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We study asymptotic behavior arising in inverse limit spaces of dendrites. In

particular, the inverse limit is constructed with a single unimodal bonding map, for

which points have unique itineraries and the critical point is periodic. Using sym-

bolic dynamics, sufficient conditions for two rays in the inverse limit space to have

asymptotic parameterizations are given. Being a topological invariant, the classifi-

cation of asymptotic parameterizations would be a useful tool when determining if

two spaces are homeomorphic.
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CHAPTER ONE

Introduction

1.1 Motivation

Inverse limits are a powerful tool and have been extensively studied; not just

in research papers, but in many introductory textbooks as well. See, for example,

[12], [13], [39],[22], [9], or [4]. While available in any category, they have become a

staple in the subfield of Topology known as Continuum Theory. Their utility resides

in the relative ease accorded in generating complicated continua. Being “compli-

cated continua,” it is often difficult to determine whether two inverse limit spaces

are homeomorphic. Determining whether or not two spaces are homeomorphic is

the raison d’être of a topologist, and it is the author’s hope that this dissertation

facilitates such work.

In [20], Henk Bruin considers inverse limit spaces on the interval, and develops

a technique for embedding their arc-components in the plane (R2). It has long been

known that inverse limit spaces on the interval are planar ([10]), but there are few

results detailing what form the embeddings take. For more on this line of inquiry,

see [18], [7], or [36]. Bruin’s work from [20] is extended in [22], wherein sufficient

conditions for two arc-components, arising from such spaces, to be asymptotic are

given. As a topological invariant, the classification of asymptotic arc-components

would be useful knowledge in determining whether two spaces are homeomorphic.

A survey of Bruin’s results from [20] and [22] is the subject of Chapter 4.

In [1], Stewart Baldwin provides a scheme, for a certain collection of dynamical

systems, so that the act of identifying points with their respective itineraries is

continuous. He then proceeds to give “admissibility” criterion, and the collection of

all itineraries satisfying this criterion are shown to be a dendrite. This subsequently
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allows many concepts, previously relegated to studying dynamics of the interval, to

be brought forth to study dynamical systems of dendrites. Of particular note, in

[2], Baldwin proves a generalization of Ingram’s Conjecture for k-stars. An outline

of this work is the subject of Chapter 3.

The impetus of this dissertation, given in detail in Chapter 6, is to take Bruin’s

work on asymptotic arc-components, and modify it to be applicable to inverse limits

of dendrites, as advanced by Baldwin in [1]. Many surprising differences arose in this

undertaking. For one, Bruin gave no guarantee that the arc-components in his work

necessarily existed; indeed, many do not. All exist in the dendrite setting. Moreover,

in the dendrite case, arc-components contain branch points; something not present

in the interval case. This ultimately results in a countably infinite collection of

distinct asymptotic rays arising on two distinct arc-components in the dendrite’s

inverse limit; again, something not present in the interval case.

The remainder of this chapter is purposed with educating the casual reader on

basic terminology, notation, and background results.

1.2 Inverse Limits of Continua

A continuum is a metric1 space that is compact and connected. The interested

reader is invited to consult [42] to see many of the varied examples of continua. The

continua with which this dissertation is principally concerned are closed intervals,

dendrites, and their respective inverse limit spaces. A dendrite is a continuum which

is locally connected and uniquely arc-wise connected. If C is a continuum, a point

p ∈ C is said to be a branch point if C − {p} consists of three or more components.

A point q ∈ C is said to be an endpoint of C provided that if A and B are any two

subcontinua of C, each containing q, then we have A ⊆ B or B ⊆ A.

We use the symbols N, Z, and Z− to denote, respectively, the positive integers,

the integers, and the negative integers. The unit interval, [0, 1] is denoted by I.

1
Many authors replace “metric” with “Hausdorff”
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Moreover, due to the annoyance that simply writing “[a, b]” implies (at least to the

average mathematician) that a < b; we adopt the notation �a; b� to denote the closed

interval with a and b as endpoints, irrespective of whether a < b or b < a. Suppose

X is a topological space, and f : X → X is a continous map. We define the inverse

limit of X with bonding map f , denoted (X, f), as follows2 :

(X, f) = {(. . . , x−2, x−1, x0, x1, x2, . . .) : xi ∈ X and f(xi−1) = xi for all integers i}

The following results are well-known. See, for example, [42].

Theorem 1.1. The inverse limit of nonempty compact metric spaces is itself nonempty,

compact and metric. Furthermore, if C is a continuum, then (C, f) is also a con-

tinuum.

Proposition 1.1. For each i ∈ Z−, let πi(x̂) = xi, where x̂ = (. . . , x−1, x0, x1, . . .) is

an element of the inverse limit space (X, f). Then πi is a continuous function from

(X, f) to X.

The function πi in the previous proposition is known as the i-th projection.

We will make frequent use of projection mappings in upcoming chapters. A function

f is said to be unimodal if it is locally one-to-one, excepting a single point known

as the critical point. In this dissertation, we will exclusively consider inverse limit

spaces of continua where the bonding map is unimodal.

Example 1.1. For each a ∈ (0, 2], let

Ta(x) =






ax if 0 ≤ x ≤ 1/2

a(1− x) if 1/2 ≤ x ≤ 1

The collection {Ta}a∈(0,2] is known as the symmetric family of tent maps. Each of

these is unimodal on the unit interval, with critical point c = 1/2.

2
In many texts, the inverse limit is defined much more generally. However, this definition will

suit our purposes.
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Example 1.2. For each a ∈ (0, 4], let La : I → I be given by La(x) = ax(1−x). The

collection {La(x)}a∈(0,4] is referred to as the logistic family. As with the tent maps,

each member of the logistic family is unimodal on the unit interval, and each has

1/2 as its critical point.

Example 1.3. Of course, our definition of unimodal does not require the domain of a

unimodal map to be an interval. Let T be a simple triod (i.e., a space homeomorphic

to the letter “T”), and let p1, p2, and p3 be the endpoints. Let p0 be a point in the

open arc with p3 and the branch point as endpoints. Define f : T → T by first

setting f(pi) = p(i+1), where addition is done modulo 4. Extending linearly yields a

unimodal map with critical point p0.

p1

��

p3
��
p0

��

p2

��

Figure 1.1. The unimodal map on a triod from Example 1.3

Example 1.4. The map T2 : I → I is known as the full tent map. The corresponding

space (I, T2) is known to be homeomorphic to the B-J-K continuum (for Brouwer,

Janiszewski, and Knaster). Its construction is given by the following procedure: Let

C denote the Cantor Ternary set. Let C0 be the collection of all semicircles in the

upper half-plane which are symmetric about the line x = 1/2 and whose endpoints

reside in C. For each i ∈ N, let Ci be the collection of all semicircles in the lower

half-plane which are symmetric about x = 5/(2∗3i) and whose with endpoints reside

in C. The B-J-K continuum is defined to be ∪∞
i=1Ci.

Locally, it is useful to think of this space as a Cantor set cross an arc; however,

the point (0, 0), being an endpoint, is an inhomogeneity. This endpoint belongs to

a dense ray winding through the space, pictured in Figure 1.2.
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Figure 1.2. The dense ray of the B-J-K Continuum

In general, classifying the spaces (I, Ta) has been difficult, and much research

has been relegated to the cases where the orbit of the critical point is finite. If a �= b,

it is natural to wonder whether the spaces (I, Ta) and (I, Tb) are homeomorphic. This

proposition, known in the literature as Ingram’s Conjecture, has garnered copious

attention over the past 20 years, see, for example [5], [15], [21], [26], [11],[33], [37],

[40], [45], [48], or [49]. In [37], it was shown that this conjecture is true when the

critical points are periodic. This result was extended in [48] for the case when the

orbit of the critical point is finite. In [45], this result was shown to be true when the

critical point is non-recurrent. Recently, a complete proof of Ingram’s Conjecture

has surfaced in [4].

Naturally, developing a generalization of Ingram’s Conjecture for a larger class

of spaces would be a welcome development. As mentioned earlier, such a step was

taken in [2], in the case of k-stars. It is the author’s hope that this dissertation is a

step in the right direction for dendrites.
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CHAPTER TWO

The Kneading Map

In this chapter, we give a cursory overview of the kneading theory. This is

a useful tool, allowing us to encode points in a topological space with a symbol

set. Analyzing the pattern of these symbols then yields results pertaining to the

dynamics of the point in question. For a more thorough exposition, see [17], [27],

[24], [38], or [46].

2.1 Itineraries

Suppose f : X → X is a unimodal map with critical point c, and that X−{c}

consists of at least two components. We define a pseudoleg to be a union of any of

the components of X − {c}, so that f is one-to-one on this union. We shall assume

the orbit of c intersects with at most two pseudolegs. Let C1 denote a pseudoleg

containing f(c), and let C2 denote the other pseudoleg. We define the itinerary of

a point x ∈ I, denoted ı(x) = ı0ı1ı2 . . . as follows:

ın =






1 if fn(x) ∈ C1

2 if fn(x) ∈ C2

∗ if fn(x) = c

The kneading sequence is the itinerary of the critical point c. Our definition

differs slightly from that in the prevailing literature, wherein the kneading sequence

is taken to be the itinerary of f(c). Both sequences are equally informative, so the

difference is purely cosmetic. Additionally, we often write cn in place of fn(c). If

x̂ = (. . . , x−2, x−1, x0, x1 . . .) ∈ (X, f),

we define the backwards itinerary of x̂, denoted e(x̂) = . . . e−3e−2e−1, similarly to the

itinerary. Moreover, if e = . . . e−3e−2e−1 and �e = . . . �e−3�e−2�e−1 are two backwards
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itineraries, we define the first discrepancy between e and �e, denoted d(e, �e), to be

min{i : e−i �= �e−i}. We will primarily be concerned with backwards itineraries e

so that e−i �= ∗ for all i. Otherwise, there would be only a single point with the

backwards itinerary e.

2.2 It’s “Cutting Time” Time

For the entirety of this chapter, we consider unimodal functions on the unit

interval. For each n, a branch of fn is any maximal interval on which fn is monotone.

Our principal concern will be regarding central branches, that is, one of the two

branches whose boundary contains the critical point c. We rarely distinguish between

the two central branches, and often speak of “the” central branch for fn. We can get

away with this primarily because we will concern ourselves with symmetric unimodal

maps (e.g. maps from the logistic family or from the family of symmetric tent maps),

whereupon the images of the central branches are equal1 .

