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Testlet Effects on Pass/Fail Decisions Under Competing Rasch Models 
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Mentor: Grant B. Morgan, Ph.D. 
 

 
 The item response model chosen to estimate ability can influence proficiency 

classification, or pass/fail decisions, made about people based on test scores. This poses a 

potential problem for both the examinee and the decision makers because examinees may 

be misclassified based on the item response model used to estimate ability and not their 

actual proficiency in a domain of interest. The purpose of this study was to examine the 

use of an incorrect item response model and its impact on proficiency classification. A 

Monte Carlo simulation design was employed in order to directly compare competing 

models when the true structure of the data is known (i.e., testlet conditions). The 

conditions used in the design (e.g., number of items, testlet to item ratio, testlet variance, 

proportion of items that are testlet-based and sample size) reflect those found in the 

applied educational literature. An empirical example is also analyzed for pass/fail 

decisions with the competing models.  

Overall, decision consistency (DC) was very high between the two models, 

ranging from 91.5% to 100%. The design factor that had the greatest effect on DC was 

the testlet effect or testlet variance. Other design factors that affected DC included 



number of testlets, an interaction between testlet variance and the percent of total items in 

testlets, and an interaction between the number of testlets and the percent of total items in 

testlets. PISA is traditionally calibrated with a DRM, and contained 29 items in nine 

testlets. The classification agreement percent between the DRM and the TRM was 

99.5%. When a testlet structure is present in applied data the testlet variance is unknown 

and as the testlet variance increases so does the misclassification of examinees. When 

measurement models are used that do not align with the structure of the data additional 

error is introduced into the parameter estimates. This directly impacts the decisions that 

are made about people.  
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CHAPTER ONE 
 

Introduction 

 
Assessment is a process of obtaining information for making decisions about 

people, curricula, or programs (Nitko & Brookhart, 2006). Educational decisions made 

based on results from these assessments may include placement into educational 

programs or interventions, retention or progression, scholarship or awards, or 

credentialing or certifying competency, to name a few. The way assessment results are 

interpreted and used has potentially serious consequences for those being assessed. 

Therefore, the trustworthiness of data provided by instruments is important for making 

decisions about people based on test results. Interpretation of data is described as the 

meaning assigned to the score and use is defined as the action or decision made based on 

the score (Nitko & Brookhart, 2006).  

 Decision-making in educational settings often requires the assessment of 

knowledge, skills, and abilities. Theoretically, knowledge, skills, and abilities are not 

directly observable and require the use of tests, or a collection of questions or items, to be 

measured (Crocker & Algina, 2008). The knowledge, skill or ability is referred to as a 

domain or construct and is inferred from a set of observations or test questions. 

Therefore, the purpose of a test is to provide information so that inferences can be made 

about a person’s amount or type of a construct measured through these items. For 

instance, data collected from a K-12 assessment in reading or language arts might be used 
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to place students in remedial or advanced courses, to make decisions for retention, or to 

endorse grade completion.  

The type and purpose of an assessment must align with the decisions that will be 

made about examinees (Miller, Linn, & Gronlund, 2009). For example, severe 

consequences may be imposed on people based on the decisions made in high stake 

assessment situations. Examples of high stakes decisions include awarding scholarships 

to some but not all students, admitting some but not all applicants into college, offering 

employment to some but not all applicants, or allowing some but not all professionals to 

practice through certification of some type. In such situations, assessment conditions are 

often standardized in an effort to increase objectivity. That is, standardized assessments 

usually consist of the same or very similar items, computerized scoring, and the same or 

very similar response formats. Mastery decisions reflect the degree to which an examinee 

has met or exceeded a specific standard, which could be minimal competence or high 

achievement standards. These tests often include basic skills, general knowledge, and 

professional/applied knowledge (Nitko & Brookhart, 2006).  

Tools for collecting information may include observations of performances, 

paper-pencil tests, research projects, oral questioning, and essays, but tests tend to be 

used in large-scale assessments. A test is a type of assessment that is an instrument or 

systematic procedure for describing or observing an examinee based on well defined 

characteristics via a numerical scale or classification scheme (Nitko & Brookhart, 2006). 

Tests are usually scored for correctness and are used to measure ability, aptitude, or 

achievement (AERA/APA/NCME, 1999).  
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Tests are also generally designed to measure how much examinees have achieved 

or are able to do, and they are developed to cover breadth as well as the depth of the 

construct (AERA/APA/NCME, 1999). Item response formats (i.e. multiple choice, 

constructed response, or essay) are typically selected based on whether breadth or depth 

of content coverage is desired because it is difficult to simultaneously address both. For 

example, essays are intended to measure aspects of a construct in more depth by 

requiring the examinee to provide responses in his/her own words with more complex 

presentation. Essays require the examinee to provide more information and aim to 

measure complexity or higher order thinking. Yet, essays require a considerable amount 

of time to score and may be prone to subjectivity in the scoring. Thus, essays tend to be 

preferred when depth of coverage is desired. Multiple-choice items tend to be chosen 

when breadth of coverage is desired because multiple-choice items can cover a construct 

more broadly and efficiently (Haladyna, Downing, & Rodriguez, 2002). Multiple-choice 

items are also easier to score because the examinee selects the best answer out of 

response choices, one of which has been predetermined as correct. What multiple-choice 

items gain in efficiency is traded for content representativeness due to the lack of depth 

provided by a single item (Haladyna et al., 2002). More items are therefore needed to 

cover the domain adequately. 

Multiple-choice items are frequently used in large-scale assessments and can be 

administered in multiple formats or delivery. Haladyna et al. (2002) reported a number of 

multiple-choice formats including true false, two and four option questions, matching, 

context-dependent items and context-dependent item sets. The authors described a 

context-dependent item as an item whose response is based on a given scenario, vignette, 
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reading passage, graph, chart, or other interpretive material or stimuli. The major benefit 

of context-dependent items is that they are able to measure higher-level thinking, such as 

problem solving and/or critical thinking. The major drawback is that they require 

considerable space on the test, and examinees may need more time to read and respond to 

the items. One way to solve the problem of inefficiency of single context-dependent item 

is to develop context-dependent item sets, which are described as several items paired 

with a common stimulus. These item sets are frequently called testlets, item bundles, 

super items, and context-dependent item sets. In this paper this type of item set is referred 

to as a testlet. One major benefit of the testlet is the ability to assess examinees’ 

application of knowledge and skills of more complex constructs, such as reading 

comprehension, written communication skills, and/or problem solving. One potential 

drawback of using this type of item set is the violation of conditional, or local, 

independence, which is a statistical problem. This is discussed in more detail in the 

following section and is a major focus of this study.  

 
Testlets 

Multiple-choice items are able to measure a broader range of content more 

efficiently and are scored more easily than more complex constructed-response items, 

such as essays or performance assessments. The tradeoff for efficiency may be that 

individual items may not as deeply measure the domain of interest. One method of 

countering this problem was to introduce a more in-depth stimulus that is better able to 

represent the domain of interest and develop a group of items related to the stimulus 

(Wainer, Bradlow, & Wang, 2007). Examples of in-depth stimuli include reading 
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comprehension passages, science or mathematics graphs and tables, geography maps, 

cases, scenarios, or music compositions. 

Wainer and Kiely (1987) proposed the term “testlet” to denote a group of items 

that are administered together (e.g., in computer adaptive situations where different sets 

of items might be administered). Similarly, Wainer et al. (2007) define a testlet as “a 

group of items that may be developed as a single unit that is meant to be administered 

together” (p 53). Wang and Wilson (2005a) described testlets as groups of items that 

have a common stimulus, such as a case-based scenario or reading passage. Although 

testlets have partially addressed the problem of the lack of depth in domain representation 

with multiple-choice items, the use of testlets may create additional relationships between 

items unaccounted for by the construct of interest.  

Almond, Mulder, Hemet, and Yan (2009) described a situation in which 

familiarity or unfamiliarity of the context related to the reading passage provides 

additional context to the passage that may not provide information about the construct 

under investigation. They provided the example of a reading comprehension test where 

the reading passage was about dinosaurs. If an examinee was interested and familiar with 

dinosaurs, she or he may be more likely to recognize words like “pterodactyl” and 

“Paleolithic” whereas an examinee who was unfamiliar with dinosaurs might have to 

decode these words and infer their meaning from the context of the passage. Thus, it is 

necessary to account for the construct-irrelevant context from the response pattern in 

order to provide a more accurate estimate of the ability or proficiency in question, 

because the items may be unintentionally measuring more than one construct.  
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Purpose of Study 

When testlets are present the model selected to estimate examinee ability may 

influence the pass/fail decisions made about examinees due to the additional relationship 

between items that is unaccounted for. This poses a potential problem for both the 

examinee and the decision makers. Therefore, this study seeks to compare the known 

proficiency status via the Rasch testlet model of each observation to the estimated 

pass/fail decision via the dichotomous Rasch model when there are testlets that are 

ignored. A Monte Carlo simulation design was employed in order to compare competing 

models when the true structure of the data is known (i.e., testlet conditions). The factors 

used in the design (e.g., number of items, testlet to item ratio, testlet variance, percent of 

total items that testlet-based and sample size) reflect those found in the applied education 

literature. An empirical data set is also analyzed in order to compare the pass/fail 

decisions between the competing models. 

 
Overview of Procedures 

First, the applied literature was reviewed in order to identify the empirical 

conditions under which educational assessments include testlets. These conditions were 

reported and formed the basis for generating conditions that mirror applied settings. The 

particular conditions included in this study were the number of items, item to testlet ratio, 

testlet variance, proportion of items that were testlet-based, and sample size. In order to 

reflect multiple choice large-scale educational assessments all items in this study were 

dichotomous (Fountas & Pinnell, 2012; Good, Wallin, Simmons, Kame’enui, & 

Kaminsji, 2002; Harcourt, 2003; NCES, 2014; SBAC, 2014).  
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 All data simulated for this study were generated from a testlet population 

structure. Next, two competing models were fit to the simulated data and pass/fail 

decisions were recorded based on a predetermined cut score. Because the population 

model was known, the appropriate pass/fail decision for each simulated examinee is 

likewise known. This allowed for comparisons to be made between the true and estimated 

pass/fail decisions and thus evaluate the decision consistency between the competing 

models. The proportion of pass/fail decisions that differ between models was reported. 

The competing models were also applied to a publicly available secondary dataset (i.e., 

Program for International Student Assessment [PISA]) that contains item-level responses 

collected from a subset of students from the United States. The items were a part of the 

reading assessment, which included testlets. The pass/fail decision consistency produced 

by the models were examined and reported. Finally, the implications and considerations 

for the use of these models in high-stakes assessments are discussed. 

 
Delimitations 

A primary limitation of all studies that use Monte Carlo methods is that the results 

are generalizable only to the conditions simulated. Therefore, it is essential to generate 

conditions similar to those found in the applied literature. As is true with any simulation 

study, this study did not simulate all possible conditions reported in the literature. Instead 

the most commonly reported conditions were included, along with an empirical example. 

Finally, there are many models with varying degrees of complexity available to estimate 

ability about which decisions about examinees can be made. This study includes Rasch 

models, which are more parsimonious than other item response models. Rasch models 

were used based on the idea that if ignoring testlets affects pass/fail decisions in less 
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complex models, then the effect of ignoring testlets may be increased and possibly more 

difficult to detect in more complex models.  
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CHAPTER TWO 
 

Literature Review 
 
 

Introduction 
 

Items linked via a reading passage, scenario, or a case are called testlets and are 

commonly used in educational assessments (Fountas & Pinnell, 2012; Good et al., 2002; 

Harcourt, 2003; NCES, 2014; SBAC, 2014). The use of testlets in test construction was 

developed out of the need to more efficiently test a person’s ability to understand a 

stimulus such as a reading passage, map, graph, or music composition (Wainer, et al., 

2007). One of the greatest advantages of using testlets, aside from efficiency, is the 

ability for test developers to construct tests in ways that may be more representative of 

the construct being measured. Yet, the use of testlets violates the assumption of local item 

independence (LID) and may introduce bias and instability into score interpretation 

(Zumbo & Rupp, 2004) because testlets are secondary dimensions that are unaccounted 

for in traditional models.  

Unidimensional models that ignore the testlet effect are frequently used in large 

scale testing situations (Dickenson, 2005). Similarly, increases in the use of testlets by 

test developers created a need to investigate the potential differences in decisions made 

about people depending on the model used to calibrate tests containing testlets. In other 

words, the raw or sum score from a test is only an indication of a possible measure 

(Dickenson, 2005). The use of Rasch measurement models provide a means of 

constructing inferences from observations that are independent of who else is taking the 
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test or the difficulty of the items on the test in the following ways:  a) constructing a 

linear measure, b) accommodating missing data, c) providing estimates of reliability, and 

d) providing a means of detecting misfit (Wright & Mok, 2004). This chapter will 

introduce the models used in this study and provide a review of the methodological 

studies related to testlets. 

 
Testlets 

Testlets are becoming increasingly prevalent in educational testing situations. 

Languages Arts and reading assessments are prime examples of tests that include testlets, 

as examinees are provided with a reading passage and then asked a group of items related 

to the passage. For example, the Smarter Balanced Assessment Consortium (SBAC, 

2014) English language arts assessment includes testlets and was designed for alignment 

with the Common Core State Standards Initiative (e.g., reading critically, vocabulary, and 

comprehension), and results are used to make decisions about students proficiency, 

school accountability ratings, and implementation of programs or interventions for third 

through twelfth grade students. The Texas Primary Reading Inventory (TPRI), The 

Dynamic Indicators of Basic Early Literacy Skills (DIBELS) (Good et al., 2002), The 

Rigby PMs collection (Rigby) (Harcourt, 2003), and The Fountas and Pinnell Benchmark 

Assessment system (F&P BAS) (Fountas & Pinnell, 2012) are reading assessment 

programs that measure reading readiness or monitor reading progress for elementary 

students by asking the student to read a story or passage and then answer group of 

questions about the story. The National Assessment of Educational Progress (NAEP) is a 

large national assessment that measures academic achievement of U.S. students every 

two years in fourth, eighth, and twelfth grades (NCES, 2014). The NAEP reading 



11 

assessment measures reading comprehension and is used to compare the nation, states, 

and urban districts and is disaggregated by demographics (e.g., sex, socioeconomic 

status, race/ethnicity). 

In all of these assessments each examinee is presented with a reading passage and 

then asked at least three questions about the passage. Due to the number of assessment 

programs using testlets (Fountas & Pinnell, 2012; Good et al., 2002; Harcourt, 2003; 

NCES, 2014; SBAC, 2014), it is necessary to investigate the extent to which the 

decisions made based on these tests are affected by the inclusion of testlets so that 

examinees are not misclassified.  

Testlets are operationally defined in this study as groups of items that have a 

common stimulus. Almond et al. (2009) described a situation in which familiarity or 

unfamiliarity with the context or topic related to a reading passage provided additional 

context or differing prior knowledge about the passage that may not provide information 

about the latent construct under investigation (i.e., reading ability).  

Testlets create patterns of local dependence (i.e., additional correlation between 

items) in item responses beyond the effect of the underlying latent trait. Imposing local 

independence, the probability of observing a correct response (i.e., coded as “1”) on the 

ith item can be expressed: 

Pሺ ௜ܷ ൌ 1	|	Θ ൌ ሻߠ ൌ Pሺ ௜ܷ ൌ 1	|	Θ ൌ ,ߠ ܸ ൌ  ሻ, for all V             [2.1]ݒ

where P is the probability of the observed item response of item i given ߠ,	 ௜ܷ is the 

response to item i, Θ is the latent trait, ߠ is the specified value of person ability, V is any 

other variable that is unaccounted for. In equation [2.1], the latent trait, Θ, contains all 

necessary information for accounting for a set of item responses because conditioning on 
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any other variable, V, beyond the latent trait does not change the modeled probability of a 

correct response to item i. Local dependence means that the latent trait of interest does 

not adequately account for the covariance in item responses. Therefore, local dependence 

can be expressed: 

Pሺ ௜ܷ ൌ 1	|	Θ ൌ ሻߠ ് Pሺ ௜ܷ ൌ 1	|	Θ ൌ ,ߠ ܸ ൌ   ሻ, for some V.   [2.2]ݒ

This additional dimension may influence parameter estimation when the model selected 

does not account for LID. The item response model selected can influence proficiency 

classification based on test scores. This may pose a problem for both the examinee and 

the decision makers because examinees may be misclassified based on the item response 

model and not their proficiency in a domain of interest. Therefore, this study seeks to 

compare the known proficiency status via the Rasch testlet model of each observation to 

the estimated pass/fail decision via the dichotomous Rasch model when there are testlets 

that are ignored. 

 
Approaches for Modeling Testlets 

 
Multiple approaches have been proposed for dealing with violations of local 

independence resulting from the use of testlets. A common approach is to ignore the 

dependency and proceed with a traditional measurement model (Wainer, et al., 2007). 

