
ABSTRACT

Bayesian Evaluation and Adaptive Trial Design for Surrogate Time-to-Event
Endpoints in Clinical Trials

Lindsay A. Renfro, Ph.D.

Chairperson: Bradley P. Carlin, Ph.D.

Surrogate endpoints are desirable in clinical trials when primary endpoints are

costly to obtain, difficult to measure, or require lengthy follow-up to observe. Despite

legitimate concerns, evaluation of potentially beneficial treatments in some settings

remains impossible or implausible without the use of surrogates. Furthermore, strong

evidence based on a collection of trials, rather than a relationship observed within

a single trial, is required to validate a surrogate endpoint for future primary use.

We present a Bayesian approach to evaluating surrogacy using patient data from

multiple trials with time-to-event endpoints that accounts for estimation error of

treatment effects and offers greater computational stability than existing methods.

Once a surrogate endpoint has been deemed valid for use in a future trial,

a healthy skepticism should remain regarding its ability to reflect the true treat-

ment effect that would have been observed on the primary endpoint. Despite the

surrogate’s intended role, few (if any) efforts have been made to formalize existing

knowledge and uncertainty in the design of such a trial. We propose a Bayesian

adaptive design that uses the validated surrogate as the primary endpoint, while

acknowledging that this endpoint is really a surrogate, and perhaps only a recently-

validated one. At prospectively-defined checkpoints, we assess the performance of



the surrogate and decide whether to continue its use or switch consideration to the

primary endpoint. Furthermore, our design incorporates other favorable aspects of

Bayesian adaptive trials, including the ability to stop a trial early for treatment

efficacy, inferiority, or trial futility.

Flowgraphs are useful for modeling diseases that are well-described by multi-

state models, but for which Markov assumptions are inadequate and returns to

previous states are possible. Furthermore, censoring and covariates may influence

the distribution of waiting times between any two states, and to a differing degree

for separate transitions within the same system. We discuss the construction and

advantages of flowgraph models when used to describe cancer progression within

two clinical trials, where our goal is improved modeling of treatment effects and

prediction of patient outcomes for the purpose of more realistic surrogacy evaluation.
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CHAPTER ONE

Introduction

1.1 Bayesian Evaluation of Surrogate Time-to-Event Endpoints

Burzykowski et al. (2001) introduced a two-stage model to evaluate both trial

and patient level surrogacy of correlated time-to-event endpoints using patient level

data when multiple clinical trials are available. However, their maximum likeli-

hood approach often suffers from numerical problems when different baseline hazards

among trials and imperfect estimation of treatment effects are assumed. In Chapter

2, we propose performing the second-stage, trial-level evaluation of potential sur-

rogates within a Bayesian framework, where we may naturally borrow information

across trials while maintaining these realistic assumptions. Posterior distributions on

surrogacy measures of interest may then be used to compare measures or make deci-

sions regarding the candidacy of a specific endpoint. We perform a simulation study

to investigate differences in estimation performance between traditional maximum

likelihood and new Bayesian representations of common meta-analytic surrogacy

measures, while assessing sensitivity to data characteristics such as number of trials,

trial size, and amount of censoring. Furthermore, we present both frequentist and

Bayesian trial-level surrogacy evaluations of time-to-recurrence for overall survival

in two meta-analyses of adjuvant therapy trials in colon cancer. Based on these

results, we recommend hierarchical Bayesian methods as an attractive alternative in

the multi-trial evaluation of potential surrogate endpoints.

1.2 Bayesian Adaptive Trial for a Newly Validated Surrogate

The evaluation and validation of surrogate endpoints as primary endpoints in

future clinical trials is an increasingly important research area, due to demands for

1



more efficient trials coupled with recent regulatory acceptance of some surrogates as

‘valid.’ However, little consideration has been given to how a trial which utilizes a

newly-validated surrogate endpoint as its primary endpoint might be appropriately

designed. In Chapter 3, we propose a novel Bayesian adaptive trial design that al-

lows the new surrogate endpoint to play a dominant role in assessing the effect of

an intervention, while remaining realistically cautious about its use. By incorpo-

rating multi-trial historical information on the validated relationship between the

surrogate and clinical endpoints, then subsequently evaluating accumulating data

against this relationship as the new trial progresses, we adaptively guard against an

erroneous assessment of treatment based upon a truly invalid surrogate. So long

as joint outcomes in the new trial seem plausible given similar historical trials, we

proceed with trusting the surrogate endpoint as the primary endpoint, and do so

adaptively–perhaps stopping the trial for early success or inferiority of the exper-

imental treatment, or for futility. Otherwise, we discard the surrogate and switch

adaptive determinations to the original primary endpoint. We use simulation to test

the operating characteristics of this new design compared to a standard O’Brien-

Fleming approach (O’Brien and Fleming, 1979), as well as the ability of our design

to discriminate trustworthy from untrustworthy surrogates in hypothetical future

trials. Furthermore, we investigate benefits using patient-level data from 18 ad-

juvant therapy trials in colon cancer, where disease-free survival is considered a

newly-validated surrogate endpoint for overall survival.

1.3 Flowgraph Modeling for Surrogacy Evaluation

Flowgraphs are useful for modeling diseases that are well-described by multi-

state models, but for which Markov assumptions do not hold and returns to previous

disease states are possible. Furthermore, covariates such as treatment assignment

may influence the distribution of waiting times between any two given states, and

2



to a differing degree for separate state transitions within the same system. In Chap-

ter 4, we explore the construction and advantages of flowgraph models when used

to describe progression through cancer disease states within clinical trials, where

complicating factors such as returns to previous states and prolonged time periods

in single states may be possible for some patients. Our goal, aided by a Bayesian

approach, is improved parametric modeling of disease state transitions and compo-

sitions of transitions, resulting in more detailed and flexible estimation of treatment

effects, hazard functions, and predictive densities of patient outcomes. With more

sensitive parametric modeling of these quantities now possible, more realistic evalua-

tions of potential surrogate endpoints such as disease-free survival for overall survival

may be conducted. We describe possible flowgraph models for two recent clinical

trials in colorectal cancer, and discuss how this modeling approach may be used to

better understand potential surrogacy relationships.

3



CHAPTER TWO

Bayesian Adjusted R
2 for the Meta-Analytic Evaluation of Surrogate

Time-to-Event Endpoints in Clinical Trials

2.1 Background

Surrogate endpoints are often desired in clinical trials when the primary clinical

endpoint is costly to obtain, difficult to measure, or requires a long period of follow-

up to observe. Controversy has surrounded the evaluation and use of potential

surrogates since Prentice (1989) proposed a formal definition of surrogate endpoints

and operational criteria for their validation. Despite ongoing and legitimate concerns

of statisticians and clinicians alike, evaluation of potentially beneficial treatments

in some settings remains impossible or implausible without the use of secondary

endpoints that may occur sooner or more often among patients in a trial.

Fleming (1994) was one of the first to suggest that a collection of similar trials

may be necessary to validate a surrogate endpoint. Hughes et al. (1995) echoed the

sentiment, promoting meta-analyses as ideal for evaluating surrogacy across trials of

unequal size and varied treatment effects. Early meta-analytic approaches involved

modeling the association between treatment effects on the surrogate and true end-

points across trials, and predicting the effect of treatment on the clinical endpoint in

a new trial given the treatment’s effect on the surrogate and past information from

similar trials. While many have noted the benefits of multi-trial or meta-analytic

evaluation of potential surrogates, namely increased sample size and generalizability

to future trials within a class of interventions, few have made such evaluations within

a Bayesian framework.

The first paper involving a Bayesian meta-analysis for surrogate endpoint eval-

uation is that of Daniels and Hughes (1997), who considered a mixed effects model

4



for the trial-level association of treatment effects on the true clinical outcome and

potential surrogate marker. However, their approach used only summary data, and

thus did not explicitly model patient-level association between the two endpoints.

Buyse and Molenberghs (1998) proposed validation of a surrogate endpoint at both

patient and trial levels, for which they introduced the relative effect (RE) and ad-

justed association (AA) measures for the case of two binary endpoints. Later, Buyse

et al. (2000) presented a new two-stage approach for modeling both individual and

trial level surrogacy in the case of normal endpoints. The resulting quantities, R2
indiv

and R
2
trial, lie on the unit interval and represent the predictive abilities of the sur-

rogate endpoint for the true endpoint, and the treatment effect on the surrogate for

the treatment effect on the true endpoint, respectively. Burzykowski et al. (2001)

then extended this approach to the case of time-to-event endpoints, where they pro-

posed an adjusted trial-level surrogacy measure, R2
adj, which takes estimation error

of the treatment effects at the first stage into account at the second stage. However,

in each of the case studies they considered, numerical problems cause R
2
adj to be

unavailable unless common baseline hazards across trials are assumed.

In this paper, we propose bringing the advantages of the two-stage setting into

a Bayesian framework at the second stage, where we may naturally borrow strength

across trials in the evaluation of potential surrogate time-to-event endpoints while

maintaining realistic assumptions. At the first stage, we model the truly bivariate

nature of the candidate and surrogate endpoints at the individual level using copula

models with trial-specific marginal distributions. At the second stage, we capture

the association of the treatment effects on the surrogate and true endpoints at the

trial level using Bayesian mixed effects models, arriving at posterior distributions on

both the naive (unadjusted) and more realistic (adjusted) trial-level surrogacy mea-

sures. Through this Bayesian approach, one may use these posterior distributions

for decision-making regarding the candidacy of a specific endpoint, or to make useful

5



probabilistic statements. For example, we may provide the probability given the ob-

served data that R2
trial is greater than some threshold of interest, or the probability

that R2
trial for one potential surrogate exceeds R2

trial for another.

To motivate consideration of the Bayesian framework for evaluating trial-level

surrogacy, we perform a simulation study to assess the sensitivity of frequentist

and Bayesian trial-level surrogacy measures to underlying data characteristics such

as “true” trial-level surrogacy, amount of censoring, number of trials, trial size,

patient-level correlation of the true and surrogate endpoints, and range of treatment

effects across trials. Furthermore, we perform classical and Bayesian evaluations of

the surrogacy of time-to-recurrence (TTR) for overall survival (OS) in two meta-

analyses of adjuvant therapy trials in colon cancer (Sargent et al., 2005).

The remainder of the paper evolves as follows. In Section 2.2, we review the

popular existing two-stage model for trial-level surrogacy estimation in the case of

time-to-event endpoints introduced by Burzykowski et al. (2001), discuss issues en-

countered with maximum likelihood estimation, and describe a Bayesian approach

which may reliably used to obtain estimates of both unadjusted and adjusted mea-

sures. Section 2.3 presents the results of our simulation study, and we compare the

classical and Bayesian approaches to trial-level surrogacy for two meta-analyses of

adjuvant trials in colon cancer in Section 2.4. Finally, Section 2.5 concludes with a

suggestion for modification of adjusted R
2
trial from that proposed by Burzykowski et

al. (2001).

2.2 Two-Stage Model for Trial-Level Surrogacy

2.2.1 Review of Classical Approach

We begin with a review of the two-stage surrogacy model for time-to-event

endpoints proposed by Burzykowski et al. (2001), which we will later bring into a

Bayesian framework. Adopting established notation, we denote by the pair (Tij, Sij)

6



the times to the true clinical endpoint and the potential surrogate endpoint, respec-

tively, for the jth patient in the ith trial for j = 1, ..., ni and i = 1, ..., N . We denote

by Zij the corresponding treatment assignment, where Zij = 1 for experimental and

Zij = 0 for control. Note that one or both events of interest may be unobserved

(right-censored) for some patients; if so, notation may be easily extended.

If S is to be considered as a surrogate for T , it is reasonable to assume that

these endpoints may have nonzero correlation. Thus, a bivariate model seems ap-

propriate to capture the patient-level association between the surrogate and true

endpoints after adjusting for treatment. While many such bivariate survival models

exist, a copula model (Genest and MacKay, 1986) is chosen for both its flexibility

and the unique property that the margins do not depend on the specific choice of

copula function. The joint survival function of S and T is then given by

F (s, t) = P (Sij ≥ s, Tij ≥ t) = Cδ{FSij(s), FTij(t)}, s, t ≥ 0, (2.1)

where (FSij , FTij) are marginal survival functions and Cδ is the copula, a distribution

function on [0, 1]2 having association parameter δ that describes the association

between Sij and Tij at the patient level common to each trial.

Following Burzykowski et al. (2001), we assume proportional hazards in mod-

eling the effect of treatment on the marginal distributions of Sij and Tij within the

ith trial:

FSij(s) = exp

�
−
� s

0

λSi(x) exp(αiZij)dx

�
and FTij(t) = exp

�
−
� t

0

λTi(x) exp(βiZij)dx

�
.

(2.2)

Here, λSi and λTi are baseline hazard functions, and αi and βi are the effects of

treatment Z on the surrogate and true endpoints, respectively, for trial i. A simpli-

fied version of this model, which assumes common baseline hazards across trials for

each endpoint, is additionally considered in Burzykowski et al. (2001).

7



We choose to specify the marginal hazard functions for each trial paramet-

rically using the Weibull distribution, thus matching the patient-level model con-

sidered by Burzykowski et al. (2001), but one may also leave the marginal hazard

functions unspecified as in the Cox model (Cox, 1972). See Shih and Louis (1995)

for an insightful discussion of the use of copulas with both parametric and semi-

parametric marginal survival models. While many choices of copula function are

available to model the association between the two endpoints at the patient level,

we focus on the copula model proposed by Clayton (1978) and used by Burzykowski

et al. (2001), for which (2.1) becomes a proportional frailty model. The Clayton

copula is given by

Cδ(u, v) = (u1−δ + v
1−δ − 1)1/(1−δ)

, δ > 1,

and generated by a Laplace transform φδ(x) = (1 + x)1/(1−δ) of the gamma distri-

bution. With marginal Weibull models assumed for the effect of treatment on each

endpoint, the joint survivor function under the Clayton copula, F (s, t), becomes

[exp{−(1− δ)(γSis)
rSi exp(αiZij)}+ exp{−(1− δ)(γTit)

rTi exp(βiZij)} − 1]1/(1−δ)
,

where γSi and rSi denote the trial-specific Weibull scale and shape parameters from

the marginal model for the surrogate endpoint, and γTi and rTi denote the corre-

sponding Weibull parameters for the true endpoint. In this setting, Sij and Tij are

positively associated when δ > 1 and are independent when δ → 1.

At the second stage, we consider a random effects model for the trial-specific

treatment effects (αi, βi) given by




αi

βi



 =




α

β



+




ai

bi



 , (2.3)

where the random effects on the right-hand side of (2.3) are assumed to be normally

8



distributed with mean zero and covariance matrix

D =




daa dab

dab dbb



 . (2.4)

Under this model, which assumes perfect estimation of the trial-specific treatment

effects when ( �αi,
�βi) are substituted for (αi, βi), a measure of trial-level surrogacy

unadjusted for estimation error is given by R
2
un = d

2
ab/daadbb. Incidentally, R

2
un

can be shown to be equivalent to the square of the correlation coefficient between

treatment effects (αi, βi) across trials. However, the square of the sample correlation

coefficient is well-known to be a biased estimator of the coefficient of determination.

More importantly, the estimates �αi and �βi computed from the first stage model are

almost certainly not equal to the true treatment effects.

To overcome these bias issues, an adjusted trial-level modeling scheme based

on developments by van Houwelingen et al. (2002) was proposed by Burzykowski

et al. (2001). This model assumes the estimated treatment effects �αi and �βi may

be imperfectly measured at the first stage, and now follow the second stage model

given by



�αi

�βi



 =




αi

βi



+




�ai

�bi



 . (2.5)

Here, the trial-specific estimation errors �ai and �bi are assumed to be jointly normally

distributed with mean zero and trial-specific covariance

Ωi =




σaa,i σab,i

σab,i σbb,i



 . (2.6)

The true trial-specific treatment effects (αi, βi) in (2.5) are still assumed to fol-

low model (2.3) with covariance (2.4) for random effects (ai, bi). For the model

parameters to be estimable, we follow Burzykowski et al. (2001) in assuming the

covariance matrices Ωi are known and equal to their estimates obtained from the

9



first stage copula model. An adjusted estimate of trial-level surrogacy is given by

R
2
adj = d

2
ab/daadbb, similar to the unadjusted measure.

2.2.2 Issues with Maximum Likelihood Estimation

The first and second stage models above may be fitted in sequence for a given

multi-trial dataset with time-to-event endpoints. In their advanced ovarian and ad-

vanced colorectal case studies, Burzykowski et al. (2001) first obtain maximum likeli-

hood estimates for the copula models using a Newton-Raphson procedure, and then

perform trial-level surrogacy estimation using standard software for mixed linear

models. However, when we implemented their procedure for a number of simulated

datasets, we found that the estimation algorithm for the first stage model occasion-

ally fails to converge. Even when first stage estimates are available, it is very often

the case that estimates of R2
adj are unavailable in the second stage due to further

numerical problems. Indeed, in both case studies presented by Burzykowski et al.

(2001), estimates of R2
adj were unavailable when baseline hazards were allowed to

vary across trials, which is a critical element of an appropriate meta-analysis. In our

experience, it seems to be the case that R2
adj cannot be obtained in this setting when

the number of trials or size of trials is too large. Specifically, among the scenarios

we considered, we conservatively estimate that the procedure is very likely to fail

for scenarios with more than 15 trials or more than 1500 patients in any trial, and

remains considerably likely to fail otherwise.

With such issues in mind, Burzykowski and Abrahantes (2005) presented a

robust alternative model for estimation of trial-level surrogacy in the presence of

estimation error; however, unlike R
2
adj, the surrogacy estimate resulting from this

model fails to have an analytical formula for the variance. Numerical problems

abound for trial-level mixed and random effects models more complex than those

described here, as is the case when a full random-effects model including trial-specific

10



intercepts is specified for the treatment effects. Options for model simplification

through consideration of “dimensions” along which simplifying assumptions may be

made, with the ultimate goal of obtaining model convergence and estimates of trial-

level surrogacy, were discussed by Tibaldi et al. (2003). However, the issue remains

that assumptions such as lack of error in estimation of the treatment effects and

common baseline hazards across trials are unlikely to be reasonable in practice.

