will slow down processing speed and in turn disrupts the serial communication timing of 

the other peripheral devices connected to the computer affecting every other system. 

Also, the very narrow view of the ultrasonic sensor makes for a larger chance the stop 

sign will not be detected reliably. To use a stop sign for the obstacle course setup, a stop 

sign was purchased and fastened on a rail and an actual YOLO analysis done on the 

onboard camera shown in Fig. 5.4 with some statistics on the image shown in Fig. 5.4 

displayed in Fig. 5.5. 
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Figure 5.4. Stop sign for obstacle course put through YOLO analysis. 
 
 
 

 

Figure 5.5. Statistics on the YOLO analysis shown in Fig. 5.4. 
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The labels in Fig. 5.5 represent the list of all the classes of the objects the 

computer recognizes with each image, in this case just the stop sign. The scores represent 

the percentage of certainty the computer is that the object belongs to the displayed class, 

which ranges from 0 to 1 with 0 being unsure and 1 being 100% certain. The computer is 

99.95% sure that the object in Fig. 5.4 is a stop sign. The variable named boxes represent 

the size and location of the rectangle placed around each object recognized, each object 

recognized having four numbers that describes the rectangle encasing it. The first two 

numbers are the x,y coordinates respectively of the bottom left corner and the last two 

numbers are width and height of the box. In the function for the vehicle the program 

looks at the third column of the boxes variable when it corresponds to a stop sign and 

looks at the width and determines when to stop the vehicle based on the size of the width 

of the stop sign. When the vehicle gets closer to the stop sign, the width of the rectangle 

around increases and when it reaches the threshold, thus, the car is programmed to go 

into a stopping protocol, pauses for three seconds and then continue along its path. 

Unfortunately, when trying to incorporate the YOLO subsection in the larger 

integrated program, the data processing was too intensive for the program not to have 

adverse effect from slower processing. The image data acquired from the camera was a 

very large matrix for each iteration, which means just acquiring the image at each 

iteration was taking up too much time, so the camera and YOLO code was commented 

out when running the program. 
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CHAPTER SIX  

Programmable Steering And Data Analysis 
 
 

Steering Rack Control 

For MATLAB to determine which direction and how far to turn the servo, to turn 

the vehicle in order to drive on the correct side of a road, including road curvatures and 

turns, MATLAB reads in the distances from ultrasonic sensors 1 and 9. “Mapping” is not 

used in decision making for path planning of the vehicle, but instead the vehicle reacts to 

the surrounding environment completely in real time. This allows the vehicle to be a lot 

less rigid but a lot more dynamic and so this works very well in the nature of testing at 

the Baylor Research and Innovation Center (BRIC) parking area having limited space. 

This is because if mapping was used, for every path the vehicle could take, it would have 

to be already driven through manually to gather data to then be used for autopilot driving. 

With mapping the sensor values for each GPS location, there is a very limited 

amount of different paths or obstacle courses that can be set up in testing how well the 

car does in various road setups. But reacting to an obstacle course in real-time means one 

can set up a virtually limitless number of different course setups to test the vehicle 

performance with limited space and the vehicle can do this on the spot without any 

manually driving prep time. On a macro scale, the “mapping” approach would limit 

autopilot available areas due to the fact that sensor data would have to be gathered on 

every location before the vehicle being able to drive autonomously at said location. This 

would mean with mapping, a data gathering vehicle would have to drive down every road 
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and highway manually first to operate which as the reader can imagine would be quite 

unrealistic especially with the fact that any change in a road or highway like construction 

would cripple the autopilot availability or require the need to remap the area. Conversely, 

with good sensors, operating system, and efficient algorithm, a vehicle can be on 

autopilot in a much greater range of driving areas and driving scenarios.   

To get the vehicle to turn, a large gear is fastened on one high torque servo’s shaft 

and the large gear turns a smaller gear attached to the steering rack’s shaft as shown in 

Fig. 6.1. 

 

 

                              Figure 6.1. High torque servo motor and steering connection. 
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The steering fluid tank and steering pump was reconnected on the vehicle along 

with liquid tubes to keep the steering fluid in the vehicle system to keep the power 

steering enabled to lower the torque needed to turn the vehicle steering rack. To introduce 

and keep pressure in this steering fluid system, a high torque motor is connected to the 

pump’s shaft shown in Fig. 6.2. 

 

 

Figure 6.2. Steering fluid pump system. 
 
 

The difference in using the pump was shown when just one lower torque servo 

motor, shown in Fig. 6.3 was used to turn the steering rack while the front wheels were 

jacked up and suspended off the ground. While connecting and using a drill gun to turn 

the pump, the steering rack turned noticeably faster and the servo motor drew 1/3rd of the 

current it did while not using the pump to pressurize the steering fluid system.  
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Figure 6.3. Lower torque servo motor. 
 