Most traditional measurement models assume local, or conditional, independence that 

includes the assumption that all item responses are uncorrelated after the latent trait of 

interest has been accounted for (Yen, 1993). Although it is rarely believed that this 

assumption holds completely, testlets directly violate the assumption of LID and may 

introduce bias and instability into score interpretation (Zumbo & Rupp, 2004). Wainer, et 

al. (2007) suggested that if the number of items included in each testlet (e.g., four testlets 
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with three items in each testlet) is relatively small, then ignoring the violation of local 

independence assumption might be acceptable. As the item-to-testlet ratio increases or 

the magnitude of the dependence in the testlet increases, then a lack of precision in the 

parameter estimates may also increase.  In other words, as the number of items included 

in each testlet increases, the residual correlations (i.e., local item dependence) increase. 

Additionally, as the magnitude of the LID increases, there is more variance left 

unaccounted for by the primary dimension (i.e., latent trait of interest). Therefore, as 

more variance is left unaccounted for, the precision of the parameter estimates is 

negatively affected.  

The second method is to aggregate these types of items into what have been called 

superitems, which are created by combining binary responses into a polytomous item 

(Wainer & Kiely, 1987). This alternative for modeling an assessment with testlets would 

treat testlets as polytomous items instead of individual dichotomous items (Thissen, 

Steinberg, & Mooney, 1989; Wainer & Kelly, 1987; Wainer & Lewis, 1990). For 

example, if 10 items relate to the same case or scenario, the scored responses would be 

added together to produce a possible range of scores from zero to ten. Then the ten items 

would be treated as a single polytomous item, and each testlet would be treated in this 

way. Items within testlets are considered locally dependent, but the separate testlets are 

considered locally independent. This approach solves the within-testlet dependency 

problem, but the item-level response pattern is lost. Combining items from a testlet into 

one superitem will provide information about the number of items in the testlet that a 

person answered correctly but not which specific items were answered correctly.  
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The third approach is to account for the additional dependence by including 

testlets as latent variables in a model specifically designed for testlet effects. This method 

accounts for the construct-irrelevant context by providing a more accurate and 

representative scoring pattern. Item responses are analyzed as individual items instead of 

polytomous items, where the additional relationship is accounted for by the latent testlet 

variable. Although testlet models are more complex to implement, they provide the most 

information about people while providing more flexibility in modeling item responses. 

Wang and Wilson (2005a) describe three advantages of the testlet model over the 

polytomous model with superitems. The first advantage is that the unit of analysis 

remains at the item level rather than the testlet level. Second, the item scoring rubrics 

remain the same, meaning each item is scored individually and not summed together. 

Third, item difficulty parameters are conceptualized the same way as the dichotomous 

model. This third approach is the approach taken in this study.  

 
Rasch Models 

The family of Rasch models are probabilistic models for estimating person ability 

and item difficulty parameters, where the measured proficiency or ability estimate does 

not depend on who else is taking the test or the difficulty of the test (Rasch, 1960). Rasch 

models separate the person parameter from the item parameters and provide information 

about a person’s ability based on responses to a set of items. Similarly, item difficulty can 

be derived from the responses to an item from a set of people (Rasch, 1960). The 

probability of a person responding correctly depends on how much ability the person has 

and the difficulty of the item. The Rasch model also provides a method for ordering 

people based on their ability and items according to their difficulty. The traditional, 
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dichotomous Rasch model and the testlet Rasch model are described in more detail 

below.  

 
Dichotomous Rasch Model  
 

The traditional, dichotomous Rasch model (DRM) is appropriate for items that are 

scored as dichotomous outcomes of a probabilistic process that is a linear combination of 

ability and difficulty parameters (see Figure 2.1). This model can be expressed as 

(Linacre, 2004): 

log ቀ௉೙೔భ
௉೙೔బ

ቁ ൌ ௡ߠ െ	ߚ௜      [2.3] 

where  ߠ௡ is the ability of person n, ߚi is the difficulty of item i,  ௡ܲ௜ଵ is the probability 

that person n will succeed on item i, and ௡ܲ௜଴ is the probability that person n will fail on 

item i. Therefore ௡ܲ௜ଵ is expressed as   

	 ௡ܲ௜ଵ ൌ
ୣ୶୮	ሺఏ೙ି	ఉ೔ሻ

ଵା	ୣ୶୮	ሺఏ೙ି	ఉ೔ሻ
.     [2.4] 

 
 

 
 
Figure 2.1: Rasch conceptual model for ten independent items with error terms excluded  
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The DRM sets item discriminations to be equal to one, meaning that items 

discriminate equally across items and people. The model assumes item response 

functions are monotonically increasing; meaning that as ability level increase the 

probability of correctly responding to an item does not decrease. The DRM further 

assumes that the collection of items is unidimensional, or that they measure one latent 

construct. The last assumption for the DRM is local independence, which means that 

after partialling out the correlation between items due to person ability, the items are no 

longer correlated (Linacre, 2004). The DRM is conceptually consistent to Spearman’s 

model of intelligence (Spearman, 1927).  

 
Rasch Testlet Model  

The Rasch testlet model (RTM) is similar to the DRM except that the RTM 

includes one or more additional random effect parameters to account for the violation in 

the local independence assumption (see Figure 2.2). A testlet effect is an interaction 

between a person and the testlet, and each testlet may have a different effect. According 

to Wilson and Wang’s (2005a) RTM the probability of a correct response on a 

dichotomously scored item can be defined as: 

௡ܲ௜ଵ ൌ
ୣ୶୮	ሺఏ೙ି	ఉ೔ାఊ೙೏ሺ೔ሻሻ

ଵାୣ୶୮	ሺఏ೙ି	ఉ೔ାఊ೙೏ሺ೔ሻሻ
    [2.5] 

where ߛ௡ௗሺ௜ሻ is the testlet effect and ௡ܲ௜ଵ is the probability of person n with ability ߠ௡	will 

succeed on item i with difficulty ߚ௜. One assumption of this model is that the testlet effect 

 ௡ௗሺ௜ሻ is mean centered within testlets such that the sum of the testlet effect is equal toߛ

zero (i.e., Σ௡ߛ௡ௗሺ௜ሻ ൌ 0), and the testlet effect is normally distributed with a mean of zero 

and some standard deviation (i.e., ߛ௡ௗሺ௜ሻ~ܰሺ0, ఊ೏ሺ೔ሻߪ
ଶ ሻሻ. According to Wilson and Wang 
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(2005a) when the variance of  ߛ௡ௗሺ௜ሻ	equals zero there is no testlet effect (reduces to 

dichotomous Rasch model), and ߪఊ೏ሺ೔ሻ
ଶ represents the amount of the testlet effect for testlet 

d(i). The larger the value of ߪఊ೏ሺ೔ሻ
ଶ the greater the proportion of total variance in test score 

that is attributable to the testlet. In the Rasch testlet model the variance is the same for all 

testlets (ߪఊ೏ሺ೔ሻ
ଶ ൌ  ௡ߠ ఊଶሻ. An additional assumption for the RTM is that the abilityߪ	

parameter and the testlet ߛ௡ௗሺ௜ሻ	effect are independent, meaning that testlet effects are not 

different at varying levels of ability (Paek, Yon, Wilson, & Kang, 2009).  

 
 

 
 
Figure 2.2: Testlet Rasch conceptual model for two testlets with five items in each testlet 
and error terms excluded 
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Applied and Methodological Studies 

 
Applied Examples 
 

Differential item functioning (DIF) studies examine the response patterns across 

groups, such as ethnic subgroups or linguistic groups compared with other subgroups. 

DIF studies are the most prevalent use of testlet models due to the fact that when testlets 

are not modeled, DIF is either more pronounced or less obvious (Wang & Wilson, 

2005b). Two possible sources of DIF include the testlet effect and the item 

characteristics. For example, when testlet effects are large and difficulty is small for one 

group but not the other DIF is amplified at the item level.  Similarly, when the testlet 

effects are small and difficulty is large for one group and not the other then DIF is 

amplified at the item level. This means that DIF estimates will be larger for those items, 

but may be influenced by the testlet and not necessarily a problem with the item.  

Conversely, when both testlet effects and item difficulty are either very large or 

very small for one group but not the other then DIF cancellation occurs at the item level. 

This means that DIF estimates will be smaller for those items but may be influenced by 

the testlet and may be more problematic. However, when items that have small but 

systematic DIF are combined into testlets DIF is amplified at the testlet level. Items with 

large but un-systematic DIF would go undetected when combined into a testlet resulting 

in DIF cancellation at the testlet level. Fortunately, item response testlet models provide a 

means of investigating the conditional probabilities of correct responses for different 

groups by way of item and testlet characteristic curves (Wang & Wilson, 2005b).  

Bao, Dayton, and Hendrickson (2009) investigated DIF between males (n=2,875) 

and females (n=3,078) and Caucasians (n= 3,171) and minorities (n=1,271) on the 1995 
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American College Testing (ACT) Reading exam. There were 40 items in four testlets. 

Model comparisons between the two-parameter logistic (2PL) model, 2PL testlet model, 

multi-group 2PL, and the multi-group 2PL testlet model were compared using deviance 

information criterion  (DIC). They concluded that the multi-group 2PL testlet model was 

the best fitting model, and they found both DIF amplification and cancellation.  

Bao et al. (2009) found that the first testlet variances between subgroups were 

similar and ranged from 0.2 and 0.3. However, they reported that males scored lower than 

females and minorities scored lower than Caucasians on the first testlet. The second 

testlet variance was smaller and ranged from 0.1 to 0.2. On average males scored higher 

than females and minorities scored lower than Caucasians. The third testlet variance was 

about the same (ߛ ൌ0.46) for males and females but was different for minorities (ߛ ൌ

0.53ሻ	and Caucasians (ߛ ൌ 0.40ሻ. The fourth testlet variance was one.	The authors noted 

that all participants scored especially low on this testlet but that minority group scored 

much lower than the Caucasians group. Item level DIF revealed that item seven (ܨܫܦߤ ൌ

	0.8836ሻ and item twenty (ܨܫܦߤ ൌ െ0.8027ሻ had the largest differences between 

subgroups. They concluded that the magnitude of DIF for item seven was attributed to 

the testlet effect where as the magnitude DIF of item twenty was due to item difficulty 

after controlling for the main latent trait and the testlet effect. Items one, four, and 34 

were reported to have large magnitudes of DIF and favored Caucasians and items eight 

and nine had moderate magnitudes of DIF and favored minorities. All other item 

difficulties were reported as negligible. Bao, et al. (2009) concluded that there was a 

person-testlet interaction effect and that the magnitude of the effect varied between 

testlets and subgroups. In other words, when testlets are present a test may have DIF at 
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the item and or testlet level and when the testlets are not modeled, DIF at the testlet level 

may diminish or exacerbate DIF at the item level.  

Testlets affect the accuracy of individual proficiency classification. Hooker and 

Finkelman (2010) investigated what they termed paradoxical results (when one person 

passes and the other fails even though the person who failed may have answered more 

items correctly) with testlet-structured data in a reading test. They assumed a single 

dimension of the ability ߠ for the tests that include testlets. They found that using 

multidimensional item response models, to capture the nuanced testlet effect, were more 

susceptible to the paradoxical results, which can have adverse consequences for 

examinees. However, when item bundles are treated as independent effects in the item 

response models this phenomenon is minimized. .  

The reliability of proficiency classification is often over estimated due to the 

additional correlation in items when testlets are present. Zhang (2010) investigated 

decision consistency of proficiency classification for examinees taking the Examination 

for the Certification of Proficiency in English (ECPE) of the listening and grammar, 

cloze, vocabulary, and reading (GCVR) sections. The listening section had 35 

independent items and three testlets with five items each. The cloze section had one 

testlet with 20 items and the reading section had four testlets with 5 items each. The 

grammar and vocabulary section each had 30 independent items. The sample reported in 

included 5,000 randomly selected examinees from the ECPE (Zhang, 2010). A 2PL and a 

3PL testlet model were used in this study. The 3PL dichotomous and polytomous model 

were estimated using marginal maximum likelihood (MMLE) with the MULTILOG 

computer program whereas the 3PL testlet model was estimated using Markov chain 
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Monte Carlo (MCMC) procedures in the SCORIGHT computer program. Zhang (2010) 

reported testlet effects for all testlets were ൒ 0.30.	The cut score for the listening section 

were similar across models but the GCVR and reading cut scores were more varied 

across models. Zang (2010) compared the accuracy of classification as the percentage of 

examinees classified correctly. The listening, (3PL testlet=84.8, 3PL dichotomous=85.0, 

3PL polytomous=84.3) GCVR (3PL testlet=88.1, 3PL dichotomous=88.5, 3PL 

polytomous=87.9), and the reading (3PL testlet=81.8, 3PL dichotomous=84.8, 3PL 

polytomous=80.4) section were all compared across the three models and in all cases the 

dichotomous IRT model resulted in higher accuracy of classification. Zang (2010) 

concluded that the higher percentage in accuracy was due to inflated estimates due to the 

violation in LID. He noted that this inflation was more pronounced on the reading section 

and he called for the use of a testlet model.  

Testlets create psychometric problem for test equating (Eckes, 2013). Eckes 

(2013) investigated the structure of Test of German as a Foreign Language Test 

(TestDaf) listening section for testlet-based dependency. The author compared the 

TestDaf structure using three item response models (i.e., traditional 2PL, graded 

response, and 2PL testlet IRT). This portion of the test included 25 items linked to three 

listening passages with eight, ten, and seven items, respectively. The participants 

consisted of two samples. The first sample had 2,859 examinees (1,855 females and 

1,004 males) and the second sample had 2,214 examinees (1,429 females and 785 males) 

and were all foreign students applying for admission to a higher education institute in 

Germany. The test measures language proficiency ranging from intermediate to 

operational proficiency with three levels of classification. The test contains both short 
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answer and true/false items that are all scored correct/incorrect by expert raters. Eckes 

(2013) used the SCORIGHT computer program to estimate the testlet models using 

Bayesian estimation by drawing samples from the posterior distribution using MCMC. 

However, at the time of the study SCORIGHT was limited to nine categories for the 

polytomous model so the author collapsed categories from two of the testlets. Eckes 

(2013) reported using five chains, with 4,000 iterations and 3,000 as burn-in iterations. 

The first 3,000 iterations called the burn-in are not included in the posterior distribution 

as this burn-in phase allows the estimates to fluctuate in order to reduce the serial 

correlation in sampling distribution. Eckes (2013) found that in both samples only testlet 

two had a variance above 0.25, which was the a priori value below which was 

determined to have negligible effects. The person ability correlation estimates compared 

across models ranged from .982 to .999. The mean difference in person ability ranged 

from 0.00 to 0.01. Root mean square difference (RMSD) ranged from 0.004 to 0.17. The 

testlet model revealed lower precision estimates for person separation reliability (R) 

(R=0.71, 0.74) compared to the graded response (R= 0.78, 0.85) and the 2PL models 

(R=0.76, 0.82). The testlet model revealed higher RMSE estimates for the testlet model 

(RMSE= 0.48, 0.45) compared to the graded response (RMSE= 0.42, 0.36) and the 2PL 

models (R= 0.44, 0.39). The graded response model tended to underestimate the ability at 

lower levels of the ability scale. The 2PL model slightly overestimated difficulty at the 

lower end of the difficulty scale. Although, the testlet effect was reported as small, Eckes 

(2013) concluded that there were small but noticeable differences between the three 

models.  
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While the inclusion of testlets in test construction have many appealing features 

for reading assessment, they create psychometric problems for score interpretation and 

use, due to amplification or cancelation of DIF (Bao, et al., 2009; Wang & Wilson, 

2005b), biased parameter estimates (Bradlow, et al.,1999), errors in examinee 

classification (Hooker & Finkelman, 2010; Zang, 2010), and test equating (Eckes, 2013).  

 
Methodological Studies 
 

Wang and Wilson (2005b) investigated traditional DIF detection techniques 

applied to testlet items calibrated with a testlet model. Specifically they used simulations 

to investigate how well the testlet models recovered the DIF, ability, and difficulty 

parameters for Rasch testlet models. The conditions varied in this study were test type, 

anchor item method, difference between the mean estimates and the generated values, 

and the root mean square error of the estimates. The dichotomous model had 40 items 

across four testlets with 10 items per testlet, and the difficulty of the items ranged from    

-2.00 to 2.00 with a mean of zero. The polytomous model contained 24 three-point items 

across four testlets with six items per testlet with step difficulties that ranged from -2.00 

to 2.00 with a mean of zero. The mixed model has 20 dichotomous items in two testlets 

and 12 three point polytomous items across two testlets. Variances of the random testlet 

effect were set at 0.25, 0.5, 0.75, and 1.00. Members of the reference group were 

distributed as N(0.5, 1) and the focal group were N(-0.5, 1) such that the reference group 

was on average one logit higher on ability than the focal group. The differences in item 

difficulty between the reference and focal group for DIF items were 0.4 and 0.6, so that a 

negative value indicates a lower difficulty for the reference group than the focal group. 

This would suggest that the item favored the reference group. The authors set the 
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proportion of DIF items at 40% and noted this is considered a high proportion. Two 

anchor methods were used in the detection of DIF. The first approach is to anchor one 

item that is known to be DIF free and estimate the rest of the items with a DIF parameter. 