2.2.3 Bayesian Model for Second Stage

Rather than abandon or avoid reasonable modeling assumptions for fear of

numerical problems with maximum likelihood estimation, we move the estimation

error-adjusted surrogacy problem for survival endpoints into a Bayesian framework,

with the goal of increasing stability of R2-type estimates. We find that both un-

adjusted and adjusted Bayesian estimates are always available across a range of

scenarios, including those where the desired classical adjusted measures often fail to

exist.

Using the maximum likelihood estimates obtained by fitting the copula model

at the first stage, we consider Bayesian estimation of the two trial-level models on the

treatment effects described above: the naive unadjusted model given by (2.3) and

(2.4) alone, and the adjusted mixed-effects model accounting for estimation error

given by (2.3) - (2.6).

In fitting the naive second-stage model to the estimated treatment effects from

the copula, we assume



�αi

�βi



 ∼ N2








α

β



 , D =




daa dab

dab dbb







 ,

and consider a vague multivariate normal prior on the mean treatment effects (α, β)

11



with mean zero and precision

P =




1.0× 10−6 0

0 1.0× 10−6



 .

We place a similarly vague Wishart(ρ,M) prior on the normal precision matrix D
−1,

with M = P and ρ = 2. After Markov chain Monte Carlo (MCMC) estimation of

posterior distributions for the model parameters, a posterior on R
2
un may be obtained

from the formula R
2
un = d

2
ab/daadbb.

The second-stage model adjusted for estimation error of the treatment effects

�αi and �βi is given by



�αi

�βi



 ∼ N2








αi

βi



 ,Ωi =




σaa,i σab,i

σab,i σbb,i







 (2.7)




αi

βi



 =




α

β



+




ai

bi



 (2.8)




ai

bi



 ∼ N2








0

0



 , D =




daa dab

dab dbb







 , (2.9)

where the error precisions Ω−1
i are fixed at their first-stage maximum likelihood es-

timates from the copula model, following Burzykowski et al. (2001). This model

assumes (�αi,
�βi) and (�αj,

�βj) are independent for i �= j, as it is not identifiable other-

wise. However, this is not an unrealistic assumption, as the between-trial elements

of the Hessian matrix estimated at the copula stage are equal to zero. We again

consider a vague multivariate normal prior on the mean treatment effects (α, β) and

place a vague Wishart prior on D
−1, the precision of the random effects. A posterior

for the adjusted surrogacy quantity R
2
adj is still given from the posterior for D by

the formula R
2
adj = d

2
ab/daadbb, where D denotes the covariance of the random effects

in the adjusted model.

12



It should be noted that the model for R
2
adj developed by Burzykowski et al.

(2001) and presented as (2.3) - (2.6) cannot be implemented using standard Bayesian

computing packages without slight modification. As such, we introduce the variabil-

ity of the copula-estimated treatment effects (�αi,
�βi) due to the random-effects co-

variance D through the model for the “true” treatment effects (αi, βi), as described

in (2.7) - (2.9) above.

2.3 Simulation Study

All simulations in this paper were performed with 500 iterations. At each iter-

ation, we use a two-stage data generation procedure to produce correlated Weibull

endpoints (Sij, Tij) for each of the ni patients within trial i, i = 1, ..., N . Next,

using the generated data, we fit the patient-level copula models to obtain maximum

likelihood estimates of the trial-specific treatment effects and corresponding preci-

sion matrices. These estimates are used to fit the second-stage models and arrive

at frequentist and Bayesian estimates of trial-level surrogacy. In particular, for each

scenario, we compute posterior distributions for R2
un and R

2
adj, as well as maximum

likelihood estimates and standard errors of R2
un for comparison. Frequentist esti-

mates of R2
adj are excluded from this simulation study, as they are almost always

numerically unavailable.

2.3.1 Data Generation

At the first stage of data generation, we obtain the regression coefficient vector

(µSi , µTi , αi, βi) for trial i from a multivariate normal distribution:





µSi

µTi

αi

βi





∼ MVN









µS

µT

α

β





,Σtrial =





dSS dST dSa dSb

dTT dTa dTb

daa dab

dbb









. (2.10)
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In determining the mean and covariance parameter elements of (2.10), we choose a

value of the true trial-level R2 from 0 < R
2
trial < 1, which in turn determines a fixed

value for dab in the covariance Σtrial by the relationship dab =
�

R
2
trialdaadbb. This is

due to the relationship R
2
trial = d

2
ab/daadbb used for surrogacy estimation. Additional

components of the multivariate normal mean and covariance above are based on

estimates from ACCENT, a collection of adjuvant therapy trials for colon cancer

(Sargent et al., 2005, 2007), for which we consider TTR as a potential surrogate for

OS.

At the second stage, we generate correlated Weibull survival times for each of

the ni patients in trial i. First, we use the fact that the Weibull distribution can

be expressed as a scale mixture of half-normals (Cowles, 2004). For example, if λ

and Y
∗ are independent random variables such that λ ∼ Exp(1), 0 < λ < ∞, and

Y
∗ ∼TruncatedN(0, 1), 0 < Y

∗
< ∞, then T = δ(Y ∗ ×

√
2λ)1/γ with 0 < δ < ∞,

0 < γ < ∞, will follow a Weibull distribution:

fT (t) =
γ

δ

�
t

δ

�γ−1

exp

�
−
�
t

δ

�γ�
, 0 < t < ∞.

In the expression above, δ contains the regression component and γ is a scale param-

eter. In our case, the regression components are given by δSij = exp(µSi +αizij) and

δTij = exp(µTi + βizij), where zij is the treatment indicator for the jth individual in

the ith trial.

A factor of investigation in our simulation study is the effect of strongly cor-

related overall survival (OS) and time-to-recurrence (TTR) versus uncorrelated OS

and TTR on trial-level surrogacy. To construct death times Tij and recurrence

times Sij which are strongly correlated at the patient level, we first generate the

random variates Y
∗
ij ∼ Truncated N(0, 1), λSij ∼ Exp(1), and λTij ∼ Exp(1)

for the ith patient in the jth trial. From these, patient-specific event times are

given by Sij = δSij(Y
∗
ij ×

�
2λSij)

1/γS and Tij = δTij(Y
∗
ij ×

�
2λTij)

1/γT . In this

case, use of a common value of Y ∗
ij induces a positive correlation between Sij and

14



Tij. Uncorrelated event times are constructed by first drawing separate random

variates Y
∗
Sij

∼ Truncated N(0, 1) and Y
∗
Tij

∼ Truncated N(0, 1), which are then

used with the variates λSij ∼ Exp(1) and λTij ∼ Exp(1) to produce event times

Sij = δSij

�
Y

∗
Sij

×
�

2λSij

�1/γS
and Tij = δTij

�
Y

∗
Tij

×
�

2λTij

�1/γT
. Endpoints gen-

erated to be uncorrelated in our scenarios in fact have a correlation very near zero,

while endpoints constructed to be strongly correlated have a correlation near 0.70.

For this paper, we generated data sets according to the scenarios of interest

found in Table 2.1. Due to computation time and numerous potential combinations

of factors, we begin our investigation by assessing each of the factors separately,

while holding all other factors fixed at “optimal” levels given by the first element

in each row above: R
2
trial = 0.90, 30 trials, 2000 patients per trial, no censoring,

strong correlation, and a large range of hazard ratios. Throughout, we assume

two treatment groups with equal allocation. For scenarios involving censoring, we

assume non-informative, uniform censoring, and we control the amount of censoring

on OS within each trial through the upper bound, kT0.5 of the Uniform(0, kT0.5)

distribution, where T0.5 is the median observed OS time in the trial and k is a chosen

constant. Because we control the ratio of median TTR times to median OS times

in the data generation process, the censoring rate for TTR is then naturally derived

from the censoring rate for OS. We control the range of hazard ratios across trials by

changing daa and dbb by a multiplicative factor at the first stage of data generation

given by (2.10). This produces the scenarios given in the last row of Table 2.1, where

we are interested to compare surrogacy across the cases when our trials yield a large

range of hazard ratios including 1, a small range of hazard ratios including 1, and a

small range of hazard ratios excluding 1.
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Table 2.1: Factors of interest and corresponding levels considered in the simulation study.

Factors Levels Explored in Simulations

Trial-level R2 for TTR, OS 0.90, 0.60, 0.20

Number of trials 30, 15, 5

Sample sizes within trials (equal) 2000, 1000, 500

Unequal trial sizes 100% at n = 2000

33.3% each at n = (500, 1000, 2000)

50% each at n = (500, 2000)

Censoring rate for OS 0%, 30%, 70%

Individual-level correlation Strong (correlation near 0.70)

Weak (correlation near 0)

Range of hazard ratios across trials Large (includes HR = 1)

Small (includes HR = 1)

Small (excludes HR = 1)

2.3.2 Estimation of Two-Stage Model

We estimate the first-stage model parameters by first constructing the likeli-

hood function, assuming Clayton copulas with endpoint-specific Weibull marginal

models for the true and surrogate endpoints within each trial, and a common copula

association parameter across trials. The likelihood is also rewritten for programming

purposes in terms of appropriately transformed parameters, so that each parameter

to be estimated has support over the entire real line. Maximum likelihood estimates

and numerically approximated information matrices may then be obtained for use

in second-stage frequentist and Bayesian estimation of trial-level surrogacy.

As we would like to compare maximum likelihood estimates of trial-level surro-

gacy with posterior estimates using the Bayesian approach, we obtain second-stage

frequentist estimates of R2
un by considering a generalized least squares representation

of the unadjusted model. For Bayesian estimation, we use the estimated treatment

effects and covariances across trials saved from the copula stage of estimation to fit

the unadjusted and adjusted second-stage models. In our MCMC algorithm, initial

values for mean parameters were set to zero, and identity matrices were used as ini-

tial values for covariance parameters. After checking that convergence diagnostics
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such as negligible autocorrelation were satisfied for each scenario, we saved posterior

sample chains of length 10,000 with a burn-in of 1,000 iterations. Because posterior

distributions for R2 are often skewed, we consider both the posterior mean and the

posterior median as estimators of trial-level surrogacy.

2.3.3 Results

Simulation results for the primary factors of interest listed in Table 2.1 are

presented numerically in Tables 2.2 and 2.3 and graphically in Figures 2.1 and 2.2.

Maximum likelihood estimates of R2
un, denoted by �R2

un in the tables, were used with

their estimated standard errors (Hotelling, 1953) across iterations to obtain esti-

mates of bias, mean-squared error (MSE), and coverage of 95% confidence intervals.

For the Bayesian unadjusted posterior means and medians, denoted by E(R2
un|D)

and Md(R2
un|D), respectively, we present estimates of bias, MSE, and coverage of

equal-tailed posterior 95% credible intervals for comparison with their frequentist

counterparts. We present similar summaries of estimation performance for the pos-

terior mean and median, E(R2
adj|D) and Md(R2

adj|D), of the trial-level surrogacy

measure based on the Bayesian model adjusting for estimation error. Box plots of

�R2
un, E(R2

un|D), Md(R2
un|D), E(R2

adj|D) and Md(R2
adj|D) are presented for assess-

ment of bias and variability across the 500 datasets generated at each simulation

setting.

Based on the results for the individual factors, many of which demonstrate an

advantage for the Bayesian adjusted measure as a factor is worsened (i.e., smaller

trials or smaller range of treatment effects), we performed a group of “secondary

simulations” where many factors were worsened simultaneously. In particular, we

consider simulated meta-analyses with 500 patients per trial, 70% censoring for OS,

weak patient-level correlation, and a small range of hazard ratios including HR = 1.

The only factor we varied was number of trials, again considering scenarios with 30,
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15, and 5 trials. These results are presented as the last section of Table 2.3 and in

the lower right plot of Figure 2.2.

In the simulation results presented in Tables 2.2 and 2.3, it is clear that

Bayesian R
2
adj demonstrates the best estimation performance across all the scenarios

considered. The greatest advantages in terms of bias and MSE for this measure are

exhibited when there are few trials, small trials, or trials of varying size, when the

censoring rate for OS is high, when patient-level correlation between OS and TTR

is low, or when the range of treatment effects across trials is small. Coverage of

95% equal-tailed intervals is also best for adjusted R
2 in these scenarios, with the

exception of N = 5 trials. Upon further investigation, we find that the precision

of adjusted R
2 estimates may become too small relative to their bias for N = 5,

producing intervals that exclude the true value. The posterior mean and median of

the adjusted surrogacy measures also perform better than the unadjusted measures

across all levels of true trial-level surrogacy, although their benefits do not change

as a function of surrogacy strength. The Bayesian unadjusted measures, based on

models with relatively flat priors, perform similarly to the maximum likelihood es-

timates. Small gains for the Bayesian approach to unadjusted surrogacy estimation

may be noted in most cases, however, when comparing �R2
un to Md(R2

un|D). Indeed,

within the Bayesian approach, the posterior median seems to be a better estimator

of trial-level surrogacy (unadjusted or adjusted) than the posterior mean when es-

timates are biased low, due most likely to the fact that posteriors for R2 are often

skewed. The graphical results of primary simulations in Figures 2.1 and 2.2 provide

additional motivating support for Bayesian R
2
adj, easily showing where its gains are

largest relative to the unadjusted measures.

In Figure 2.1, noticeable improvements in bias are demonstrated by Bayesian

R
2
adj measures over the unadjusted measures for a high level of censoring (70%) and

small trial size (500 patients per trial), with more modest improvements for low
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Table 2.2: Impact of trial characteristics on maximum likelihood estimates, �R2, Bayesian

posterior means, E(R2|D), and Bayesian posterior medians, Md(R2|D), for unadjusted

and adjusted measures of surrogacy of TTR for OS.

Surrogacy

Estimate Bias Coverage MSE Bias Coverage MSE Bias Coverage MSE

True Trial-Level Surrogacy
R

2 = 0.90 R
2 = 0.60 R

2 = 0.20

�R2
un -0.029 0.904 0.003 -0.015 0.946 0.015 0.026 0.952 0.016

E(R2
un|D) -0.032 0.908 0.004 -0.015 0.934 0.014 0.042 0.940 0.015

Md(R2
un|D) -0.026 0.908 0.003 -0.008 0.934 0.014 0.031 0.940 0.017

E(R2
adj |D) -0.024 0.912 0.003 -0.014 0.930 0.014 0.038 0.940 0.015

Md(R2
adj |D) -0.017 0.912 0.003 -0.005 0.930 0.015 0.028 0.940 0.017

Number of Trials
N = 30 N= 15 N = 5

�R2
un -0.029 0.904 0.003 -0.032 0.948 0.007 -0.049 0.974 0.029

E(R2
un|D) -0.032 0.908 0.004 -0.037 0.934 0.007 -0.057 0.844 0.026

Md(R2
un|D) -0.026 0.908 0.003 -0.024 0.934 0.006 -0.030 0.844 0.024

E(R2
adj |D) -0.024 0.912 0.003 -0.027 0.934 0.006 0.011 0.552 0.017

Md(R2
adj |D) -0.017 0.912 0.003 -0.014 0.934 0.005 0.031 0.552 0.015

Trial Size
2000 1000 500

�R2
un -0.029 0.904 0.003 -0.039 0.884 0.004 -0.074 0.698 0.009

E(R2
un|D) -0.032 0.908 0.004 -0.041 0.880 0.004 -0.077 0.708 0.010

Md(R2
un|D) -0.026 0.908 0.003 -0.035 0.880 0.004 -0.069 0.708 0.009

E(R2
adj |D) -0.024 0.912 0.003 -0.025 0.928 0.003 -0.046 0.874 0.006

Md(R2
adj |D) -0.017 0.912 0.003 -0.018 0.928 0.003 -0.037 0.874 0.005

Censoring Rate
0% 30% 70%

�R2
un -0.029 0.904 0.003 -0.056 0.802 0.007 -0.093 0.598 0.013

E(R2
un|D) -0.032 0.908 0.004 -0.059 0.806 0.007 -0.096 0.616 0.013

Md(R2
un|D) -0.026 0.908 0.003 -0.052 0.806 0.006 -0.088 0.616 0.012

E(R2
adj |D) -0.024 0.912 0.003 -0.045 0.870 0.006 -0.062 0.834 0.008

Md(R2
adj |D) -0.017 0.912 0.003 -0.037 0.870 0.005 -0.053 0.834 0.007

Mix of Trial Sizes
2000 (500, 1000, 2000) (500, 2000)

�R2
un -0.029 0.904 0.003 -0.045 0.872 0.005 -0.047 0.848 0.005

E(R2
un|D) -0.032 0.908 0.004 -0.048 0.880 0.005 -0.050 0.850 0.006

Md(R2
un|D) -0.026 0.908 0.003 -0.042 0.880 0.004 -0.043 0.850 0.005

E(R2
adj |D) -0.024 0.912 0.003 -0.028 0.924 0.003 -0.028 0.912 0.004

Md(R2
adj |D) -0.017 0.912 0.003 -0.020 0.924 0.003 -0.020 0.912 0.003
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Table 2.3: Impact of trial characteristics on maximum likelihood estimates, �R2, Bayesian

posterior means, E(R2|D), and Bayesian posterior medians, Md(R2|D), for unadjusted

and adjusted measures of surrogacy of TTR for OS.