For each n, let Jn denote the central branch for fn, and let Dn = fn(Jn). If

c ∈ Dn, then we call n a cutting time. We denote the preimage of c in Jn by zn. We

call zn a closest precritical point. If we need to make discernments, we assume zn is

the closest precritical point less than c, and ẑn is the closest precritical point greater

than c. Of course, some unimodal maps may not have any cutting times. Take, for

example, any of the tent maps with slope less than 1. However, the dynamics of

such examples are dreadfully boring, and we shall speak of them no more. Hence,

all unimodal maps considered henceforth shall be assumed to have the critical point

in their image. From this, it follows that the first cutting time, which we will denote

by S0, is equal to 1. We denote the sequence of cutting times as {Sk}k≥0.

Proposition 2.1. For each n, Jn = [zSk−1
, c], where k = max{i : Si ≤ n}.

1
For theorems involving asymptotic behavior, we can weaken this restriction so that the images

are eventually the same.
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Proof. Note that fSk−1(zSk−1
) = c. Hence, if n > Sk−1, fn will not be one-to-one on

[a, c] if a < zSk−1
. Hence, Jn ⊆ [zSk−1

, c].

Suppose that S1 ≤ n < S2, and recall that S0 = 1. Then, if x and y reside

in the interval [z1, c], we must have fn(x) �= fn(y). Otherwise, there would be a

precritical point in between x and y, implying the existence of a closest precritical

point zSj ∈ [z1, c] for some Sj ≤ n < S2. This is an absurdity. Hence, Jn ⊇ [z1, c] =

[zS0 , c]. Proceeding inductively, suppose that Jn ⊇ [zSk−1
, c] whenever Sk ≤ n <

Sk+1, and now suppose that Sk+1 ≤ n < Sk+2. Assume that x and y are elements of

[zSk
, c]. If fn(x) = fn(y), then there exists a precritical point z in [zSk

, c] for some

iterate of f less than n. In turn, this implies the existence of a closest precritical point

zSj , perhaps (but not necessarily) equal to z, in [z, c). However, this contradicts the

inductive hypothesis. Hence, the result follows.

The sequence of cutting times can be surmised from the kneading sequence

as the following proposition demonstrates. First, however, we define the function

σ, with domain {∗, 1, 2}N (or {∗, 1, 2}Z), so that σ(x̂) = ŷ, where yi = xi+1. The

function σ is referred to as the shift map.

Proposition 2.2. [22, Lemma 5] Let n0 = 1, and for k > 0, let nk = nk−1 +

d(σnk−1ν, ν). Then, for each k, Sk = nk.

If α ∈ {1, 2}, we write α� to denote the unique element of {1, 2}−{α}. Suppose

ν = ν1ν2ν3 . . . is the kneading sequence of a unimodal map. We use Vn to abbreviate

ν1ν2 . . . νn−1νn, and we use Wn to represent ν1ν2 . . . νn−1ν
�
n. If α = α1α2 . . . is a

sequence where each αi ∈ {∗, 1, 2}, then we say α is admissible if there exists a

point x with ı(x) = α. Moreover, if α = α1 . . . αn is a finite sequence, we say α is

admissible if there exists a point x whose itinerary begins with α.

Proposition 2.3. The word Wn is admissible if and only if n is a cutting time. In

particular, d(σnν, ν) is a cutting time for each n.
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Proof. IfWn is admissible, then there exists distinct points with itineraries beginning

Vn and Wn, between which there must lie a preimage of c under fn. This happens

if and only if n is a cutting time.

From the previous two propositions, it follows that Sk −Sk−1 is a cutting time

for each k. Hence, we define the kneading map, denoted Q(k), via

SQ(k) = d(σnk−1ν, ν), so that SQ(k) = Sk − Sk−1.

Additionally, we have the following decomposition of the kneading sequence:

ν = 1WSQ(1)
WSQ(2)

WSQ(3)
. . .

At this point, examples are likely in order. We hope the reader appreciates

the excursion.

Example 2.1. Suppose f(x) is the full tent map, ie,

f(x) =






2x if x ≤ 1/2

−2(1− x) if x ≥ 1/2

This map has kneading sequence ν = 12∞, and kneading map Q(k) ≡ 0. Hence,

SQ(k) ≡ 1, from which it follows that the sequence of cutting times is given by

{Sk}k≥0 = 1, 2, 3, 4, . . .

and we see that each natural number is a cutting time.

Example 2.2. Suppose f(x) has kneading map Q(k) = k − 1. Then

{SQ(k)}k≥1 = S0, S1, S2, S3, S4, . . .

and the cutting times are the powers of 2. The function f(x) is known in the

literature as the Feigenbaum map. Additional monikers include a Coullet Tresser

9



map, or, for reasons that should now be obvious, the 2∞ map. In particular, it has

a point of period 2n for each n ∈ N, and no other periodic points. Its kneading

sequence is given by

ν = 1 2 11 1212 12111211 . . .

Surely, anything known by at least three names has been extensively studied. See,

for example [8], [17], [25], [28], or [29].

Example 2.3. Suppose f(x) has kneading map Q(k) = max{0, k − 2}. Then

{SQ(k)}k≥1 = S0, S0, S1, S2, S3, . . .

and the cutting times are the Fibonacci numbers. For obvious reasons, this map is

known as the Fibonacci map. The kneading sequence is

ν = 1 2 2 11 121 12212 12211122 . . .

For more on the combinatorics of this wonderful map, see [17], [23], [32], or [50].

In the case of the Fibonacci and Feigenbaum maps, we asserted that functions

with the given kneading maps exists. The vigilant reader may have been disturbed

by this bold assertion. As it happens, the Fibonacci map is realized as a symmetric

tent map Ta with a ≈ 1.729211932, and the Feigenbaum map is realized as a logistic

map La with a ≈ 3.569945668. Indeed, given an arbitrary kneading map Q(k); it is

not the case that there necessarily exists a unimodal map with Q(k) as its kneading

map. In [31], the following result was given.

zQ(k)−1

��

cSk−1

��

zQ(k)

���
��

��
��

��
c

f
SQ(k)

��cSQ2(k) cSk c

Figure 2.1. The Geometry of {Q(k + j)}j≥1 ≤ {Q(Q2
(k) + j)}j≥1
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Proposition 2.4. There exists a unimodal map on the unit interval with kneading

sequence ν if and only if {Q(k + j)}j≥1 ≤ {Q(Q2(k) + j)}j≥1 for all nonnegative

integers k (here, the sequences are ordered lexicographically).

The proof of Proposition 2.4, particularly the “if” direction, is quite technical.

However, the inequality {Q(k + j)}j≥1 ≤ {Q(Q2(k) + j)}j≥1 is simply imposing a

geometric condition, pictured in Figure 2.1.

Proposition 2.5. fSk(JSk
) = �cSk

; cSQ(k)
�

Proof. Recall that JSk
= [zSk−1

, c], and fSk(c) = cSk
, so we get one endpoint for free.

The other one is also easily observed:

f
Sk(zSk−1

) = f
SQ(k) ◦ fSk−1(zSk−1

)

= f
SQ(k)(c)

= cSQ(k)

As the name no doubt implies, the critical point is of import; its orbit is worth

keeping track of. The following helps out nicely with this task.

fSk−1

��
fSk

��

f
SQ(k)

��

c

���
�

�
�

�
�

�
�

�
� c

����
��

��
��

��
��

��
��

��
��

� cSk

zQ(k) �� c

zk−1

����������������������
cSk−1

���
�

�
�

�
�

�
�

�
�

cSQ(k)

zQ(k)−1

Figure 2.2. The Geometry of Proposition 2.6
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Proposition 2.6. cSk−1
∈ [zSQ(k)−1

, zSQ(k)
] ∪ [ẑSQ(k)

, ẑSQ(k)−1
].

Proof. Recall that fSk = fSk−1 ◦ f
SQ(k) , and that JSk

= [zSk−1
, c] and JSQ(k)

=

[zSQ(k)−1
, c]. Monotonicity of fSk on JSk

implies that cSk−1
∈ [zSQ(k)−1

, ẑSQ(k)−1
]. If

cSk−1
∈ (zSQ(k)

, ẑSQ(k)
), then c �∈ DSk

, contradicting that Sk is a cutting time.

We conclude this section with a well-known result pertaining to arc-components

of (I, f) (see, for example, [16] or [17]). First, however, a definition is in order. A

unimodal map f : I → I is said to be longbranched if its associated kneading map,

Q(k), is bounded.

Theorem 2.1. [18, Corollary 2.10] Suppose f : I → I is longbranched. Let x̂ and ŷ

be elements of (I, f), and let e and �e denote their respective backwards itineraries.

Then x̂ and ŷ are in the same arc-component of (I, f) if and only if there exists an

n so that whenever i > n we have e−i(x) = e−i(y).

Of particular note, if the critical point for f is periodic, then f is longbranched.

Chapter 4 is primarily concerned with such examples.

2.3 Co-Cutting Times

Suppose f : I → I is unimodal with kneading sequence ν. We define the

sequence of co-cutting times, denoted {Tk}k≥0, as follows:

T0 = min{i > 1 : νi = 1}, and Tk = Tk−1 + d(σTk−1ν, ν).

Given ν, the sequence of co-cutting may not be defined. Indeed, if ν = 12∞,

as is the case with the full tent map, T0 is undefined. Most results concerning co-

cutting times are beyond the scope of this dissertation; however, the following result

will come into play in the following chapter.

Proposition 2.7. [19, Lemma 2] The following properties hold:

12



(i) The sequences of cutting and co-cutting times are disjoint.

(ii) Closest returns for the critical point appear either at cutting or at co-cutting

times.

(iii) The difference between two consecutive co-cutting times is a cutting time.

Based on the previous proposition, we may define the co-kneading map; de-

noted �Q(k), as follows:

T �Q(k) = d(σTk−1ν, ν), so that T �Q(k) = Tk − Tk−1.

As with the cutting times, the co-cutting times provide a nice decomposition of the

kneading sequence:

ν = 12T0−21WS �Q(1)
WS �Q(2)

WS �Q(3)
. . . .

However, even if an explicit formula for the kneading map, Q(k), is known;

determining a formula for the co-kneading map, �Q(k), is often an extremely difficult

combinatorics problem, as is the reverse.