The other approach is to anchor all items as DIF free so that the model was the generating 

model. Wang and Wilson (2005b) reported that one of the 85 estimators of the 

dichotomous model was biased and that the magnitude of that bias was -0.030 to 0.021. 

The minimum, maximum and mean of the RMSE were 0.98, 1.97, and 1.13 and they 

concluded that the all item anchor method was more efficient than the one item anchor 

method. Similar results were noted for the polytomous model where five out of 100 

estimates were biased. The magnitude of the bias ranged from -0.024 and 0.0029. The 

minimum, maximum and mean for RMSE were 0.95, 1.30, 1.05 indicating that the all 

anchor method was more efficient than the one item anchor method but that these 

differences were very small. Four of the 92-parameter estimates in the mixed model were 

biased with magnitudes that ranged from -0.029 to 0.030. The minimum, maximum and 

mean for RMSE were 0.70, 1.53, and 1.01 indicating that the two anchor methods were 

the same with respect to efficiency. The authors concluded that the traditional DIF 

techniques could be used to detect DIF in testlet models and that both anchor methods 

recovered the parameter well.  

Bradlow, Wainer and Wang (1999) conducted a simulation study to investigate 

parameter estimates with data augmented Gibbs sampler models (DAGS) with and 

without the testlet effect. Seven conditions were studied with 1,000 observations, 60 

items with 30 testlet items and 30 independent items, and the same set of population 

distributions, ߠ௡~ܰሺ0, 1ଶሻ, ݅ߚ~ܰሺߤఉ ൌ 0, ఉߪ
ଶ ൌ 1ሻ,	ܽ݅~ܰሺߤ௔ ൌ 0.8, ௔ଶߪ ൌ 0.2ଶሻ. The 
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distributional values were modeled after the Scholastic Aptitude Test (SAT) and then 

compared to real data analysis. Two conditions were varied 1) items per testlet (5 and 10) 

and 2) testlet variance (
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, 1, 2ሻ. Mean absolute error (MAE) and 

correlation ranks between the estimated and true values (RRank= cor(ranked estimates, 

ranked true values)) for ability, difficulty and discrimination and the 95% coverage 

probability (95% CP=Σ1ሺtrue	value	߳	ሺܨ෠଴.଴ଶହ,  ෠଴.ଽ଻ହሻሻሻ for all parameter estimatesܨ

summarized simulation conditions (where ܨ෠ is the empirical cumulative distribution 

function taken from the posterior draws). They found that MAE was always smaller for 

the DAGS testlet model than the non-testlet DAGS and that the magnitude of the 

improvement is monotonically related to the increase in ߪ௬ଶ.	Posterior intervals (akin to a 

confidence interval) for all parameter estimates were narrower when the testlet was 

unaccounted for. When the testlet is unaccounted for this narrow interval is misleading. 

Similarly, coverage properties were better for the testlet model. In other words the 

coverage properties for the ability or proficiency estimates are less biased. Difficulty was 

either too low or too high when the testlet was not accounted for. The purpose of the SAT 

is to rank order people and make decisions about people at the top of the ability 

distribution. The simulation study found that the DAGS testlet model had higher rank 

correlations than the other two models, meaning that when the testlet model was used a 

higher percentage of the top 100 examinees were identified. SAT scores are frequently 

used to award scholarships or acceptance into top colleges. This study demonstrated that 

when the testlet model is not used fewer examinees would receive benefits for their test 

scores than they should have had they been modeled with a testlet model. However, when 
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the models were applied to real data all models performed about the same due to the 

posterior mean testlet variance of ߪ௬ଶ ൌ 0.11, classified by the authors as a modest effect.  

Implications of testlet effects are clearly impacted due to the magnitude of the 

testlet variance. DeMars (2012) investigated model based approaches to detecting testlet 

effects. The conditions varied in this study include test length and items per testlet (25 

items with 5:5 item: testlet ratio, 50 items with 5:10 items: testlet ratio, and 50 items with 

10:5 items: testlet ratio). Item parameters were randomly selected for each replication 

where ݅ߚ~ܰሺ0,1ሻ with a range of -3 to 3. Guessing parameters were constrained to ci = 

0.2, discrimination parameters were ܽ݅~ܰሺ0, 0.5ሻ with a range of 0.5 to 2. The testlet 

discrimination to general discrimination were constrained to be constant with in each 

testlet thus making the bi-factor model equal to the random-effects testlet model, where 

the ratios were 0, 0.3, 0.6, 0.9, 1.2 (ratios of zero indicate no testlet effect). Simulated 

data included 2,000 observations with 1,000 replications for each condition. The models 

used to investigate testlet effects included the unidimensional model, a single testlet 

model, an all-but-one testlet model, and a complete bi-factor model. Model fit statistics 

included Testfact and -2 Log-Likelihood (-2LL), Dimtest’s test of Essential 

Unidimensionality, Akaike’s Information Criteria (AIC), sample-size adjusted Bayesian 

Information Criteria (SSA-BIC), and Bayesian Information Criteria (BIC). Over all SSA-

BIC was most accurate in detecting the true model. However, all indices were 

increasingly more effective when the testlet effect was larger (DeMars, 2012). 

Jiao, Wang, and He (2013) reported that the Rasch testlet models and the three-

level one-parameter logistic (1PL) testlet model were equivalent. Where level one 

expresses the log-odds of a person j answering item i in testlet d using linear regression. 
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Level two models the testlet effect and level three models the person effect. The Rasch 

testlet model and the three level 1PL model are algebraically equivalent (interested 

readers should see Jiao, Wang, & He, 2013). If testlet effects are considered additional 

dimensions of the general dimension being measured by the test, then the testlet model is 

a special case of the multidimensional random coefficients multinomial logit model. Jiao, 

et al.(2013) described this model as a Rasch version of a bi-factor model, which is 

conceptualized similarly to the Bayesian random-effects testlet model. The 1PL testlet 

model was used to compare three estimation methods: MCMC in WINBUGS, 

marginalized maximum likelihood estimation (MMLE) with the expectation-

maximization (EM) algorithm in ConQuest, and the sixth-order approximation Laplace 

(Laplace) method in HLM6. Simulation conditions included: 1,000 observations, 54 

multiple-choice items with six testlets and nine items in each testlet. True values of 

person ability and item difficulty were randomly selected from a normal distribution, 

 ሺ0,1ሻ. The testlet effects were simulated from a normal distributionܰ~݅ߚ ௡~ܰሺ0,1ሻ andߠ

,ௗሺ௜ሻ௡~ܰሺ0ߛ ఊ೏ሺ೔ሻ೙ߪ
ଶ ሻ with ߪఊ೏ሺ೔ሻ೙

ଶ . = 0, 0.25, 0.5625, and 1. When ߪఊ೏ሺ೔ሻ೙
ଶ ൌ 0, the testlet 

model reduces to the Rasch model. Twenty-five replications were generated for each 

condition.  

The authors compared the three estimation methods by comparing the true values 

with the estimated ones for all three estimation methods as well as comparing bias, 

standard errors, and root mean square error. For the MCMC method 1,000 iterations were 

used to burn-in the conditions (for more information on MCMC estimation see Chapter 3 

section on Bayesian estimation) that had a ߪఊ೏ሺ೔ሻ೙
ଶ ൌ 0	and 2,000 for the test of the 

conditions. The results indicated that MCMC slightly overestimated true values when 
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testlet effects were small. However, MCMC estimation produced estimates with less 

average bias when the testlet effects were moderate to large. According to Jiao et al. 

(2013), the estimation method produced significantly different estimates of bias in the 

testlet and ability variance, random error of ability, and bias in item difficulty. The 

authors concluded that MCMC was more efficient than the Laplace or MMLE estimation 

methods.  

Li, Bolt, and Fu (2006) compared four testlet models using pseudo-Bayes factor 

(PsBF), deviance information criteria (DIC), and posterior predictive checks (Bayesian 

chi-square). The first model is the two-parameter normal ogive model that includes a 

random effect that represents the interaction between people and testlets where the 

variance of the testlet is allowed to vary and is an indication of the amount of local 

dependence in each testlet. Items with in testlets are considered conditionally 

independent.  

The second model is a general model that is a multidimensional model that treats 

each testlet as a separate ability dimension, where the latent trait underlying an 

examinee’s response to a testlet contains an ability estimate and a random dimension for 

each testlet. This model does not make assumptions about the relationship between item 

discrimination in regards to the ability and the secondary dimension.  

The third model is a general model with constrained slopes containing 

multidimensional discrimination parameter that are constant across items. This model 

may be useful for well-designed tests where the influences of the testlet effects are 

minimized and secondary dimensions are small. Model 2 is a special case of model 1 

with a reduction in the number of parameters estimated.  
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The fourth model is a general model with constant discrimination parameters 

across all items but the slope is not the same for the ability estimate and the testlet or 

secondary dimension. However, overall influence of the testlet factor can still be varied. 

Model 3 is also a special case of model 1.  

The small simulation study showed that the PsBF and the Bayes Chi-square based 

on the odds ratios were able to distinguish between the true model and the fitted models 

more effectively than the information criteria fit indices. Li et al. (2006) also found that 

the second model and the first model fit the real data better than the special case models 

(third and fourth). This is because the second model makes no assumptions about item 

discrimination parameters in regards to the intended ability and the secondary 

dimensions. This model also provides more information about items in relation to ability 

and each testlet, allowing the study of items or item types that may be more influenced by 

passage or scenario factors and which passages or passage types contribute to passage 

effects on items.  

In summary, Wang and Wilson (2005b) found that traditional DIF detection 

techniques could be applied to testlet models and that the anchor method was able to 

recover the parameters efficiently. The detection of testlet effects is aided by fit indices 

that perform better for larger testlet effects (DeMars, 2012). Bradlow et al. (1999) found 

differences in examinee classification between testlet and non-testlet models, but when 

the testlet effect was small classification between the two models were more consistent.  

The methodological studies presented here provide support for the use of testlet 

models for calibrating items and people as well as psychometric investigations including 

model fit (DeMars, 2012; Li, et al., 2006), DIF (Wang & Wilson, 2005b), and examinee 
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classification (Bradlow, et al., 1999). Estimation techniques were also compared and 

MCMC was found to be more efficient (Jiao et al., 2013). 

 
Frame the Problem 

 
Bradlow, Howard, Wainer and Wang (1999) reported overestimation of precision 

of ability and item parameters. DeMars (2012) investigated fit indices for detecting testlet 

effects and found that all indices were increasingly more effective when the testlet effect 

was larger. Jiaoet al. (2013) investigated testlet model estimation and concluded that 

MCMC was less biased and more efficient than MML or Laplace estimation procedures. 

Zhang (2010) found that when testlet effects were present and traditional item response 

models were used, decision consistency estimates were overestimated compared to those 

estimated with a testlet model. Although each of the studies presented thus far 

recommend using a testlet model when testlets are present, according to Dickenson 

(2005) non-testlet models are still being used in large-scale testing programs. The 

following research questions will be addressed: 

1. Does the pass/fail decision made for each examinee change depending 
on whether a DRM or a RTM was used under conditions reflective of 
those found in applied settings?  
 

a. Number of testlets 

b. Number of items per testlets 

c. Testlet variance 

d. Sample size 

e. Proportion of items that are in testlets 

2. Does the pass/fail decision made for each examinee change depending 
on whether a DRM or a RTM was used in the Program for International 
Student Assessment (PISA) dataset?  
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This study adds to the growing body of literature on testlets and violation of the 

LID assumption in two ways. First, in the model comparison studies described above 

ability estimates were compared based on bias estimates or rank order correlations. This 

study seeks to compare actual pass/fail decisions based on a predetermined cut score. 

Second, in all of the studies described above, traditional IRT/Rasch models were 

estimated in one analytic program and estimated with a likelihood algorithm, while the 

testlet models were typically estimated in SCORERIGHT or ConQuest with MCMC. 

However, the models used in this study will be generated and estimated in the same 

program or software with the same estimation procedure. This sets the model estimates 

up for direct comparison and eliminates alternative explanations for differences found.  
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CHAPTER THREE 
 

Method 

 
Introduction 

 
As stated in Chapter Two a testlet is a group of items that are administered 

together and have a common stimulus (Wang & Wilson, 2005a). However, the use of 

testlets created additional relationships between items, which violates the assumption of 

LID and may introduce bias and instability into score interpretation (Zumbo & Rupp, 

2004). This chapter provides the models used in this study are reintroduced, an overview 

of the empirical conditions on which the generated parameters were derived, the selected 

parameters, the statistical software, estimation techniques, and a summary of how the 

outcome variables were developed. 

 
Competing Models 
 

Rasch analysis involves the use of mathematical models to measure individual 

examinees’ ability or latent trait, where the probability of a correct response is modeled 

through a function of the ability parameter and the item parameters. The family of Rasch 

models separates the person ability parameter from the item difficulty parameters to 

provide information about a person’s ability based on the response to a specific item 

(Rasch, 1960). According to Linacre (2004) the probability of a correct response on a 

dichotomously scored item can be defined as: 

௡ܲ௜ ൌ
ୣ୶୮	ሺఏ೙ି	ఉ೔ሻ

ଵାୣ୶୮	ሺఏ೙ି	ఉ೔ሻ
,     [3.1] 
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where ௡ܲ௜	is the probability of person n with ability ߠ௡,	responding correctly to item i 

with difficulty ߚ௜. 

When testlets are present and traditional or unidimensionality models are used the 

LID assumption is violated. According to Wilson and Wang (2005a) when LID was 

ignored reliability was overestimated. Therefore, interpretations made based on ability 

scores are influenced by model specification. 

According to Wilson and Wang’s (2005a) Rasch testlet model, the probability of 

a correct response on a dichotomously scored item can be defined as: 

௡ܲ௜ ൌ
ୣ୶୮	ሺఏ೙ି	ఉ೔ାఊ೙೏ሺ೔ሻሻ

ଵାୣ୶୮	ሺఏ೙ି	ఉ೔ାఊ೙೏ሺ೔ሻሻ
    [3.2] 

where ௡ܲ௜	is the probability of person n with ability ߠ௡,	responding correctly to item i 

with difficulty ߚ௜ and the testlet effect ߛ௡ௗሺ௜ሻ, is the interaction between persons and 

items. 

Many large-scale assessment programs still use unidimensional models even 

when testlets are present (Dickenson, 2005). As a result this study used Monte Carlo 

methods to investigate differences in the decisions made about people based on model 

specification, and the influences of various conditions (i.e. number of items, number of 

testlets, testlet effects, item to testlet ratio, and sample size).  

 
Monte Carlo Methods 

 
Monte Carlo (MC) simulation studies are appropriate techniques for evaluating 

statistical estimators and procedures under varying conditions that may include sample 

size, normality, data of varying metric, model complexity, and model misspecification 

(Boomsma, 2013; Paxton, Curran, Bollen, Kirby, & Chen, 2001). According to Harwell, 
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Stone, Hsu, and Kirisci (1996) MC simulation studies are designed as experiments where 

random numbers are generated stochastically to create sampling distribution intended to 

reflect conditions found in empirical studies. According to Boomsma (2013) the two 

main reasons for conducting a MC simulation study include: a) investigate model 

assumptions that are violated in applied research, and b) investigate model selection for 

varying empirical conditions. Many widely used statistical techniques have theoretical 

assumptions (e.g., Rasch models) and the validity of the results may be questionable 

when the assumptions are violated (e.g., LID). MC studies may also inform researchers 

about the seriousness of the consequences of violated assumptions (Fan, 2012).  

MC studies allow the researcher to artificially produce sampling distributions of 

parameter estimates in order to study the finite sampling performance of parameter 

estimates (Fan, 2012). This is done by first creating a model where the population 

parameters are defined by the researcher and are therefore known. Then, repeated 

samples are drawn from the population and parameters of interest are estimated for each 

sample. Next, all parameter estimates are collected into a sampling distribution and the 

properties of that distribution are reported.  

In order to control for internal and external validity the selection of independent 

and dependent variables, the number of replications, and the measurement models 

selected should maximize generalizability and replicability. There are multiple steps in 

conducting a MC study including: a) developing the research question, b) selecting 

variables, c) selecting the appropriate experimental design, d) selecting the number of 

replications, e) generating item responses from random numbers, f) estimating model 
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parameters, and g) analyzing, summarizing, and reporting the results (Paxton, et al., 

2001). These steps are followed for the presentation of the study methods.  

 
Developing the Research Question  
 

The research question to be answered must be informed by the literature. The 

hypothesis being tested is the operationalization of the problem or question, and the 

effects being measured must be sensitive to the conditions or variables being 

manipulated. Paxton et al (2001) and Boomsma (2013) recommend developing a research 

question from theory and previous research. MC research questions must be grounded in 

statistical theory and should be questions that cannot be answered by empirical studies 

(Harwell, et al., 1996). Some examples of such studies include: a) determination of 

sampling distributions, b) comparison of algorithms, and c) comparison of models.  