Surrogacy

Estimate Bias Coverage MSE Bias Coverage MSE Bias Coverage MSE

Range of Hazard Ratios for OS Across Trials
Large, Includes HR = 1 Small, Includes HR = 1 Small, Excludes HR = 1

�R2
un -0.029 0.904 0.003 -0.208 0.118 0.053 -0.214 0.116 0.056

E(R2
un|D) -0.032 0.908 0.004 -0.210 0.120 0.053 -0.217 0.118 0.057

Md(R2
un|D) -0.026 0.908 0.003 -0.202 0.120 0.050 -0.208 0.118 0.053

E(R2
adj |D) -0.024 0.912 0.003 -0.110 0.574 0.030 -0.125 0.562 0.034

Md(R2
adj |D) -0.017 0.912 0.003 -0.093 0.574 0.028 -0.109 0.562 0.031

Individual-Level Correlation
Strong Weak

�R2
un -0.029 0.904 0.003 -0.051 0.836 0.005

E(R2
un|D) -0.032 0.908 0.004 -0.054 0.852 0.006

Md(R2
un|D) -0.026 0.908 0.003 -0.047 0.852 0.005

E(R2
adj |D) -0.024 0.912 0.003 -0.024 0.922 0.003

Md(R2
adj |D) -0.017 0.912 0.003 -0.016 0.922 0.003

Secondary Simulations - Number of Trials
N=30 N=15 N=5

�R2
un -0.843 0 0.715 -0.810 0 0.666 -0.646 0.490 0.483

E(R2
un|D) -0.815 0 0.668 -0.760 0 0.585 -0.554 0.222 0.346

Md(R2
un|D) -0.835 0 0.702 -0.792 0 0.637 -0.587 0.222 0.402

E(R2
adj |D) 0.026 0.358 0.020 -0.105 0.690 0.045 -0.325 0.964 0.120

Md(R2
adj |D) 0.065 0.358 0.019 -0.028 0.690 0.030 -0.283 0.964 0.104
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Figure 2.1: Boxplots comparing estimation performance of trial-level surrogacy measures

for primary simulation settings.
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Figure 2.2: Boxplots comparing estimation performance of trial-level surrogacy measures

for primary and secondary simulation settings.
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censoring and moderate trial size. In Figure 2.2, Bayesian R
2
adj shows less bias for

disparate trial sizes (15 trials each at n = (500, 2000)), and is the irrefutable winner

when a small range of treatment effects is present across trials–both when HR = 1

is included and when HR = 1 is excluded.

Moving away from the best-case scenarios toward those where multiple trial

characteristics are worsened simultaneously, we find tremendous advantages for

Bayesian R
2
adj. As expected, the increased bias and variability evident for the unad-

justed measures when only one trial characteristic is weakened becomes magnified

when factors are weakened in combination. The extremely high bias and MSE ob-

served for �R2
un is only slightly improved by consideration of the Bayesian counterparts

E(R2
un|D) and Md(R2

un|D), and all three measures have coverage equal to zero for

analyses based on 15 or 30 trials. Evidently, as shown in the lower-right plot of 2.2,

R
2
un becomes useless to detect a truly high level of surrogacy in meta-analyses with

far from ideal trial characteristics. This is an important discovery, as these scenarios

are arguably the most realistic considered in our study.

The estimation performance of Bayesian R
2
adj for these combination scenarios,

on the other hand, is only mildly affected by the combined worsening of all factors.

Bias and MSE are drastically lower for both E(R2
adj|D) and Md(R2

adj|D) compared

to the unadjusted measures, and while coverage is not acceptably close to 95% for

15 or 30 trials, it is far from zero. In the very worst scenario considered in this

paper – only 5 small trials with high censoring – Bayesian R
2
adj suffers considerably

in terms of bias and MSE, but not to the extent of the unadjusted measures. Fur-

thermore, coverages for E(R2
adj|D) and Md(R2

adj|D) are near 95%. Box plots of the

surrogacy estimates for the secondary simulations are displayed in the final window

of Figure 2.2. While the adjusted measures are certainly located nearer to the truth

of R2 = 0.90, it is interesting to note how the estimates pile up near 1 for a large

number of trials.
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This anomaly will become especially relevant when we estimate surrogacy for the

ACCENT trials in Section 2.4.

2.4 Application to Adjuvant Trials in Colon Cancer

2.4.1 ACCENT Data

In this section, we illustrate our methods with an example from colorectal can-

cer, the third most common cancer in the United States with approximately 145,000

new cases diagnosed every year (Sargent et al., 2007). When no interventions are

administered to patients with node-positive disease after primary resection, approx-

imately half will experience relapse and eventually die as a result of their disease.

Sargent et al. (2005) demonstrated that disease-free survival (DFS) with a median

of 3 years follow-up is a valid surrogate for overall survival (OS) with a median of 5

years follow-up in the adjuvant setting, based on a variety of graphical and statistical

approaches. Their trial-level surrogacy quantities, obtained by fitting marginal (in-

dependent) Cox models to each endpoint within each trial, included the coefficient of

determination from the weighted regression of hazard ratios for OS onto the hazard

ratios of DFS across trials. Later, Sargent et al. (2007) evaluated the surrogacy of

DFS at various lengths of median follow-up for 5 years of median follow-up on OS,

considering stage II and stage III disease both separately and in pooled analyses.

However, these previous meta-analyses for trial-level surrogacy did not adjust for

error in estimation of the treatment effects, due to the fact that these results were

numerically unavailable.

To address this issue, we demonstrate both unadjusted and adjusted surrogacy

estimation on trials provided by the Adjuvant Colon Cancer End Points (ACCENT)

Group (Sargent et al., 2005, 2007), which contain individual patient data from 18

randomized phase II and phase III trials for adjuvant therapy in colon cancer. These
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trials were conducted from 1977 to 1999, and collectively include 20,898 patients

assigned to 43 treatment arms, composed of 34 active treatment arms (with at

least one fluorouracil (FU)-based chemotherapy arm per trial) and 9 surgery-only

arms. In our analysis of these data, we consider only those ACCENT trials where

surgery-only arms serve as control to be compared with active treatment (trials

conducted from 1977 to 1989). We maintain the natural ordering of the control and

treatment arms in the original trial designs, and estimate surrogacy based on the

N = 9 two-arm comparisons or trial units which meet our criteria. Our analysis is

quite different from previous analyses of these data by Sargent et al. (2005), where

all available trials and pairwise comparisons to the control arm within each trial

were used to evaluate surrogacy of DFS for OS based on N = 25 trial-level units,

and where additional censoring was imposed to construct specific median follow-

up times for each endpoint. In our analysis, we use all available patient follow-up

for each endpoint without imposing censoring beyond what exists in the data, and

furthermore, we are only interested in the surrogacy of TTR for OS in the 9 two-arm

trials with surgery-only control arms.

For comparison, we also investigate whether the level of TTR surrogacy for OS

observed in the older ACCENT trials is consistent with surrogacy of TTR for OS in

a collection of newer ACCENT trials conducted from 1997 to 2002 (Sargent et al.,

2011), where all patients were treated with chemotherapy after surgical resection.

This meta-analysis is based on individual-level data from 12,676 stage II and III

colon cancer patients enrolled on 6 two-arm phase III adjuvant trials with a total

of 12 distinct treatment arms. While the control arms in the older ACCENT trials

considered in this paper are based on treatment with surgery alone, the 6 control

arms in the new ACCENT trials are based on standard-of-care 5-FU/LV regimens.

Experimental arms for the newer trials include two arms each of 5-FU/LV in com-

bination with oxaliplatin, 5-FU/LV in combination with irinotecan, and an oral
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Figure 2.3: Estimated treatment effects on OS vs TTR for the old ACCENT trials and

new ACCENT trials, weighted by trial size.

fluoropyrimidine. Furthermore, the median time from recurrence to death in the

newer ACCENT trials is 2 years, in contrast to a median recurrence-to-death of 12

months among the older ACCENT trials.

2.4.2 Analysis of TTR Surrogacy for OS

We may begin these analyses with a visual assessment of the relationship be-

tween copula-estimated treatment effect estimates for OS and TTR across trials by

scatterplots, presented in Figure 2.3 for both older ACCENT and newer ACCENT

datasets. There is a strong positive linear relationship evident between the treat-

ment effects on OS and the treatment effects on TTR for the 9 older ACCENT

trials with surgery-only arms, suggesting that the effect of treatment on TTR has

prognostic value for the effect of treatment on OS. While only 6 new ACCENT trials

are available, the relationship between the treatment effects in this case seems decid-

edly less strong, and perhaps slightly nonlinear in nature. Nonetheless, we proceed

with surrogacy estimation for each meta-analysis, assuming the treatment effects are

linearly related across trials.
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Just as for the simulation study presented in Section 2.3, we fit the first-stage

Weibull copula regression models to each meta-analysis and use the resulting treat-

ment effect estimates and precision matrices to fit both frequentist and Bayesian

second-stage models. We obtain maximum likelihood estimates and standard errors

of R2
un, as well as corresponding 95% confidence intervals, while similar estimates for

R
2
adj continue to be unavailable. As in the simulation study, we evaluate posterior

quantities based on MCMC chains of length 10,000 plus 1,000 burn-in iterations.

Bayesian posterior means and standard deviations for R2
un and R

2
adj were then com-

puted, along with concordance rates obtained by leave-one-out Bayesian prediction

of the effect of treatment on OS in a new trial given the treatment’s effect on TTR. In

this sense, the rate of concordance is given by the percentage of trials for which the

observed treatment effect on OS lies within the 95% equal-tailed credible interval for

the treatment effect when it is assumed unknown. For simplicity of presentation, and

due to posterior medians being uniformly higher than posterior means for both R
2
un

and R
2
adj in each meta-analysis, we consider only posterior means as more “conser-

vative” point estimates of true underlying surrogacy. Lastly, to demonstrate a more

general advantage of the Bayesian approach, we compute the posterior probability

that trial-level R2 is greater than a chosen threshold of 0.90 for both unadjusted and

adjusted measures within each ACCENT meta-analysis. These results are given in

Table 2.4.

2.4.3 Results: Unadjusted R
2

When considering the older ACCENT trials with surgery-only control arms

and all available patient follow-up, we find both Bayesian and classical estimates of

R
2
un are slightly less than 0.90 with standard errors near 0.08, indicating that TTR

would be a reasonably good surrogate endpoint for OS in trials of this kind. Both

95% confidence intervals and 95% credible sets for R2
un exclude surrogacy levels less
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Table 2.4: MLEs / posterior means, standard errors, 95% equal-tailed intervals, Bayesian

concordance, and Bayesian posterior probabilities for the surrogacy of TTR for OS in the

old and new ACCENT trials.

Estimator Estimate SE 95% Interval Concord P (R2
> 0.9)

9 Old ACCENT Trials

�R2
un 0.882 0.078 (0.535, 0.975) - -

E(R2
un|D) 0.872 0.086 (0.647, 0.972) 1.00 0.458

�R2
adj NA NA NA - -

E(R2
adj |D) 0.932 0.184 (0.187, 0.999) 0.56 0.867

6 New ACCENT Trials

�R2
un 0.377 0.342 (0.155, 0.905) - -

E(R2
un|D) 0.416 0.248 (0.006, 0.858) 0.67 0.010

�R2
adj NA NA NA - -

E(R2
adj |D) 0.935 0.179 (0.213, 0.999) 1.00 0.873

than 0.50, suggesting that poor surrogacy of TTR for OS in such trials is unlikely.

However, the posterior probability that R
2
un exceeds a “high surrogacy” threshold

of 0.90 is only 0.458, given the observed data. The Bayesian predictive concordance

of observed and predictive treatment effects is equal to 1.00 for the unadjusted

trial-level model, suggesting that 95% posterior predictive intervals for the effect of

treatment on OS are likely to contain the true treatment effect in a new trial, before

this effect might be observed.

The newer ACCENT trials, however, yield much lower estimates of unadjusted

trial-level surrogacy. Specifically, surrogacy of TTR for OS drops to 0.377 under

maximum likelihood estimation and to 0.416 for the Bayesian model. These point

estimates indicate poor surrogacy of TTR for OS in the new ACCENT trials, and we

also note that they are accompanied by much larger standard errors than estimates

from the older trials. Both 95% confidence intervals and 95% credible intervals for

R
2
un in the newer trials are so wide as to suggest both very poor and good surrogacy

are possible. However, the posterior probability that R
2
un exceeds 0.90 is very low

at 0.010, meaning that very high levels of surrogacy are unlikely. In combination,
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these results advise that TTR may be a poorer candidate surrogate for OS in newer

adjuvant trials than in older adjuvant trials, and furthermore, R2
un may be a poor

surrogacy measure to use in evaluation of potential surrogates for new trials in colon

cancer. Bayesian concordance of observed and predicted treatment effects on OS

based on the unadjusted trial-level model is also lower for the new ACCENT data.

2.4.4 Results: Bayesian Adjusted R
2

Encouraged by the performance of the adjusted Bayesian measures in our

simulations, we also compute estimates of trial-level surrogacy for the two ACCENT

analyses that are adjusted for estimation error of the treatment effects. While it is

certainly not surprising that the maximum likelihood estimates of R2
adj continue to

be numerically unavailable, we find the Bayesian posterior means of the adjusted

measures to be noticeably higher than the unadjusted estimators for both older and

newer ACCENT data sets.

For the older ACCENT trials, the posterior mean of R2
adj is 0.932, seemingly

indicating very good surrogacy. However, the standard deviation of the adjusted

measure for these trials is 0.184, resulting in a posterior more variable than the

posterior of the unadjusted measure. Thus, the increased surrogacy of TTR for OS

in these trials suggested by R
2
adj comes with the caveat of less posterior confidence in

such high surrogacy. Not surprisingly, a wide 95% credible interval for R2
adj results,

so that no strong conclusions can be made regarding the surrogacy of TTR for OS in

the older ACCENT trials. The posterior probability that R2
adj exceeds 0.90 is equal

to 0.87, demonstrating that unusual “piling up” of the posterior for R
2
adj near 1 is

occurring. Furthermore, concordance based on posteriors yielded by the adjusted

model is low at 0.56, suggesting the trial-level model adjusting for estimation error

of the treatment effects is worse than the unadjusted trial-level model at predicting

unobserved treatment effects on the true endpoint, OS.
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Turning to the newer ACCENT trials, the Bayesian adjusted surrogacy esti-

mate is also increased from the unadjusted estimates, and to a considerably large

extent. We find the posterior mean of R2
adj is 0.935, again suggesting very high

surrogacy of TTR for OS. This result seems counter-intuitive, given the apparent

lack of association among the copula-estimated treatment effects for the new AC-

CENT trials in Figure 2.3. Clearly, the instability of R2
adj we observed for a very

low number of trials in simulations is still at play, which would lead us to a con-

clusion regarding the surrogacy of TTR for OS in these trials that is quite likely to

be erroneous. Adding to this concern is a posterior probability that R
2
adj exceeds

0.90 which is equal to 0.873, reflecting that the posterior is “piling up” near 1 once

again. Although perfect concordance of observed and predicted treatment effects

on OS results from the adjusted trial-level model for the new ACCENT trials, a

rather large posterior standard deviation of 0.179 yields 95% credible intervals that

are likely too wide to be useful in determining trial-level surrogacy with accuracy.

2.5 Extension of the Bayesian Adjusted Model

Upon further exploration of the peculiar behavior of R2
adj, we determined that

the most influential component of the error-adjusted Bayesian model was not the

choice of prior distributions, but the scale of the fixed trial-specific error covariances

Ωi. In particular, we demonstrate the impact of the scale of Ωi on estimated R
2
adj

through reconsideration of each ACCENT analysis, as follows.

Assume that the trial-specific error covariances in (2.7) are no longer fixed to

their copula-stage estimates �Ωi as proposed by Burzykowski et al. (2001), but fixed

to re-scaled estimates �Ωi/c. On the precision scale, this corresponds to multiplying

the trial-specific error precision Ω−1
i by the same constant c. For each ACCENT

analysis, we consider c ∈ [1, 20] and display the posterior mean of R2
adj as a function

of c in the left panel of Figure 2.4.
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Figure 2.4: Left: Posterior means of R2
adj as a function of multiplicative constant c for

Ω
−1
i , c ∈ [1, 20], old (—) and new (- - -) ACCENT trials. Right: Posterior means of R2

adj
as a function of lower bound k1 of the uniform(k1, 100) prior for c, k1 ∈ [1, 20], old (—)

and new (- - -) ACCENT trials.

When c is equal to 1, the usual scale for Ωi proposed by Burzykowski et al.

(2001) is obtained, and the estimates of R
2
adj correspond to the entries in Table

2.4. Here, by assuming Ωi = �Ωi, we are fixing the variability of the error terms in

(2.3) to be equal to the full variance-covariance of the treatment effect estimates

approximated by maximum likelihood in the first-stage model. The high level of

variability of the error terms forced by setting c = 1 may be too large. Furthermore,

values of c less than 1 are implausible, as they represent cases in which the estimation

error variance exceeds the total estimated variance of the treatment effects. Thus, we

proceed by considering values of c that are greater than 1. By c = 2, the posterior

mean of R
2
adj has returned (albeit rather abruptly) to a more plausible level of

surrogacy for the older ACCENT trials. The new ACCENT trials, however, continue

to yield inflated adjusted surrogacy estimates until approximately c = 10. At this

point, one would assume the variability of estimation error is one-tenth the variability

of the estimated treatment effects. Perhaps this smaller ratio is reasonable for the

new ACCENT trials, where the total variability of each treatment effect estimate

is estimated to be quite large (due to a small number of trials and low correlation
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Figure 2.5: Posterior distributions of R2
adj for fixed c = 12 (—) and c ∼uniform(12,100)

priors (- - -) for the old and new ACCENT datasets.

of treatment effects across trials). As c → ∞, the increasing error precisions cΩ−1
i ,

in combination with assumed zero mean error, forces the trial-specific error terms

(�a,i, �b,i) to zero (estimation error is no longer present). It should come as no surprise,

then, that the estimates of R2
adj become unadjusted in this limit. Indeed, for c = 20,

the posterior means of R2
adj for each analysis are nearly equal to the posterior means

of R2
un.

It seems reasonable to conclude, then, that fixing c and thus Ωi in the model

for R2
adj may be misleading, especially for blindly chosen values of c too close to 1.

Thus, a logical next step in our Bayesian approach is to place a prior distribution

on c, rather than choosing any single fixed value. If we specify c ∼ uniform(k1, k2),

the choice of lower bound k1 is undoubtedly more important than the choice of

upper bound k2, given what we learned in the left panel of Figure 2.4. We therefore

proceed with this example by setting k2 = 100, and observing R
2
adj estimates for

each ACCENT analysis as k1 varies from 1 to 20. These results are provided in the

right panel of Figure 2.4.