 

One of the higher torque servos wasn’t permanently coupled onto the steering 

rack’s shaft. Due to the fact that the servo can only turn 360 degrees but the steering rack 

turns about 2 ½ times from end to end, coupling the servo directly to the shaft would not 

allow the servo to turn the wheels enough to get enough of the steering range and so a 

gear was placed on the servos’ shaft and the steering rack, that was about twice the 

diameter of the gear placed on the steering rack to allow for the full steering range and 

this setup was replicated with the high torque servo. 

During the setup of the high torque servo, the servo rotated the steering rack when 

coupled, but when the server was uncoupled and the wheels were manually turned to find 
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out how many rotations the steering rack has from end to end, some steering fluid shot 

out of the steering pump fluid inlet. Due to this, after replacing the gear on the servo to 

turn the steering rack, the servo burned out because the torque required was much greater 

than before because the system was no longer pressurized and circulation of the fluid to 

aid the vehicle in steering was absent. This experiment was indicative of how important 

the pressurized steering fluid system was in aiding the steering of the vehicle especially at 

low speeds. 

The programmable steering system works similarly to the autonomous 

acceleration system in terms of control, for instance, they both work on PID control 

where the MATLAB uses Arduino to send a PWM signal to the servo motor that controls 

the direction and angle of the rotation which in turn, turns the steering rack and vehicle 

from left to right. The error of the difference between the intended distance from the 

obstacles, gathered from the ultrasonic sensors, is fed into the PID control to hold a 

position, turn left or right, and how much to turn in real time. Initially, the autonomous 

steering system was programed to communicate with the VCU for a timestamp that was 

used for time-integration for the PID integral term. However, when testing and PID 

tuning the steering system outside using the obstacle course, the vehicle was not reacting 

as desired or expected, which seemed like unideal P,I, and D constants were used or some 

error in the algorithm. It also appeared as though the program was processing too slow to 

make the proper decisions on time, greatly affecting the steering’s performance. In an 

attempt to increase the processing speed, the steering program was rewritten to do the 

same task but without the dependence of other USB serial communication devices 

connected to MATLAB while running, which included an Arduino that controls the 
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speed manually using a joystick that maps to the digital potentiometer analog voltage 

range, another Arduino that has the ultrasonic connected to it, and a VCU. 

The first Arduino and joystick is used to control speed manually to isolate the task 

of tuning the steering PID controller. However, with the joystick setup, the voltage 

decipher was connected to the throttle pedal as it has a more secure connection to the 

inverter and is much less affected by electromagnetic interference (EMI) from the 

inverter, which keeps the throttle enabled when driving the vehicle without malfunction. 

This EMI issue was witnessed before ever leaving the laboratory when testing if the 

joystick could properly control the speed and steering manually when transporting the 

vehicle to and from the lab and the testing parking lot. Often with the joystick, while 

steering and trying to add speed, the throttle signal from the digital potentiometer to the 

VCU gets interrupted and disengages the throttle. For more consistent and safer 

operation, the code still communicates with its devices but the VCU voltage decipher is 

then connected to the throttle. Removing these serial connections speeds up the 

processing about three times over, however, the vehicle still wouldn’t turn while moving 

but only turns while the vehicle is stopped. After further investigation, the ultrasonic 

sensors behave normally when not driving, but as soon as the inverter requests torque 

from the motor, the EMI from the 3 switching wire outputs from the inverter would result 

in poor performance from the sensors. This interference had the values of the ultrasonic 

sensors each go to about zero, making the error of the steering appear to be zero as shown 

in Fig. 6.4. Fig. 6.4 and Fig. 6.5 do not show the red marker because it is superimposed 

by the blue marker because in the scenarios, the target left and right sensors equal each 

other. 
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                  Figure 6.4. Dyno ultrasonic sensor EMI. 
 
 
In Fig. 6.4 and Fig. 6.5, the black circles represent the left front sensor 

(sensor 1) where the green circles represent the right front sensor (sensor 9) and 

the blue asterisk represents the target distance of each sensor. The breaks in the 

data where the blue and green circle suddenly decrease and approaches zero are the 

points when the inverter gives the motor a torque demand. The interference of the 

sensors was the main culprit of the steering program. To mitigate the issue of EMI 

interference, Foil was used on the sensor wires and the inverter switching cables to shield 
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the sensors against the EMI. This helps the sensor data significantly read data more 

consistently and accurately. Also, the computer and Arduino and connected devices were 

moved away from the inverter and this also helped. Both acceleration and steering 

systems are both PD controllers and so when running the steering program with manual 

control of the speed, the final values for the constants of the steering PD controller are 

P=1.5, and D=1.5. The idea was to avoid oscillation in switching back and forth over the 

target error line in the error curve in Fig. 6.5. Due to the latency of the servo when 

changing direction, the program was intended to undershoot to avoid overshooting and 

more error. The figure below is the autonomous steering performance of the vehicle as it 

ran through an obstacle course with a path that starts straight, curves to the right and 

curves to the left as shown in Fig. 6.6.  