Example 2.4. Let τ be the kneading sequence of the Fibonacci map, so that

τ = 1 2 2 11 121 12212 12211122 . . . .

Then we have:

T0 = 4 and S �Q(1) = 2

T1 = 6 and S �Q(2) = 1

T2 = 7 and S �Q(3) = 2

T3 = 9 and S �Q(4) = 1

T4 = 10 and S �Q(5) = 1

...

13



CHAPTER THREE

Inverse Limits of Dendrites

In this Chapter, we will leave the setting of the unit interval, and delve into

dendrites, as advanced in [1] and [2]. The use of itineraries from the previous chapter

will carry over, with one major difference: the points and the itineraries are one and

the same!

3.1 A Symbolic Representation

We begin by topologizing the symbol space {∗, 1, 2} with the basis {{1}, {2},

{∗, 1, 2}}; extending this topology to the product spaces {∗, 1, 2}N and {∗, 1, 2}Z in

the usual way. If a and b are elements of {∗, 1, 2}, a ≈ b means either a = b or at

least one of a or b is ∗. We extend the definition of ≈ to the product spaces in the

obvious way. An element τ = τ0τ1τ2 . . . of {∗, 1, 2}N is said to be acceptable if τ0 = ∗

and σn(τ) ≈ τ implies σn(τ) = τ for each n ∈ N. Given an acceptable sequence τ ,

an element α ∈ {∗, 1, 2}N is said to be τ -admissible σn(α) ≈ τ implies σn(α) = τ for

each non-negative integer n. The space Dτ is defined to be the set of all τ -admissible

sequences, and was shown in [1] to be a dendrite.

Suppose X is a continuum, and f : X → X is unimodal. Then f is said to be

tentish if, for any elements x and y of X, we have ı(x) �= ı(y) whenever x �= y. In this

case, we also say that f has the unique itinerary property. This is important, because

our topology on {∗, 1, 2}N is non-Hausdorff, and we wish to concern ourselves with

a proper subspace which satisfies the Hausdorff property.

Another important concept in the study of dynamical systems is conjugation.

Let f : X → X and g : Y → Y be continuous functions. We say that f and

g are topologically conjugate provided there is a homeomorphism h : X → Y so

that h ◦ f = g ◦ h. The homeomorphism h is referred to as a conjugacy. The
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import of conjugacies is that they preserve many, but certainly not all, dynamical

behaviors of the system consisting of X and f . As a rule of thumb, conjugacies

preserve topological properties, but need not preserve metric or analytic properties.

Of particular note, asymptotic arc-components, once we’ve defined this concept in

the following chapter, will easily be seen to be preserved by conjugacies (since the

composition of continuous functions is in turn continuous). For a more precise

overview, please consult [14], [34], or [35].

Proposition 3.1. [1, 2.17] Let f : D → D be a unimodal dendrite map, with the

property that any two distinct elements of D have distinct itineraries. Then the

itinerary map ı : D → Dτ is a homeomorphism onto its range, and ı is a conjugacy

between f and σ|ı(D).

Let x̂ = . . . x−2x−1.x0x1 . . . ∈ {∗, 1, 2}Z. For each n ∈ Z, define πn(x̂) =

xnxn+1xn+2 . . .. Let D̂τ = {x̂ ∈ {∗, 1, 2}Z : πn(x̂) ∈ Dτ for all n ∈ Z}, and let σ̂

denote the shift map on D̂τ .

Proposition 3.2. [2, 2.4] Define h : D̂τ → (Dτ , σ) by setting

h(x̂) = (. . . , π−1(x̂), π0(x̂), π1(x̂), . . .).

Then h is a conjugacy between σ̂ and the corresponding shift map for (Dτ , σ).

Proposition 3.3. [1, 2.25] Let A be an arc in D̂τ with endpoints x̂ and ŷ, and suppose

k = min{i|xi �≈ yi} is finite. Then if ẑ ∈ A and i < k, we have xi ≈ zi ≈ yi.

If S ⊆ Dτ is a finite set of points, we let [S] denote the smallest subcontinuum

of Dτ containing S. We may use [x, y], in place of [{x, y}], to denote the unique arc

in Dτ having x and y as endpoints, and (x, y) = [x, y] − {x, y}. Given two points

x and y of Dτ , it is often useful to find a point in (x, y). The following technique,

dubbed the “µ-process,” was developed in [1], and was useful in proving many results

(e.g. that Dτ is connected). If x = x0x1 . . . and y = y0y1 . . . are distinct elements
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of Dτ , then there exists a minimal n so that xn �≈ yn. Define µ�(x, y) = µ�
1µ

�
2 . . . as

follows. If i < n, let µ�
i ∈ {xi, yi} be chosen so that µ�

i �= ∗. If i = n, set µ�
i = ∗,

and for i > n, µ�
i = τi−n. Then there exists a unique µ ∈ Dτ with µ ≈ µ�(x, y).

Moreover, µ ∈ (x, y).

Based on Ingram’s Conjecture, we state the following:

Conjecture 1. If τ �= ν, then Dτ is not homeomorphic to Dν.

While the upcoming sections do not completely address the above conjecture,

it is the author’s hope that they are a step in the right direction.

We conclude this section with a characterization of arc-components in D̂τ in the

case where τ is periodic. If x̂ = . . . x−2x−1.x0x1 . . . is an element of D̂τ , we define the

backwards itinerary of x̂, denoted e(x̂), to be the reverse sequence . . . x−3x−2x−1. We

define the equivalence class e∗ via e∗ = {e(x̂) : x̂ ∈ D̂τ and e(x̂)i = ei whenever i ≤

M for some M ∈ Z−}. Given two backwards itineraries e = e(x̂) and �e = e(ŷ),

we define the sequence of discrepancies as follows. Let k1 = min{i|e−i �= �e−i} and

inductively define ki+1 = min{i > ki|e−i �= �e−i}. We call k1 the first discrepancy

between e and �e. If ki+1 does not exist, we leave it undefined and say the sequence

of discrepancies is finite. In this case, the sequences e and �e have the same tails, and

we have e∗ = �e∗.

Proposition 3.4. [2, 2.7] Let x̂ and ŷ be points in D̂τ , where τ is of period N . Let

{ki} denote the sequence of discrepancies between e = e(x̂) and �e = e(ŷ). Then x̂

and ŷ are in the same arc-component if and only if {ki} is finite or if there exists a

natural number M so that if ki,kj ≥ M , we have ki ≡ kj mod N and, for each i,

x−ki+1 . . . x−ki+1 ≈ (τ0 . . . τN−1)ni ≈ y−ki+1 . . . y−ki+1, where ni = (ki+1 − ki)/N .

3.2 Pre-Critical Points in Dτ

In this section, we present some preliminary results concerning closest pre-

critical points in the space Dτ . To this end, we begin by generalizing many of the

16



definitions given in Chapter 2 so as to be applicable to the spaces Dτ . For each k,

we define a branch for Dτ to be a maximal subset of a pseudoleg on which σk is

one-to-one. A central branch is a branch whose boundary contains the critical point

τ . We define a point z ∈ Dτ to be a closest precritical point provided that, for some

n, σn(z) = τ and (z, τ) ∩ σ−m(τ) = ∅ for all 0 ≤ m ≤ n.

Proposition 3.5. Let z ∈ Dτ with σn(z) = τ for some n ∈ N. Then z is a closest

precritical point if and only if d(z, τ) > n.

Proof. Suppose z is a closest precritical point, with σn(z) = τ . Suppose d(z, τ) ≤ n.

Then, by application of the µ-process to z and τ , there exists a point y in (z, τ) with

σk(y) = τ for some k < m. This contradicts z being a closest precritical point.

Next, suppose σn(z) = τ and d(z, τ) > n. Then σn is one-to-one on [z, τ ],

which in turn implies there are no precritical points in [z, τ ] for any iterates of σ less

than n. Hence, z is a closest precritical point.

A distinct difference between unimodal maps on Dτ and unimodal maps on I,

is that closest precritical points exist for each natural number in Dτ . This is not the

case for the invterval, wherein there is a closest precritical point for fn if and only

if n = Sk for some k.

Proposition 3.6. Suppose τ is non-periodic. Then, for each n ∈ N there exists a

closest precritical point in σ−n(τ). Moreover, such a precritical point resides in each

pseudoleg of Dτ

Proof. For each n ∈ N, let zn = 1τ1 . . . τn−1τ . The admissiblility of zn follows from

τ being non-periodic. That zn is a closest precritical point follows from the previous

proposition. Replacing the 0-th coordinate of zn with a 2 yields a closest precritical

point in the remaining pseudoleg.

Table 3.1 comes from the result of applying the µ-process to zn and τ . Based

upon the observations residing therein, we have the following two propositions.
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Table 3.1. Closest precritical points when τ has Fibonacci combinatorics

i zi Interval Point? d(zi, τ) µ(zi, τ)
1 1τ Yes 2 z2

2 11τ Yes 3 z3

3 112τ Yes 5 z5

4 1122τ No 6 z6

5 11221τ Yes 8 z8

6 11221τ No 7 z7

7 112211τ No 9 z9

8 1122111τ Yes 13 z13

9 11221112τ No 12 z12

10 112211121τ No 11 z11

11 1122111211τ No 14 z14

12 11221112112τ No 13 z13

13 112211121122τ Yes 21 z21

Proposition 3.7. Suppose τ is non-periodic, and is admissible as a unimodal map on

the interval, and the sequences of cutting and co-cutting times are unbounded. Then,

for each m ∈ N, µ(zm, τ) = zn for some n > m. Moreover, µ(zSk
, τ) = zSk+1

and

µ(zTk
, τ) = zTk+1

.

Proof. It is easily seen that µ(zSk
, τ) = zSk+1

and µ(zTk
, τ) = zTk+1

. The result

follows.

Proposition 3.8. Suppose τ is non-periodic, is admissible as a unimodal map on the

interval, and the sequences of cutting and co-cutting times are unbounded. Then

Dτ − {τ} consists of at least four components.

Proof. By Proposition 3.1, each zSk
necessarily resides on a separate component

of Dτ − {c} from each zTk
. And, by Proposition 2.7, these sequences are disjoint.

Hence, the result follows.