By comparing R
2
adj estimates presented in each plot of Figure 2.4, we find that

allowing c to vary through a prior distribution has the primary effect of contributing

additional noise to surrogacy estimation. Indeed, the curves are generally quite

32



Table 2.5: Posterior means, standard errors, and 95% equal-tailed intervals for R2
adj and

R
2
adj,c with c = 12 and c ∼uniform(12,100), for the old and new ACCENT trials.

Estimator Mean SE 95% Interval Mean SE 95% Interval

9 Old ACCENT Trials 6 New ACCENT Trials

R
2
adj |D 0.932 0.184 (0.187, 0.999) 0.935 0.179 (0.213, 0.999)

R
2
adj,c|D, c = 12 0.870 0.090 (0.635, 0.972) 0.466 0.279 (0.006, 0.994)

R
2
adj,c|D, c ∼ uniform(12, 100) 0.875 0.084 (0.657, 0.972) 0.456 0.255 (0.008, 0.886)

similar; assigning a reasonable scale to the error covariances Ωi, say by setting c = 12,

yields R2
adj estimates not unlike those obtained by choosing a lower bound of k1 = 12

for the uniform prior on c. This suggests that placing a prior distribution on c may

be unnecessary, so long as one has an idea of a reasonable scale on which to fix

the error covariances. To confirm this, we plot the old and new ACCENT posterior

distributions for R2
adj with c = 12, overlaid with posterior distributions for R2

adj where

c was given a uniform(12, 100) prior (Figure 2.5). Other than possibly eliminating

some residual posterior probability near 1, the decision to place a prior on c makes

little inferential difference for the new ACCENT analysis. Perhaps due to the small

number of trials, or the weak correlation of estimated treatment effects across trials,

no strong conclusions can be made regarding the error-adjusted surrogacy of TTR for

OS. For the older ACCENT trials, the two posteriors are indistinguishable; giving c a

prior distribution offers no advantages over simply choosing a reasonable scale for the

error covariances relative to the data. Furthermore, we learn that the surrogacy of

TTR for OS is quite likely to be high for these trials, given the observed data. This

conclusion is consistent with existing knowledge and previous surrogacy analyses

using these trials. These results are presented numerically in Table 2.5, where they

may be compared with the naive estimates of R2
adj presented in Section 2.4.
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CHAPTER THREE

Bayesian Adaptive Trial Design for a Newly Validated Surrogate Endpoint

3.1 Introduction

In perhaps the most widely cited article in the surrogate endpoints literature,

Prentice (1989) defined a surrogate endpoint as “a response variable for which a test

of the null hypothesis of no relationship to the treatment groups under comparison

is also a valid test of the corresponding null hypothesis based on the true endpoint.”

This definition, accompanied by a set of criteria proposed for the validation of such

endpoints, inspired a wealth of subsequent work in this area as well as practical and

theoretical debates which still persist today. Aside from its technical purpose, how-

ever, Prentice’s definition reminds us that the ultimate goal of extensive surrogacy

evaluation is the eventual use of a validated surrogate as the primary endpoint in a

future trial.

While no single evaluative approach is universally accepted across all endpoint

and disease types, a number of endpoints demonstrating consistently good surrogacy

in particular settings have recently been identified and approved for primary use in

future trials by regulatory authorities. Within the setting of adjuvant therapy in

colon cancer, Sargent et al. (2005) demonstrated that disease-free survival (DFS)

with 3 years median follow-up is a valid surrogate for 5 years median follow-up on

overall survival (OS). This decision was not based on any single evaluative test of

surrogacy, but on the potential surrogate’s consistently good performance across

an array of graphical and statistical checks that utilized patient-level historical data

from multiple similar trials. In the setting of advanced colorectal cancer, progression-

free survival was similarly validated as a surrogate for overall survival (Yothers,

2007). In the spirit of these recent developments, Shi and Sargent (2009) provided
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a list of oncologic therapies which received regulatory approval based on trials using

surrogate endpoints. As many authors in this area of literature have noted (see,

for example, Burzykowski et al. (2001)), any validation process should include a

formal assessment of the strength of association between treatment effects on the

clinical and candidate surrogate endpoints across similar trials, in addition to simple

within-trial correlative assessment of the endpoints themselves.

Even after a surrogate endpoint has been deemed “valid” for primary use in a

future trial, however, a healthy skepticism should remain regarding the surrogate’s

ability to reflect the true treatment effect that would be observed given full follow-up

on the clinical endpoint. Such caution is warranted for several reasons, including (1)

agents for future testing may have different mechanisms of action; (2) improvement

in outcomes outside of the specific treatments being tested are (one hopes) inevitable;

and (3) each trial enrolls different patient mixes, which may impact disease natural

history and/or relationships between endpoints. Though skepticism regarding a new

primary endpoint seems reasonable for both clinical and regulatory purposes, few (if

any) efforts have been made to formalize existing knowledge and uncertainty in the

design of a future clinical trial where a validated surrogate takes on its intended role.

This new trial should use the surrogate endpoint (which may be observed earlier or

more often among patients) as the primary endpoint to establish efficacy, so that

the benefits of having validated the endpoint may be reaped. At the same time,

the fact that the new primary endpoint is really a surrogate, and perhaps only a

recently-validated one, should not be ignored in the design of the trial.

We propose a trial design which adaptively checks accumulating data for con-

sistency with relationships expected from the surrogacy validation process based on

similar trials. At prospectively-defined checkpoints, we assess the performance of

the surrogate and decide whether it should continue to be used to measure the effect

of treatment. If the surrogate is behaving in the expected manner, we continue to
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use it as the primary endpoint as the trial progresses to the next checkpoint; oth-

erwise, we adaptively switch consideration back to the original clinical endpoint for

the duration of the trial. Furthermore, at each checkpoint, we also check for early

efficacy, inferiority, or futility of the experimental treatment arm compared to con-

trol, based on the primary endpoint at that time. If any of these conditions are met

with adequate precision, we stop accrual, and thus avoid continuing a trial that is

unnecessarily long, unnecessarily large, probably futile, or needlessly exposing many

of its patients to a regimen which is likely to be inferior to a standard-of-care con-

trol. When faced with insufficiently precise information to establish early efficacy,

inferiority, or futility, we continue accrual to the next prospectively-designed check-

point. If a maximum number of patients are allowed to accrue and given reasonable

follow-up, we compute a final measure of clinical benefit based on either a trusted

surrogate or the original clinical endpoint.

The remainder of the chapter evolves as follows. In Section 3.2, we describe

a Bayesian model for summarizing the relationship between treatment effects on

the surrogate and clinical endpoints from multiple historical trials – the same re-

lationship which previously validated the surrogate, and which we will reference

during the new trial. We describe the design of this trial in Section 3.3, including

its adaptive handling of efficacy, inferiority, futility, and expected surrogacy. Section

3.4 presents simulations for Type I error, power, and surrogacy discrimination com-

pared to a standard O’Brien-Fleming approach (O’Brien and Fleming, 1979), while

Section 3.5 demonstrates the new trial design using patient-level data from actual

trials and a historically-validated endpoint in colon cancer (Sargent et al., 2005).

3.2 Bayesian Model for Historical Trials

Assume that a surrogate endpoint S has been validated to replace a primary

clinical endpoint T based on a collection of historical trials indexed by i ∈ {1, ..., N}.
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We further assume that S and T are time-to-event endpoints, as is often the case

when a surrogate endpoint is desired, but the ensuing development is similar for

endpoints of other types. Denote by Z the treatment assignment, where Z = 1 for

experimental and Z = 0 for control. For historical trials containing more than one

experimental arm, pairwise comparisons to the control arm may be required.

Many parametric and semi-parametric survival models exist, and for a given

endpoint, only one such model may be appropriate. For our purposes, we assume

both S and T follow Weibull(r, µ) distributions parameterized according to

f(x|r, µ) = µrx
r−1 exp(−µx

r),

where x > 0 and µ, r > 0. Further assuming unique baseline hazard functions

for each trial and endpoint, the surrogate and clinical endpoints for patient j ∈

{1, ..., ni} from trial i are modeled as

Sij ∼ Weibull(rSi , µ
S
ij) (3.1)

and Tij ∼ Weibull(rTi , µ
T
ij), (3.2)

where r
S
i and r

T
i are trial-specific shape parameters, and regressors zij and corre-

sponding coefficients αi and βi are introduced through trial and patient-specific scale

parameters µ
S
ij = exp(γS

i + αizij) and µ
T
ij = exp(γT

i + βizij). Under this parame-

terization, median times until S and T for treatment arm Z in trial i are given

by

m
S
i,z = {log(2) exp[−(γS

i + αizij)]}1/r
S
i

and m
T
i,z = {log(2) exp[−(γT

i + βizij)]}1/r
T
i .

While joint modeling of S and T by copulas may be ideal for purposes such as sur-

rogacy evaluation (Burzykowski et al., 2001), we choose marginal models to prevent

unwanted learning between the endpoints (and treatment effects) within each trial.
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Treatment effect estimates for each trial and endpoint may be obtained by maximum

likelihood estimation, or alternatively, through Markov chain Monte Carlo (MCMC)

estimation within a Bayesian framework (see Carlin and Louis (2009), Sec. 3.4).

Given that a linear theoretical relationship between αi and βi is reasonable,

we assume



αi

βi



 ∼ N2








α

β



 ,Σ =




σaa σab

σab σbb







 , (3.3)

which induces a regression line for αi given βi with intercept δ0 = α − βσab/σbb

and slope δ1 = σab/σbb. Straightforward extensions are possible for treatment effect

pairs (αi, βi) showing a nonlinear relationship. Using vague prior distributions on

(α, β) and Σ, we obtain posterior distributions summarizing what is known about

the relationship of treatment effects across the historical trials, quite possibly the

same relationship that led to the validation of S as a surrogate endpoint for T .

3.3 Bayesian Adaptive Design

Given the model presented in Section 3.2 relating treatment effects on S and T

across similar historical trials, we now describe the design of a future trial, indexed

by i = N + 1, which uses the newly-validated surrogate endpoint S as the primary

endpoint. In the context of a Phase III trial, we expect S to be the endpoint used to

establish efficacy of the experimental treatment for regulatory purposes. This new

trial will monitor the effect of treatment on both S and T , though in general, more

events may be expected to occur (and occur earlier) for S than for T , hence the

desirability of S as a surrogate for T . Any information accumulating for T will be

used adaptively to assess the performance of the surrogate endpoint S throughout

the trial, but will not influence the assessment of treatment effect on S.

Bayesian adaptive designs have been the subject of much recent research in-

terest; see e.g., the textbook by Berry et al. (2010) for an overview and reference

38



list. In our trial, at various prospectively-defined interim check points, we check for

consistency of accumulating information regarding the current trial’s treatment ef-

fects, (αN+1, βN+1), with their expected relationship based on (3.3). Given that the

observed relationship between αN+1 and βN+1 at any time point is consistent with

past experience, we proceed to check αN+1 for early efficacy and inferiority based

on pre-specified posterior thresholds. If either reason for early stopping of the trial

cannot be established, we check for futility of the trial based on the predictive prob-

ability of trial success (an efficacious treatment), before continuing accrual to the

next interim checkpoint. If, on the other hand, the relationship between αN+1 and

βN+1 is inconsistent with that given by (3.3), we adaptively switch to consideration

of T (and βN+1) for establishing early efficacy, inferiority, or futility. We assume up

to K interim checks during the trial, which we index by k = 1, ..., K. The timing

of checkpoints is generally associated with specific levels of accrual or percentages

of observed (uncensored) events, so that stopping the trial early at any point may

have the effect of decreasing overall sample size.

Though adaptive randomization could be considered (see Berry et al. (2010),

Section 4.4), we maintain equal allocation to each of two treatment arms, and collec-

tively denote the historical trials’ data by Dh and the new trial’s currently accrued

patient data by Dk. We continue to assume that SN+1,j and TN+1,j, j = 1, ..., nN+1

follow Weibull distributions as in (3.1)-(3.2), but the same design may be easily

implemented using other endpoint models. Enrolled patients not experiencing an

event S or T by time k will be right-censored at their present length of follow-up for

that endpoint. At a given checkpoint k, using vague priors and MCMC sampling

to estimate the parameters of (3.1)-(3.2) for trial i = N + 1, we may obtain pos-

terior distributions on the treatment effects αN+1 and βN+1 given current data Dk.

In particular, for independent priors αN+1 ∼ N(µ0,α, σ
2
0,α), γ

S
N+1 ∼ N(µ0,γS , σ

2
0,γS

),

and r
S
N+1 ∼ Exp(λS

0 ), the joint posterior for (αN+1, γ
S
N+1, r

S
N+1) given data Dk on
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currently enrolled patients j ∈ {1, ..., nk
N+1} is proportional to the data likelihood

times the joint prior,

π(αN+1, γ
S
N+1, r

S
N+1|Dk) ∝ L(αN+1, γ

S
N+1, r

S
N+1|Dk)p(αN+1)p(γ

S
N+1)p(r

S
N+1)

∝
nk
N+1�

j=1

��
µ
S
N+1,jr

S
N+1(sN+1,j)

rSN+1−1
�νj

exp
�
−µ

S
N+1,j(sN+1,j)

rSN+1

��

× exp

�
−λ

S
0 r

S
N+1 −

1

2

��
αN+1 − µ0,α

σ0,α

�2

+

�
γ
S
N+1 − µ0,γS

σ0,γS

�2
��

.

Here, µ
S
N+1,j is defined as in (3.1), and νj is a censoring indicator equal to 1 if

the jth individual has experienced event S prior to checkpoint k, and equal to 0

otherwise. The joint posterior π(βN+1, γ
T
N+1, r

T
N+1|Dk) associated with endpoint T

may be derived similarly. For early interim checks, the variability in one or both of

these posteriors may be large, and this uncertainty will be formally incorporated in

any of the following adaptive decisions.

At a given checkpoint k, we adaptively assess the progress of trial i = N + 1

according to the following algorithm:

Algorithm 3.1 (Adaptive Design for a Surrogate Endpoint)

Step 1. Surrogacy: Assess the consistency of (αN+1, βN+1) with the historical

relationship given by (3.3). Denote by π(αN+1|Dk) the current posterior for

the treatment effect on S in the new trial, and denote by π(E(αN+1|βN+1)|Dh, Dk)

the current posterior for the expected treatment effect on S, given both the

effect on T in the new trial and historical uncertainty from (3.3). If these

posteriors overlap in probability to a degree less than Psurr, discontinue

consideration of the surrogate endpoint for the remainder of the trial, and

perform Steps 2 through 4 using the treatment effect βN+1 for the endpoint

T (skipping Step 1 at subsequent checkpoints). Otherwise, if π(αN+1|Dk)

and π(E(αN+1|βN+1)|Dh, Dk) overlap to a degree greater than or equal to
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Psurr, continue with S as the primary endpoint, and perform Steps 2 through

4 using αN+1.

Step 2. Efficacy: Check for early efficacy by computing the posterior proba-

bility that αN+1 (or βN+1)) is less than 0, assuming an efficacious treatment

extends the time to event endpoint. If P (αN+1 < 0|Dk) > Peff (good sur-

rogacy) or P (βN+1 < 0|Dk) > Peff (rejected surrogacy), where Peff is some

chosen threshold, stop the trial for early efficacy. Otherwise, continue to

Step 3.

Step 3. Inferiority: Check for early inferiority by computing P (αN+1 >

0|Dk) (or P (βN+1 > 0|Dk) under rejected surrogacy), assuming an inferior

treatment reduces the time to event. If the posterior probability of inferiority

of the experimental arm is greater than some threshold Pinf , stop the trial

for early inferiority. Otherwise, continue to Step 4.

Step 4. Futility: Check for early futility by computing the empirical prob-

ability of trial success (the experimental treatment is efficacious) given full

accrual to nN+1 and sufficient follow-up. In this case, eventual success

is determined using a posterior predictive method: random samples from

the joint posterior π(αN+1, βN+1, γ
S
N+1, γ

T
N+1, r

S
N+1, r

T
N+1|Dk) at the current

checkpoint k are used to simulate event times for patients that would be ob-

served if the trial were to continue to a pre-determined maximum length. If

the updated posterior probability of efficacy after some minimum follow-up

for the last hypothetical patient enrolled is greater than Peff , the trial is

considered a success. The empirical probability of trial success, computed

over the random draws from π(αN+1|Dk) (or π(βN+1|Dk)), is compared to

Pfut. The trial only continues to the next checkpoint k if this probability is

greater than Pfut.
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If the final interim checkpointK is reached and the decision is made to continue

enrollment, the trial proceeds to full accrual at the pre-set maximum sample size

nN+1 determined by the sponsor. Generally, a final analysis of treatment benefit

is performed after some minimum follow-up period on the last patient enrolled, so

that some scientific contribution to the trial exists for every patient (Berry et al.

(2010), p. 223). This final analysis consists of Steps 1-3 if the surrogate endpoint is

still in use, or Steps 2-3 if the surrogate endpoint has been previously rejected. At

the trial’s end, we remain interested in both the surrogate endpoint’s performance

and effect of treatment after full accrual. The conclusions made with respect to the

effect of the experimental treatment on final active outcome (S or T ) will be those

presented to regulatory authorities, assuming a Phase III confirmatory trial is being

conducted. If the endpoint S is indeed a good surrogate for T , we might expect the

information on the effect of treatment to be more precise for S than for T , as more

observations on S were likely possible.

3.3.1 Checking Surrogacy

We now describe implementation of Step 1 from Algorithm 3.1 in more detail,

for a given interim checkpoint k. Having obtained posterior distributions π(δ1|Dh)

and π(δ0|Dh) for the slope and intercept, respectively, of the historical relationship

between treatment effects on S and T (as described in Section 3.2), we compute

the conditional posterior we expect for the current trial’s treatment effect on S,

given the current trial’s treatment effect on T , denoted π(E(αN+1|βN+1)|Dh, Dk).