 

                               

 

   Figure 6.5. Autonomous steering guidance. 
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     Figure 6.6. Obstacle course. 
 
 
The distance readings on the ultrasonic sensors which have seemingly random distance 

points are noisy inputs from the smaller amount of EMI still observed from the inverter. 

In Fig. 6.5, the control algorithm undershoots the target distance intentionally to slightly 

increase the margin of safety in this research project. It was also noticed that occasionally 

severe EMI occurred, corrupting the ultrasonic sensor readings. The dip at about 220 

iterations in the Fig. 6.5 above occurs because of the much slower speed that was 
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commanded manually while maneuvering through the obstacle course. The idea was to 

have the vehicle center itself on the right side of the path to simulate how it behaves on 

the road, however the performance of the sensors drop significantly outdoors and while 

the vehicle is in motion so the obstacles were moved much closer together for much 

better results. So instead of the vehicle centering itself on the right side of the road, it 

centers itself in the middle because there is not much space between the obstacles to 

operate so closely to one side. In addition, with EMI, the sensor performance increases 

greatly with obstacles set closer to the ultrasonic sensors. 

 
Data Gathering 

In addition to the sensor data being used for real-time calculations and decisions, 

other data can be logged and mined for further analysis. For instance, the current code 

records all of the sensor data for every GPS location, with the measurements stored in a 

.MAT file. If desired, this data can be readily used to create a detailed map of the 

surroundings to then be used in decision making or planning in the future. One 

application could be to process the information through an AI, like the CNN described 

above, to both evaluate the performance of the driving, and continuously improve the 

path planning such as adjusting the PID values of the vehicle speed and steering systems 

to reduce unwanted error (wanted error includes the small error in the vehicle speed 

control when a new target speed is set and the vehicle needs to change speed, the vehicle 

does not need to accelerate to the new speed as fast as possible but at a smooth and yet 

responsive pace). A driver traversing in a 20 MPH speed zone would not normally floor it 

when reaching the 55MPH zone but accelerate at a reasonable pace, this will mean more 

error because the target speed and vehicle speed will differ for a longer time when 
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comfortably accelerating but this error is desired. The same is true for steering. When 

changing lanes, drivers usually do not jerk their car as much as possible, but instead 

smoothly move into a neighboring lane which causes more error but again, this error is 

desired.  
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CHAPTER SEVEN  

Conclusions and Future Work 
 
 

Conclusions 

In this work, autonomous electric vehicle capabilities were developed enabling an 

EPA drive cycle to be followed on a dynamometer testbed by a modified Chevy Bolt and 

navigation through an on-road obstacle course by a converted electric Chevy Tahoe. The 

acceleration system on the Chevy Bolt relies on the connection to the vehicle’s OBD 

communication and the timing of this communication with several safety factors built in 

and inherent in its design. The OBD outputs speed, time, and APP to give the LabView 

the necessary values to operate and additional variables like APP for feedback to 

compare with LabView; the APP is for further debugging capabilities which was helpful 

and useful as discussed in Chapter 3. After developing both the Chevy Bolt and Tahoe’s 

autonomous acceleration systems, the inherent safety features of the Bolt’s was a great 

design with having physical mechanical parts to control the throttle such as the servo and 

solenoid that disengages if something goes wrong with the program including cords being 

disconnected. Having mechanical parts in the program makes for complexity but makes 

for solid disconnect, in addition to the digital stop button and big E-stop. This is very 

useful because many unexpected problems can arise. 

The acceleration system implemented for the Tahoe also works on many 

shutdown contingencies, by monitoring current and voltage levels being read in to 

MATLAB by the VCU. The program can be shutdown if throttle is too low by the 
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inverter firmware or having a wire or chord disconnected. The brake by wire works in the 

same way as the throttle by sending a voltage signal from a digital potentiometer which 

keeps things pretty seamless; the two work together, whereas with the Bolt, the 

regenerative braking was constant and in order to control the brakes better, the physical 

brakes were used by using mechanical interaction with the linear actuator. 