Apparently, each application of the µ-process to zn and τ (eventually) results

in a zSk
or a zTk

. This leads to the following conjectue.
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Conjecture 2. Suppose τ is non-periodic, is admissible as a unimodal map on the

interval, and the sequences of cutting and co-cutting times are unbounded. Then

Dτ − {τ} consists of exactly four components.

The truth (or falsehood) of this conjecture relies on whether we may define a

sequence; {Uk}, by setting

U0 = n, where n ∈ N, and Uk = Uk−1 + d(σUk−1τ, τ)

so that {Uk} is disjoint from both the cutting and the co-cutting times of τ (regarded

as a kneading sequence for an interval map).
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CHAPTER FOUR

Asymptotic Behavior in Inverse Limit Spaces of the Unit Interval

As mentioned in the Introduction, this chapter summarizes the results from

[22] and [20] which are relevant to our studies of dendrites. All the results and

definitions in this chapter will be repurposed in Chapter 5; hence, the hurried reader

may skip this chapter entirely. However, it is worth a perusal, insofar as it illustrates

many differences between inverse limits of the interval, and those of dendrites.

4.1 Folding Patterns

Suppose τ is a periodic kneading sequence of period N , so that

τ = (τ1τ2 . . . τn−1∗)∞.

For the remainder of this chapter, we will redefine τN ∈ {1, 2} so that τ1τ2 . . . τN

contains an even number of 1’s. The purpose of this redefinition is for technical

reasons relating to admissibility, which are detailed in [27].

Proposition 4.1. [18] Suppose f has a periodic critical point, and let x̂ and ŷ be points

in (I, f). Then x̂ and ŷ are in the same arc-component if and only if there exists a

natural number M so that e−i(x̂) = e−i(ŷ) for all i ≥ M .

Let x̂ = (. . . , x−2, x−1, x0, x1, . . .) ∈ (I, f). Let

T (x̂) := {ŷ ∈ (I, f) : y−i = x−i for all i ∈ N}.

If e = e(x̂) is the backwards itinerary of x̂, we may write T (e) in place of T (x̂).

Proposition 4.2. [20, Lemma 1] π0 : T (x̂) → I is a homeomorphism onto its image.

In particular, the closure of T (x̂) is homeomorphic to either a point (if e−i(x̂) = ∗

for some i) or a closed interval (if e−i(x̂) �= ∗ for all i).
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Given a kneading sequence τ = τ1τ2 . . ., we define the parity function as follows:

P (n) =






even, if τ1τ2 . . . τn contains an even number of 1’s

odd, if τ1τ2 . . . τn contains an odd number of 1’s

Let e = e(x̂) be a backwards itinerary. We define

α−1(e) = sup{n ≥ 1 : e−n+1 . . . e−1 = τ1 . . . τn−1 and P (n) = odd}

α1(e) = sup{n ≥ 1 : e−n+1 . . . e−1 = τ1 . . . τn−1 and P (n) = even}

If the backwards itinerary in question is understood, we may simply write αi

in place of αi(e). We also note the possibility that αi(e) = ∞.

Proposition 4.3. [20, Lemma 2] Let x̂ ∈ (I, f) and let e = e(x̂). Suppose α−1(e)

and α1(e) are both finite, and e−i �= ∗ for all i ∈ N. Then π0(T (x̂)) = �cα−1 ; cα1�.

Moreover, if ŷ ∈ (I, f) is such that e−i(y) = e−i(x), except for i = α1(e(x̂)) (or

i = α−1(e(x̂))), then T (x̂) and T (ŷ) share a common boundary point.

The previous proposition allows us to track itinerial changes, as we move along

an arc-component; beginning in T (x̂). To this end, we need a few more definitions.

Given a backwards itinerary e = . . . e−2e−1, we define the backwards itineraries

Re = . . . ψ−2ψ−1 and R−1e = . . . ξ−2ξ−1 via the following:

ψ−i =






e−i, if i �= α1(e)

e�−i, if i = α1(e)

ξ−i =






e−i, if i �= α−1(e)

e�−i, if i = α−1(e)

We then continue inductively. If n > 1, let

R
n
e =






R−1(Rn−1e), if n is even

R(Rn−1e), if n is odd
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Table 4.1. Folding pattern for e = 1
∞

and τ = (121)
∞

i αi(e) Rie π0(T (Rie))
0 undefined 1∞ �c2; c1�
1 1 1∞2 �c3; c1�
2 3 1∞212 �c3; c1�
3 1 1∞211 �c5; c1�
4 5 1∞21211 �c5; c1�
5 1 1∞21212 �c3; c1�
6 3 1∞21112 �c3; c1�

and if n < 1, let

R
n
e =






R−1(Rn+1e), if n is odd

R(Rn+1e), if n is even

The reader is cautioned that Rn+me �= Rn(Rme) if m is odd.

For each i ∈ Z, let αi(e) = d(Rn+1e, Rne). We leave α0 undefined. The

sequence {αi(e)} is said to be the folding pattern for the backwards itinerary e. For

the most part, we shall only concern ourselves with the αi’s where i ≥ 1. Table 4.1

gives the first few iterates of the folding pattern, and respective projections, when

τ = (121)∞ and e = 1∞.

4.2 Asymptotic Arc-Components in (I, f)

Suppose C and �C are two arc-components in (I, f), and that ρ is a metric

compatible with the topology of (I, f). Then we say C and �C are asymptotic pro-

vided that there exists parameterizations φ : [0,∞) → C and �φ : [0,∞) → �C so that

ρ(φ(t), �φ(t)) → 0 as t → ∞.

The study of asymptotic arc-components was first undertaken in the context

of substitution tiling spaces (see [30] or [43]). These spaces are beyond our scope.

Suffice it to say, they appear as orientable coverings of the spaces (I, f) which we

have been considering. Hence, many results from the study of substitution tiling
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spaces may be adapted to service us. Of particular note, in [22], the author adopted

such a result, which we now state.

Theorem 4.1. [6, Proposition 4] Suppose the kneading sequence for the unimodal

map f has period N . Then (I, f) has at most 2N − 4 asymptotic arc-components

(discounting the N arc-components with endpoints).

It is known that the bound provided by the previous proposition is sharp.

In [22], the author found exactly 2N − 4 asymptotic arc-components for many

examples (e.g. when the kneading sequence for f is (12111)∞, 8 asymptotic arc-

components have been found). The author utilized a characterization of asymptotic

arc-components based on backwards itineraries, which we come to presently.

Proposition 4.4. [22, Proposition 1] Two arc-components C and �C in (I, f) are

aymptotic if and only if they contain points with respective backwards itineraries e

and �e so that the following hold:

(1) d(Rne, Rn�e) → ∞ as n → ∞.

(2) |cαn − c�αn | → 0 as n → ∞, where {αi} and {α̃i} are the respective folding

patterns of e and �e.

Of particular note, when the kneading sequence is of period N , the condition

|cαn − c�αn | → 0 can be replaced with αn ≡ �αn mod N for all n sufficiently large.

We now state the primary theorems from [22], which we will adapt to the service of

inverse limits of dendrites in the coming chapters. Each of the following three theo-

rems assumes that f is not renormalizable, and its corresponding kneading sequence,

τ , is of period N .
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Theorem 4.2. Suppose τ = (12N−21)∞ and l ∈ {1, 2, . . . , N−2}. Then the backwards

itineraries

e = 12N−3112N−21 and

�e = 12N−3112N−212l,

correspond to asymptotic arc-components.

Theorem 4.3. Suppose that k < N is such that d(σkτ, τ) ≥ N − k and P (k) = odd.

Then the backwards itineraries

e = ν1 . . . ν
�
kν1 . . . νN and

�e = ν1 . . . ν
�
N−kνN−k+1 . . . νkν1 . . . ν

�
N−kνN−k+1 . . . ν

�
N ,

correspond to asypmtotic arc-components, provided that e and �e are admissible.

Theorem 4.4. Suppose that k < N is such that d(σkτ, τ) ≥ N − k and P (k) = even.

Then the backwards itineraries

e = νN−k+1 . . . ν
�
kν1 . . . νN and

�e = νN−k+1 . . . ν
�
kν1 . . . νNνN−k+1 . . . ν

�
N ,

correspond to asymptotic arc-components, provided that e and �e are admissible.

We wish to emphasize that the backwards itineraries in the previous theorems

need not be admissible. In fact, most are not. Additionally, the proofs of these

theorems are highly technical, and rely heavily on the theory of cutting times. For

a taste of just how technical these sorts of results can be, the reader is invited to

peruse Chapter 7. In Chapter 6, we state and prove analogues of these theorems for

D̂τ , for which the proofs are greatly simplified.
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CHAPTER FIVE

Preliminary Results for D̂τ

The purpsose of this chapter is to repurpose many of the lemmas and propo-

sitions from Chapter 4 to suit the purposes of inverse limits of dendrites, as covered

in Chapter 3. Many significant differences arise; which should reward the careful

reader.

Suppose x̂ ∈ D̂τ . For each N ∈ Z, let TN(x̂) = {ŷ ∈ D̂τ : yi ≈ xi for all i ≤

N}, and let T (x̂) = T−1(x̂). If e = e(x̂), we may write TN(e) in place of TN(x̂).

It is easily verified that TN(x̂) is a closed subset of D̂τ , and is homeomorphic to

πN(TN(x̂)).

Lemma 5.1. [1, 2.14]Suppose y ∈ Dτ and e is a backwards itinerary for some point

in D̂τ . Then there exists a unique x̂ ∈ D̂τ such that π0(x̂) = y and x̂ ∈ T (e).

Lemma 5.2. TN(e) is uniquely arc-wise connected.

Proof. If ei = ∗ for some i ≤ N , then TN(e) consists of a single point. Suppose

ei �= ∗ for all i ≤ N . Let x̂ and ŷ be distinct elements of TN(e). Since Dτ is arc-wise

connected, there exists an arc A in Dτ having πN(x̂) and πN(ŷ) as endpoints. Let

k = min{i > N : xi �= yi} and let z ∈ A. By admissibility of πN(x̂) and πN(ŷ), k is

finite. By Proposition 3.3, if N ≤ i < k, we have xi ≈ zi−N+1 ≈ yi. For i ≥ N , let

p�i = zi−N+1, and for i < N , let p�i = ei. By the previous lemma, there exists a unique

p̂ ∈ D̂τ with p̂ ≈ p�. Moreover, πN(p̂) = z. Hence, we have πN(T (e)) ⊇ A. Since πN

is a homeomorphism from TN(e) onto its image, π−1
N (A) is a subarc of TN(e), with

endpoints x̂ and ŷ. Furthermore, since Dτ is uniquely arc-wise connected, TN(e) is

as well.