This may be computed using posterior samples from each of π(δ1|Dh), π(δ0|Dh),

and π(βN+1|Dk), according to the historical fixed relationship E(αi|βi) = δ0 + δ1βi.

Thus, to determine whether the behavior of the surrogate endpoint in the current

trial is in agreement with historical trials, we approximate the amount of posterior
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overlap by computing

2min{P (αN+1 < δ0 + δ1βN+1|Dh, Dk), P (αN+1 > δ0 + δ1βN+1|Dh, Dk)}. (3.4)

Assuming π(αN+1|Dk) and π(E(αN+1|βN+1)|Dh, Dk) are approximately symmetri-

cally distributed, the multiplier 2 in (3.4) is required as roughly half of posterior

samples within the region of overlap will be detected for a given inequality direc-

tion. Perfect surrogacy exists in those situations where the posterior means of αN+1

and E(αN+1|βN+1) coincide; that is, when symmetry is present and E(αN+1|Dk) =

E[E(αN+1|βN+1)|Dh, Dk]. If the empirical amount of overlap is greater than Psurr,

we conclude based on available information that there is no reason to believe the

surrogate is performing poorly; in other words, the current posterior distribution

for αN+1 is centered along the regression line evaluated where posterior mass for

βN+1 is currently located. Otherwise, if π(αN+1|Dk) and π(E(αN+1|βN+1)|Dh, Dk)

overlap very little, we learn that the surrogate and former clinical endpoints are not

relating in the historically-expected way in the current trial, and thus the surrogate

endpoint should not be trusted. In general, we choose Psurr to be quite small (say,

0.10 or less), relying on the fact that the surrogate has been previously validated and

rejection of a surrogate mid-trial should be difficult. Lingering uncertainty regard-

ing the validating relationship will manifest itself in wider posteriors for δ0 and δ1,

which will also serve to make a surrogate more difficult to reject. When dissimilar

posterior distribution shapes are present, a measure of shared posterior information

more formal than (3.4) may be required. For example, Kullback-Leibler divergence

(Kullback and Leibler, 1951) may be used to estimate the information shared by

π(αN+1|Dk) and π(E(αN+1|βN+1)|Dh, Dk), either based on closed forms if available,

or analytical approximations otherwise.

Although this design combines past and present sources of uncertainty in order

to evaluate surrogacy, it is important to note that it also explicitly (and correctly)

prohibits Bayesian learning between the collection of historical trials indexed by
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i ∈ {1, ..., N} and the current trial, indexed by i = N + 1. Prior to the new

trial, information is shared across similar historical trials in estimating parameters

of (3.3), or equivalently, in confirming the trial-level surrogacy which previously

validated S for T . This historical snapshot of the surrogacy relationship across

trials, as well as posterior uncertainty for the slope δ1 and the intercept δ0 that

summarize this relationship, are considered fixed prior to and during the new trial

that uses S as a primary endpoint. In other words, data accumulated during the

new trial do not inform or update the posteriors from the historical model (3.3), as

this would undermine interim checks for surrogacy. Likewise, posterior information

from fitting (3.3) to historical treatment effects is not used to inform estimation of

the treatment effects αN+1 and βN+1 in the new trial. Thus, while we adaptively

monitor the surrogacy of S for T in the new trial for consistency with historical

trials, any conclusions made with respect to the intervention (efficacy, inferiority,

or futility) may still be regarded as independent from historical information for

regulatory purposes.

3.4 Simulation Study

As is generally the case for trials designed with Bayesian adaptive stopping

rules, frequentist operating characteristics such as Type I error and power are most

conveniently assessed through simulation studies. We note that our simulation set-

tings were intentionally chosen to reflect characteristics of actual trials presented in

the data analysis of Section 3.5. Throughout, we assume fixed historical validation

data in the form of treatment effects (αi, βi), i = 1, ..., 25 arising from model (3.3)

with mean (α, β) = (−0.5,−0.5), variances σaa = σbb = 1, and covariance σab = 0.95.

These specifications correspond to a historical slope of 1, historical intercept 0, and

historical correlation across treatment effect pairs equal to 0.95. We assume this

strong relationship previously played a role in validating S as a surrogate for T ,
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Figure 3.1: Scatterplots of historical treatment effect pairs (αi, βi), i ∈ {1, ..., 25}, for the
simulated historical trials (left) and the ACCENT trials (right). The simulated effects

are superimposed on an image plot of the bivariate normal density from which they were

sampled, while the ACCENT effects are superimposed on an image plot of the bivariate

normal distribution estimated from model (3.3) and weighted by the square root of trial

size. Regression lines based on E(δ0|Dh) and E(δ1|Dh) from model (3.3) fits are included

for each case, where Dh collectively denotes data from the historical trials. The position

of each ACCENT treatment effect pair is based on the original trials with all available

patient follow-up, while the symbol for each treatment effect pair denotes the conclusions

that would have been reached had the trial been performed according to our adaptive

design or an O’Brien-Fleming design.

perhaps by a meta-analytic surrogacy measure such as R2
trial, which is theoretically

equal to 0.9025 in this case (see Burzykowski et al. (2001) for a discussion of R2
trial).

A scatterplot of simulated treatment effect pairs from the historical trials, (αi, βi),

superimposed on a contour plot of their underlying bivariate normal distribution, is

presented in the left window of Figure 3.1.

After generating 25 random treatment effect pairs (αi, βi) from (3.3) as speci-

fied above, we estimate the parameters of the same model – which we now assume to

be unknown – using MCMC with vague prior distributions. In particular, we place

N(0, τ = 0.0001) priors on each of the mean parameters (where τ is the precision,

or reciprocal of the variance), and we choose a Wishart(2,M) prior for the precision

matrix Σ−1, where M is a diagonal matrix with diag(M) = (10−6
, 10−6). We acquire
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posterior sample chains of length 10,000 for each parameter, after a burn-in of 1,000

iterations. With these samples, we derive posteriors for the slope δ1 and intercept

δ0 of the regression line induced by model (3.3), which remain fixed throughout our

simulations and will be referenced as we assess surrogacy in the new trial.

3.4.1 Data Generation and Settings

While the posterior uncertainty for δ0 and δ1 derived from fitting model (3.3)

remains fixed throughout our simulations, we vary some characteristics of the new

trial in order to assess the operating characteristics of its design. We continue to

assume that S and T follow Weibull distributions parameterized as in (3.1)-(3.2),

and consider a maximum sample size of n = 2000 patients with equal allocation

to two treatment arms. Throughout, we fix r
S
N+1 = r

T
N+1 = 2, but common shape

parameters need not be assumed; indeed, we relax this assumption in the data

analysis of Section 3.5. At the top level of the simulation, we specify true median

event times mS
N+1,0 and m

T
N+1,0 associated with the control group (Z = 0) for each

endpoint in the new trial, as well as true improvement ratios of the experimental over

control groups (in terms of median event times) for each endpoint. We denote these

true improvement ratios by ∆S and ∆T . Together, the specified shape parameters,

baseline median event times, and improvement ratios determine the true underlying

Weibull regression parameters according to the following equations:

γ
S
N+1 = − log[(mS

N+1,0)
rSN+1/ log(2)] αN+1 = − log[(∆S)

rSN+1 ]

γ
T
N+1 = − log[(mT

N+1,0)
rTN+1/ log(2)] βN+1 = − log[(∆T )

rTN+1 ].

These in turn determine the true scale parameters (regression components) given

by µ
S
N+1,j = exp(γS

N+1 + αN+1zN+1,j) and µ
T
N+1,j = exp(γT

N+1 + βN+1zN+1,j) for

j = 1, ..., nN+1.

For each scenario and endpoint, we generate random event times for patient j

in trial i = N+1 by SN+1,j ∼ Weibull(rSN+1, µ
S
N+1,j) and TN+1,j ∼ Weibull(rTN+1, µ

T
N+1,j),
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with shape and scale parameters fixed at their true values. As an alternative, one

could first generate parameter values from highly informative “design priors” cen-

tered at the true values, and use these in turn to generate random Weibull data (see,

for example, Berry et al. (2010), p. 72). Motivated by the assumed prior validation

of S as a surrogate for T , we only consider the likely situation where S is known to

have an earlier median event time than T in the control arm. Specifically, we choose

m
S
N+1,0 = 350 days and m

T
N+1,0 = 700 days.

At this stage, we also generate random accrual dates for each patient according

to a discrete uniform(1, b) distribution, where b is chosen to be twice the true median

event time for T in the control group. While this choice of b may seem arbitrary,

it ensures that both early stopping rules and the use of a surrogate remain useful.

Accrual dates are assumed unrelated to treatment assignment, so at any interim

checkpoint k, we expect approximately equal enrollment in each treatment arm.

Throughout the simulation studies, we define 3 interim checkpoints to be the dates

on which 25%, 50%, and 75% of patients have experienced events. Trials which

continue beyond the third checkpoint have final analyses after 100% of patients have

experienced events. In the data analysis of Section 3.5, timing of checkpoints and

final analyses will be adapted for trials with a high level of censoring throughout.

With the Weibull shape parameters and true median event times fixed in each

simulation, we focus primarily on the effect of varying the improvement ratios ∆S

and ∆T . When ∆S = ∆T = 1, we have good surrogacy in the new trial, but no

improvement in the experimental arm over the control arm (Type I error case).

When ∆S = ∆T �= 1, we continue to have good surrogacy, but now with efficacy or

inferiority of the experimental treatment (power case). In cases where ∆S �= ∆T ,

the treatment effects αN+1 and βN+1 will be discordant, no longer falling along the

regression line induced by model (3.3), indicating poor surrogacy. We study a range

of cases where ∆S and ∆T agree, representing the trial’s operating characteristics
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assuming good surrogacy of S for T . Similarly, we consider cases where ∆S and ∆T

disagree, and where reliance on S to determine a treatment’s benefit could lead to

an erroneous conclusion.

We perform R = 100 replications (hypothetical trials) for each scenario, which

are described in Table 3.1. At each checkpoint k reached within a simulated trial, we

estimate the parameters of models (3.1) and (3.2) using available data on currently

accrued patients. If the endpoint S was not already rejected at an earlier checkpoint,

we check check its surrogacy for T and decide to continue trusting S or switch

consideration to T . At the same checkpoint, we may also stop the trial for early

efficacy, early inferiority, or likely futility based on the current endpoint. If none of

the stopping rules are met, we continue accrual to the next prospectively-designed

checkpoint. Throughout, these decisions are based on rather conservative posterior

thresholds given by Psurr = 0.01, Peff = 0.99, Pinf = 0.99, and Pfut = 0.05, though

one could choose less conservative bounds as the trial progresses. For regulatory

purposes, we use N(0, 0.0001) priors on the treatment effects αN+1 and βN+1, but

choose more informative priors for δS and δ
T (centered at true values) to focus our

estimative power on the parameters of interest. In each case, we obtain posterior

samples of length 10,000 after 1,000 burn-in iterations.

To facilitate comparison of our design against a commonly-used frequentist

design with interim analyses, we perform parallel analyses for early efficacy based

on log-rank tests with O’Brien-Fleming stopping rules, where the same set of check-

points are used and an overall α = 0.05 is maintained for each trial. We note that

our choice of Bayesian efficacy threshold, Peff = 0.99, is more conservative than an

overall α = 0.05 threshold when considered across four potential sequential analyses

per trial.
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Table 3.1. Scenarios explored in the simulation study.

Good Surrogacy Poor Surrogacy

No effect on S or T : Positive effect on T , no effect on S:

∆S = ∆T = 1.0 ∆S = 1, ∆T = 1.1

∆S = 1, ∆T = 1.2

Equal effects on S and T : ∆S = 1, ∆T = 1.4

∆S = ∆T = 0.8

∆S = ∆T = 0.9 Positive effect on S, no effect on T :

∆S = ∆T = 1.1 ∆S = 1.1, ∆T = 1

∆S = ∆T = 1.2 ∆S = 1.2, ∆T = 1

∆S = ∆T = 1.4 ∆S = 1.4, ∆T = 1

3.4.2 Simulation Results

In Tables 3.2 and 3.3, we present the results of the simulation scenarios outlined

in Table 3.1 where good surrogacy is assumed and the true treatment effect is varied

from strongly inferior to strongly efficacious. In Tables 3.4 and 3.5, we present results

for scenarios with poor surrogacy, with a treatment effect on T not reflected by a

treatment effect on S, and a treatment effect on S not reflected by a treatment effect

on T , respectively.

Simulation results for scenarios with good surrogacy (∆S = ∆T = ∆) are

presented in Tables 3.2 and 3.3, where we consider hypothetical trials with treatment

worse than control (∆ = 0.8, 0.9), equal to control (∆ = 1), and better than control

(∆ = 1.1, 1.2, 1.4) in terms of improved median S and T . Bearing in mind the order

in which the steps of Algorithm 3.1 are performed at each checkpoint, we find that

most simulated trials are stopped early for the correct decision. When ∆ = 0.80,

the median event times for S and T in the treatment group are 80% of the median

times in the control group, and all 100 simulated trials stop at the first interim

checkpoint for treatment inferiority. Once median event times in the treatment

group increase to 90% of the median event times in the control group, fewer trials

are stopped for inferiority and more are stopped for futility. In each inferiority case,
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Table 3.2: Simulation results for scenarios with good surrogacy (∆S = ∆T = ∆) and either

inferiority or no treatment effect. Mean(SS) is the mean sample size across hypothetical

trials. P(1), P(2), P(3), and P(Full) are the proportions of trials showing poor surrogacy

or that were stopped at interim checkpoints 1, 2, 3, or run to full follow-up, respectively.

The final column reports total percentages for poor surrogacy and each stopping reason

across time points, by endpoint.

∆ Mean(SS) Reason Endpoint P(1) P(2) P(3) P(Full) Total

0.8 975 Surrogacy - - - - 0.00

Efficacy S - - - - -

T - - - - -

Inferiority S 1.00 - - - 1.00

T - - - - -

Futility S - - - - -

T - - - - -

2000 Efficacy (O-F) S - - - - 0.00

0.9 999 Surrogacy - - - - 0.00

Efficacy S - - - - -

T - - - - -

Inferiority S 0.61 - - - 0.61

T - - - - -

Futility S 0.39 - - - 0.39

T - - - - -

2000 Efficacy (O-F) S - - - - 0.00

1.0 1259 Surrogacy 0.02 - - - 0.02

Efficacy S - 0.01 - - 0.01

T 0.01 - - - 0.01

Inferiority S - - - - -

T - - - - -

Futility S 0.61 0.28 0.07 0.01 0.97

T 0.01 - - - 0.01

2000 Efficacy (O-F) S - - - 0.02 0.02

no trials demonstrate efficacy according to the O’Brien-Fleming approach. When

the treatment arm has no benefit (∆ = 1), 98% of trials are stopped early for

futility, with most stopping at the first checkpoint. In this case, the trials that

incorrectly stopped for efficacy or inferiority together yield an estimated Type I

error rate of 2%, the same error rate observed for the O’Brien-Fleming approach.

Once we set ∆ to be greater than 1 in Table 3.3, yielding improved median event

times for the experimental treatment relative to control (and thus representing power

calculations), the vast majority of trials are correctly stopped early for treatment
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Table 3.3: Simulation results for scenarios with both good surrogacy (∆S = ∆T = ∆) and

efficacy. Mean(SS) is the mean sample size across hypothetical trials. P(1), P(2), P(3),

and P(Full) are the proportions of trials showing poor surrogacy or that were stopped

at interim checkpoints 1, 2, 3, or run to full follow-up, respectively. The final column

reports total percentages for poor surrogacy and each stopping reason across time points,

by endpoint.

∆ Mean(SS) Reason Endpoint P(1) P(2) P(3) P(Full) Total

1.1 1380 Surrogacy - - - - 0.00

Efficacy S 0.48 0.33 0.11 0.05 0.97

T - - - - -

Inferiority S - - - - -

T - - - - -

Futility S 0.02 - - 0.01 0.03

T - - - - -

1759 Efficacy (O-F) S - 0.55 0.36 0.09 1.00

1.2 1073 Surrogacy 0.01 - - - 0.01

Efficacy S 0.99 - - - 0.99

T 0.01 - - - 0.01

Inferiority S - - - - -

T - - - - -

Futility S - - - - -

T - - - - -

1316 Efficacy (O-F) S 0.52 0.48 - - 1.00

1.4 1110 Surrogacy - - - - 0.00

Efficacy S 1.00 - - - 1.00

T - - - - -

Inferiority S - - - - -

T - - - - -

Futility S - - - - -

T - - - - -

1110 Efficacy (O-F) S 1.00 - - - 1.00

efficacy under each approach. However, our adaptive design tends to stop a larger

percentage of trials for efficacy at earlier checkpoints compared to the O’Brien-

Fleming design, thus offering significant savings in time and cost. In all adaptive

cases, we obtain an average reduction in sample size of more than 31%, while many

O’Brien-Fleming cases show no savings in sample size.

Scenarios with poor surrogacy (∆S �= ∆T ) also show promising results, which

we present in Tables 3.4 and 3.5. The results in Table 3.4 represent trials where

a beneficial effect on the former clinical endpoint T is not reflected in a beneficial
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Table 3.4: Simulation results for scenarios with poor surrogacy (∆S �= ∆T ) and a greater

treatment effect on T . Mean(SS) is the mean sample size across hypothetical trials. P(1),

P(2), P(3), and P(Full) are the proportions of trials showing poor surrogacy or that were

stopped at interim checkpoints 1, 2, 3, or run to full follow-up, respectively. The final

column reports percentages for poor surrogacy and each stopping reason across time points,

by endpoint.