 
Selecting Variables  
 
 

Empirical conditions.  A review of applied studies utilizing testlets in high stake 

assessments was conducted in order to inform the conditions created for this study by 

searching the Academic Search Complete, Elton B Stephens Company (EBSCO), 

Education Full Text, and Education Resources Information Center (ERIC) databases. The 

keywords used to find relevant studies included: testlets, item bundles, super items, 

linked items, locally dependent items, cases, scenarios, paragraphs, passages, reading, 

certification, multiple choice items based on paragraphs or cases, and Rasch. Of the 

studies identified those selected for review were from peer-reviewed education, 

measurement, and assessment journals between the years of 2003-2014.The search was 

limited to peer-reviewed, full text articles as well as dissertations. The large database 
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search does not guarantee all relevant studies were included, and unpublished technical 

reports and masters theses may have been missed or are underrepresented.  

Based on the inclusion criteria of K-12 high stake testing situations, seventeen 

studies were selected that described a testlet structure. The number of items reported in 

the selected studies ranged from 15 to 136 items with a median of 28 and a mean of 39 

(see Table 3.1). The number of testlets reported ranged from one to 14 with a median of 

four and mean of 5.4. The number of items per testlet reported ranged from 1 to 47 with a 

median of 8 and a mean of 12.5. The testlet variance (i.e., testlet effect) ranged from zero 

to 1.2 with a median of 0.30 and a mean of 0.44. The number of examinees in K-12 

papers ranged from 100 to 28,593, with a median of 1,024, and a mean of 3,266. The five 

number summaries of the selected conditions from the selected applied studies are 

presented in Table 3.1.  

 
Table 3.1 

Summary of K-12 Exam Conditions in 17 Applied Papers from 2003- 2013 

Statistic No. of 
items 

No. of 
testlets 

Item-to-
Testlet 
Ratio 

Testlet 
variance 

Sample 
size 

Difficulty 
Range 

Ability 
range 

Minimum 15 1 1:1 0.0 100 -1.5 to 1 0 to 1 
Q1 24.5 3 5:1 0.16 414 -2 to 1.5 -2 to 2 
Median 28 4 8:1 0.30 1024 -2 to 2 -3 to 3 
Mean 39 5.4 12.5:1 0.44 3266 -3 to 3 -3 to 3 
Q3 42 7.5 14.5:1 0.7 2859 -3 to 3 -5 to 5 
Maximum 136 14 47:1 1.2 28593 -4 to 4 -6 to 6 
 
 

The five number summaries from Table 3.1 can be used to judge which conditions 

are commonly encountered in applied research where testlets are included in K-12 exams. 

In the current study, this information was used to create simulation conditions that 
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represent empirical research conditions in order to investigate the effects of model 

specification on high stake decisions. This strategy can provide useful information for 

applied researchers when selecting item response models for situations where items 

violate local independence.  

 
Population models.  Independent and dependent variables should be selected based on 

the research question and the relationship between the variables and interpretability of the 

results (Boomsma, 2013; Paxton, et al., 2001). Independent variables included number of 

testlets, number of items in testlets, testlet effect, percent of total items that are in testlets, 

and sample size.  

Dependent variables should be able to measure the effect of manipulated 

independent variables and in a form that simplifies the results of inferential analysis. 

Examples of dependent variables include root mean square error (RMSE) to measure 

successful parameter recovery, correlations between estimated and true parameters to 

measure estimation procedures, or mastery classification estimates to measure differences 

between measurement models (Harwell, et al., 1996; Zhang, 2010). The dependent 

variable in this study was decision consistency (DC) defined as the proportion of pass/fail 

decisions that were the same for the DRM and the TRM. The two most important 

variables in a simulation are sample size and number of replications (Boomsma, 2013; 

Fan, 2012). Other considerations in selecting variables and conditions in an MC study 

include: distribution of variables, estimation methods, level of each variable, and model 

misspecification as a condition.  

MC studies are especially appropriate methods for investigating model 

misspecification because they can answer questions about the effect of misspecification 
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on parameter estimates. This is possible because the true population model is known, 

samples are drawn from that population and models are estimated from those samples, 

then models that are the same and different from the populations are estimated. Model 

comparisons are specified by adding or deleting paths between variables and 

misspecification can range from trivial to severe (Boomsma, 2013, Paxton et al., 2001). 

The population structure (variables) used in the current study is a testlet model 

with known number of items, testlets, items within testlets, testlet effects, and the 

proportion of total items in testlets. Then the DRM and the RTM were fit to the data to 

compare the pass/fail decision based on ability estimates of the two models.  

 
Selecting the Appropriate Experimental Design  
 

For this Monte Carlo study, the design factors and conditions that were varied are: 

number of testlets, number of items in testlets, testlet effect, percent of total items that are 

in testlets, and sample size, yielding 72 possible conditions (3 numbers of items × 3 

number of items in testlets × 2 testlet variances × 2 sample sizes × 2 proportion of items 

in testlet = 72). For each condition, 100 replications were generated, which is consistent 

with Wilson and Wang (2005a).  

 
Number of testlets.  In order to represent conditions most frequently found in 

applied research, the quartiles were used to inform the levels of each condition (see Table 

3.1). Therefore, the number of items per testlet included four, eight, and 12. 

 
Number of items per testlet.  The number of items per testlet was selected based 

on the applied papers that described testlets as items related to the same stimuli (e.g., 
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paragraph or passage). Therefore, the number of items per testlet included three, four, and 

seven. 

 
Testlet effect.  Testlet effects are the amount of local dependence between items 

that is unaccounted for by the dominant latent trait. The Rasch testlet model described by 

Wilson and Wang (2005) includes a testlet parameter (ߛௗሺ௜ሻ௝ሻ	which is a random effect 

capturing the interaction between person j with testlet d(i) when the dominant latent trait 

is held constant. Thus, the testlet effects are simulated from a normal distribution with a 

mean of zero and a standard deviation of the square root of the testlet variance, where 

,ௗሺ௜ሻ௝~ܰ൫0ߛ ఊௗሺ௜ሻߪ
ଶ ൯. Testlet effects selected for the current study were based on the first 

and third quartiles of the reviewed applied studies (see Table 3.1). The testlet effects 

included 0.2 and 0.7.  

 
Proportion of items in testlets.  The number of items in testlets varied. Therefore, 

the proportion of testlets was directly related to the purpose of the exam. In the K-12 

studies the items were distributed equally over the testlets (e.g., reading comprehension 

exams), or approximately 75% of the items were clustered in testlets while the remaining 

items were independent (i.e. math exams that may have a few testlets related to a graph or 

table and the rest are independent). The proportion of items in testlets selected for this 

study were 75% and 100%.  

 
Sample size.  The sample sizes varied in this study included 1,400 and 6,000. The 

sample sizes selected were informed by the five number summaries of the reviewed 

empirical studies reported in Table 3.1.  
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Selecting the number of replications.  The number of replications is akin to 

sample size and is influenced by the purpose of the study, minimization of sampling 

variance of estimated parameters, and power to detect the effects of interest. A small 

number of replication (e.g. 10) is acceptable for studies comparing item response 

methodologies where empirical distributions are not of primary consideration. In these 

types of studies, Harwell, et al. (1996) recommends a minimum of 25 replications.  

The number of replications selected should minimize sampling variance 

(Bandalos & Leite, 2013). Testlet variance is the parameter of interest for this study (0.2 

and 0.7) so the needed number of replications would minimize the sampling variance for 

the testlet variance. The mean and standard deviation for the testlet variance should be 

less than .05. Relative bias of the testlet variance was investigated where relative bias is 

defined as (Foreroet al., 2009):  

ሺߛഥ െ ሻߛ
ൗߛ      [3.3] 

 
where ̅ߛ is the estimated testlet variance and ߛ is the true testlet variance. 

 
ሺܵܧఊതതതതതത െ ఊሻ݀ݏ

ఊ݀ݏ
൘      [3.4] 

where ܵܧఊതതതതത is the estimated standard error of the testlet and ݀ݏఊ is the true standard 

deviation of the testlet. Consistent with recommendations from Forero et al., (2009) RB 

below .1 was considered acceptable, .1 to .2 indicated substantial bias, and values above 

.2 were considered unacceptable. 
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Generation Of Item Response From Random Numbers  

 
Ability and difficulty parameters. In order to generate item responses similar to 

those in applied K-12 studies, ability ሺߠሻ population parameters were generated from a 

normal distribution with a mean of zero and a standard deviation of one (ߠ௝~ܰሺ0,1ሻ. 

Item difficulties (࢏࢈) population parameters were generated from a normal distribution 

with a mean of zero and a standard deviation of one (ܾ௜~ܰሺ0,1ሻ. The standard normal 

distribution was selected so that items were appropriately targeted to the ability 

distribution and is consistent with previous research (Glas, 2012; Jiao, Wang, & He, 

2013).   

 
Statistical software.  Data generation was conducted in R (version 3.1.2 R 

Development Core Team, 2014) and estimation was conducted using the sirt package 

(Robitzsch, 2014). 

 
Estimating Model Parameters  

 
Bayesian estimation.  In IRT applications, the item difficulty distribution and 

ability are continuous values so Bayes theorem will be described in terms of a continuous 

density function. The continuous density function represents the likelihood of all possible 

outcomes and is generally a normal density function that resembles a bell-shaped curve. 

Bayes theorem can be expressed as (Kim & Bolt, 2007): 

fሺΩ|ܺሻ ൌ fሺX|Ωሻ ∗ 	fሺΩሻ/ ቂ׬ ݂ሺܺ|Ωሻ݂ሺΩሻ݀Ωஐ ቃ  [3.5] 

where X denotes all of the item response data and Ω represents all of the unknown item 

and person parameters and represents multiple events. The left side of the equation is the 
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joint posterior density given the data and is used in the determination of model parameter 

estimates. The function, fሺX|Ωሻ express the likelihood of the item response data given the 

model parameters and is defined by the specific item response model selected and the 

assumption regarding local independence.  

On the right hand side of the equation	fሺΩ) is the prior density of the model 

parameters and indicates the relative likelihood of specific parameter values prior to data 

collection. The denominator on the right is a normalizing constant where the joint 

posterior density is proportional to the product of the quantities. This is the basis for the 

sampling procedures in Markov chain Monte Carlo (MCMC) estimation (Kim & Bolt, 

2007). The purpose of MCMC estimation is to reproduce fሺΩ|ܺሻ distribution by sampling 

observations. Sampling enough observations provides information about the specific 

characteristics of the distribution that includes the mean and standard deviation that is the 

basis for model parameter estimates.  

MCMC estimation is based on the Bayesian framework where each parameter of 

interest is assumed to vary by a specified probability distribution called a prior 

distribution. The first step in MCMC estimation is to specify priors, where the prior 

distribution is a pre-determined distribution based on prior knowledge of the parameter in 

question. This procedure allows known information about the characteristics of items and 

examinees to be incorporated into the estimation process (Dickenson, 2005). The second 

consideration in selecting a prior is the strength of the prior. This is done by increasing or 

decreasing the variance of the population mean. The prior distributions for the parameters 

in this study are  

,௡~ܰሺ0ߠ 10,000ሻ     [3.6] 
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,௜~ܰሺ0ߚ 10,000ሻ     [3.7] 

 where ability and difficulty  are drawn from a normal distribution with a mean of zero 

and a variance of 10,000 , where the large variance is specified such that the priors do not 

influence the posterior distribution (Robitzsch, 2014). The priors selected in this study are 

intended to be weak or less influential.  

The second step in MCMC estimation is the selection of sampling procedures 

(Kim & Bolt, 2007). In IRT models Gibbs sampling has been used for normal ogive 

models but requires a data augmentation process. Gibbs sampling is a straightforward 

sampling procedure because of the use of known conditional distributions for sampling. 

Thus, the estimated model is 

ܲሺܺ௡௜ ൌ 1ሻ ൌ Φ൫ߠ௡ ൅ ௡,ௗሺ௜ሻߛ ൅      [3.8]		௜൯ߚ

where Φ is the cumulative normal distribution (ogive), and the distributional assumptions 

are 

 ௡~ܰሺ0,1ሻ     [3.9]ߠ

,ఉߤ௜~ܰሺߚ ఉߪ
ଶሻ     [3.10] 

,௡,ௗሺ௜ሻ~ܰሺ0ߛ  ௧ଶሻ    [3.11]ߪ

The estimated model is a normal ogive model instead of a logistic model thus a 

transformation was applied such that the traditional DRM is approximated in the normal 

ogive model as:  

Pሺ ௡ܲ௜ ൌ 1ሻ ൌ ሺߠ௡ െ  ௜ሻ    [3.12]ߚ

and the RTM as:  

Pሺ ௡ܲ௜ ൌ 1ሻ ൌ ௡ߠ െ ௜ߚ ൅  ௡,ௗሺ௜ሻ  [3.13]ߛ
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The third step in MCMC estimation is to monitor the Markov chain for 

convergence. When the Markov chain has converged priors are updated or combined 

with the sample data to create a new distribution called the posterior distribution. This is 

done iteratively in order to produce a chain that is stationary but retains random 

fluctuation (Gill, 2014). Through the selected sampling procedure, random observations 

are repeatedly sampled iteratively in order to produce a set of observations that represent 

states in the Markov chain. The first set of values, the starting state, must be specified 

either as random numbers or specific point estimates (Gill, 2014). The sequence of values 

in the chain are not independent because new states are partially defined by previous 

states. This creates positive correlations between sampled states in the chain, making it 

necessary to discard a large number of initial states called the burn-in states, and estimate 

the posterior distribution from the remaining observations. According to Kim and Bolt 

(2007) this requires a large number of iterations for model parameters to be reliably 

estimated because it is necessary to discard at least the first 500 states as burn-in 

iterations.  

 There is no standard for the number of iterations as each study is different. The 

default values in the sirt package (Robitzsch, 2014) for burn-in are 500, and 1,000 for the 

posterior distribution. However, Patz and Junker (1999) used 1,000 burn-in and 7,400 for 

the posterior distribution. Wainer, Bradlow, and Wang (1999) reported convergence after 

the 1,000th iterations. Therefore they used 1,000 iterations for the burn-in and the 

remaining 500 or 1,000 for the posterior distribution. Jiao et al. (2013) found 

convergence of non-testlet models after 1,000 iterations and with a testlet model after 

2,000 iterations. Glas (2012) used 4,000 iterations, with the first 1,000 as burn-in 
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iterations. Similar to the studies reported here the burn-in phase will start with 1,000 

iterations and be adjusted as need for the chain to converge. The posterior distribution 

iterations ranged greatly in the studies presented. The burn-in phase for this study was 

1,000 iterations, and the posterior distribution was 2,000 iterations beyond convergence.  

 
Analyzing, Summarizing, and Reporting Results  
 

Numerous studies have compared unidimensional and testlet model parameters 

ordering via correlation, RMSE and bias and found that ability ordering is quite similar 

between models (Eckes, 2013; Jiao et al., 2013; Paek, Yon, Wilson, & Kang, 2008; Wang 

& Wilson, 2005a; Wang & Wilson, 2005b). However, proficiency classification decisions 

have not yet been studied. One might reasonably expect that people on either extreme of 

the ability distribution to be fairly easily classified. That is, those who score low on the 

assessment will have a lower ability estimate regardless of the model used. Conversely, 

those who score high in the assessment will have a higher ability estimate regardless of 

the model fit to the data. However, those who are close to the cut score may have more 

variability depending on what model is used to estimate ability. In other words, someone 

may pass if a TRM model is used and fail if a DRM model is used. 

The decision made about people around the cut score is of interest. In order to 

select a cut score that is representative of applied settings the cut score was set based on 

the average passage rate of an operational reading assessment in a large southern state. 

Review of the state’s technical manual revealed that on average 75% of students passed 

the previous years’ reading assessment, across tested grade levels.  The ability 

distribution from the reading assessment is assumed to follow a standard normal 
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distribution; therefore, the cut score was set to the normal quantile (i.e., z-score) above 

which approximately 75% of the distribution falls (z = -0.67, see equation 3.14 below).  

z = Φିଵ(.75) ≈ -0.67,      [3.14] 

where  Φିଵ is the inverse of the cumulative standard normal distribution function. 

An ability estimate from the testlet model above -0.67 is coded as “pass” and below -0.67 

is coded as “fail”. DC was established with the following procedures: 

1. Data was generated from a testlet model 
2. A DRM was fit to the data and the pass/fail status for each examinee was 

recorded by comparing the estimated ability to the predetermined cut score 
3. A RTM was fit to the data and the pass/fail status for each examinee was 

recorded by comparing the estimated ability to the predetermined cut score 
4. Compared the pass/fail decisions from step two and three. When the decisions 

from both estimated models were the same the DC was coded as one or 
consistent. When the DC was discrepant DC was coded as 0. 
 

The estimated DRM and the estimated TRM were compared to each other in 

order to reflect applied situations where the truth is not known. When the unidimensional 

model produces the same decision as the testlet model that is a correct decision. When the 

unidimensional model contradicts the testlet model an incorrect decision is produced.  

A false positive would indicate an incorrect decision of passing a student who 

may benefit from additional instruction or does not possess adequate knowledge. A false 

negative would indicate an incorrect decision of failing a student who should be 

classified as proficient. A true positive indicates that the correct decision to pass an 

individual and a true negative would indicate the correct decision to fail an individual. 