Proposition 5.1. TN(e) is a subcontinuum of D̂τ .

25



Proof. Since TN(e) is a closed subset of the compact space D̂τ , we have that TN(e) is

compact. This, coupled with the previous proposition, yields the desired result.

If e and �e are backwards itineraries occurring in D̂τ , we seek a way to determine

when T (e) and T (�e) are share a common boundary point. To that end, we make the

following definition: for each 0 ≤ i < N , let βi(e) = max{k : e−ke−(k−1) . . . e−1 ≈

τ0τ1 . . . τk−1 and k ≡ i mod N}. If no such match exists, we will leave βi(e) unde-

fined.

Proposition 5.2. Suppose τ is of period N , and e is a backwards itinerary with e−k = ∗

for some positive integer k. Then, there exists a unique 0 ≤ i < N such that βi(e)

is defined. In particular, i ≡ k mod N .

Proof. This follows easily from the definition of admissiblity.

Proposition 5.3. Suppose e is a backwards itinerary, with ei �= ∗ for all i and τ is of

period N . Suppose βk(e) is defined. Define �e by setting �ei to be either 1 or 2 when

βk ≤ i < 0 and i ≡ k mod N , and �ei = ei otherwise. If e �= �e, then T (e) ∩ T (�e)

consists of a single point.

Proof. Suppose β = βk(e) is finite. Define p̂ by setting

p̂i =






ei if i < −β

τk+i if i ≥ −β

Note that π−β(p̂) = τ . Hence, if i ≥ −β, πi(p̂) ∈ Dτ . Moreover, if i < −β, then

πi(p̂) �≈ τ , since k was chosen maximally modulo N . Thus, p̂ ∈ D̂τ .

Now, we show p̂ ∈ T (e). Let O = . . . O−1 × O0 × O1 . . . be a basic open set

containing p̂. Pick n ∈ N so that whenever |i| > n we have Oi = {∗, 1, 2}. Define x̂

by setting
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x̂i =






ei if i < 0

pi if 0 ≤ i < n and pi �= ∗

2 otherwise

Then we clearly have x̂ ∈ O ∩ T (e). Since T (e) is closed, it follows that p̂ ∈ T (e).

That p̂ ∈ T (�e) follows similarly.

It remains to show that T (e) ∩ T (�e) ⊆ {p̂}. Suppose q̂ ∈ T (e) ∩ T (�e). Pick j

minimally so that ej �= �ej, and note that j ≡ β mod N . If q̂j �= ∗, we may construct

an open set containing q̂, and missing one of either T (e) or T (�e). Hence, q̂j = ∗.

If q̂−β �= ∗, then π−β(q̂) ≈ τ , but π−β(q̂) �= τ , contradicting admissibility. Hence,

q̂−β = ∗, which implies q̂ = p̂.

The proof for when β = ∞ is similar.

Corollary 5.1. Suppose τ is of period N , and let e be a backwards itinerary occurring

in D̂τ . Then π0T (e) ⊇ [{σi(τ)|βi(e) is defined}].

Proof. By Lemma 5.3, whenever βi(e) is defined, it corresponds to a boundary point

of T (e) which projects to σi(τ). π0T (e) is connected, and [{σi(τ)|βi is defined}] is

the smallest connected subset of Dτ containing the σi(τ)’s.

Example 5.1. Let τ = ∗112 and e = 1∞. Then the point p̂1 with backwards itinerary

1∞∗ is a boundary point for T (e), and is adjacent to the continuum T (e1), where

e1 = 1∞2. Moreover, T (e) also shares boundaries with T (e2) and T (e3), where

e2 = 1∞21 and e3 = 1∞211. Hence, it follows that T (e) contains a branch point (i.e.,

a point p̂ so that T (e)−{p̂} consists of more than two components). This corresponds

to the central branching point of D: 1∞(cf [1], Theorem 1.22 and Definition 1.23).

In general, a boundary point of T (e) may also be a branch point. For example,

again let τ = ∗112, and define p̂ to be the point with backwards itinerary 1∞ ∗ 112 ∗

112. Then p̂ ∈ T (e1) ∩ T (e2) ∩ T (e3), where e1 = 1∞21112, e2 = 1∞21121112, and

e3 = 1∞22112. And, if βk(e) = ∞ for some k, there exists an infinite collection
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of backwards itineraries, whose corresponding continua share a common boundary

point. For example, for each n, let en = (1112)∞(2112)n. Then (∗112)∞.(∗112)∞ ∈

∩∞
n=1T (e

n).

Lemma 5.3. Suppose A = [x̂, ŷ] is an arc in D̂τ , where τ is of period N . If {ẑi} is

a sequence of points of A converging to ŷ, then there exists an integer M so that if

i, j ≥ M , we have e(ẑi) = e(ẑj).

Proof. Suppose e(ẑi) �= e(ẑj) infinitely often. Then, between each such pairing,

there exists a p̂i with p̂i−k(i) = ∗ for some k(i) ∈ N. By passing to a subsequence if

necessary, we may assume each k(i) is congruent modulo N . It follows that ŷ is a

shift of (τ0τ1 . . . τN−1)∞.(τ0τ1 . . . τN−1)∞, as otherwise we may construct an open set

containing ŷ and at most finitely many of the p̂i’s. By Proposition 3.4, e∗(p̂i) ≈ e∗(ŷ)

for each i. Fix i0, and pick M so that whenever j > M , we have p̂
i0
−j ≈ ŷ−j. By

Proposition 3.3, whenever j > M and i ≥ i0, we have p̂i−j ≈ ŷ−j. This leaves

only finitely many options for e(p̂i) when i ≥ i0. Hence, there exists an i1 so that

whenever i, j ≥ i1, we have e(p̂i) = e(p̂j). By admissibility, this implies p̂i = p̂j

whenever i, j ≥ i1, providing a contradiction.

Proposition 5.4. Suppose A = [x̂, ŷ] is an arc in D̂τ , where τ is of period N . Then

there exists finitely many backwards itineraries occuring on A.

Proof. If ẑ ∈ [x̂, ŷ] with ẑ−i �= ∗ for all i ∈ N, then the set {p̂ ∈ [x̂, ŷ] : e(p̂) = e(ẑ)}

is open in the subspace [x̂, ŷ]. If ẑ ∈ [x̂, ŷ] with ẑ−i = ∗ for some i, then, by Lemma

5.3 we may find an open set (in the topology of [x̂, ŷ]) containing ẑ and at most

three backwards itineraries. This gives us an open cover of the compact space [x̂, ŷ].

Taking a finite subcover concludes the proof.

Suppose φ : [0,∞) → D̂τ is a continous bijection. We call the image of φ a

ray, and φ a parameterization. Suppose φ : [0,∞) → D̂τ parameterizes a ray Φ. Let
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e = e(φ(0)), and suppose that e−i �= ∗ for all i ≤ −1. As s increases, the backwards

itineraries e(φ(s)) may also change. Pick s1 minimal so that e(φ(s1)) �= e. Then,

by Proposition 5.4, φ(s1) is a boundary point between Te and Te(φ(s1 + ε1)) for

sufficiently small ε1. Let Re = e(φ(s1+ε1)). Continue inductively, picking sn > sn−1

minimally with e(φ(sn)) �= Rn−1e. Then φ(sn) is a boundary point between TRn−1e

and Te(φ(sn+εn)) for sufficiently small εn, and let Rne = e(φ(tn+εn)). We define the

folding pattern, {αn(Φ)}, or simply {αi} when the ray Φ is understood, by letting αn

be the sequence of discrepancies between Rn−1e and Rne. If Φ� is a ray originating in

T (�e) with folding pattern {α̃i} we let dn(Φ,Φ�) denote the first discrepancy between

Rne and Rn�e. Note that each αn is a (potentially finite) sequence, each element of

which is congruent modulo N . We let C(αn) denote the least nonnegative element

of this congruence class. Let φ� parameterize Φ�, and let d be a metric compatible

with the topology of D̂τ . We say the rays Φ and Φ� are asymptotic provided that

d(φ(s), φ�(s)) → 0.

There are notable differences in our use of Rne, as compared with the develop-

ment in [22, 20], for the space (I, f). In particular, in (I, f), Rne is a function of the

backwards itinerary e. Whereas in our treatement, given a backwards itinerary e,

there are multiple valid choices for Re, depending on which of the βie’s are defined.

Indeed, if βie = ∞ for some i, there are infinitely many options for Re. Addi-

tionally, given a backwards itinerary e, once choices have been assigned to Rne for

each n ∈ N, this defines a unique ray in D̂τ . We state this more formally with the

following proposition.

Proposition 5.5. Suppose e = e(x̂) for some x̂ ∈ D̂τ . Let e1 be a backwards itinerary,

distinct from e, so that T (e1) shares a common boundary point with T (e). Let γ1

denote the sequence of discrepancies between e and e1. Continue inductively, letting

en �∈ {ei : i < N} be chosen so that T (en) and T (en−1) share a common boundary
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point, and let γn denote the sequence of discrepancies between en−1 and en. Then

there exists a unique ray Φ in D̂τ , so that αn(Φ) = γn for all n ∈ N.

Proof. This follows from Lemmas 5.2 and 5.3.

Example 5.2. Suppose τ = ∗112, and let e = 1112, e1 = 2112, e2 = 21122111, and

e3 = 21122211. Then, by Proposition 5.3, there exists a ray Φ beginning in Te, and

travelling through Te3 by way of Te1 and Te2. For such a ray, we have e1 = Re,

e2 = R2e, e3 = R3e, and the folding pattern for Φ begins with α1 = {4n}∞n=1,

α2 = {1}, and α3 = {3}.

Proposition 5.6. π0(Rne ∩ Φ) = [σC(αn−1)(τ), σC(αn)(τ)]

Proof. This follows from Proposition 5.1.

The following can be stated more generally (cf. [22], Proposition 1); but the

following will suit our purposes.