∆S ∆T Mean(SS) Reason Endpoint P(1) P(2) P(3) P(Full) Total

1 1.1 1299 Surrogacy 0.06 0.03 - - 0.09

Efficacy S 0.01 - 0.02 0.01 0.04

T 0.06 0.03 - - 0.09

Inferiority S - - - - -

T - - - - -

Futility S 0.51 0.26 0.10 - 0.87

T - - - - -

2000 Efficacy (O-F) S - - 0.02 0.01 0.03

1 1.2 1284 Surrogacy 0.25 0.10 0.02 - 0.37

Efficacy S 0.01 - - - 0.01

T 0.25 0.10 0.02 - 0.37

Inferiority S - - - - -

T - - - - -

Futility S 0.34 0.18 0.10 - 0.62

T - - - - -

2000 Efficacy (O-F) S - - 0.01 0.02 0.03

1 1.4 1073 Surrogacy 0.86 0.10 - - 0.96

Efficacy S - - - - -

T 0.86 0.10 - - 0.96

Inferiority S - - - - -

T - - - - -

Futility S 0.04 - - - 0.04

T - - - - -

2000 Efficacy (O-F) S - - 0.01 0.02 0.03

treatment effect on the surrogate endpoint S. These may be the scenarios of greatest

interest (or concern) in practice, as we usually anticipate improved experimental

outcomes over control when designing a trial, corresponding to values of ∆T greater

than 1. It may be feared that the surrogate endpoint may fail to detect a truly

beneficial effect of treatment, as indicated by concurrently setting ∆S = 1. However,

poor surrogacy is often detected among these cases, and detected earlier as the

treatment effects on S and T become more discordant. This is indeed comforting,

as we would like to avoid trusting an invalid surrogate well into an expensive and
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Table 3.5: Simulation results for scenarios with poor surrogacy (∆S �= ∆T ) and a greater

treatment effect on S. Mean(SS) is the mean sample size across hypothetical trials. P(1),

P(2), P(3), and P(Full) are the proportions of trials showing poor surrogacy or that were

stopped at interim checkpoints 1, 2, 3, or run to full follow-up, respectively. The final

column reports percentages for poor surrogacy and each stopping reason across time points,

by endpoint.

∆S ∆T Mean(SS) Reason Endpoint P(1) P(2) P(3) P(Full) Total

1.1 1 1377 Surrogacy 0.08 0.02 - - 0.10

Efficacy S 0.44 0.27 0.16 0.03 0.90

T - - - - -

Inferiority S - - - - -

T 0.01 0.01 - - 0.02

Futility S - - - - -

T 0.07 0.01 - - 0.08

1752 Efficacy (O-F) S - 0.57 0.36 0.06 0.99

1.2 1 1091 Surrogacy 0.31 - - - 0.31

Efficacy S 0.66 0.03 - - 0.69

T - - - - -

Inferiority S - - - - -

T - - - - -

Futility S - - - - -

T 0.30 0.01 - - 0.31

1336 Efficacy (O-F) S 0.48 0.52 - - 1.00

1.4 1 1382 Surrogacy 0.97 - - - 0.97

Efficacy S 0.03 - - - 0.03

T 0.01 0.02 0.02 0.01 0.06

Inferiority S - - - - -

T - - - - -

Futility S - - - - -

T 0.58 0.18 0.12 0.03 0.91

1119 Efficacy (O-F) S 1.00 - - - 1.00

lengthy trial. It is interesting to note that many trials stop for futility of S in less

discordant cases, particularly when ∆S = 1 and ∆T = 1.1 or 1.2; this is due to

the fact that futility is determined through S using predictive probabilities based

on π(αN+1|Dk). With ∆S = 1, we would expect to reach a futility decision, given

that surrogacy is not so poor in Step 1 as to preempt Step 4 of Algorithm 3.1.

The O’Brien-Fleming approach with S as its primary endpoint is unable to detect

poor surrogacy, and continues to trust S throughout the trial. In most cases, this

design determines that the experimental treatment is ineffective, often late in the
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trial. In reality, S is unable to measure the true positive effect on T , and thus the

O’Brien-Fleming trials here may prevent regulatory acceptance of truly beneficial

treatments.

For symmetry, we also consider cases where a positive effect on S (∆S > 1) is

not supported by a positive effect on T (∆T = 1), with results presented in Table

3.5. Although simulated trials stop more frequently for early efficacy based on S

than for futility based on T in the cases of ∆S = 1.1 or 1.2 and ∆T = 1, this is not

entirely surprising, as determinations of efficacy are based on S through π(αN+1|Dk)

when surrogacy is not so bad as to switch consideration to T . Once the differences in

treatment effect on S and T become more pronounced, trials are correctly stopped

early for futility based on T at a greater rate. The O’Brien-Fleming approach

based on S incorrectly stops for efficacy in nearly all cases where S shows a positive

effect and T does not, representing situations where regulatory acceptance might

be awarded to a truly ineffective treatment. Across all cases with poor surrogacy,

we obtain an average reduction in total sample size of more than 31%, while many

O’Brien-Fleming cases show no savings in sample size.

3.5 Example: Adaptive Monitoring of ACCENT Trials

In this section, we illustrate our new design with an example from colorec-

tal cancer, the third most common cancer in the United States with approximately

145,000 new cases diagnosed every year (Sargent et al., 2005). When no interven-

tions are administered to patients with node-positive disease after primary resection,

approximately half will experience relapse and eventually die as a result of their dis-

ease. Sargent et al. (2005) demonstrated that disease-free survival (DFS) with a

median of 3 years follow-up is a valid surrogate for overall survival (OS) with a

median of 5 years follow-up in the adjuvant setting, based on a variety of graphical

and statistical approaches. The trials used in the validation process were provided
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by the Adjuvant Colon Cancer End Points (ACCENT) Group, and contain indi-

vidual patient data from 18 randomized phase II and phase III trials for adjuvant

therapy in colon cancer. These trials were conducted from 1977 to 1999, and collec-

tively include 20,898 patients assigned to 43 treatment arms, composed of 34 active

treatment arms (with at least one fluorouracil (FU)-based chemotherapy arm per

trial) and 9 surgery-only arms. Using patient-level data from the ACCENT trials

and maintaining the natural ordering of the treatment arms in the original trial de-

signs, we consider pairwise comparisons of experimental to control arms for a total

of N = 25 trial units.

The ACCENT trials are ideally suited for re-evaluation in our adaptive design

framework for a number of reasons, in addition to the well-established good surrogacy

of DFS for OS in this setting. First, the median observed DFS time across trials

and treatment groups is 643 days, compared to a median OS time of 1093 days,

a difference of well over 1 year. As long as the effect of treatment on DFS is a

good predictor of the effect of treatment on OS, the amount of follow-up required

to observe an adequate number of events will be substantially less for the surrogate

endpoint. Second, accrual is relatively slow, ranging from 17 patients to 126 patients

per month to fully enroll trials ranging in size from 200 to over 2000 individuals.

Third, the maximum follow-up within trials is usually well over 10 years, implying

substantial ongoing effort and operational expense.

Considering all available patient data without imposing additional censoring

to construct specific median follow-up times (as in Sargent et al. (2005)), we use

the 25 trial-level units as historical trials in our design, which collectively indicate

that DFS is a valid endpoint to use as a surrogate for OS in a future adjuvant colon

cancer trial. A scatterplot of estimated treatment effects (α̂i, β̂i) from models (3.1)

and (3.2) is shown in the right panel of Figure 3.1, superimposed on an image plot

of the bivariate Normal distribution estimated from model (3.3). The treatment
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effects on OS and DFS are highly linearly related, with Pearson correlation 0.9541

and estimated trial-level surrogacy R̂
2
trial = 0.9103. This strong relationship across

similar trials previously helped to justify the surrogacy of DFS for OS (Sargent et

al., 2005).

In order to demonstrate how our design performs for realistic “future” trials,

we will imagine that each of the ACCENT trials in turn has yet to be conducted

until now. We begin by fitting models (3.1) and (3.2) to the full data from each

trial, obtaining estimates of the treatment effect pairs (αi, βi) for i ∈ {1, ..., 25}.

At this stage, MCMC estimation was used with diffuse normal priors for regression

parameters and vague exponential priors for shape parameters. In the second stage of

estimation, we fit model (3.3) to the estimated treatment effects from the first stage,

using diffuse normal priors for the mean components (α, β) and a vague Wishart

prior for the precision matrix Σ−1. This in turn yields posteriors π(δ1|Dh) and

π(δ0|Dh) for the historical slope and intercept, respectively, summarizing historical

knowledge and uncertainty for the ACCENT trials’ relationship in the right panel

of Figure 3.1.

Now, with this historical picture fixed, we effectively re-run each ACCENT

trial under our new adaptive design. We use the actual dates of enrollment and event

times for each patient within each trial, and assume trial sizes were chosen to observe

uncensored outcomes for a total of 25% of patients by the end of each trial. Thus,

within each trial, we perform interim checks on those dates where 25%, 50%, and 75%

of the total desired number of events have occurred. For each trial and checkpoint,

we choose Psurr = 0.10, Pfut = 0.05, and Peff = Pinf = 0.95. If the decision is

made at the final interim checkpoint to continue, we follow all patients until a 25%

event rate is observed before performing a final analysis. Estimation of models (3.1)

and (3.2) at each checkpoint is based only on those patients actually enrolled, and

is implemented using vague priors on all parameters, with MCMC chains of length

56



100,000 after 10,000 burn-in samples. We present the poor surrogacy and stopping

frequencies across the 25 trials at each interim point, by reason, in Table 3.6.

Table 3.6: Frequencies at which poor surrogacy (based on DFS for OS), efficacy, inferiority,

or futility were determined at each time point (percentages of the maximum number of

desired events for final analysis) for the 25 ACCENT trials, by endpoint. The total number

of ACCENT trials stopped at each time point are also given for each design (adaptive

and O’Brien-Fleming). Trials with futility results at the final checkpoint had insufficient

evidence to reject the null hypothesis of no treatment effect after the desired number of

events had been observed.

25% Max 50% Max 75% Max 100% Max

Endpoint Events Events Events Events Total

Surrogacy 2 0 0 0 2 (8%)

Efficacy S 5 4 2 0 11 (44%)

T 2 0 0 0 2 (8%)

Inferiority S 0 0 0 0 0 (0%)

T 0 0 0 0 0 (0%)

Futility S 4 1 0 7 12 (48%)

T 0 0 0 0 0 (0%)

Adaptive Design Totals S, T 11 (44%) 5 (20%) 2 (8%) 7 (28%) 25 (100%)

O’Brien-Fleming Totals S 0 4 (16%) 3 (12%) 1 (4%) 8 (32%)

Among the 25 ACCENT trials considered in our new adaptive framework, 13

trials stopped early for efficacy of S with good surrogacy or efficacy of T with poor

surrogacy. Of these, 7 trials stopped after the first interim check. Given the origi-

nal treatment effect estimates based on all available follow-up in Figure 3.1, this is

not surprising, as most plotted estimates α̂i are less than 0. Those ACCENT trials

demonstrating efficacy at any time point within our adaptive design have original

treatment effect pairs denoted by a circle in Figure 3.1. Filled circles denote trials

where the O’Brien-Fleming design was not able to determine the positive treatment

effect, while unfilled circles represent trials where both approaches measured a treat-

ment benefit. A special case of these trials, where efficacy was established by both

approaches but through T for the adaptive approach, is given by an unfilled circle

surrounding a +. In the absence of an adaptive procedure, a decision based on a

poor surrogate would have been made in these two trials.
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ACCENT trials demonstrating futility at any time according to the adaptive

design have original treatment effect pairs denoted by a triangle in Figure 3.1. It is in-

teresting to note that most of the original treatment effects for these trials are located

near the null treatment effect point (αi, βi) = (0, 0); the conclusions reached in the

adaptive setting are similar to those reached in the non-adaptive historical setting,

but with less follow-up required. Of the 12 futile trials identified by the adaptive ap-

proach, only one very small trial showed a treatment benefit under O’Brien-Fleming

approach, which is represented by an unfilled triangle. The other O’Brien-Fleming

trials failed to detect efficacy, thus agreeing with the adaptive approach, and are

shown as filled triangles. We find that none of the adaptively-designed ACCENT

trials reach a decision of treatment inferiority compared to control. It may seem

surprising that the original treatment effect pairs for the two trials showing poor

surrogacy fall somewhat close to the line indicating perfect surrogacy, but it should

be noted that both trials are relatively large in size with strong positive treatment

effects. The high precision of π(αN+1|Dk) in each case may have prevented substan-

tial overlap with π(E(αN+1|βN+1)|Dh, Dk). However, neither case is costly in terms

of wrong conclusions or additional resources, as the correct treatment benefit was

observed (only in terms of T ) at the same time that surrogacy was rejected. Overall,

we found an average percent reduction in total sample size from the original trials

of 11.8% (range: 0% to 69%) for our adaptive approach, but only 0.08% (range:

0% to 2%) for the O’Brien-Fleming approach, indicating that substantial time and

resources could have been saved in most trials under our design.
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CHAPTER FOUR

Flowgraph Modeling of Disease Progression for Evaluating Surrogate Endpoints

4.1 Introduction

Flowgraphs first appeared in the engineering and reliability literature (see, e.g.,

Dorf (1989) and Whitehouse (1983)), and statistical modeling techniques were later

introduced to the statistics and probability disciplines by Butler and Huzurbazar

(1997). Developed to be more flexible and realistic than traditional approaches to

multi-state modeling, flowgraphs do not depend on Markov assumptions or expo-

nential waiting times, are computationally inexpensive, and handle censoring and

incomplete data easily and effectively (Butler and Huzurbazar, 1997). Furthermore,

vastly different waiting time distributions may be assigned to different transitions

within a system, and unique waiting time distributions may depend on covariates.

Assumptions for flowgraph modeling are minimal: the probabilities associated with

possible transitions out of each state must add to 1, and moment generating func-

tions for waiting times between states must exist. Competing risks and conditional

events are automatically incorporated into the structure of a flowgraph, and hazard

functions associated with any composite or overall times-to-event of interest have no

direct shape restrictions. This flexibility allows for more realistic modeling of multi-

state phenomena such as disease progression, and offers a more sensitive approach

to assessing the relative effects of covariates through different state transitions.

Markov models, which require exponential waiting times in states and indepen-

dence of transition times from state destinations, are often used even when waiting

times between states are known not to be exponentially distributed. For exam-

ple, a multi-state model with exponential waiting times was used by Longini et al.

(1989) to model AIDS progression, yet inspection of these data reveal that Weibull
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waiting times are more appropriate (Butler and Huzurbazar, 1997). Flowgraphs,

on the other hand, are semi-Markov; that is, waiting time distributions between

states may be non-exponential, and are allowed to depend on the destination state.

While other semi-Markov approaches have extreme difficulty handling censoring,

incomplete data, or multiple returns to a previous state, flowgraph models incorpo-

rate these realistic features easily (Yau and Huzurbazar, 2002). Given a stochastic

process with continuous time transitions between conditionally independent states,

flowgraph models allow for most standard waiting time distributions to be used

in modeling state transitions. Furthermore, flowgraphs provide a method for ac-

cessing any partial or total waiting time distribution of interest within the system.

Flowgraph models are developed in terms of branch-specific transition probabili-

ties and moment generating functions (MGFs), and saddlepoint approximations are

then used to convert composite or overall MGFs to waiting time probability density

functions (PDFs), cumulative distribution functions (CDFs), survival functions, or

hazard functions of interest. Estimation may be performed in either a Bayesian or

frequentist framework, depending on the resulting quantities and decision-making

capabilities desired.

Through application of flowgraph models to disease progression in clinical

trials, our end goal is better parametric modeling of times-to-event and treatment

effects for the purpose of surrogate endpoint evaluation. Often, parametric models

are desired in this setting, especially when one would like to model treatment effects

and easily obtain predictive distributions for a patient population with dissimilar

covariate values (e.g., age or stage of disease) that might be observed in a future

trial where the validated surrogate is used as the primary endpoint.

Restricting consideration to simple parametric models for time-to-event end-

points causes specific issues to emerge within a surrogacy evaluation setting. Com-

mon waiting time distributions, including the exponential, Weibull, and lognormal
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models, generally have monotonic or unimodal hazard functions unlikely to be ob-

served in practice. Furthermore, competing risk distributions are inherent to popular

putative surrogate endpoints such as disease-free survival and progression-free sur-

vival, where the times-to-event of interest are composed of disease recurrence or

progression and death, whichever occurs first. However, hazard function shape as-

sumptions and underlying competing risks distributions are very often ignored in

the parametric approach to surrogacy evaluation of time-to-event endpoints, which

could lead not only to erroneous treatment effect estimates, but also to poor as-

sessments of surrogacy. Popular semiparametric and nonparametric approaches to

time-to-event modeling often suffer from less precise treatment effect estimates than

can be obtained from parametric approaches, as well as predictive distributions that

are more difficult to obtain. The assumption of proportional hazards accompany-

ing Cox models, for example, may additionally be unrealistic for a given application,

and can generally be avoided through flowgraphs. Relaxation of parametric assump-

tions in flowgraph modeling has yet to be explored, due to an inability to express

semiparametric models in terms of moment generating functions.

To address these issues, we propose moving the surrogate endpoint evaluation

of time-to-event endpoints to the flowgraph setting, particularly in disease settings

where a multi-state paradigm exists and parametric modeling needs to be made more

realistic. Hazard function shapes are not explicitly restricted in flowgraph modeling;

as a result, flexible and multi-modal hazards for overall waiting times of interest are

not unusual to observe, even for relatively simple systems. Modeling of competing

risks and recurrent events follow immediately from the inclusion of parallel branches

and loops, respectively. For example, covariates such as treatment assignment may

affect specific transition probabilities or branch waiting times within a flowgraph

model for disease-free survival, and to a detailed extent that may be “washed out”

by a simpler approach. Detailed knowledge of how covariates affect specific disease
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state transitions, and not just the overall event times of interest, will certainly yield

a more realistic analysis of surrogacy.