The true decision is indicated by the ability estimates in relation to the cut score for the 

testlet model, because the data were generated from testlet models.  

The models investigated in this study will be evaluated based on the consistency 

of decisions (proportion of decisions that are the same for the testlet and Rasch model) 
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made using the ability estimates produced from the true testlet model and the 

unidimensional model. The frequency or proportion of estimated and true pass/fail 

decisions will be presented to determine how many incorrect decisions would have been 

made based on model selection and not person ability (see Table 3.2).  

 
Table 3.2 

Proportion of Pass/Fail Decision Between the True Model and the Estimated Model 

  DRM 
  Pass=1 Fail=0 

RTM 
Pass=1 ߨ௣௣ ߨ௣௙ 
Fail=0 ߨ௙௣ ߨ௙௙ 

 

  Estimating design factor effects.  Harwell, et al. (1996) stated that the 

characteristics of the independent variables indicate the proper experimental design and 

must be explicitly stated. The researcher should state whether the study is balanced or 

unbalanced, fully crossed, and describe between and within subject factors. Designing 

specific experimental conditions must include a reasonable rational for why each design 

factor is included in the study (Fan, 2012). The rational should be based on previous 

findings, a belief that the factor could affect the outcome and a theoretical consideration 

based on relevant literature (Fan, 2012). For making causal inferences or investigating the 

effect of explanatory variables the experimental design factors must have multiple levels. 

According to Boomsma (2013) the response variable, and the explanatory variables create 

a full factorial design where the contents of each cell is determined by the number of 

replications and the response variable. The product of the number of levels of each design 

factor times the number of replications equals the total number of simulations to be 

analyzed where the factors are fully crossed.  
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The use of descriptive statistics and graphs are the predominant means of 

analyzing and reporting MC studies. However, in order to detect the effects of interest 

and the magnitude of those effects inferential analysis is needed. Most of inferential 

analyses of MC studies are analyses of variance (ANOVA) or regression based analyses. 

Summarizing results of a MC study begins with a statistical technique that is applied to 

the data sample for analysis, and the statistic of interest is computed. Second, each 

statistic for each sample is obtained and accumulated across samples under all design 

factors (Fan, 2012). Third, descriptive statistics (e.g., mean, variance, mean relative bias, 

mean square error, and correlation or covariance) are included to summarize the findings 

(Fan, 2012). Fourth, graphical displays (e.g., figures, boxplots, scatterplots, or power 

curves) of observable trends are presented (Fan, 2012). Inferential statistics are then 

provided to evaluate design factors main effects and interactions, estimate effect sizes, 

and to investigate explanatory variables x that account for variability in Y using ANOVA 

(Boomsma, 2013). A performance criterion is often reported as an effect size, where 

Bandalos (2002, p. 88) used partial eta squared, and Gerbing (1984, p.163) used omega 

squared.  

In order to investigate the effects of each condition on decision consistency, 

factorial ANOVA was conducted using each design factor as an effect in the ANOVA 

model and the correct classification proportion of each replication as the outcome 

measure. All two-way interactions as well as main effects will be considered in 

determining the effect each design factor has on decision consistency.  

Eta-squared (ߟଶሻ and Partial eta- squared (ߟ௣ଶ) were computed for all examined effects 

and presented in descending ordered to determine which design factor(s) most strongly 
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influence decision consistency. Eta-squared is defined as the proportion of variance 

accounted for an effect and can be expressed as: 

ଶߟ ൌ
ௌௌ೐೑೑೐೎೟
ௌௌ೅೚೟ೌ೗

     [3.15] 

where ܵܵ௘௙௙௘௖௧ is the sum of squares attributed to an effect and ்ܵܵ௢௧௔௟ is the total sum of 

squares for in the model (Tabachnick & Fidell, 2001). Partial- eta squared is defined as 

the proportion of total variation attributed to the factor after partilalling out the other 

factors from the total variation:  

η௣ଶ ൌ
ௌௌ೐೑೑೐೎೟

ሺௌௌ೐೑೑೐೎೟ା	ௌௌಶೝೝ೚ೝሻ
     [3.16] 

where ܵܵ௘௙௙௘௖௧ is the sum of squares attributed to an effect and ܵܵா௥௥௢௥ is the error sum 

of squares for in the model (Pierce, Block, & Aguinis, 2004).  

 
An Empirical Example 

 The 2012 PISA measures the performance of fifteen-year-old students in 

mathematics, science, and reading from 65 countries (Kastberg, Roey, Lemanski, Chan, 

Murray, 2014). For each country the population was described as fifteen-year-old 

students in the 7th grade or higher from education systems that had a minimum of 4,500 

students in 150 schools. A stratified two-stage sampling procedure was used to sample 

schools and 35 students within each school.  

 The PISA assessment included 222 items with 85 mathematics, 44 reading, 53 

science, and 40 financial literacy items grouped into 17 test booklets. Each booklet made 

up of four clusters: seven mathematics item clusters (M1-M7), three reading item clusters 

(R1-R3), three science item clusters (S1-S3), and two financial literacy item clusters. 

Items within a cluster were in a fixed order. A rotated block design was used to 
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administer the test and each student was randomly assigned to one of the thirteen forms. 

The subset of reading items within clusters included anchor items for equating purposes. 

For more information regarding the design, measures, and procedures interested readers 

should consult the 2012 Technical Report (Kastberget al., 2014).  

 The PISA (2012) U.S. public-use data files from Institute of Education Sciences 

(IES) contains a subset of students’ mathematics, reading, and science responses 

(http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2014028). For the purpose of this 

study only the reading portion of booklet two was used to study the testlet effect on 

decision consistency between the DRM model and the RTM models (see Appendix A for 

a description of the items). Booklet two contains 29 reading items with nine testlets. The 

items per testlet range from two to four (see Figure 3.2). This sub sample consists of 422 

fifteen-years-old students in the U.S.  

  

 

Figure 3.1: Conceptual model for PISA with error terms excluded 
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PISA is traditionally calibrated with a Rasch model, thus making this data set 

ideal for this study. Two models will be estimated: a) the DRM and b) the RTM. For each 

model the pass/fail decisions of each examinee will be recorded and then the proportion 

of examinees whose pass/fail decisions differed between the two models will be reported. 

The cut score for the PISA data was set based on the percentage of examinees that scored 

at a level two or higher on the 2012 exam (OECD, 2013) because scores below a level 

two indicates a struggling reader. According to the OECD (2013), 81.2 % of students 

scored at a level two or higher. The ability distribution is assumed to follow a standard 

normal distribution, therefore, the cut score is set to the value above which approximately 

81.2% of the distribution falls (z = -0.89, see equation 3.17 below).  

z = Φିଵ(.812) ≈ -0.89,     [3.17] 

where  Φିଵ is the inverse of the cumulative standard normal distribution function. 

 
Summary 

The purpose of this simulation study was to compare the consistency of pass/fail 

decision made based on competing models. The factors included in this study were the 

number of items, number of testlets, proportion of items in testlets, testlet variance, and 

sample size, yielding 72 conditions. Each condition was replicated 100 times. The 

proportion of estimated and true pass/fail decisions was presented to determine how 

many incorrect decisions were made based on model selection and not person ability. An 

empirical example was also included in this study.  

 The contribution this study made to the literature on testlets and violation of the 

LID assumption is two fold. First, in previous model comparison studies ability estimates 

were compared based on bias estimates or rank order correlations. This study sought to 
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compare actual decisions made about examinees based on a predetermined cut score. 

Second, in previous studies, traditional measurement models were estimated in one 

analytic program and estimated with a likelihood algorithm, while the testlet models were 

typically estimated in another analytic program with MCMC. The Rasch models in this 

study were generated and estimated with the sirt package (Robitzsch, 2014) with Markov 

Chain Monte Carlo methods (MCMC) (Glas, 2012) estimation procedure. In doing so the 

models were directly compared and alternative explanations were eliminated. Based on 

the findings, some recommendations were provided in chapter 5 regarding the use of 

testlet models for estimating testlet items under conditions that are likely to be 

encountered in empirical research. 
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CHAPTER FOUR 
 

Results 

 
Evaluation of Simulation Data 

 
Data were generated using R (version 3.1.2 R Development Core Team, 2014) 

and models were estimated using the sirt package using Markov Chain Monte Carlo 

methods (MCMC) (Glas, 2012; Robitzsch, 2014). For each condition, 100 replications 

were generated, which is consistent with Wilson and Wang (2005a). The number of 

replications was selected in order to minimize sampling variance (Bandalos & Leite, 

2013). The testlet variance was the parameter of interest for this study so number of 

replications needed should adequately minimize the sampling error for the testlet 

variance. The specified testlet variances are 0.2 and 0.7. The mean and empirical standard 

error for the testlet variance in the smallest condition (four testlets, three items per testlet, 

sample size of 1,400, and all items in a testlet) and the largest condition (12 testlets, 

seven items per testlet, sample size of 6,000, and all items in a testlet) were M= 0.19, 

SE= 0.006 and M= 0.697, SE=0.0002, respectively. These values indicate 100 

replications were sufficient because the standard errors were very small. 

In Monte Carlo studies, data generation begins with population parameters as 

starting values where user-defined distributions or transformations are specified. Next, it 

is necessary to check the validity of data generation by generating sample data and 

comparing characteristics to target population parameters. Next, one must examine the 

empirical sampling distribution characteristics of the simulated data sample relative to the 
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population parameters (Paxton, et al. 2001). All simulated datasets were examined using 

R (version 3.1.2 R Development Core Team, 2014) to evaluate whether the simulated 

data sets were structured according to population specifications. The structure of the 

sample matched the structure specified by the population model within three-hundredths 

or less of the true parameter, on average, for the vast majority of simulated conditions. 

When the testlet variance was set at 0.2, the largest difference between the true and 

estimated testlet variance was 0.0236 (0.2- 0.1764= 0.0236). When the testlet variance 

was set at 0.7, the largest difference between the true and estimated testlet variance was 

0.0041 (0.7- 0.6959= 0.0041). 

Similar to Forero et al (2009), relative bias (RB) was computed as: 

 

ܤܴ ൌ ሺߛഥ െ ሻߛ
ൗߛ      [4.1] 

 
where ̅ߛ is the estimated testlet variance and ߛ is the true testlet variance. 

ܤܴ ൌ 
ሺܵܧఊതതതതതത െ ఊሻ݀ݏ

ఊ݀ݏ
൘      [4.2] 

where ܵܧఊതതതതത is the estimated standard error of the testlet and ݀ݏఊ is the true standard 

deviation of the testlet.  RB values below .10 were considered acceptable, .1 to .2 

indicated substantial bias, and values above .2 were considered unacceptable. Flora and 

Curran (2004) recommended slightly more conservative values, where values less than 

.05 indicated trivial bias, .05 to .1 indicated moderate bias, and values above .1 indicated 

substantial bias. For the smallest condition, in which there were three items per testlet, a 

total of twelve items and testlet variance was 0.2 the largest RB was -.118. The RB for 

this testlet variance was above the upper bound for acceptable estimation. The RB for 
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another testlet in the same condition was -.07. that was slightly above the upper bound of 

trivial bias (Flora & Curran, 2004). The condition discussed here was selected because all 

other RB values were well below the .05 cut off. These RB estimates were also an 

indication that 100 replications was sufficient overall. A summary of the specified 

parameters, mean parameter estimates, and RB estimates for the smallest and the largest 

condition are provided in Table 4.1. 

 
Table 4.1 

Sample Testlet Variance for Data Generated from the Testlet Population with the 
Smallest and Largest Number of Testlets and Testlet Variance of 0.2 and 0.7 

 
 Testlet Variance of 0.2 Testlet Variance of 0.7 
Testlet True Estimated SD Relative 

Bias
True Estimated SD Relative 

Bias
1 0.2 .1869 .0054 -.0655 0.7 .6964 .0002 -.0051
2 0.2 .1764 .0065 -.1180 0.7 .7008 .0002 .0011
3 0.2 .1903 .0068 -.0485 0.7 .6978 .0002 -.0031
4 0.0 .0336 .0049 .0336 0.7 .7037 .0003 .0053
5     0.7 .7019 .0003 .0027
6     0.7 .6994 .0003 -.0009
7     0.7 .6982 .0003 -.0026
8     0.7 .6959 .0003 -.0059
9     0.7 .7008 .0003 .0011
10     0.7 .7006 .0002 .0009
11     0.7 .7021 .0003 .0030
12     0.7 .7032 .0003 .0050
Note. The smallest testlet condition includes 3 testlets with a variance of 0.2 and one 
testlet with variance of 0.0 (75% of total items in testlets). 
 
 

Model Estimation and Diagnostics 

Model estimation methods may not necessarily be dictated by a research question 

and should be evaluated for appropriateness. Furthermore, Harwell, et al., (1996) 

recommended using a well-established commercial program. Two considerations for 

selecting an estimation method include the handling of starting values and convergence. 
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The default starting values in most commercial programs are generally adequate (Harwell 

et al., 1996) and were used in this study. When models fail to converge, another 

estimation method may be considered, provided it is appropriate for distributions of the 

observed data. Harwell, et al. (1996) stated that studies with small samples or complex 

models might exhibit increased problems with default starting values and/or non-

convergence. In such cases, the authors recommend the use of Bayesian methods because 

correct specification of prior distribution and accompanying parameter estimates may 

mitigate these problems. Given the model complexity of models examined in this study, 

Bayesian estimation via Markov Chain Monte Carlo (MCMC) methods were used to 

estimate the model parameters.  

MCMC estimation comes with its own considerations for use. One consideration 

is the number of burn in states to discard based on the autocorrelations in the chain. If 

autocorrelations remain present following the burn-in phase, then a second consideration 

is whether or not to thin the chain. Gill (2015) recommended extending rather than 

thinning the chain because thinning may cause variance estimates to be higher and does 

not improve the mixing properties of the chain. Following the recommendation of Gill 

(2015), the chains were extended rather than thinned in this study. Examples of 

autocorrelation plots for a Markov chain for condition 36 (seven items in 12 testlets and 

testlet variance was 0.7, and sample size was 6,000 and all items were in testlets) are 

presented in Figure 4.1 (a) and (b). The autocorrelations using the default values (burn 

in= 500 and iterations=1,000) in the sirt package (Glas, 2012; Robitzsch, 2014) are 

presented in Figure 4.1a. The autocorrelations after the chain was extended (burn in= 
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1,000 and iterations=2,000) are shown in Figure 4.1b. The autocorrelations in Figure 4.1a 

are higher, but the autocorrelations decrease after extending the chain (see Figure 4.1b).  

 

 
Figure 4.1: Autocorrelation plots of the difficulty of item 53 

 
 
The Markov chain must also be evaluated for chain convergence. This can be 

done graphically by plotting the sampling history of the chain (see Figure 4.2). Two 

different trace plots of Markov chains are provided in Figure 4.2 (a) and (b). Again, the 

traces presented in Figure 4.2 differ based on the number of iterations. The trace 

presented in Figure 4.2a is an example a Markov chain for condition 36, which is the 

condition discussed above, using the default values (burn in= 500 and iterations=1,000). 

There are sections of the trace in Figure 4.2a where the chain appears to have consecutive 

high or low values, which may indicate a problem with convergence (Kim & Bolt, 2009). 

After extending the chain, the trace shown in Figure 4.2b appears to bounce up and down 

from one iteration to the next. That trace is more indicative of a chain that has converged. 

In addition, the marginal densities shown in the right-hand column of Figure 4.2 are 

indicative of improved chain mixing with an extended chain. That is, the marginal 
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density with an increased number of iterations is smoother compared to the marginal 

density with fewer iterations.  

 
 
Figure 4.2: Example of sampling histories trace plots and marginal density curves 
associated with the Markov chains displaying evidence of convergence (a) and 
nonconvergence (b).  
 
 

Another approach for examining convergence is Geweke’s criterion, which 

involves computing a Z-score for each parameter (Gill, 2015). The Z-scores were 

computed by taking the difference between the mean of the first 10% of the states and the 

mean of the last 50% of the states, and then dividing by their pooled standard deviation 

(Kim & Bolt, 2009). Z-scores within -1.96 to 1.96 are not statistically different from zero 

and indicate chain convergence. It can also be plotted to provide a visual investigation for 

Z-scores outside this range. Examples of two different Geweke criterion plots of z-scores 

of Markov chains are presented Figure 4.3 (a) and (b). In Figure 4.3a, the Z-scores 

occasionally fell outside of the ± 1.96 boundaries, which indicates that convergence may 

be problematic. After extending the chain (see Figure 4.3b), there is evidence that the 
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chain converged because all Z-scores are within -1.96 to 1.96 standard deviations (Kim & 

Bolt, 2009). 

 

 
Figure 4.3: Geweke plots for the difficulty of item five 

 
 

The Raferty and Lewis criterion index can also be used to help researcher 

diagnose a possible problem with convergence. Raferty and Lewis diagnostics provide 

conservative recommendations for the number of sampled states needed to reach 

convergence accounting for the autocorrelation in the chain (Gill, 2014; Kim & Bolt, 

2009). The Raferty Lewis criterion index provided evidence that a burn-in of 1,000 and 

iteration of 2,000 were well beyond the minimum requirements for convergence, with an 

a priori posterior quantile of 0.025, acceptable tolerance (r) is 0.025, and probability of 

being within that tolerance (s) is 0.95 (Kim & Bolt, 2009).  