Proposition 5.7. Suppose ρ is a metric compatible with the topology of Dτ , and τ is

of period N . Let Φ and Φ� be rays in D̂τ with respective folding patterns {αi} and

{α̃i} . If ρ(σC(αn)τ, σC(�αn)τ) → 0 and dn(Φ,Φ�) → ∞, then Φ and Φ� are asymptotic.

Proof. Without loss of generality, suppose ρ(σC(αn)τ, σC(�αn)τ) = 0 for all n. Let

e = e(φ(0)) and e� = e(φ�(0)). Then π0(Rne ∩ Φ) = π0(Rne� ∩ Φ�). For each n,

let φn : [n, n + 1] → (Rne ∩ Φ) be a parameterization of (Rne ∩ Φ). Similarly, let

φ�
n : [n, n + 1] → (Rne� ∩ Φ�) parameterize (Rne� ∩ Φ�) so that π0(φ(t)) = π0(φ�(t)),

and expand these in the obvious way to get the parameterizations φ and φ�. The

condition dn(Φ,Φ�) → ∞ implies that d(φ(t), φ�(t)) → 0, where d is a metric for

D̂τ .

30



CHAPTER SIX

Main Results

In this chapter, we show that the sufficeint conditions for arc-components

residing in (I, f) carry over to Dτ . The proofs relating to D̂τ are far less technical

than their counterparts for (I, f).

6.1 A Last Minute Lemma

Lemma 6.1. Suppose e and �e are backwards itineraries, and let j ≤ d, where d is the

first discrepancy between e and �e. Let w1w2 . . . wj ∈ {1, 2}j,

ψ = . . . e−(j+2)e−(j+1)w1w2 . . . wj, and

�ψ = . . . �e−(j+2)�e−(j+1)w1w2 . . . wj.

Then there exists an n so that ψ = Rne and �ψ = Rn�e.

Proof. By Proposition 3.4, there exists rays R and �R, respectively originating in T (e)

and T (�e) and peregrinating through T (ψ) and T ( �ψ). Hence, there exists integers n1

and n2 so that Rn1e = ψ and Rn2�e = �ψ. Hence, we need only show n1 = n2.

Suppose n1 = 1. Let {ki}mi=1 be the sequence of discrepancies between e and

ψ. Then e−km . . . e−1 ≈ τ0 . . . τkm−1. Since km ≤ j, we also have �e−km . . . �e−1 ≈

τ0 . . . τkm−1. Moreover, by Proposition 5.3, all the ki’s are congruent modulo the

period of the kneading sequence. Hence, T (�e) and T ( �ψ) share a common boundary

point, and n2 = 1. Now, suppose n1 > 1 and we proceed by induction. By Proposi-

tion 3.3, the first discrepancy between Rn1−1e and e is at most k. By the inductive

hypothesis, the last discrepancy between Rn1−1e and Rn1−1�e is at most k. Apply the

same argument as used in the base case to conclude the proof.

Analogues of the following theorems were given in [22], and stated in Chapter

4, for inverse limits of unimodal maps of the interval. Before proceeding, we will
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introduce some notation. If x = x0x1x2 . . . and y = y0y1y2 . . . are elements of Dτ ,

let d(x, y) = min{i : xi �≈ yi}. Additionally, if a ∈ {1, 2}, we use a� to denote the

unique element of {1, 2} − {a}.

6.2 Sufficient Conditions for Asymptotic Arc-components in D̂τ

Theorem 6.1. Suppose τ = ∗12N−2, where τ0 = ∗. Let l ∈ {1, 2, . . . , N − 2}. If

e = 12N−3112N−21 and

�e = 12N−3112N−212l,

then there exists asymptotic rays originating in T (e) and T (�e).

Proof. Let

Re = 12N−3112N−212N−21

R�e = 12N−3112N−212l−11

By Lemma 6.1, there exists an integer n so that we may define

R
n
e = 12N−3112N−212N−l−112l−1

R
n�e = 12N−3112N−2112l−1

Next, take αn+1(e) = l + 1 and αn+1(�e) = N + l + 1, and we have

R
n+1

e = 12N−3112N−212N−l−2112l−1

= e2N−l−2112l−1

R
n+1�e = 12N−3112N−212N−2112l−1

= �e2N−l−2112l−1

Hence, each of Rn+1e and Rn+1�e are left-shifts of the original itineraries e and �e, and

all folds thus far have been congruent modulo N . We now proceed by induction.

Suppose ni−1 is defined so that
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R
ni−1e = eA and

R
ni−1�e = �eA,

and all folds thus far have been congruent modulo N . Pick m so that

R
m
e = 12N−3112N−21V|A|

R
m�e = 12N−3112N−212lV|A|

where, Vn is a {1,2}-block with Vn ≈ τ1 . . . τn. Next, take αm+1(e) = |A| + N + 1

and αm+1(�e) = |A|+ 1 and obtain

R
m+1

e = 12N−3112N−212N−21V|A|

R
m+1�e = 12N−3112N−212l−11V|A|

Define ni − 1 so that

R
ni−1

e = 12N−3112N−212N−l−1
V|A|+l

R
ni−1�e = 12N−3112N−21V|A|+l

Take αni(e) = |A|+ l + 1 and αni(�e) = |A|+ l +N + 1, and we have

R
nie = 12N−3112N−212N−l−21V|A|+l

= e2N−l−21V|A|+l

R
ni�e = 12N−3112N−212N−21V|A|+l

= �e2N−l−21V|A|+l

and all folds have been congruent modulo N . Hence, we have constructed

rays Φ and Φ� for which dn(Φ,Φ�) → ∞, and π0(Rne ∩ Φ) = π0(Rn�e ∩ Φ�) for all n.

Proposition 5.7 implies the constructed rays are asymptotic.
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Theorem 6.2. Suppose there exists a N/2 < k < N such that d(σkτ, τ) ≥ N −k, and

let ν1 . . . νN ≈ τ1 . . . τN , where νN ∈ {1, 2} is chosen so that d(σkν, τ) > N − k. If

e = ν1 . . . ν
�
kν1 . . . νN and

�e = ν1 . . . ν
�
N−kνN−k+1 . . . νkν1 . . . ν

�
N−kνN−k+1 . . . ν

�
N ,

then there exists asymptotic rays originating in T (e) and T (�e).

Proof. We begin by taking α1(e) = N + 1 and α1(�e) = 1, and obtain

Re = ν1 . . . ν
�
kν1 . . . νkν1 . . . νN

R�e = ν1 . . . ν
�
N−kνN−k+1 . . . νkν1 . . . ν

�
N−kνN−k+1 . . . νN

The hypothetical condition d(σkν, τ) > N−k implies ν1 . . . νkν1 . . . νN−k = ν1 . . . νN .

Additionally, since the first discrepancy between e and �e is not less than k, we may

apply Proposition 3.3 and pick n so that

R
n
e = ν1 . . . ν

�
kν1 . . . νkν1 . . . νN−kν1 . . . νk

= ν1 . . . ν
�
kν1 . . . νNν1 . . . νk

R
n�e = ν1 . . . ν

�
N−kνN−k+1 . . . νkν1 . . . ν

�
N−kν1 . . . νk

Next, take αn+1(e) = N + k + 1 and αn+1(�e) = k + 1, and we have

R
n+1

e = ν1 . . . ν
�
kν1 . . . νkν1 . . . νNν1 . . . νk

= ν1 . . . ν
�
kν1 . . . νNνN−k+1 . . . νNν1 . . . νk

= eνN−k+1 . . . νNν1 . . . νk

R
n+1�e = ν1 . . . ν

�
N−kνN−k+1 . . . νkν1 . . . νN−kν1 . . . νk

= ν1 . . . ν
�
N−kνN−k+1 . . . νkν1 . . . ν

�
N−kνN−k+1 . . . νNν1 . . . νk

= �eνN−k+1 . . . νNν1 . . . νk
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Table 6.1. The itineraries from Theorems 6.2 and 6.3 for τ up to period 5

τ ν1 . . . νN k e �e Theorem
(∗12)∞ 121 2 1∞21 2∞ 6.2

122 2 (1122)∞ (1122)∞21 6.3
(∗122)∞ 1221 3 (121)∞1221 2∞ 6.2

1222 3 (211222)∞ (211222)∞221 6.3
(∗112)∞ 1121 3 (112)∞1112 (212)∞2122 6.2

1122 3 (111122)∞ (111122)∞121 6.3
(∗1222)∞ 12221 4 (1221)∞12221 2∞ 6.2

12222 4 (22112222)∞ (22112222)∞2221 6.3
(∗1221)∞ 12211 4 (1222)∞12211 (2221)∞2 6.2

12212 3 (121)∞12212 (112)∞11 6.2
12211 3 (112211)∞ (112211)∞212 6.3
12212 4 (22212212)∞ (22212212)∞2211 6.3

(∗1211)∞ 12111 4 (12)∞111 (2211)∞2 6.2
12112 3 (122)∞12112 1∞ 6.2
12111 3 (212111)∞ (212111)∞112 6.3
12112 4 (21212112)∞ (21212112)∞2111 6.3

(∗1122)∞ 11221 4 (12111221)∞ (12111221)∞1222 6.3
11222 4 (12111222)∞ (12111222)∞1221 6.3

(∗1121)∞ 11211 3 1∞211 (122)∞12 6.2
11211 4 (1122)∞11211 (212)∞12 6.2
11212 3 (111212)∞ (111212)∞211 6.3
11212 4 (12211212)∞ (12211212)∞1211 6.3

(∗1112)∞ 11121 4 1∞21 (2112)∞2 6.2
11122 4 (11111122)∞ (11111122)∞1121 6.3

Hence, we have shifted copies of the original backwards itineraries, and all

folds have been congruent modulo N . As before, proceed inductively to conclude

the proof.