The remainder of the paper is organized as follows: in Section 4.2, we review

existing flowgraph methods, including model construction, flowgraph algebra, sad-

dlepoint approximation of required distribution functions, Bayesian estimation of

parameters and predictive distributions, and incorporation of covariates. In Section

4.3, we develop flowgraph models for two clinical trials in colorectal cancer. Section

4.4 describes how the unique output of flowgraph models, including predictive densi-

ties of composite endpoints (such as disease-free survival) and posterior distributions

of covariate effects, may then be used in surrogacy analyses involving time-to-event

endpoints.

4.2 Review of Flowgraph Models and Methods

We begin by reviewing the basic construction of flowgraphs, general mod-

eling of flowgraph components, and estimation methods for quantities of interest.

Throughout, we adopt the notation and perspective of Huzurbazar (2005a).

4.2.1 Model Construction and Transmittances

Construction of flowgraph models is a flexible and logical process, readily in-

formed by available knowledge of the real-world system under investigation. Like

other multi-state modeling approaches, flowgraphs in their most basic form are made

up of nodes and branches. However, in other graphical models, nodes usually repre-

sent random variables with branches representing relationships between these vari-

ables. In flowgraph models, nodes represent various states or events associated with

a system, while branches represent transitions with waiting times in the previous

state. Specifically, a flowgraph is a graphical representation of a stochastic sys-

tem in which each directed branch is labeled with a transmittance, defined as the

probability of following the branch times the moment generating function (MGF)
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associated with the waiting time in the initiating branch state (Huzurbazar, 1999).

Consider for example the simple flowgraph presented in Figure 4.1. This sys-

tem contains three states, where all individuals (or units) begin in the first state

and then proceed either to state 2 with probability p12 or state 3 with probability

p13 = 1 − p12. In this case, both states 2 and 3 are terminal (absorbing) states,

and the two possible paths from beginning to end of the total system may be rep-

resented as 1 → 2 and 2 → 3. In Figure 4.1, M12(s) and M13(s) are the MGFs

associated with the waiting time distributions from state 1 to state 2, and state

1 to state 3, respectively. The product of the transition probability and moment

generating function for a single branch is the transmittance; in this example, the

two branch transmittances of the system are given by p12M12(s) for transition 1 → 2

and p13M13(s) for transition 1 → 3.

2

1 3

p12M12(s)

p13M13(s)

Figure 4.1. Simple flowgraph model with two parallel branches and absorbing states.
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If Y1 represents the waiting time from state 1 to state 2, and Y2 similarly

represents the waiting time from state 1 to state 3, the total flowgraph shown in

Figure 4.1 describes the distribution of first passage, or the waiting time for the

occurrence of min{Y1, Y2}. When Y1 and Y2 are assigned distribution functions, the

transition probabilities become p12 = P (Y1 < Y2) and p13 = 1 − p12 = P (Y2 < Y1).

It should be noted that M12(s) is not the MGF of Y1, but rather the MGF of Y1

given Y1 < Y2. In this way, flowgraphs readily handle conditional waiting time

distributions based on competing risks (Huzurbazar, 1999).

In practice, basic structures other than parallel branches may appear within

a given flowgraph; for example, a series structure where progression from state i to

state j occurs with probability pij = 1, or a feedback loop where individuals remain

in state i with probability pii < 1.

4.2.2 Solving Flowgraphs and Mason’s Rule

After one has constructed a flowgraph to represent a real-world system as de-

scribed in Section 4.2.1, the next step involves “solving” the flowgraph, or reducing

the individual branch transmittances to equivalent transmittances for possible paths,

thereby ultimately recovering the MGF of the entire system. In general, reduction

to equivalent transmittances may be performed in a piecewise fashion, and the pro-

cess is aided by a number of basic rules. In particular, reduced transmittances of

branches in series are products, while reduced transmittances of branches in parallel

are sums of the branch MGFs weighted by their associated transition probabilities.

In the example accompanying Figure 4.1, the equivalent (reduced) transmittance for

branches 1 → 2 and 1 → 3 is TE(s) = p12M12(s) + p13M13(s). Because this sim-

ple flowgraph consists only of three states with two parallel branches, TE(s) is also

the overall MGF of the flowgraph corresponding to the waiting time distribution of

min{Y1, Y2}.
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Solving more complicated flowgraphs containing feedback loops and composi-

tions of the preceding basic structures requires a more general formula as given in

(4.1), which first depends on identification of each possible path and loop through

the system. In this context, a path is defined as any possible sequence of nodes from

input to output that does not pass through any intermediate node more than once.

A first-order loop is defined as any closed path returning to the initiating node with-

out passing through any other node more than once, while a jth-order loop consists

of j non-touching first-order loops. The equivalent transmittance of a first-order

loop is the product of the involved individual transmittances, while the equivalent

transmittance of a jth-order loop is the product of the equivalent transmittances of

the first-order loops it contains (Huzurbazar, 1999). In the example accompanying

Figure 4.1, the paths are 1 → 2 and 1 → 3 with no intermediate nodes, and no loops

are present.

With all paths and loops identified, Mason’s rule (Mason, 1953) in its general

form can be used to solve a flowgraph, or equivalently, to obtain the equivalent

transmittance (MGF) of an entire flowgraph. It is given by

TE(s) =

�
i Pi(s)[1 +

�
j(−1)jLi

j(s)]

1 +
�

j(−1)jLj(s)
, (4.1)

where Pi(s) is the transmittance for the ith path, Lj(s) is the sum of the transmit-

tances over the jth-order loops, and L
i
j(s) is the sum of the transmittances over jth

order loops sharing no common nodes with the ith path (Huzurbazar, 1999).

In the simple example presented in Figure 4.1, no loops are present, and the

individual path transmittances for 1 → 2 and 1 → 3 are given by P1(s) = p12M12(s)

and P2(s) = p13M13(s), respectively. Using Mason’s rule, the overall transmittance

(MGF) for this flowgraph is then given by TE(s) = TE(s) = p12M12(s) + p13M13(s),

as stated above.

In practice, distributional forms for each transition (i.e., exponential, Weibull)

are chosen in advance, perhaps through exploratory analyses or model fit tests based

65



on available transition-specific data. Huzurbazar (2005a) further suggest visual in-

spection of “censored-data histograms” during the model selection phase, where such

histograms are derived from Kaplan-Meier estimates and overlaid with a variety of

fitted common waiting time distributions (see Ch. 6). Once general distributional

forms have been chosen for each transition in a given flowgraph, the moment gen-

erating functions corresponding to these distributions are substituted for the M··(s)

terms in the overall MGF resulting from Mason’s rule. Estimation of model param-

eters may then be performed through a Bayesian or classical approach.

4.2.3 Saddlepoint Approximation and Bayesian Estimation

With the total flowgraph equivalent transmittance (MGF) obtained as in Sec-

tion 4.2.2, the end result desired (perhaps in a Bayesian clinical trial) is often a

predictive distribution of future observables given current data. Other quantities of

interest may be predictive hazard functions or survival functions of partial or overall

waiting times from the flowgraph, or posterior distributions of individual or shared

model parameters. All of these first require analytic or approximate numerical in-

version of the flowgraph MGF. In what follows, we consider a Bayesian approach to

estimation; classical approaches such as maximum likelihood estimation may also be

used where possible.

When the MGF of the overall waiting time for a simple system is a convo-

lution or mixture of exponential or gamma distributions, it may possible to invert

algebraically via partial fraction expansion or numerical inversion. More complex

models, or the presence of any other waiting time distributions such as Weibull or

inverse Gaussian, will require alternative methods for approximate inversion. Huzur-

bazar (1999) suggest univariate saddlepoint approximation in such cases, which only

requires the individual transition MGFs to be tractable (Daniels, 1954).
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An algorithm for saddlepoint approximation of predictive densities and CDFs

of interest for a given flowgraph was presented in Butler and Huzurbazar (2000).

The authors note that their use of saddlepoint approximation differs from ordinary

usage where f(x|θ) is approximated as a function of x with θ held fixed; instead,

f(x|θ) is approximated as a function of θ with x fixed. Furthermore, predictive

densities are often heavy-tailed with ill-defined moments, so that direct saddlepoint

inversion of the marginal densities f(x, z) and f(x) is problematic. In what follows,

Butler and Huzurbazar (2000) circumvent this issue by inverting conditional on θ

and subsequently mixing over θ to remove dependence.

The predictive distribution of a waiting time Z with density f(z|θ) conditional

on data x is given by

f(z|x) = f(x, z)

f(x)
=

E
θ{f(z|θ)f(x|θ)}
Eθ{f(x|θ)} , (4.2)

with associated CDF

F (z|x) = E
θ{F (z|θ)f(x|θ)}
Eθ{f(x|θ)} . (4.3)

Above, f(x|θ) is the data likelihood, and the expectation E
θ is with respect to the

prior distribution f(θ). If the likelihood and resulting posterior distributions are

intractable, saddlepoint approximations for the predictive density (4.2) and CDF

(4.3) are jointly given by

{f̂(z|x), F̂ (z|x)} =
Ê

θ[{f̂(z|θ), F̂ (z|θ)}f̂(x|θ)]
Êθ{f̂(x|θ)}

, (4.4)

where Ê
θ denotes an approximate prior expectation. Computation of both f̂(z|x)

and F̂ (z|x) may be performed simultaneously, for example by simulation of θ1, ..., θm

from a proper prior f(θ) to obtain

{f̂(z|x), F̂ (z|x)} =

�m
i=1{f̂(z|θi), F̂ (z|θi)}f̂(x|θi)�m

i=1 f̂(x|θ)
. (4.5)
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If the posterior distribution is tractable due to the likelihood, (4.5) can be simplified

as

{f̂(z|x), F̂ (z|x)} = m
−1

m�

i=1

{f̂(z|θi), F̂ (z|θi)}, (4.6)

where θ1, ..., θm are draws from the posterior f(θ|x).

Whether (4.5) or (4.6) are used to obtain predictive distributions of interest,

computation of saddlepoint approximations for f(z|θ) and/or F (z|θ) will likely be

required. Suppose the moment generating function MZ(s|θ) and cumulant gener-

ating function KZ(s|θ) = ln{MZ(s|θ)} are convergent on an open neighborhood of

zero given by s ∈ (a(θ), b(θ)). Daniels (1954) gives a saddlepoint approximation for

f(z|θ) as

f̂(z|θ) = {2πK ��
Z(ŝ|θ)}−1/2 exp{KZ(ŝ|θ)− ŝz}, (4.7)

where ŝ = ŝ(z, θ) is the unique solution to the saddlepoint equation K
�
Z(ŝ|θ) = z

in (a(θ), b(θ)) when z is inside the convex support of f(z|θ). The accuracy of (4.7)

in reproducing f(z|θ) is usually quite high over a wide range of values of z and θ;

further details are provided in Butler and Huzurbazar (2000).

An approximation of F (z|θ) based on Luganni and Rice (1980) as described

in Daniels (1987) is given by

F̂ (z|θ) =






Φ(ŵ) + φ(ŵ)(ŵ−1 − û
−1), z �= E(Z|θ),

1/2 +K
���
Z (0|θ){K ��

Z(0|θ)}−3/2
/(6

√
2π), z = E(Z|θ),

(4.8)

where Φ and φ are the standard normal CDF and density, respectively, and

ŵ = sgn(ŝ)
�

2{ŝz −KZ(ŝ|θ)} and û = ŝ

�
K

��
Z(ŝ|θ)

are implicit functions of z and θ according to K
�
Z(ŝ|θ) = z (Butler and Huzurbazar,

2000).

Predictive distributions in (4.5) or (4.6) are computed over a grid of z-values,

z1 < ... < zn, chosen to be sufficiently fine to capture all relevant detail of the

68



distribution. For each sampled value of θ from the prior, the saddlepoint equation

(4.7) may be solved to obtain a draw from f̂(z|x). When the solution to (4.7)

is not explicit in θ, a specialized algorithm such as that suggested in Butler and

Huzurbazar (2000) may be required. When the posterior f(θ|x) is not in closed

form, these authors propose renormalization of the predictive densities as

f̃(zk|x) =
f̂(zk|k)�n
i=1 f̂(zi|x)

, k = 1, ..., n,

where f̂(·|x) is given by (4.5) or (4.6). Otherwise, when the posterior is explicit,

samples θ1, ..., θm from the posterior may be used to obtain the posterior expectation

of individually renormalized densities as

f̃(zk|x) = m
−1

m�

i=1

�
f̂(zk|θi)�n
j=1 f̂(zj|θi)

�
, k = 1, ..., n.

A related algorithm for Bayesian prediction is described in Huzurbazar (2005b),

with specific attention to the construction of likelihood components. With paramet-

ric models chosen for each state transition, the overall likelihood function consists

of terms separable by these transitions, perhaps with censoring represented through

survival functions. Given a choice of prior distribution for each model parameter

(including transition probabilities), posterior distributions for each transition’s pa-

rameter vector and transition probability may then be obtained via standard Markov

chain Monte Carlo techniques such as Gibbs, Metropolis-Hastings, or slice sampling

(see, e.g., Carlin and Louis (2009)). At this point, each random sample θ1, ..., θm

from the joint posterior can be used to evaluate both the data likelihood L(θk|x) and

the saddlepoint approximation f̂(z|θk) corresponding to the overall MGF obtained

from application of (4.1). These evaluations in turn, over the entire posterior sample,

may be used to approximate the desired predictive density for a future observable

Z by

f(z|x) =
�
f(z|θ)L(θ|x)f(θ)dθ�

L(θ|x)f(θ)dθ
≡ Eθ|x{f(z|θ)}.
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With estimated predictive densities or CDFs of interest at hand, other quantities

of interest, such as hazard functions, survival functions, or quantiles may be easily

obtained.

4.2.4 Extension: Inclusion of Covariates

Huzurbazar and Williams (2010) recently formalized the inclusion of covariates

in the transition probabilities and waiting times of flowgraph models. In general, co-

variates are incorporated through branch model parameters in much the same way as

in usual regression approaches to survival analysis. Covariates may also influence the

branch transition probabilities, perhaps through standard logistic regression models.

For example, in Figure 4.1, the transition probability p12 may depend on a single

covariate x1 through logit(p12) = β0 + β1x1. If the 1 → 2 waiting time is further

assigned an exponential distribution with parameter λ12, the same covariate may

influence the transition model, perhaps through λ12 = exp(δ0+δ1x1). In some cases,

a transition probability may also be written as a function of the associated and

competing branch model parameters. Likelihood construction and Bayesian estima-

tion then proceed as in Section 4.2.3, where censoring may be present. The MGF

of the overall flowgraph model may still be obtained via (4.1), but now contains

the additional complexity of observation-specific covariates nested within branch

transmittances and probabilities. Huzurbazar and Williams (2010) note that prior

selection is an important consideration in transitions having sparse data, particularly

when additional regression coefficients must be estimated.

4.3 Flowgraph Models for Colon Cancer Trials

We now consider construction of flowgraphs for two recently completed trials

in colorectal cancer. N0147 is a phase III, two-arm trial for adjuvant therapy in

colon cancer (Albert et al., 2005). Patients in N0147 have stage III disease with

completely resected tumors, and are randomized to modified FOLFOX6 (oxaliplatin
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plus 5-FU/LV), a chemotherapeutic agent, with or without cetuximab, a biologic

agent. The primary endpoint of interest in this trial is disease-free survival (DFS),

which was recently validated as a surrogate endpoint for overall survival (Sargent et

al., 2005). N0147 reached full accrual in November 2009, and patient follow-up is

currently underway. So far, we know that individuals enrolled in this trial generally

follow basic patterns of disease progression: patients start in an initial disease-free

state (state 0) after surgical resection of their tumors, and may eventually experience

recurrence (state 1), death (state 2), or recurrence followed by death. Additionally,

we know that some patients return to a disease-free state after resection of recurred

tumors. With this information, we construct the flowgraphs for overall survival and

disease-free survival shown in the left-hand panels of Figure 4.2.

N9741, a phase III three-arm trial testing three therapies for advanced col-

orectal cancer, is our second trial to consider (Goldberg et al., 2004). Patients in

N9741 had metastatic, non-resectable disease and were randomized to receive one of

the following: IFL (irinotecan plus 5-FU/LV), FOLFOX (oxaliplatin plus 5-FU/LV),

or irinotecan/oxaliplatin. The trial’s primary results demonstrated that FOLFOX

significantly increased overall survival when compared to the standard-of-care IFL

regimen, and with fewer adverse events. Individuals enrolled in N9741 followed a

similar disease progression structure to those in N0147, but with different events

due to their advanced stage of disease. Beginning in a non-progressed disease state

(0), patients may experience progressed disease (state 1) defined by significant tu-

mor growth, death (state 2), or progressed disease followed by death. Similar to

N0147, some patients may return to the initial non-progressed disease state if treat-

ment is efficacious (defined by tumor shrinkage). However, this trial presents an

additional modeling complexity: based on available follow-up, we notice a relatively

small group of patients who, after starting in or returning to the non-progressed

disease state (state 0), seem to remain there indefinitely. We loosely refer to this
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Figure 4.2: Flowgraph models for overall survival in trials N0147 and N9741, disease-free

survival in trial N0147, and progression-free survival in trial N9741.
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group of patients as “cured” patients, and conservatively modify the flowgraph to

account for them. A direct feedback loop from state 0 to state 0 allows some of the

patients to remain in state 0 with probability p00 and waiting time MGF M00(s).

If a heavy-tailed distribution is chosen for M00(s), the waiting times of the cured

patients may be modeled as indefinitely long compared to the other patients. The

flowgraphs for overall survival and progression-free survival constructed for N9741

are shown in the right-hand panels of Figure 4.2.

4.3.1 Trial N0147: Reversible Illness-Death Model

The flowgraph for overall survival in trial N0147 happens to be a common

multi-state model, sometimes called the “reversible illness-death model,” used to

describe cancer progression. Each branch of the model, i → j, is labeled with its

associated transmittance, or the probability of taking the branch (pij) times the

MGF of the waiting time for that transition, Mij(s). To obey probabilistic laws, all

transition probabilities corresponding to exits from a single state must sum to 1; in

this case, we require p01 + p02 = 1 and p10 + p12 = 1. State 2, death, is an absorbing

state; that is, exit from this state is not possible.