The dependence factor, I, is the proportional increases in the number of iterations 

attributed to serial dependence. Values of I greater than five may indicate influential 

starting values, high correlations between coefficients, or poor mixing (Gill, 2014). In 

condition 36 when the default iterations were used, I ranged from one to 5.49. However, 

the dependence factor for condition 36 with increased iterations ranged from 1.13 to 4.69, 

indicating that the iterations used in this study were acceptable.  
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A fourth chain convergence check is the Heidelberg and Welch diagnostic that 

was based on the Cramer-von Mises test statistic that tests that null hypothesis that the 

Markov chain is different from a stationary distribution (Gill, 2014). This is a two-step 

procedure in which the first step involves calculating the test statistic on the entire chain. 

Second, the test statistic is repeated after discarding 10% of the chain after each rejection 

of the null hypothesis up to 50% of the chain. If the null hypothesis is still rejected then 

the chain needs to be extended. The second step tests the remainder of the chain after 

50% was discarded, and this test is called the halfwidth test. The null hypothesis of the 

Heidelberg and Welch test is that the chain has reached a stationary chain where the test 

starts with the complete set of iterations produced from the running sampler from the first 

iteration. The number of iterations (N), accuracy (∈), and alpha (ߙሻ are established a 

priori. If the mean divided by the halfwidth is lower than ∈, then the halfwidth test is 

passed, where accuracy was set at 0.1 ሺ∈ሻ,	and the Type I error rate (ߙ) was set to .05. 

Condition 36 with default iterations and those used in this study passed the first step and 

only three out of 98 estimates did not pass the halfwidth test. This indicates that the burn-

in and iterations selected for this study produced stationary chains with 95% confidence. 

The last consideration is how many sampled states are necessary to reduce the 

Monte Carlo standard errors due to the posterior distribution being constructed from 

samples. This means that when moments, such as a mean, are computed from the 

posterior distribution error in the estimate can be attributed to standard error of the point 

estimate and sampling. This type of error is referred to as Monte Carlo error. According 

to Kim and Bolt (2007), Monte Carlo error for each parameter of interest should be less 

than 5% of the sample standard deviation. The burn-in phase was 1,000 iterations and the 
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posterior distribution was an additional 2,000 iterations beyond convergence. According 

to Robitzsch (2014), the percent of the standard error ratio (PSER) indicates the 

proportion of the Monte Carlo standard error in relation to the total standard deviation of 

the posterior distribution for each parameter estimate (see Table 4.2). The PSER ranged 

from 4.3 to 10.5 for the DRM and 4.3 to 13 for the RTM. The majority of the PSER were 

within acceptable limits recommended by Kim and Bolt (2007). 

 
Table 4.2 

MCMC parameter Estimates with Standard Deviation and Monte Carlo Standard Error 

Parameters Mean SD  Minimum 
1st 

Quartile Median 
3rd 

Quartile Maximum 
DRM  -0.09 0.75 -2.40 -0.54 -0.14 0.52   1.48 
SD  0.02 0.00  0.02  0.02  0.02 0.02   0.04 
PSER  5.79 0.89  4.30  5.30  5.60 5.90 10.50 
TRM  0.02 0.95 -3.08 -0.60  0.09 0.83   1.88 
SD  0.20 0.00  0.01  0.02  0.02 0.02   0.04 
PSER  5.92 2.00  4.30  4.70  5.10 6.00 13.00 

Note- DRM. Dbar = 482428.5, Dhat = 476600, pD = 5828.51 where pD = Dbar - Dhat, 
DIC = 488257 where DIC = Dhat + pD, EAP Reliablity = 0.96 
Note- TRM. Dbar = 378369.6, Dhat = 332442.8, pD = 45926381 where pD = Dbar - 
Dhat, DIC = 424296.4 where DIC = Dhat + pD, EAP Reliablity = 0.914 
 
 

All of the diagnostic tests presented were performed for all conditions. Chain 

mixing and convergence was slightly more problematic in condition with fewer items. 

Overall increasing the burn-in to 1,000 and total iterations to 2,000 improved diagnostic 

indicators of convergence in every condition.  

 
Analyzing Results of Monte Carlo Studies 

Monte Carlo studies are considered experiments and are randomized factorial 

designs and the use of descriptive statistics and graphs are the predominant means of 
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analyzing and reporting MC studies (Harwell, et al., 1996). The outcome of interest in 

this MC study was the proportion of pass/fail decisions that were the same between the 

DRM and the TRM. Then, DC was computed for each replication and was aggregated 

across replications under all design factors (Fan, 2012). Analysis of variance (ANOVA) 

was then conducted to evaluate main and two-way interaction effects of design factors 

and also to estimate effect sizes (Boomsma, 2013). The use of ANOVA implies null 

hypothesis significance testing but was not the primary objective of this MC study due to 

the large number of replications. Instead, performance criteria were established using eta-

squared and partial eta-squared effect size estimates (Bandalos, 2002, p. 88). ANOVA 

and effect size estimates for all main and two-way interaction effects are presented in 

Table 4.3. 

Next, descriptive statistics (i.e. mean, and standard deviation) were included to 

summarize each condition (Fan, 2012). Then graphical displays (i.e. boxplots) were 

presented of observable trends for the main and two-way interaction effects (Fan, 2012). 
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Table 4.3 

ANOVA for All Simple and Two-Way Interactions for Each Design Factor 

Conditions Df Sum Sq Mean Sq F value Pr(>F) ߟଶ ߟ௣ଶ 
Testlet variance 1 1.1179 1.1179 17041.109 <.001 0.6181 0.6975 
Number of testlet 2 0.0560 0.0280 427.185 <.001 0.0309 0.1034 
Testlet variance:Percent of total items in testlets 2 0.0531 0.0266 404.918 <.001 0.0302 0.1012 
Number of testlet:Percent of total items in testlets 2 0.0391 0.0195 297.995 <.001 0.0244 0.0835 
Number of testlet: Testlet variance 2 0.0089 0.0044 67.651 <.001 0.0069 0.0252 
Percent of total items in testlets 1 0.0030 0.0030 45.194 <.001 0.0022 0.0083 
Number of testlet:Sample size 1 0.0027 0.0027 41.211 .106 0.0015 0.0056 
Number of items 2 0.0008 0.0004 6.115 .002 0.0007 0.0027 
Percent of total items in testlets:Sample size 1 0.0004 0.0004 5.920 .048 0.0002 0.0008 
Number of items:Number of testlet 4 0.0015 0.0004 5.833 <.001 0.0020 0.0074 
Testlet variance:Sample size 1 0.0003 0.0003 3.921 .009 0.0001 0.0005 
Number of items:Testlet variance 2 0.0005 0.0002 3.579 .021 0.0001 0.0004 
Number of items:Sample size 2 0.0004 0.0002 2.677 .014 0.0001 0.0005 
Number of items:Percent of total items in testlets 2 0.0003 0.0001 2.085 <.001 0.0003 0.0011 
Sample size 1 0.0000 0.0000 0.060 .800 0.0001 0.0002 
Residuals 7173 0.4705 0.0001     
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Testlet Variance  
 

Testlet variance had the strongest effect on DC (ߟଶ෢ ൌ	 .618, ௣ଶ෢ߟ ൌ	 .698). When 

testlet variance was 0.7 DC was lower, on average, with more variability across 

conditions than those with testlet variance of 0.2 (see Figure 4.4). The average DC 

between the TRM and DRM was 98.53% (SD=0.01), and 96.04% (SD=0.01) for testlet 

variance of 0.2 and 0.7, respectively. When testlet variance was 0.2 the number of people 

misclassified on average was 21 and 88 for sample sizes of 1,400 and 6,000, respectively. 

When testlet variance was 0.7 the number of people misclassified on average was 56 and 

238 for sample sizes of 1,400 and 6,000, respectively (see Table 4.4 and 4.5).  

 

 
Figure: 4.4: Boxplot of testlet variance 

 
 
Number of Testlets 
 

The second largest effect on DC was the number of testlets (ηଶ෢ ൌ	 .031, η୮ଶ෢ ൌ

	.103). The average DC between the DRM and the TRM was 97.67% (SD=0.02), 97.2% 

(SD=0.01), and 97% (SD=0.02) for number of testlets of four, eight, and 12, respectively 
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(see Figure 4.5). When there were four testlets the number of people misclassified on 

average was 33 and 140 for sample sizes of 1,400 and 6,000, respectively. When there 

were eight testlets the number of people misclassified on average was 40 and 168 for 

sample sizes of 1,400 and 6,000, respectively. When there were 12 testlets the number of 

people misclassified on average was 42 and 180 for sample sizes of 1,400 and 6,000, 

respectively (see Table 4.4 and 4.5). 

 

 
Figure: 4.5: Boxplot of number of testlets 

 
 
 
Testlet Variance and Percent Total Items in Testlets 
 

The third largest effect on DC was the percent of total items in testlets interaction 

ଶ෢ߟ) ൌ	 .030, ௣ଶ෢ߟ ൌ 	 .101). When testlet variance was 0.2, DC was 98.53% (SD=0.01) and 

98.54% (SD=0.01) for percent of items in testlets of 75% and 100%, respectively. When 

testlet variance was 0.2 and 75% of items were in testlets the number of people 
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misclassified on average was 21and 88 for sample sizes of 1,400 and 6,000, respectively. 

When testlet variance was 0.2 and 100% of items were in testlets the number of people 

misclassified was 21 and 88 for sample sizes of 1,400 and 6,000, respectively (see Table 

4.4 and 4.5).  

When testlet variance was 0.7, DC was 95.9% (SD=0.01) and 96.19% (SD=0.01) 

for percent of items in testlets of 75% and 100%, respectively (see Figure 4.6). When 

testlet variance was 0.7 and 75% of items were in testlets, the number of people 

misclassified on average was 58 and 246 for sample sizes of 1,400 and 6,000, 

respectively. When testlet variance was 0.7 and 100% of items were in testlets the 

number of people misclassified on average was 54 and 229 for sample sizes of 1,400 and 

6,000, respectively (see Table 4.4 and 4.5).  

 

 
Figure: 4.6: Boxplot of testlet variance by percent of total items in testlets 
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 Number of Testlets and Percent Total Items in Testlets 
 

Then, the design factor with the next largest effect was the number of testlets and 

percent of total items in testlets interaction (ߟଶ෢ ൌ	 .024, ௣ଶ෢ߟ ൌ 	 .084) (see Table 4.3). The 

average DC between the DRM and the TRM was 97.18% (SD=0.02), and 97.4% 

(SD=0.02) for percent of items in testlets of 75% and 100%, respectively. When there 

were four testlets DC was 97.12% (SD=0.02) and 98.14% (SD=0.01) when 75% and 

100% of items were in a testlet. When there were four testlets and 75% of items were in 

testlets the number of people misclassified on average was 41 and173 for sample sizes of 

1,400 and 6,000, respectively. When there were four testlets and 100% of items were in 

testlets the number of people misclassified on average was 26, and 112 for sample sizes 

of 1,400 and 6,000, respectively (see Table 4.4 and 4.5).  

When there were eight testlets DC was 97.21% (SD=0.01) and 97.19% (SD=0.01) 

when 75% and 100% of items were in a testlet, respectively. When there were eight 

testlets and 75% of items were in testlets the number of people misclassified on average 

was 39 and 168 for sample sizes of 1,400 and 6,000, respectively. When there were eight 

testlets and 100% of items were in testlets the number of people misclassified on average 

was 40 and169 for sample sizes of 1,400 and 6,000, respectively (see Table 4.4 and 4.5).  

When there were 12 testlets DC was 97.2% (SD=0.01) and 96.81% (SD=0.02) 

when 75% and 100% of items were in a testlet, respectively. When there were 12 testlets 

and 75% of items were in testlets the number of people misclassified on average was 40 

and 168 for sample sizes of 1,400 and 6,000, respectively. When there were 12 testlets 

and 100% of items were in testlets the number of people misclassified on average was 45 

and192 for sample sizes of 1,400 and 6,000, respectively (see Table 4.4 and 4.5). There 
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was more variability in DC when all items were in testlets compared to conditions where 

75% of items were in testlets (see Figure 4.7).  

 

 
Figure: 4.7: Boxplot of Total number of items in testlets by number of testlets 

 
Number of Testlets and Testlet Variance 
 

The next strongest effect was the number of testlets and testlet variance 

interaction (ߟଶ෢ ൌ 	 .0069, ௣ଶ෢ߟ ൌ 	 .025) (see Table 4.5). As the number of testlets increased 

and testlet variance increased DC decreased and the number of people misclassified 

increased (see Figure 4.8). When there were four testlets and variance is 0.2 and 0.7 

respectively, DC was 98.61% (SD=0.01) and 96.73% (SD=0.01). When there were four 

testlets and testlet variance is 0.2 the number of people misclassified on average was 20 

and 84 for sample sizes of 1,400 and 6,000, respectively. When there were four testlets 

and testlet variance is 0.7 the number of people misclassified on average was 46 and 197 

for sample sizes of 1,400 and 6,000, respectively (see Table 4.4 and 4.5). 
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When there were 8 testlets and variance was 0.2 and 0.7, respectively DC was 

98.52% (SD=0.01) and 95.88% (SD=0.01), respectively. When there were eight testlets 

and testlet variance is 0.2 the number of people misclassified on average was 21 and 89 

for sample sizes of 1,400 and 6,000, respectively. When there were eight testlets and 

testlet variance is 0.7 the number of people misclassified on average was 58 and 247 for 

sample sizes of 1,400 and 6,000, respectively (see Table 4.4 and 4.5). 

When there were 12 testlets and variance was 0.2 and 0.7 DC was 98.48% 

(SD=0.01) and 95.55% (SD=0.01), respectively (see Table 4.4 and 4.5). When there were 

12 testlets and testlet variance is 0.2 the number of people misclassified on average was 

22 and 92 for sample sizes of 1,400 and 6,000, respectively. When there were 12 testlets 

and testlet variance is 0.7 the number of people misclassified on average was 63 and 267 

for sample sizes of 1,400 and 6,000, respectively (see Table 4.4 and 4.5). 

 

 
Figure: 4.8: Boxplot of number of testlets by testlet variance 
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Percent Total Items in Testlets 
 

Then the percent of total items in testlets effect was next largest (ߟଶ෢ ൌ	 .002, ௣ଶ෢ߟ ൌ

	.008) (see Table 4.5). When the percent of total items in testlets was 100%, DC was 

higher, on average, with more variability across conditions than those with 75% of total 

items in testlets (see Figure 4.9). The average DC between the DRM and the TRM was 

97.18% (SD=0.02), and 97.4% (SD=0.02) for percent of items in testlets of 75% and 

100%, respectively (see figure 4.9). When 75% of items were in testlets the number of 

people misclassified on average was 40 and 170 for sample sizes of 1,400 and 6,000, 

respectively. When 100% of items were in testlets the number of people misclassified on 

average was 37 and156 for sample sizes of 1,400 and 6,000, respectively (see Table 4.4 

and 4.5). 

 

 

Figure: 4.9: Boxplot of the percent of total items in testlets 
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Number of Items and Number of Testlets 
 

The next strongest effect was for the interaction between the number of items and 

number of testlets (ߟଶ෢ ൌ	 .002, ௣ଶ෢ߟ ൌ 	 .007) (see Table 4.5). The average DC between the 

DRM and the TRM was 97.27% (SD=0.02), 97.34% (SD=0.02), and 97.27% (SD=0.01) 

for number of items in each testlet of three, four, and seven respectively.  

When there were three items per testlet, DC was 97.70% (SD=0.02), 97.12% 

(SD=0.02), and 97% (SD=0.02), when the number of testlets were four, eight, and 12, 

respectively. When there were three items in each testlet and four testlets the number of 

people misclassified on average was 33 and 138 for sample sizes of 1,400 and 6,000, 

respectively. When there were three items in each testlet and eight testlets the number of 

people misclassified on average was 41 and173 for sample sizes of 1,400 and 6,000, 

respectively. When there were three items in each testlet and 12 testlets the number of 

people misclassified was 42 and 180 for sample sizes of 1,400 and 6,000, respectively. 

(see Table 4.4 and 4.5). 

When there were four items per testlet DC was 97.74% (SD=0.01), 97.27% 

(SD=0.01) and 97.01% (SD=0.02) when the number of testlets were four, eight, and 12, 

respectively. When there were four items in each testlet and four testlets the number of 

people misclassified on average was 32 and136 for sample sizes of 1,400 and 6,000, 

respectively. When there were four items in each testlet and eight testlets the number of 

people misclassified on average was 39 and 164 for sample sizes of 1,400 and 6,000, 

respectively. When there were four items in each testlet and 12 testlets the number of 

people misclassified was 42 and180 for sample sizes of 1,400 and 6,000, respectively 

(see Table 4.4 and 4.5). 
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When there were seven items per testlet DC was 97.58% (SD=0.01), 97.21% 

(SD=0.02), and 97.01% (SD=0.02), when the number of testlets were four, eight, and 12, 

respectively (see Figure 4.10). When there were seven items in each testlet and four 

testlets the number of people misclassified on average was 34 and 145 for sample sizes of 

1,400 and 6,000, respectively. When there were seven items in each testlet and eight 

testlets the number of people misclassified on average was 39 and 173, for sample sizes 

of 1,400 and 6,000, respectively. When there were seven items in each testlet and 12 

testlets the number of people misclassified on average was 42 and 180 for sample sizes of 

1,400 and 6,000, respectively (see Table 4.4 and 4.5). 