Theorem 6.3. Suppose there exists a N/2 < k < N such that d(σkτ, τ) ≥ N −k, and

let ν1 . . . νN ≈ τ1 . . . τN , where νN ∈ {1, 2} is chosen so that d(σkν, τ) = N − k. If

e = νN−k+1 . . . ν
�
kν1 . . . νN and

�e = νN−k+1 . . . ν
�
kν1 . . . νNνN−k+1 . . . ν

�
N ,

then there exists asymptotic rays originating in T (e) and T (�e).
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Proof. We begin by taking α1(e) = N + 1 and α1(�e) = 1, and we obtain

Re = νN−k+1 . . . ν
�
kν1 . . . νNνN−k+1 . . . νkν1 . . . νN

= νN−k+1 . . . ν
�
kν1 . . . νNνN−k+1 . . . νkνk+1 . . . νNνN−k+1 . . . νN

R�e = νN−k+1 . . . ν
�
kν1 . . . νNνN−k+1 . . . νN

We then take the path to

R
n−1

e = νN−k+1 . . . ν
�
kν1 . . . νNνN−k+1 . . . νkνk+1 . . . ν

�
Nν1 . . . νk

R
n−1�e = νN−k+1 . . . ν

�
kν1 . . . νNν1 . . . νk

Next, we may take αn(e) = k + 1 and αn(�e) = N + k + 1, and we have

R
n
e = νN−k+1 . . . ν

�
kν1 . . . νNνN−k+1 . . . νkν1 . . . ν

�
N−kν1 . . . νk

= eνN−k+1 . . . νNν1 . . . νk

R
n�e = νN−k+1 . . . ν

�
kν1 . . . νNνN−k+1 . . . νkν1 . . . νNν1 . . . νk

= νN−k+1 . . . ν
�
kν1 . . . νNνN−k+1 . . . ν

�
NνN−k+1 . . . νNν1 . . . νk

= �eνN−k+1 . . . νNν1 . . . νk

Hence, we have left-shifted copies of the original itineraries, and all folds have been

congruent modulo N . As before, proceeding by induction concludes the proof.

Table 6.2 lists all asymptotic arc-components guaranteed by Theorems 6.1,

6.2, and 6.3 for all admissible τ up to period 5. There are some noticable differ-

ences between our results, and the comparable ones for (I, f) presented in [22] and

Chapter 4. For example, for (I, f), the backwards itineraries may not be admissible.

Moreover, the situations described in Theorems 6.2 and 6.3 are mutually exclusive

in (I, f). As shown in Figure 6.1, these may happen concurrently in D̂τ . However,

in [22], the author was able to give more information on the asymptotic structure of
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the asymptotic arc-components in (I, f) (e.g., whether they form “fans,” “cycles,”

or even combinations thereof). That D̂τ contains branch points makes analogous

results difficult. The following corollaries address this line of inquiry.

Corollary 6.1. The backwards itineraries in Theorems 6.1, 6.2, and 6.3 give rise to

a countably infinite collection of asymptotic rays.

Proof. In the inductive step, we may alter our choice for V|A|.

Corollary 6.2. The asymptotic arc-components in Theorem 6.1 form a k-fan (i.e.,

the k rays are pairwise asymptotic).

Proof. For each j ∈ {1, 2, . . . N−2}, let �ej = 12N−2112N−112j. As shown in Theorem

6.1, each of the �ej’s give rise to a ray �φ which is asymptotic to some ray Φj emanating

from T (e), and we need only show that each Φj is the same ray. The proof is similar

to that of Theorem 6.1.

Proposition 6.1. The backwards itineraries e and �e in each of Theorems 6.1, 6.2 and

6.3 reside on distinct arc-components of Dτ

Proof. With Proposition 3.4 in mind, it is easily seen that the backwards itineraries

from Theorem 6.1 are on different arc-components. For Theorem 6.2, observe that

e = ν1 . . . νN−kνN−k+1 . . . ν
�
kν1 . . . νN−kνN−k+1 . . . νN

�e = ν1 . . . ν
�
N−kνN−k+1 . . . νkν1 . . . ν

�
N−kνN−k+1 . . . ν

�
N

It is easily seen that the respective tails for e and �e “line up,” having infinitely many

discrepancies, and neither being equivalent to τ .

For Theorem 6.3, after rewriting e so that the tails “line up,” we have:

e = νN−k+1 . . . νk . . . νNνN−k+1 . . . ν
�
kν1 . . . νN−kνN−k+1 . . . νN

�e = νN−k+1 . . . ν
�
kν1 . . . νNνN−k+1 . . . ν

�
N
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Again, it is easily noticed that the tails are discrepant infinitely often, with neither

being equivalent to τ . Hence, the backwards itineraries e and �e correspond to distinct

arc-components.
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CHAPTER SEVEN

Miscellaneous Results

The focus of this chapter is to present some results originating from early

attempts to extend the results of Chapter 4 to the non-periodic case. Most results

concern unimodal maps on the interval that are Fibonacci-like; that is, their kneading

map is given by

Q(k) = max{0, k − d} for some d ∈ N.

In Section 6.1, we concern ourselves with some properties of the folding patterns as

they relate to Fibonacci-like maps. In 6.2, some limitations on folding patterns are

imposed. In particular, it is shown that if Q(k) is bounded, |αi+1−αi| is bounded for

all i, where {αi} is any folding pattern arising from (I, f). This is relevant, in that it

hints at the structure the folding patterns of asymptotic arc-components must take.

For this chapter, so as to avoid an abundance of subscripts, we slightly alter our

notation from previous chapters: We write zn to denote the closest precritcal point

with respect to fSn , rather than with respect to fn. Before proceeding, the reader

may wish to review Chapter 2.

7.1 Some Results Concerning Fibonacci Combinatorics

Proposition 7.1. Suppose Q(k) = max{0, k − d} for some natural number d. Then,

for each n > d, we have cSn and cSn−d
are on opposite sides of c

Proof. Sn is a cutting time, and fSn([zn−1, c]) = �cSn ; cSn−d
�

Proposition 7.2. Suppose Q(k) = max{0, k − d} and n > d. Then fSn(zn+1) ∈

{zn−d+1, ẑn−d+1}.

Proof. First, note that

c = f
Sn+1(zn+1) = f

Sn−d+1(fSn(zn+1)).
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Figure 7.1. The Geometry of Corollary 7.1

Hence, fSn(zn+1) ∈ f−Sn−d+1(c). We must verify that fSn(zn+1) is a closest precritical

point, ie, that fSn(zn+1) ∈ [zn−1, ẑn−1]. This follows, since

cSn ∈ [zn−d, zn−d+1] ∪ [ẑn−d+1, ẑn−d]

and fSn+1 is one-to-one on each of [zn, c] and [c, ẑn].

Lemma 7.1. Suppose Q(k) is non-decreasing. Let m and n be integers such that

Sm < n < Sm+1 and n− Sm �= SQ(m+1)−1. Then Dn ∩ [zQ(m+1), ẑQ(m+1)] = ∅.

Proof. Suppose the claim is false. Pick n minimally with Sm < n < Sm+1 so that

Dn ∩ [zQ(m+1), ẑQ(m+1)] �= ∅. Because n is not a cutting time, we have c �∈ Dn.

It immediately follows that either Dn ∩ [zQ(m+1), c] = ∅ or Dn ∩ [c, ẑQ(m+1)] = ∅.

Without loss of generality, assume the latter.

Recall that

Dn = �cn; cn−Sm�

⊆ Dn−Sm

= �cn−Sm ; cn−Sm−Sk
�,
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where k = max{j : Sj ≤ n − Sm}. Suppose n − Sm is not a cutting time.

Then, by minimality of n, we know that Dn−Sm and [zQ(m+1), c] have empty in-

tersection. Since n < Sm+1, we have n − Sm < Sm+1 − Sm = SQ(m+1). Hence,

k ≤ Q(m + 1). Furthermore, since Q(j) < j for all j, and Q is non-decreasing, we

have zQ(k+1) ≤ zQ(Q(m+1)+1) ≤ zQ(m+1). Hence, Dn−Sm ∩ [zQ(m+1), c] �= ∅, contradict-

ing the minimality of n.

If n − Sm is a cutting time, say Sj, then Dn = �cn; cSj�. We immediately

obtain cSj �∈ [zQ(m+1), ẑQ(m+1)], since cSj ∈ �zQ(j+1)−1, zQ(j+1)�, j < Q(m + 1) ≤ m

and Q is non-decreasing. Now, it suffices to show cn �∈ [zQ(m+1), ẑQ(m+1)]. Note that

cn = fSj(cSm) and cSm ∈ �zQ(m+1)−1; zQ(m+1)�. As f
SQ(m+1)(zQ(m+1)) = c, and Sj <

SQ(m+1), we have that fSj(zQ(m+1)) ∈ f
−(SQ(m+1)−1−Sj)(c). Hence, fSj(zQ(m+1)) is a

(not necessarily closest) precritical point. Therefore, fSj(zQ(m+1)) �∈ [zQ(m+1), ẑQ(m+1)].

The condition n − Sm �= SQ(m+1)−1 implies the same for fSj(zQ(m+1)−1). Since fSj

is monotone on �zQ(m+1)−1; ẑQ(m+1)−1�, it follows that cn �∈ [zQ(m+1), ẑQ(m+1)], as

desired.

Corollary 7.1. Suppose Q(k) = max{0, k − d}. Then, for each m and n with Sm <

n < Sm+1, we have Dn ∩ [zm−d+1, ẑm−d+1] = ∅.

Proof. We need only verify the case when n− Sm = Sm−d, wherein

Dn = �c(Sm+Sm−d); cSm−d
�.

First, we note that cSm−d
∈ [zm−2d, zm−2d+1] ∪ [ẑm−2d+1, ẑm−2d]. Hence, it suffices to

show that cSm+Sm−d) �∈ [zm−d+1, ẑm−d+1].

Note the following three facts:

(1) cSm ∈ [zm−d, zm−d+1] ∪ [ẑm−d+1, ẑm−d]

(2) cSm+1 ∈ [zm−d+1, zm−d+2] ∪ [ẑm−d+2, ẑm−d+1]

(3) cSm+1 = f
Sm−d+1(cSm)
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By Proposition 7.2, we have fSm−d([zm−d, zm−d+1) = �zm−2d+1; c�, which implies

cSm+Sm−d
∈ �zm−2d+1; c�. Without loss of generality, assume cSm+1 < c. Since cSm+1 �∈

�cSm−2d+1
; zm−3d+2� = fSm−2d+1([zm−2d+2; c]), we have c(Sm+Sm−d) �∈ [zm−2d+2, ẑm−2d+2].

Hence, c(Sm+Sm−d) �∈ [zm−d+1, ẑm−d+1], as desired.

Proposition 7.3. Suppose Q(k) = max{0, k − d}, and let

e = . . . VSj4
VSj3

VSj2
VSj1

,

where, for each i, we have Q(ji) = ji−2 (i.e., ji−2 = ji − d). Then e is admissible.