With the general form of the overall survival flowgraph identified as in the

upper left panel of Figure 4.2, we identify two paths: a lower path 0 → 2 and an

upper path 0 → 1 → 2. The loop 0 → 1 → 0 may initiate either path (perhaps

repeatedly), but passage through this loop is not required. In either case, we can

reduce the two series transmittances appearing in the 0 → 1 → 0 loop to obtain

an equivalent loop transmittance of p01M01(s)p10M10(s). The lower path starting in

state 0 either immediately returns to state 0 with this transmittance, or progresses to

state 2 with transmittance p02M02(s). Using an engineering-based balance equation

approach or the fact that waiting time to exit (perhaps multiple passes through) a

feedback loop follows a geometric distribution (see Huzurbazar (2005a), Ex. 2.14,
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pp. 30-32), we solve for the total lower path transmittance to obtain

Tlower(s) = p02

�
M02(s)

1− p01p10M01(s)M10(s)

�
. (4.9)

For the upper path, we may choose instead to reduce the loop transmittance

to state 1 (rather than state 0 as above), so that the upper path begins in state 0

and progresses to state 1, where it may loop back to state 1 before proceeding to

state 2. The 1 → 1 and 1 → 2 transmittances may then be reduced to a single 1 → 2

transmittance using the same balance equation or geometric approach referenced in

the construction of (4.9). Finally, the 0 → 1 and 1 → 2 transmittances in series

reduce to the overall equivalent transmittance for the upper path:

Tupper(s) = p01

�
p12M01(s)M12(s)

1− p01p10M01(s)M10(s)

�
. (4.10)

The resulting upper and lower path transmittances given in (4.9) and (4.10) may

now be viewed as parallel branches to obtain the overall survival MGF in trial N0147:

M(s) =
p01p12M01(s)M12(s) + p02M02(s)

1− p01p10M01(s)M10(s)
. (4.11)

We note that the flowgraph above could have been solved using Mason’s rule

(4.1) with the same result. With specific distributional forms chosen for each branch-

specific waiting time MGF, the methods discussed in Section 4.2 may be used to

obtain predictive distributions for death times or other quantities of interest for

the N0147 trial, where both right-censoring and patient covariates are certain to be

present.

In the context of surrogacy evaluation, overall survival (OS) is a likely clinical

endpoint for trial N0147, while disease-free survival (DFS) might be a desirable

potential surrogate to replace OS. Thus, in addition to the full flowgraph developed

for OS above, we may construct a reduced flowgraph for overall time to DFS, defined

as the earlier of disease recurrence or death. This flowgraph, shown in the lower left

panel of Figure 4.2, consists of the same system without the 1 → 2 and 1 → 0
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branches, where state 1 becomes a second possible absorbing state. Because the

first-order loop present for OS no longer exists in this framework, the flowgraph for

DFS simply consists of two parallel branches, with overall MGF from Mason’s rule

given by M(s) = p01M01(s) + p02M02(s). Estimation of the model parameters and

regression coefficients associated with each flowgraph will yield Bayesian predictive

distributions and treatment effect vectors for DFS and OS, which may then be used

to evaluate surrogacy (see Section 4.4).

4.3.2 Trial N9741: Illness-Death Model with a Possibly Prolonged Initial State

The flowgraph for overall survival in trial N9741, shown in the upper right

panel of Figure 4.2, is similar to the reversible illness-death flowgraph for overall

survival in trial N0147 discussed in Section 4.3.1. However, a direct feedback loop

0 → 0 adds additional modeling complexity. We solve this flowgraph using Mason’s

rule (4.1) as presented in Section 4.2.2. Recall when using (4.1), a path is defined as

any possible sequence of nodes from input to output that does not pass through any

intermediate states more than once. According to this definition, there are two paths,

0 → 1 → 2 and 0 → 2. The transmittances corresponding to these paths are P1(s) =

p01M01(s)p12M12(s) and P2(s) = p02M02(s), respectively. Furthermore, we have two

first-order loops given by 0 → 0 and 0 → 1 → 0. The sum of the transmittances

over these first-order loops is L1(s) = p00M00(s)+p01M01(s)p10M10(s). There are no

higher-ordered loops present in the flowgraph, and neither first-ordered loop avoids

sharing common nodes with each path. Thus, Li
j = 0 for all i, j, and the bracketed

quantity in the numerator of (4.1) is simply 1. The overall survival MGF of the

flowgraph for trial N9741 is then given by Mason’s rule as

M(s) =
p01p12M01(s)M12(s) + p02M02(s)

1− p00M00(s)− p01M01(s)p10M10(s)
. (4.12)

When choosing the branch-specific waiting time distributional forms for overall

survival in trial N9741, we would give special attention to the choice of distribution

75



for the direct feedback loop M00(s). Recall that we incorporated this loop into the

N9741 flowgraph to handle patients who seem to remain in state 0 for a prolonged

period, perhaps until they are right-censored in this state after some period of follow-

up. For this reason, we would intentionally choose a heavy-tailed distribution, such

as inverse Gaussian, to ensure lengthy stays in state 0 are possible for some patients.

Other branch-specific distributional forms may be individually selected through ex-

ploratory analyses or visual inspection of censored-data histograms (Huzurbazar,

2005a). Ultimately, the saddlepoint approximation and Bayesian methods of Sec-

tion 4.2 may be used to obtain estimates and predictions of interest for the N9741

trial, where right-censoring and covariates will accompany consideration of the spe-

cial group of “cured” patients.

In trial N9741, we may wish to investigate progression-free survival (PFS) as

a candidate surrogate for overall survival (OS), where PFS is defined as the earlier

of disease progression or death. In this setting, the full flowgraph for OS presented

above may be reduced to a separate flowgraph for PFS, where the 1 → 0 and 1 → 2

transitions are removed and state 1 is now a second absorbing state. This flowgraph,

shown in the lower right panel of Figure 4.2, retains the 0 → 0 first-order loop in

addition to two parallel branches given by 0 → 1 and 0 → 2. Using Mason’s rule, the

overall MGF for PFS is then given by M(s) = [p01M01(s) + p02M02(s)]/p00M00(s).

Estimation of parameters associated with each flowgraph will yield quantities useful

for the surrogacy evaluation of PFS for OS (see Section 4.4).

4.4 Application to Surrogacy Evaluation

Ultimately, a surrogate endpoint S for a true endpoint T must be validated

at two levels: the within-trial or patient level, and the across-trial or meta-analytic

level. Common surrogacy measures for time-to-event endpoints include copula R2
indiv

at the patient level and R
2
trial at the trial level, both discussed within a frequentist
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framework by Burzykowski et al. (2001). However, the quantities obtained from

flowgraph modeling are distinctly different from observed endpoints S, T and esti-

mated treatment effect pairs β̂S, β̂T used to assess surrogacy at the patient and trial

levels, respectively, within existing evaluative frameworks in the surrogate endpoints

literature.

Using flowgraph models, patient-level surrogacy might now be evaluated based

on the joint predictive distribution of S and T , f(zs, zt|x), obtained through Bayesian

estimation of the flowgraphs that describe S and T . If the predictive distributions

for S and T are highly associated within patient groups such as treatment arms,

S may be a good surrogate for T at the patient level. With data available from

multiple similar clinical trials indexed by i ∈ 1, ..., N , trial-level surrogacy could be

assessed through hierarchical modeling of the joint treatment effect vectors on S and

T , denoted (βS,i, βT,i), where the dimension of each vector follows from the number of

branch transmittances and transition probabilities containing regression components

for treatment effect in each of the two flowgraphs for S and T . These vectors,

estimated from each pair of flowgraphs representing S and T across trials, could

then be studied for strongly-related and consistent S, T relationships across trials.

Flowgraphs become important to this goal through improved modeling of treatment

effect covariates, with effects allowed to be specific to each state transition rather

than assumed fixed over an entire flowgraph or partial flowgraph. For example,

the effect of treatment on the transition from a disease-free state to recurrence may

be vastly different than the effect of the same treatment on the transition from

recurrence to death. Using this added information in surrogacy analyses would

promote more sophisticated identification of candidate surrogate endpoints.
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CHAPTER FIVE

Conclusion

5.1 Bayesian Evaluation of Surrogate Time-to-Event Endpoints

In Chapter 2, we have demonstrated that using a straightforward Bayesian

approach with vague prior distributions generally enhances the stability and perfor-

mance of both unadjusted and adjusted trial-level surrogacy measures, with Bayesian

R
2
adj often offering the greatest advantages. Caution undoubtedly must be used, how-

ever, as estimates of R2
adj may be biased high in meta-analyses with too few trials, or

when many data characteristics (trial size, censoring rate, range of treatment effects)

are simultaneously moved away from ideal levels. In the secondary simulations, this

bias is not as extreme as that demonstrated by the unadjusted measure in the op-

posite direction. Still, we remain concerned that R2
adj as originally formulated was

not able to distinguish the likely vast difference in surrogacy of TTR for OS be-

tween the old and new ACCENT trials. Clearly, in consideration of the relationship

between treatment effects on OS and treatment effects on TTR across trials, there

are settings in which the adjusted model attributes too much of the deviation from

perfect surrogacy to estimation error, rather than to underlying imperfect surrogacy.

Furthermore, while this dissertation only presents results based on vague priors for

unknown parameters in each Bayesian model, consideration of more informative pri-

ors on quantities within the adjusted model did not greatly influence or improve

these results.

Even though we have only examined error-adjusted, trial-level surrogacy mea-

sures in the context of time-to-event endpoints, the lessons learned here may be

beneficial for evaluations involving other endpoint types. As meta-analytic assess-

ments of surrogate endpoints continue to surpass single-trial assessments in both
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popularity and practicality (Burzykowski, 2008), we expect Bayesian modeling to

play an expanding role in facilitating the implementation of increasingly complex

evaluative approaches. For example, Abrahantes et al. (2004) performed a Bayesian

simulation study to assess “coarse” to “fine” hierarchical structures for evaluation

of normally distributed surrogate endpoints in a meta-analytic setting, accounting

for the natural hierarchy and levels of information shared by patients within centers

and centers within trials.

While recent papers on surrogate endpoint evaluation and validation still oc-

casionally include discussions regarding the extent to which the Prentice criteria

are satisfied by newer methods, some authors have noted how the Prentice crite-

ria seem to imply that meta-analyses are required to prove surrogacy (Molenberghs

et al., 2002). Another strong argument for meta-analytic evaluation of surrogate

endpoints is provided by De Gruttola et al. (2001), who specifically promote the

construction of databases of clinical trials on which patient-level as well as trial-level

surrogacy analyses can be conducted. Efforts to compile such databases would be

motivated by the fact that studies designed specifically to evaluate surrogates are

generally implausible (Lesko and Atkinson, 2001), and collections of trials would al-

low for in-depth evaluation of potential surrogates across similar studies and within

specific diseases. Certainly the ACCENT database considered here serves as an im-

portant model for other disease types, from the deliberate collection of similar trials

to rigorous evaluation of candidate endpoints and ultimately, regulatory approval

based on validated surrogates in future trials.

More sophisticated approaches to surrogacy evaluation than those considered

here certainly do exist, with many developed specifically for broad application across

endpoint types. Alonso et al. (2004) introduced the likelihood reduction factor (LRF)

for general endpoints, to replaceR2-type measures specific to normal, survival, or dis-

crete endpoints at the patient level. Later, Alonso and Molenberghs (2007) proposed
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an information-theoretic approach to surrogate endpoint evaluation at both individ-

ual and trial levels within a meta-analytic setting, designed to accommodate general

endpoint types. Bringing the evaluation of surrogacy into another realm, Frangakis

and Rubin (2002) provided definitions of principal surrogates and statistical surro-

gates, based on the theory of causal inference. Such advances are mathematically

elegant and offer certain theoretical advantages; in practice, however, the candidacy

of specific types of endpoints, not general endpoints, are of interest. More impor-

tantly, it remains to be seen whether evaluative approaches for surrogate endpoints

based on information theory and causal inference could ever become widely accessi-

ble to physicians, clinicians, and statisticians alike–an important goal for which the

R
2-type measures have already demonstrated success (Shi and Sargent, 2009).

In light of more complex approaches to surrogacy evaluation, Fleming (2005a,b)

encourages more broad, exploratory approaches similar to Sargent et al. (2005), to

include a panel of intuitive meta-analytic measures, graphical checks, and measure-

ment of concordance across trials for establishing the association between treatment

effects on the true and candidate surrogate endpoints. Others have emphasized that

a surrogate endpoint could never be validated by a single method (Green et al.,

2008); rather, a candidate endpoint should demonstrate consistently high surrogacy

across a range of measures. Moreover, statistical evaluation of surrogacy should

complement the intuition of clinicians, those most familiar with the disease being

treated and the mechanisms of action by which the intervention being studied may

affect the surrogate and clinical endpoints of interest.

We have shown that R2
adj, originally introduced to accommodate error in esti-

mation of treatment effects in meta-analyses of survival endpoints, need not be aban-

doned due to its usual unavailability within the maximum likelihood paradigm. This

theoretically more realistic measure of trial-level surrogacy is easily available within

the Bayesian framework, and in our simulations, generally outperforms popularly-

80



used unadjusted classical measures in terms of bias, MSE, and coverage to a greater

degree as trial characteristics become less ideal. Not surprisingly, instability that

exists for all meta-analytic surrogacy measures in analyses based on too few trials or

trials of low effective sample size continues to impact R2
adj, but generally to a lesser

degree than R
2
un.

In the ACCENT meta-analyses, highly precise estimation of surrogacy, espe-

cially when adjusting for error in estimation of the treatment effects, is certainly

inhibited by rather small numbers of trials and other data characteristics. We must

acknowledge, however, that the true surrogacy of TTR for OS is unknown–rather

than fixed–in these examples. It could be that point estimates of Bayesian R
2
adj are

optimistically high for each of the ACCENT analyses, but because of high poste-

rior variability, we would correctly avoid putting too much confidence in TTR as

a surrogate for OS. Although questions and concerns remain regarding widespread

use of R2
adj, a Bayesian approach makes it possible to obtain such error-adjusted

measures for consideration. Furthermore, the extended method of Section 2.5 offers

an attractive alternative – one we hope will be the subject of future investigation.

As such, we strongly encourage exploration and inclusion of Bayesian measures in

future meta-analyses for potential surrogate endpoints, as the advantages discovered

here could yield similar insight for other endpoint types and disease settings.

5.2 Bayesian Adaptive Trial for a Newly Validated Surrogate

Although they have been used to establish efficacy and gain regulatory ap-

proval in practice, the very idea of surrogate endpoints continues to incite trepida-

tion, from conflicting ideas regarding validation to concern regarding their ultimate

implementation. In Chapter 3, we proposed a novel trial design that allows a newly-

validated surrogate endpoint to play its intended role as the primary endpoint for

determining the effect of an experimental treatment, while adaptively checking its
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performance for consistency with historical data used for its validation. Under-

standing that practical concerns are likely to remain even after a surrogate has been

deemed ‘valid’ for future use, our design quantifies knowledge and uncertainty from

the validation stage and uses this information to assess the surrogate’s performance

during a new trial, while retaining the other advantages of Bayesian adaptivity.

While we demonstrated our design in the context of survival endpoints, other types

of endpoints and treatment effect measures could easily be used, with only minor

modifications to our algorithm.

In both our simulation studies and application to adjuvant therapy trials in

colon cancer, substantial savings in trial length and sample size were observed, while

incorrect conclusions regarding surrogacy and effect of treatment were generally

avoided (and avoided early). With patients, clinicians, and sponsors alike hoping to

see beneficial new therapies approved and available for use as quickly as is reason-

ably possible, this design offers promise for those diseases where validated surrogate

endpoints already exist or will exist in the future.

Finally, a concern that appears in the literature regarding hypothetical trials

using surrogate endpoints is that shortened patient follow-up may be inadequate

to detect rare or delayed adverse events (Wittes et al., 1989). While this point is

certainly valid, it is also true for any trial that is designed to stop early or decrease

in size based on available information. In general, we believe this risk is inherent to

most (including classical) clinical trial designs, and pales in comparison to the many

tangible and ethical advantages of adaptive design.

5.3 Flowgraph Modeling for Surrogacy Evaluation

In Chapter 4, we discussed the application of flowgraph modeling to cancer

trials, with the goal of an improved and flexible parametric approach useful for eval-

uating surrogate endpoints in a more realistic manner. While we encourage the use
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Bayesian methods, which yield predictive distributions of observables and posterior

distributions on parameters of interest (rather than point estimates and approxi-

mate variances), a classical approach to flowgraph estimation is also possible. Yau

and Huzurbazar (2002) offer a step-by-step treatment from a frequentist framework,

including construction of likelihood components for complete and missing data, con-

struction of the associated estimated total MGF, and numerical integration to obtain

estimates of the total waiting time CDF, pdf, and hazard function. This paper in-

cludes handling of censoring and incomplete data (unknown transition times), but

does not discuss inclusion of covariates. A drawback of this non-Bayesian approach is

that variability of stage-specific parameter estimates is ignored, and thus parameter

uncertainty does not carry forward in estimation of the overall model.

Huzurbazar andWilliams (2010) discuss possible relaxation of the semi-Markov

assumption to handle dependencies among subsequent waiting time distributions.

When successive waiting times are not conditionally independent, the semi-Markov

assumption no longer holds. Huzurbazar and Williams (2010) discuss how to alter

likelihood functions and MGFs for this case, but warn that using time-dependent

covariates and time-dependent transition probabilities in flowgraphs is especially

challenging, quickly becoming impossible for complex models. The same paper also

discusses handling of special types of recurrent events, and offers a perspective on

Bayesian model averaging over predictive distributions resulting from flowgraphs.

Huzurbazar and Williams (2010) further note that saddlepoint approximation may

oversmooth some densities; in this case, Fourier transforms may be considered in-

stead. Estimation of flowgraphs with incomplete data, or unobserved transition

times that appear to “skip” states, is discussed in Huzurbazar (2000).
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