 

 
Figure: 4.10: Boxplot of the number of items by the number of testlets 
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Number of Testlets and Sample Size 

The next strongest effect was for the interaction between the number of testlets 

and sample size (ߟଶ෢ ൌ 	 .002, ௣ଶ෢ߟ ൌ	 .006ሻ (see Table 4.5). The average DC between the

DRM and the TRM was 97.3% (SD=0.02), and 97.28% (SD=0.02) for sample sizes of 

1,400 and 6,000, respectively (see Table 4.4 and 4.5). When there were four testlets, DC 

was 97.7% (SD=0.02) and 97.66% (SD=0.02) for sample sizes of 1,400 and 6,000, 

respectively. When there were four testlets the number of people misclassified were 33 

and 140 for sample sizes of 1,400 and 6,000, respectively. When there were eight testlets 

DC was 97.2% (SD=0.01) and 97.2% (SD=0.01) for sample sizes of 1,400 and 6,000, 

respectively. When there were eight testlets the number of people misclassified were 40 

and 169 for sample sizes of 1,400 and 6,000, respectively. When there were 12 testlets 

DC was 97.01% (SD=0.02) and 97% (SD=0.02) for sample sizes of 1,400 and 6,000, 

respectively (see Figure 4.11). When there were 12 testlets the number of people 

misclassified were 84 and 180 for sample size of 1,400 and 6,000, respectively.  
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Figure: 4.11: Boxplot of number of testlets by sample size 

 
 
Number of Items 
 

The last effect greater than .001 for either eta squared or partial eta squared was 

the simple effect number of items ሺߟଶ෢ ൌ	 .001, ௣ଶ෢ߟ ൌ 	 .003) (see Table 4.5). When there 

were three items per testlet, DC had more variability (see Figure 4.8). The average DC 

between the DRM and the TRM was 97.27% (SD=0.02), 97.34% (SD=0.02), and 97.27 

(SD=0.01) for three, four, and seven items per testlet, respectively (see figure 4.12). 

When the number of items was three the number of people misclassified on average was 

39 and 164, for sample sizes of 1,400 and 6,000, respectively. When the number of items 

was four the number of people misclassified on average was 38 and 160, for sample sizes 

of 1,400 and 6,000, respectively. When the number of items was seven the number of 
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people misclassified was 39 and 164, for sample sizes of 1,400 and 6,000, respectively 

(see Table 4.4 and 4.5). 

 

 
Figure: 4.12: Boxplot of number of items 

 
 
Number of Items and Percent of Total Items in Testlets 
 

The next strongest effect was for the interaction between the number of items and 

the percent of total items in testlets (ߟଶ෢ ൌ 	 .0003, ௣ଶ෢ߟ ൌ 	 .001ሻ (see Table 4.5). When the 

percent of total items in testlets was 75% DC is lower on average (see Figure 4.13). For 

three item testlets DC is 97.32% (SD=0.01), and 97.21% (SD=0.02), when the percent of 

total items in testlets were 75% and 100%, respectively. When there were three items in 

each testlet and 75% of items were in testlets the number of people misclassified on 

average was 38 and 161, for sample sizes of 1,400 and 6,000, respectively. When there 

were three items in each testlet testlets and 100% of items were in testlets the number of 
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people misclassified on average was 39 and 168, for sample sizes of 1,400 and 6,000, 

respectively (see Table 4.4 and 4.5).  

For four item testlets DC is 97.3% (SD=0.01), and 97.38% (SD=0.02), when the 

percent of total items in testlets were 75% and 100%, respectively. When there were four 

items in each testlet and 75% of items were in testlets the number of people misclassified 

was 38 and 162, for sample sizes of 1,400 and 6,000, respectively. When there were four 

items in each testlet testlets and 100% of items were in testlets the number of people 

misclassified on average was 37, and 157, for sample sizes of 1,400 and 6,000, 

respectively (see Table 4.4 and 4.5). 

For seven item testlets DC is 96.89% (SD=0.01), and 97.58% (SD=0.02), when 

the percent of total items in testlets were 75% and 100%, respectively. When there were 

seven items in each testlet and 75% of items were in testlets, the number of people 

misclassified on average was 44 and 187 for sample sizes of 1,400 and 6,000, 

respectively. When there were seven items in each testlet testlets and 100% of items were 

in testlets the number of people misclassified on average was 34 145, for sample sizes of 

1,400 and 6,000, respectively (see Table 4.4 and 4.5). 

When all items were in testlets as the number of items increased DC also 

increased. However, when 75% of the items are in testlets and the number of items 

increased DC decreased (see Figure 4.12).  
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Figure: 4.13: Boxplot of number of items by percent of total items in testlets 

 
 
Percent Total Items in Testlets and Sample Size 
 

The next strongest effect was for the interaction between the percent of total items 

in testlets and sample size (ߟଶ෢ ൌ 	 .0002, ௣ଶ෢ߟ ൌ 	 .001ሻ (see Table 4.5). When sample size 

was 1,400, DC was 97.17% (SD=0.02) and 98.41% (SD=0.02) when 75% and 100% of 

items were in a testlet. When sample size was 1,400, the number of people misclassified 

when 75% and 100% of items were in a testlet is 40 and 23, respectively. When sample 

size was 6,000, DC was 97.19% (SD=0.01) and 97.39% (SD=0.02) when 75% and 100% 

of items were in a testlet. When sample size was 6,000, the number of people 

misclassified when 75% and 100% of items were in a testlet is 169 and 157, respectively 

(see Table 4.4 and 4.5). When the percent of total items in testlets was 75% DC was 

lower on average (see Figure 4.14).  
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Figure: 4.14: Boxplot of percent of total items in testlets by sample size 

 
 
Number of Items and Sample Size 
 

Eta-squared was .0001 and partial eta- squared was .001 for the interaction 

between the number of items and sample size was (see Table 4.5). When there are three 

items DC was 97.32% (SD=0.01), and 97.21% (SD=0.02) when the percent of total items 

in testlets were 75% and 100%, respectively. When there were three items, the number of 

people misclassified on average was 100 and 104 when sample size was 1,400 and 6,000, 

respectively. When there were four items DC is 97.3% (SD=0.01), and 97.38% 

(SD=0.02) when sample size was 1,400 and 6,000, respectively. When there were four 

items, the number of people misclassified on average was 100 and when sample size was 

1,400 and 6,000, respectively. When there were seven items, DC is 96.89% (SD=0.01), 

and 97.58% (SD=0.02), when sample size is 1,400 and 6,000, respectively. When there 

were seven items the number of people misclassified on average was 100 and 104 when 
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sample size is 1,400 and 6,000, respectively (see Table 4.4 and 4.5). When there were 

three items DC is lower on average and there was little variability between sample sizes 

(see Figure 4.15).  

 

 
Figure: 4.15: Boxplot of the number of items by sample size 

 
 
Testlet Variance and Sample Size 
 

 Eta-squared was .0001 and partial eta-squared was .001 for the interaction 

between testlet variance and sample size. When testlet variance was 0.2, DC was 98.53% 

(SD=0.01) and 98.54% (SD=0.01) when sample size was 1,400 and 6,000, respectively. 

When testlet variance was 0.2, the number of people misclassified were 21 and 88 when 

sample size was 1,400 and 6,000, respectively. When testlet variance was 0.7, DC was 

96.06% (SD=0.01) and 96.03% (SD=0.01) when sample size was 1,400 and 6,000, 

respectively (see Figure 4.16). When testlet variance was 0.7, the number of people 
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misclassified were 55 and 1237 when sample size was 1,400 and 6,000, respectively (see 

Table 4.4 and 4.5). While there were minimal differences in DC as sample size increased 

more examinees were misclassified.  

 

Figure: 4.16: Boxplot of testlet variance by sample size 
 
 
Number of Items and Testlet Variance 
 

Eta-squared was .0001 and partial eta-squared was .0004 for the interaction 

between the number of items and testlet variance (see Table 4.3). As the number of items 

increased and testlet variance increased, DC decreased and the number of people 

misclassified increased (see Figure 4.17). As the number of items increases variability in 

DC decreased regardless of the testlet variance. DC was similar across the number of 

items but decreased as testlet variance increased. 
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When there were three items and variance is 0.2 and 0.7, DC was 98.51% 

(SD=0.01) and 96.02% (SD=0.01), respectively. When there were three item testlets and 

testlet variance was 0.2, the number of people misclassified on average was 21, and 90 

for sample sizes of 1,400 and 6,000, respectively. When there were three item testlets and 

testlet variance is 0.7, the number of people misclassified on average was 56 and 239 for 

sample sizes of 1,400 and 6,000, respectively (see Table 4.4 and 4.5). 

When there were four items and variance was 0.2 and 0.7, respectively DC and 

number of people misclassified were 98.55% (SD=0.01) and 96.13% (SD=0.01), 

respectively. When there were four item testlets and testlet variance is 0.2, the number of 

people misclassified on average was 21 and 87 for sample sizes of 1,400 and 6,000, 

respectively. When there were four item testlets and testlet variance is 0.7, the number of 

people misclassified on average was 55 and 233 for sample sizes of 1,400 and 6,000, 

respectively (see Table 4.4 and 4.5). 

When there were seven items and variance was 0.2 and 0.7, respectively DC and 

number of people misclassified on average were 98.55% (SD=0.01) and 95.99% 

(SD=0.01), respectively. When there were seven item testlets and testlet variance is 0.2, 

the number of people misclassified on average was 21 and 87, for sample sizes of 1,400 

and 6,000, respectively. When there were seven item testlets and testlet variance is 0.7, 

the number of people misclassified on average was 57 and 241, for sample sizes of 1,400 

and 6,000, respectively (see Table 4.4 and 4.5). 
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Table 4.4 

Proportion Tables for Conditions with 100% of Items in Testlets 

Testlet 
Variance 

No. of 
Testlets 

No. of 
Items 

Sample 
Size 

Testlet and Rasch 
FF FP PF PP PCC NMP

0.2 

4 

3 
1400 0.223 0.002 0.010 0.765 0.988 17
6000 0.225 0.002 0.012 0.761 0.986 84

4 
1400 0.226 0.003 0.012 0.759 0.985 21
6000 0.228 0.002 0.010 0.761 0.989 66

7 
1400 0.233 0.003 0.010 0.755 0.988 17
6000 0.233 0.002 0.008 0.756 0.989 66

8 

3 
1400 0.225 0.000 0.015 0.759 0.984 23
6000 0.226 0.000 0.016 0.757 0.983 102

4 
1400 0.229 0.000 0.015 0.755 0.984 23
6000 0.230 0.000 0.014 0.755 0.985 90

7 
1400 0.231 0.000 0.014 0.754 0.985 21
6000 0.233 0.000 0.013 0.754 0.987 78

12 

3 
1400 0.229 0.000 0.016 0.755 0.984 23
6000 0.229 0.000 0.016 0.754 0.983 102

4 
1400 0.230 0.000 0.016 0.754 0.984 23
6000 0.230 0.000 0.016 0.754 0.984 96

7 
1400 0.232 0.000 0.016 0.752 0.984 23
6000 0.233 0.000 0.016 0.751 0.984 96

0.7 

4 

3 1400 0.196 0.001 0.027 0.776 0.972 40
6000 0.194 0.000 0.029 0.776 0.970 180

4 1400 0.204 0.002 0.024 0.770 0.974 37
6000 0.205 0.001 0.020 0.774 0.979 126

7 1400 0.210 0.003 0.020 0.767 0.977 33
6000 0.210 0.003 0.020 0.767 0.977 138

8 

3 1400 0.191 0.000 0.044 0.765 0.956 62
6000 0.191 0.000 0.044 0.765 0.956 264

4 1400 0.197 0.000 0.041 0.762 0.959 58
6000 0.196 0.000 0.042 0.762 0.958 252

7 1400 0.201 0.000 0.039 0.760 0.961 55
6000 0.202 0.000 0.039 0.759 0.961 234

12 

3 1400 0.192 0.000 0.049 0.759 0.951 69
6000 0.192 0.000 0.049 0.760 0.952 288

4 1400 0.194 0.000 0.048 0.758 0.952 68
6000 0.193 0.000 0.048 0.759 0.952 288

7 1400 0.198 0.000 0.047 0.756 0.954 65
6000 0.197 0.000 0.046 0.757 0.954 276

Note. FF= Fail Fail, FP=Fail Pass, PF=Pass Fail, PP= Pass Pass, PCC=Proportion 
Correctly Classified, NPM= Number of People Misclassified. The number of people 
misclassified was rounded up to the nearest whole number. 
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Table 4.5 

Proportion Tables for Conditions with 75% of Items are in Testlets 

Testlet 
Variance 

No. of 
Testlets 

No. of 
Items 

Sample 
Size 

Testlet and Rasch 
FF FP PF PP PCC NMP

0.2 

4 

3 
1400 0.226 0.003 0.100 0.760 0.986 20
6000 0.226 0.003 0.011 0.760 0.986 84

4 
1400 0.230 0.004 0.011 0.756 0.986 20
6000 0.229 0.005 0.011 0.756 0.985 90

7 
1400 0.233 0.005 0.011 0.751 0.984 23
6000 0.231 0.005 0.012 0.751 0.982 108

8 

3 
1400 0.232 0.002 0.014 0.753 0.985 21
6000 0.231 0.001 0.014 0.754 0.985 90

4 
1400 0.233 0.001 0.012 0.075 0.986 20
6000 0.234 0.002 0.012 0.753 0.987 78

7 
1400 0.236 0.002 0.013 0.750 0.986 20
6000 0.235 0.002 0.013 0.750 0.985 90

12 

3 
1400 0.234 0.000 0.014 0.751 0.985 21
6000 0.232 0.001 0.014 0.753 0.985 90

4 
1400 0.235 0.001 0.013 0.750 0.985 21
6000 0.234 0.000 0.013 0.752 0.986 84

7 
1400 0.236 0.001 0.014 0.749 0.985 21
6000 0.236 0.001 0.014 0.749 0.985 90

0.7 

4 

3 1400 0.199 0.006 0.030 0.765 0.964 51
6000 0.200 0.006 0.030 0.764 0.964 216

4 1400 0.204 0.010 0.028 0.759 0.963 52
6000 0.203 0.010 0.031 0.757 0.960 240

7 1400 0.207 0.014 0.031 0.749 0.956 62
6000 0.205 0.014 0.033 0.748 0.953 282

8 

3 1400 0.204 0.002 0.038 0.756 0.960 56
6000 0.203 0.002 0.028 0.757 0.960 240

4 1400 0.207 0.003 0.037 0.753 0.960 56
6000 0.204 0.004 0.035 0.757 0.961 234

7 1400 0.207 0.005 0.038 0.749 0.956 62
6000 0.207 0.006 0.039 0.748 0.955 270

12 

3 1400 0.206 0.001 0.040 0.754 0.960 56
6000 0.205 0.001 0.040 0.754 0.959 246

4 1400 0.207 0.001 0.040 0.752 0.959 58
6000 0.207 0.001 0.040 0.752 0.959 246

7 1400 0.209 0.002 0.040 0.749 0.958 59
6000 0.208 0.003 0.040 0.749 0.957 258

Note. FF= Fail Fail, FP=Fail Pass, PF=Pass Fail, PP= Pass Pass, PCC=Proportion 
Correctly Classified, NPM= Number of People Misclassified. The number of people 
misclassified was rounded up to the nearest whole number. 
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Figure: 4.17: Boxplot of the number of items by testlet variance 

 
 
Sample Size 
 

Eta- squared was .0001 and partial eta-squared was .0002 for the design factor 

sample size (see Table 4.5). DC was almost the same regardless of the sample size (see 

Figure 4.18). The average DC between the DRM and the TRM was 97.62% (SD=0.02), 

and 97.68% (SD=0.02) when sample size was 1,400 and 6,000, respectively (see figure 

4.9). The number of people misclassified, on average, when sample size was 1,400 and 

6,000 was 33 and 140, respectively (see Table 4.4 and 4.5).  
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Figure: 4.18: Boxplot of sample size 

 
 

An Empirical Example 
 

The PISA (2012) U.S. public-use data files from Institute of Education Sciences 

(IES) contains a subset of students mathematics, reading, and science responses 

(http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2014028). For the purpose of this 

study only the reading portion of Booklet Two was used to study the testlet effect on DC 

between the DRM and the RTM (see Appendix A for a description of the items). Booklet 

Two contains 29 reading items with nine testlets. The items per testlet range from two to 

four (see Figure 3.1). This subsample consists of 422 U.S. students fifteen-years-old. The 

cut score for the PISA data was set based on the percentage of examinees that scored at a 

level two or higher on the 2012 exam (OECD, 2013). According to the OECD (2013) 

81.2 % scored at a level two or higher. The ability distribution is assumed to follow a 

standard normal distribution; therefore, the cut score is set to the value above which 

approximately 81.2% of the distribution falls (z = -0.89, see equation 4.2).  
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z = Φିଵ(.812) ≈ -0.89,      [4.2] 

where Φିଵ is the inverse of the cumulative standard normal distribution function. 