Setting up the steering system for the Tahoe was a challenging accomplishment 

because mounting the servo to be able to make contact with the aligning gear with the 

steering rack shaft, and to do so consistently, considering the servo was skipping teeth 

due to unstable alignment. The angle of the steering rack shaft was a simple but difficult 

problem to solve long term. Even after monitoring correctly, just getting the gear on the 

servo shaft was difficult to keep tightened while operating. The shaft had to be drilled 

into so that the set screws from the gear can grip the shaft better which helped 

tremendously. 

With processing speed and EMI being the two most limiting factors in this 

project, the decision was made to separate autonomous acceleration and steering systems, 

which noticeably improved in both of these categories. It is like night and day after 

splitting the work between two different laptops and Arduinos with the autonomous 

steering system. The EMI is very minimal in comparison as it was before the EMI 

shielding precautions were taken. The concern is with the autonomous acceleration 

system; EMI significantly affects the performance and consistency of this system. Even 

just running the acceleration system in isolation on the dyno testbed as in Chapter 4 of 

this paper, the results may vary and the operation is very rough as if the inverter is 

turning off and on. The EMI affects the signals controlling the digital potentiometer 
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resulting in some unpredictable and unexpected behavior even after foil and tape EMI 

shielding several cords and cables and moving the computers and Arduinos further away 

from the inverter and placing the Arduinos and digital potentiometer inside a metal box 

shown in Fig. 7.1 

 

 

Figure 7.1. EMI shielding 
 
 

In an attempt to keep the programs running quickly to operate properly on both 

computers, the GPS and YOLO systems were commented out when running the large 

integrated programs, also preventing more EMI in the system than already present. 

 
 

Future Work 

A potential future use for this autonomous vehicle is to become an autonomous 

shuttle between the BRIC and Baylor’s campus. The sensors need to be upgraded to 
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make this possible. The ultrasonic sensors used should be replaced with radar/lidar and 

long-range radar shown in Fig. 7.2.  

 

 

Figure 7.2. Different sensors used to detect objects around it [36]. 
 

 
This way the vehicle can get a full 360-degree field of vision that can allow for a 

higher resolution decision algorithm. Lane detection will need to be an added feature. 

The YOLO neural network can be added upon, in addition to detecting and classifying 

objects, by training it to recognize lane and road lines and make use of this feature in the 

vehicle’s path planning. Of course, the vehicle needs headlights and taillights with turn 

signals and hazard light programmed with them. A device like a WIFI extender that can 

enable the vehicle to access the internet should be put into the vehicle so any updates to 

the code can be updated between trips and if there is a fleet of these vehicles at some 

point, they all can be monitored and updated remotely. When connected to the internet, 

the status of speed, voltage, current, direction, and more can be monitored in real time 

remotely while the vehicle is connected to the internet using the MATLAB drive 

connector application that automatically updates the files in the MATLAB drive folder, 

when connected to the internet and to every computer connected on that MathWorks 
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account. The values of the variable desired to be monitored can be saved as a .MAT file 

in the MATLAB drive folder and constantly read in values can be sent to another 

computer remotely that can even take some of the processing load off the main onboard 

computer. With being able to remotely share data, another computer can take data and do 

processes like graphing them for the riders to view during a trip while the main onboard 

computer does the essential real-time and time-sensitive data analysis during a driving 

trip. The original Chevy Tahoe body can be put back on, including the seats and seatbelts, 

or a new body can be constructed with conference style seating similar to Fig. 7.3.  

 

 

Figure 7.3. Future conference seating arrangement [37]. 
 

 
Airbags need to be installed; imagine seating around some table like the figure above 

with a circular dashboard with airbags all around. Another string of batteries should be 
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added to double the energy capacity of the car, doubling its mile range. In having another 

string of batteries there will need to be a parallel BMS that will keep the power drawn 

from each string, an example of this is shown in Fig. 7.4 and Fig. 7.5. 

 

 

Figure 7.4.  Parallel component to make BMS able to monitor battery strings [38]. 
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Figure 7.5. Parallel battery management systems’ schematic [38]. 
 
 

Also, with the abundance of the lithium titanate-oxide (LTO) batteries from 

Proterra, battery swapping is very viable, but a more readily swappable case will have to 

be developed along with an autonomous battery case swapper. Alternatively, with the 

available power in the laboratory, fast charging is also a good option and can be used 

while the battery swapping technology is being developed. Potentially, the BMS can be 

upgraded to be capable of handling more amps and in turn being able to achieve higher 

vehicle speeds, this can also be achieved by charging each of the battery modules above 

their nominal 24V with the maximum voltage being 29V for each module. Finally, a 

BMS should be purchased and connected to the LTO battery modules used to power the 

servo motors and VCU. 
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