Proof. The interval(s) of points whose images have itineraries beginning VSji
VSji−1

is �zji−1 ; zji�. And,

f
Sji (�zji−1 ; zji�) = �cSji−d

; c�

⊇ �zji−2d+1; c�

⊇ �zji−d, zji−1�

= �zji−2 ; zji−1�,

which is the set of points with itineraries beginning VSji−1
VSji−2

.

Proposition 7.4. Suppose Q(k) = max{0, k − 2}, and n is an odd integer. Then

VSn−2 = VSn−2WSn−3VSn−4 . . . V5W3V2W1.

Proof. Before proceeding, recall the following identity for the Fibonacci numbers,

{Fn} :
�n

k=0 Fk = Fn+2 − 1. Hence,
�n

k=0 Sk = Sn+2 − 2, and the words in the

statement of the proposition are of appropriate length. Simple observation yields

that VS3−2 = V3 = V2W1. Assume the result holds for n − 2. For all n, we have

VSn = VSn−2 = VSn−2WSn−3WSn−2 . Hence, VSn−2 = VSn−2WSn−3VSn−2−2. Applying the

inductive hypothesis to VSn−2−2 yields the desired result.
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Example 7.1. Let Q(k) = max{0, k − 2}. Then the backwards itinerary

e = . . . VS3VS2VS1VS0

is admissible by Proposition 7.3. Let {αi} denote the folding pattern of e. With the

previous proposition in mind, a cursory inspection hints that αi = S2i−1 − 1 for all

i. This is indeed the case, and we will now give a proof of this claim.

Suppose αi �= S2i−1 − 1, where i is chosen minimally. Then

R
i−1

e = . . . VS2i−2VS2i−3VS2i−4 . . .W3V2W1.

By the previous proposition and our assumption that αi �= S2i−1 − 1 together imply

that αi > S2i−1 − 1.

Case 1: S2i−2 + S2i−1 − 1 < αi ≤ ∞. Pick n maximally so that
�n

i=0 Si =

Sn+2−2 < αi (if αi = ∞, redefine αi to be a large match for the kneading sequence).

Let M = Sn+2 − 1, and let x̂ = (xi)i∈Z ∈ T (Ri−1e). Then x−(M+1) has itinerary

beginning VSnVSn+1 . As such, x−(M+1) ∈ �zn; zn+1�. Similarly, since x−(αi−1) has

itinerary beginning Vαi and αi ≥ Sn+2 − 1, we have x−αi ∈ [zn+2, ẑn+2].

Pick m maximailly so that Sm ≤ αi −M , and note that Sm ≤ Sn+1. Hence,

π−αiT (R
i−1e) ⊆ �zn+2; c� ⊆ JSm . Therefore, π−(αi−Sm)T (Ri−1e) ⊆ DSm = �cSm ; cSm−2�.

If Sm < αi − M , Corollary 7.1 yields Dαi−M ∩ [zm−1, ẑm−1] = ∅. And, since

π−MT (Ri−1e) ⊆ Dαi−M , we have π−MT (Ri−1e) ∩ [zm−1, ẑm−1] = ∅. As m < n,

this is a contradiction to x−m ∈ �zn; zn+1�.

Case 2: αi = S2i−2 +S2i−1 − 1. This case cannot happen, since it would imply

the kneading sequence ν begins VS2i−2VS2i−3 .

Case 3: S2i−1 − 1 < αi < S2i−2 + S2i−1 − 1. Let k = αi − S2i−1 − 1. Then

the itinerary of x−(αi−1) begins VkVS2i−1−1. As P (k) =even, k is not a cutting time.

Pick m so that Sm < k < Sm+1, noting that m < 2i− 2. By Corollary 7.1, we have

Dk ∩ [zm−1, ẑm−1] = ∅. Hence, Dk ∩ [z2i−2, ẑ2i−2] = ∅, contradicting x−(S2i−2−2) ∈

[z2i−2, ẑ2i−2].
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Hence, αi = S2i−1 − 1 for all i. As we follow the path along Ri(e) as i → ∞,

we are approaching a point with backwards itinerary

. . . VSn−2WSn−3VSn−4 . . . V5W3V2W1.

7.2 A Bit on the Structure of Folding Patterns

Proposition 7.5. Suppose f is unimodal with recurrent critical point c, SQ(k) < M

for all k, and σnν begins VM . Then n is not a cutting time.

Proof. Suppose σnν begins VN , where N > SM and that n is a cutting time, say Sk.

Recall that Sk =
�k

j=0 SQ(k). Hence, WSQ(k)
begins νn+1 in the decomposition

ν = 1WSQ(1)
WSQ(2)

WSQ(3)
. . .WSQ(k)

. . . .

Recall that ν begins 10 . . .. Thus, if SQ(k) = 1, we have νn+1 = 0 and if SQ(k) = 2

we have νn+1νn+2 = 11. Therefore, SQ(k) > 2. Hence, WSQ(k)
= νn+1 . . . νn+SQ(k)

=

ν1 . . . ν
�
SQ(k)

, contradicting that σnν begins

VN = ν1 . . . νSQ(k)
. . . νSM . . . νN .

Hence, n is not a cutting time.

Proposition 7.6. Suppose e is a backwards itinerary with folding pattern {αi} . Then,

for each i, c ∈ π−αiT (R
ie) ∩ π−αi+1T (R

ie).

Proof. Recall that π0T (Rie) = �cαi ; cαi+1�. Hence, there exists a point x̂ ∈ T (Rie)

for which x0 = cαi and x−αi ∈ f−αi(cαi). Furthermore, since

π−αiT (R
i
e) ⊆ [zβ(αi−1), ẑβ(αi−1)],

we conclude x−αi = c. That proof that c ∈ π−αi+1T (R
ie) is similar.

Proposition 7.7. Suppose e is a backwards itinerary with folding pattern {αi} . Let

i and j be integers satisfying 0 < i < j and αj > αk for all i < k < j. Then

π−(αj+1)T (R
je) ∩ π−(αj+1)T (R

ie) = ∅.
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Proof. Let x̂ and ŷ be points in (I, f) with respective backwards itineraries

R
j
e = . . . e−αj+1Vαj+1−1, and

R
i
e = . . . e−αj+1Vαj+1−αi+1−1e−αi+1Vαi+1−1

Hence, we see that [zβ(αj+1−1), ẑβ(αj+1−1)] contains x−αj+1 ; but not y−αj+1 , else ŷ would

have backwards itinerary Rje.

Proposition 7.8. Suppose e is a backwards itinerary with folding pattern {αi} . Then,

for each i, |αi+1 − αi| is a cutting time.

Proof. Suppose αi+1 > αi. Then π−αi+1T (R
i+1e) ⊆ [zβ(αi+1), ẑβ(αi+1)] and, by Propo-

sition 7.6, we have c ∈ π−αiT (R
ie). Let x̂ ∈ T (Rie) with x−αi = c. Then

x−αi+1 ∈ [zβ(αi+1), ẑβ(αi+1)], since Rie = . . . e−αi+1V(αi+1−αi−1)Vαi−1. Hence, we con-

clude that

[zβ(αi+1−αi−1), ẑβ(αi+1−αi−1)] ∩ f
−(αi+1−αi)(c) �= ∅.

If αi+1 −αi is not a cutting time, then there can be no precritical point under

fαi+1−αi in [zβ(αi+1−αi−1), ẑβ(αi+1−αi−1)]. Hence, we have the desired result. The case

where αi+1 < αi is similar.

Proposition 7.9. Suppose f is unimodal with kneading map Q(k) and SQ(k) ≤ M for

all k. Then (I, f) has no strictly increasing folding patterns.

Proof. Suppose e is a backwards itinerary with strictly increasing folding pattern

{αi} . Pick k so that αi > M for all i > k. Fix i− 2 > k. Then

R
i−1

e = . . . e−αiV(αi−αi−1−1)e−αi−1V(αi−1−1)

= . . . e−αiV(αi−1)

Since αi−1 − 1 > M , Proposition 7.5 implies αi − αi−1 is not a cutting time. This

contradicts Proposition 7.8. Hence, the hypothesized backwards itinerary e cannot

exist.
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It is worth pointing out that there do exists strictly increasing folding patterns

in the non-longbranched case. We constructed such an example for the Fibonacci

combinatorics in the previous section.

The final proposition in this section gives a characterization, based on the

folding pattern, for when a single arc-component can contain points whose respective

backwards itineraries are discrepant infinitely often.

Proposition 7.10. An arc-component C in (I, f) has backwards itineraries e and

�e such that e∗ �= �e∗ if and only if there exists a folding pattern {αi} on C with

lim inf αi = ∞.

Proof. This follows from Proposition 4.4, having one of the parameterizations map

onto a single point.

Corollary 7.2. Suppose (I, f) contains a backwards itinerary with folding pattern {αi}

so that lim inf αi = ∞. Then Q(k) is unbounded.

Proof. This follows from the previous proposition and Theorem 2.1.
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CHAPTER EIGHT

Conclusion

This dissertation began by giving some basic results concerning inverse limits

of continua. Our journey then took us through the work Bruin did for asymptotic

arc-components arising in inverse limits of the interval, and then through Bald-

win’s work with dendrites and continuous itinerary functions. We then successfully

fused the two theories, culminating in the presentation of sufficient conditions for

arc-components, arising in the inverse limit spaces of a class of dendrites, to be

asymptotic. However, an abundance of questions remain. For example:

• Are these the only asymptotic arc-components for the spaces considered?

• Can we extend our results to the non-periodic case?

• Is there an upper bound for the number of asymptotic arc-components in

D̂τ?

• What more can we say of the structure of asymptotic arc-components in

D̂τ?

• What other results from (I, f) can be generalized to D̂τ?

• If τ �= ν, can D̂τ and D̂ν be homeomorphic? In particular, must there be

some topological difference in the structure of their respective asymptotic

arc-components?

Determining whether a backwards itinerary in (I, f) is admissible is quite laborious,

and provides a stumbling block for many qustions for this class of spaces. As this

dissertation shows, reconsidering such problems in the context of D̂τ may alleviate

such problems. We intend to keep exploring this line of inquiry, hoping to answer
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some, if not all, of the above questions. Indeed, it is foreseen that these questions

should keep us occupied for some time to come. We look forward to the adventure!
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