PISA is traditionally calibrated with a DRM, thus making this data set ideal for 

this study. Two models will be estimated: a) the DRM and b) the RTM. For each model 

the pass/fail decisions of each examinee were recorded and the proportion of examinees 

whose pass/fail decisions differed between the two models is reported.  

The classification agreement percent between the DRM and TRM was 99.5%, only 

two students were classified differently. The classification comparison is presented in 

Table 4.6 and the testlet variances and standard deviations are presented in Table 4.7.  

 
Table 4.6 

Proportion of Pass/Fail Decision Between the DRM and the RTM 

  Rasch 
  Pass=1 Fail=0 

Testlet 
Pass=1 0. 879 0.005
Fail=0 0.000 0.116 

 

Table 4.7 

Testlet Variance and Standard Deviation 

 Testlet Standard 
Testlet Variance Deviation 

1 0.118  0.014 
2 0.055 0.003
3 0.105 0.011 
4 0.084 0.007
5 0.084 0.007 
6 0.114 0.013
7 0.084 0.007 
8 0.118 0.014
9 0.077 0.006 
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The testlet variance was relatively small and there were four or fewer items per testlet so 

the difference between classifications was also small. This is consistent with the Monte 

Carlo simulation findings.  

 
Summary 

 
 In summary, diagnostics were conducted that provided evidence that 100 

replications, population parameters, and 1,000 burning and 2,000 iterations were 

sufficient for this study. The true model was the RTM so when the DRM differed from 

the RTM the disagreement was considered misclassification. The percent of pass/fail 

decision agreement or DC between the DRM and the RTM was very high. The percent of 

DC ranged from 91% to 100%. However, the design factor that influenced DC the most 

was testlet variance. In other words, as testlet variance increased DC decreased. 

Misclassification was greater when the testlet variance was larger and when more testlets 

are present. The number of items alone did not affect DC. There was no difference in DC 

for differing sample sizes. Those misclassified were more often false negative rather than 

false positive. As with the empirical example when testlet variance is small the percent 

agreement is very high. . The empirical example with the PISA data followed the same 

trends found in the MC simulation study. Implications and recommendations are 

provided in the next chapter.   
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CHAPTER FIVE 
 

Discussion 

 
Testlets are becoming increasingly more prevalent in educational and cognitive 

testing situations. Languages Arts and reading assessments are prime examples of tests 

that include testlets, as examinees are provided with a reading passage and are then asked 

a group of items related to the passage (Fountas & Pinnell, 2012; Good, Wallin, 

Simmons, Kame’enui, & Kaminsji, 2002; Harcourt, 2003; SBAC, 2014; TEA, 2014; 

Texas Institute for Measurement, Evaluation, and Statistics, 2010). The theoretical 

structure of reading assessments that include reading passages and multiple items related 

to those passages is a testlet structure. Testlets create additional correlation between items 

that is unexplained by the latent trait. In applied settings, researchers are faced with the 

decision of selecting an appropriate model for use in large-scale assessments. Among the 

multitude of models available unidimensional models are more frequently used even 

when testlets are included in the structure and design of the assessment (Dickenson, 

2005).  

This study investigated classification consistency between competing Rasch 

models, a DRM and a TRM, where classification consistency was defined as the 

proportion of agreement between the two models based on a predetermined cut score.  

The cut score was a priori set to the average passage rate of a large southern state 

reading assessment (~75%) or z = Φିଵ(.75) ≈ -0.67,  where  Φିଵ is the inverse of the 

cumulative standard normal distribution function. 
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The population structure used in the current study is a TRM with known number 

of testlets, items within testlets, and testlet effects. For this Monte Carlo simulation study, 

the design factors and conditions that varied were: (a) number of testlets, (b) number of 

items in testlets, (c) testlet effect, (d) percent of total items that are in testlets, and (e) 

sample size, yielding 72 possible conditions (3 numbers of items × 3 number of items in 

testlets × 2 testlet variances × 2 sample sizes × 2 proportion of items in testlet = 72). For 

each condition, 100 replications were generated.  

 
Discussion 

Overall, DC was very high between the two models, ranging from 91.5% to 

100%. These findings are consistent with those reported by Lu (2010). He compared a 

3PL IRT and a testlet IRT model, and found DC ranged from 91% to 96%. Similar to Lu 

(2010), the design factor that had the greatest effect on DC was the testlet effect or testlet 

variance. Other design factor that affected DC included number of testlets, an interaction 

between testlet variance and the percent of total items in testlets, and an interaction 

between the number of testlets and the percent of total items in testlets.  

 
Testlet Variance 
 

In condition where testlet variance was 0.7 the number of examinees misclassified 

was more than double the number of examinees misclassified when testlet variance was 

0.2. It was expected that there would be a decrease in DC as testlet variance increased 

because there are stronger relationships between items that was unaccounted for by the 

DRM. In applied settings the testlet variance is unknown and have been reported to be as 

high as 2.8 (Wanget al., 2002), meaning that the effects of testlet variance may be more 
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pronounced in applied settings increasing the number of people misclassified. Lu (2010) 

found that ability estimates were negatively affected by larger testlet variance and this in 

turn decreased DC.  

 
Number of Testlets 
 

In conditions where there were more testlets DC was lower. These findings are 

consistent with those found by Bradlow, Wainer and Wang (1999), where they concluded 

that an increase in the number of testlets affected the quality of the estimates and in turn 

significantly impacted the final inferences made about people. This was an expected 

outcome because when there are more testlets there is an increase in the number of 

additional unmolded dimensions and increasing the difference between the classification 

consistency between the DRM and TRM. Similarly, Yen and Fitzpatrick (2006) reported 

that when there are fewer testlets the effects of the testlet effect can be minimized.  

 
Interaction Between Percent of Total Items in Testlets by the Number of Testlets 
 

In conditions where 75% of the total number of items was in testlets, the number 

of testlets did not change the number of people misclassified. However, when 100% of 

the total number of items was in testlets, an increase in the number of testlets was 

associated with an increase in the proportion of people misclassified. There was more 

variability in DC when all items were in testlets compared to conditions where 75% of 

items were in testlets. This implies that the design structure of the assessment affects DC, 

meaning that when more testlets are present the proportion of DC may become less 

stable. However, when the proportion of items in testlets decreases this may minimize the 

impact of the testlet effect. This is consistent with Hembry’s (2014) findings that when 
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there are more testlets and more of the percent of total items in testlets there is more of a 

testlet effect that impacts all outcomes (e.g. DC, precision in parameter estimates).  

 
Interaction of Number of Testlets by Testlet Variance 
 

As the number of testlets increased and testlet variance increased DC decreases 

and the proportion of people misclassified increased. This is consistent with findings 

reported by Lu (2010) who also found that as the number of testlets and testlet variance 

increased ability estimation precision decreased. The decrease in ability estimation 

precision, due to the unaccounted for LID, caused classification errors to spread across 

the ability distribution to more ability levels. This caused a decrease in DC (Lu, 2010).  

As the number of testlets increased, thereby increasing the overall length of the 

test, variability in DC decreased. In general, when more information was present, the 

consistency of estimates increased. In conditions where there are smaller numbers of 

testlets the total amount of information is limited and the effect of testlet variance on the 

consistency of DC is also limited.  

 
Other Design Factors 
 

All other main effects and two-way interaction effects were trivial. The number of 

items in testlets and related interactions did not influence DC. However, this may be an 

artifact of directly specifying testlet variance in this study. The small effect was 

unexpected as previous research indicated that as the number of items in testlets 

increased DC decreased (Chen, 2014; Hembry, 2014; Lu, 2010). Chen (2014) reported an 

increase in the testlet variance as testlet length, more items in testlets, increases. Applied 
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researchers should proceed with caution when there are a large number of items in 

testlets.  

Likewise, sample size and related interactions did not have a strong effect on DC, 

as it was the same for both sample sizes. Estimates were more precise when sample size 

was larger.  

 
PISA 

 
PISA is traditionally calibrated with a DRM, and contained 29 items in nine 

testlets. The cut score for the PISA data was set based on the percentage (81.2%) of 

examinees that scored at a level two or higher on the 2012 exam (OECD, 2013), 

therefore, the cut score is set to the value above which approximately 81.2% of the 

distribution falls z = Φିଵ(.812) ≈ -0.89, where  Φିଵ is the inverse of the cumulative 

standard normal distribution function. 

The classification agreement percent between the DRM and the TRM was 99.5%. 

That means that 2 students were classified differently. The classification comparison is 

presented in Table 4.8 and the testlet variances and standard deviations are presented in 

Table 4.9. The testlet variance is relatively small and there are four or fewer items per 

testlet so the difference between classifications is also small. This is consistent with the 

Monte Carlo simulation findings and Bradlow et al.’s (1999), findings that when the 

testlet and non-testlet models were applied to real data all models performed about the 

same due to the posterior mean testlet variance of 0.11 (ߪ௬ଶሻ, classified by the authors as a 

modest effect. Similarly, Wainer, et al. (2007) suggested that when the number of items 

included in each testlet (i.e., four testlets with three items in each testlet) is relatively 

small ignoring the violation of local independence assumption may be tolerable, but 
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cautioned that as the item-to-testlet ratio increased or the magnitude of the dependence in 

the testlet increased a lack of precision in the parameter estimates would also increase. 

 
Conclusion 

 
These findings are consistent with previous research. Numerous studies have 

compared unidimensional and testlet model parameter ordering via correlation, RMSE 

and bias and found that ability ordering is quite similar between models (Eckes, 2013; 

Jiaoet al., 2013; Paeket al., 2008; Wang & Wilson, 2005a; Wang & Wilson, 2005b). 

However, in high-stakes testing when DC is as high as 0.986 in a sample of 6,000, 84 

examinees were misclassified. Those who were close to the cut score may have more 

variability depending on what model was used to estimate ability. In other words 

someone may pass if a testlet model was used and fail if a unidimensional model was 

used.  

The misclassification was more often a false negative meaning that an examinee 

failed when they should have passed. Bradlow et al. (1999) reported a similar 

phenomenon in their study in the use of SAT scores for scholarship awards and 

acceptance into college. While the selection was norm referenced instead of criterion 

referenced and the top of the ability distribution was of interest the authors found that 

when the testlet model was used a higher percentage of the top 100 examinees were 

identified. This study demonstrated that when the testlet model was not used fewer 

examinees received benefits for their test scores that they should have had they been 

modeled with a testlet model.  

The development of multidimensional item response models parallels the 

development of factor analytic models in the early nineteen hundreds. Spearman (1904) 
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developed a theory of intelligence that was thought to consist of one general factor, 

which is conceptually equivalent to the one parameter item response model. Later, 

Holzinger and Swineford (1937) found that one general factor did not adequately account 

for intercorrelations and thus developed the bi-factor theory. The bi-factor model 

accounts for a general factor and group factors that were described as mutually exclusive 

(Holzinger & Harman, 1939) similar to the testlet model described by Bradlow et al. 

(1999). More recently, Li et al. (2006) found that the testlet model is a constrained 

version of the bi-factor model. Rijmen (2010) concluded that the testlet model and the bi-

factor model were formally equivalent. Therefore, the findings of this study may also 

inform model selection decisions in research involving the bi-factor model. For details 

and characteristics of bi-factor models, interested readers should see Holzinger and 

Harman (1939), Holzinger and Swineford (1937), Reise (2012), Reise Widaman, and 

Pugh (1993), and Yung, Thissen, and McLeod (1999).  

 

Recommendations for use of Testlet Models 
 

When a testlet structure is present in applied data the testlet variance is unknown 

and as the testlet variance increases so does the misclassification of examinees. When 

measurement models are used that do not align with the structure of the data additional 

error is introduced into the parameter estimates. This has the potential to directly impact 

the decisions that are made about people.  

Therefore, when testlets are present practitioners should investigate the testlet 

effect by using a testlet model. An initial investigation of the assessment should include a 

testlet model in order to investigate the magnitude of the testlet effect before other 

statistical properties such as DIF, equating, or reliability are investigated. If the testlet 
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effect is found to be small .3 or less then a traditional model may be acceptable. On the 

other hand if testlet effects are larger than .3 the testlet model is recommended.  

 
Limitations 

 
One advantage of a MC study is the ability to study the effects of multiple factors 

simultaneously (i.e. sample size, number of items, number of dimensions, variety of 

models). Another advantage is the ability to generate random samples using a specified 

model in order to compare estimated results when the “truth” is known.  

However, A major limitation of MC studies is that the studies are only as useful 

as the generalizability of the conditions modeled. Another limitation is the quality of the 

random number generator, and results may vary depending on the number of replications 

(Harwell, et al., 1996). Therefore, it is essential to generate conditions similar to those 

found in the applied literature. However, this study did not simulate all possible 

conditions reported in the literature. Instead the most commonly reported conditions were 

included, along with an empirical example.  

There are many measurement models with varying degrees of complexity for 

calibrating and making decisions about examinee ability. This study includes Rasch 

models, which are more parsimonious than other item response models. If testlet variance 

effects pass/fail decisions in less complex models then the effect of testlet variance may 

be increased for more complex models.  

 Another limitation of this study was the use of Bayesian or MCMC estimation 

because the researcher is required to specify prior distributions as well as chain length. 

MCMC estimation includes the use of priors that influence the estimation process. One of 

the limitations of using priors is that results may be different when different priors are 
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used. Similarly, the selected number of burn-in iterations and total number of total 

iterations in conditions with fewer items per testlet and fewer testlets were more 

problematic in achieving the stationary chain.  

A limitation of this study is that the distribution used to generate the item 

difficulties was different than the cut score. Using a different cut score than the item 

difficulty mean was motivated by the effort to approximate standard setting procedures in 

applied settings Another limitation is that DC was compared from the two estimated 

model parameters. The consistency with the true classification was not examined in this 

study.  

 
Future Research 

 
 As noted above, the findings of this study are only generalizable to study 

conditions that are similar to those conditions in this study. Additional research is needed 

to continue to develop our understanding of pass/fail decisions under competing models 

when testlets are present. This study focused on those conditions most often found in K-

12 settings and future research may include other testing situations such as licensure and 

credentialing exams. In order to expand on this study future research should examine DC 

when testlet variance is different for each testlet (i.e. four testlets with testlet variance of 

.2, .5, .75, & 1). This study investigated only conditions where the testlet variance was 

the same for each testlet with in a given condition. Similarly, alternate cut scores may be 

of interest to investigate decisions at various points on the ability distribution. The cut 

score in this study was -0.67, but alternative cut scores may be of interest. Given that 

there were several main effects and two-way interaction effects that included the design 
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factor, total percent of items in testlets, this is another area in need of further 

investigation.  

Future research should include a comparison between the true pass/fail 

classification and the classification from each estimated model. This would provide 

additional information of the performance of both models. Similarly, replication studies 

that include alternate cut scores and item difficulty distributions targeted around the cut 

score are needed in order to provide additional more information about the DC between 

the DRM and the RTM.   

Additional research is also recommended with regard to estimation. This study 

employed MCMC estimation techniques that require the researcher to specify prior 

distributions for parameter estimation as well as chain lengths in order to provide 

estimates from the sample distribution. Future research may include both informative and 

uninformative priors and different distributions (i.e. uniform instead of normal, or skewed 

distributions). Applied researchers may benefit from an investigation of the effects on DC 

based on varying chain lengths (e.g. burn-in iterations and total iterations). Similarly, a 

comparison of estimation techniques, such as maximum likelihood estimation, on DC 

may also be of interest.  

Future research in the area of testlets and DC includes the use of receiver operator 

curve (ROC) investigations to determine if the DRM and the TRM select the same cut 

score that maximizes correct classification and minimizes incorrect classification. 

Considering most of the misclassification was false negatives it would also be of interest 

to use ROC to investigate the sensitivity and specificity for minimizing false negatives. 
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Similarly, an extension of the current study should be to investigate item difficulty and 

person ability in relation to the false negative misclassification.  

 DRM is more parsimonious than models that include discrimination and guessing 

parameters. Another area of future research might include replicating this study with less 

parsimonious models in order to investigate DC in more complex situations, such as, 

multidimensional TRM (i.e. the addition of problem solving to a reading assessment).  

In summary, this study provides evidence that there are small but important 

differences between the DRM and TRM for making decisions about people when 

assessments include testlets. While this study adds to the growing body of literature on 

the effects of violating the assumption of LID by directly comparing pass/fail decisions 

between the DRM and the TRM, there is much more to learn about the use of testlet 

models in item analysis for large scale testing programs. The results of this study add to 

the growing support for the use of testlet models when testlets are present and may 

inform practitioners of testing situations that may be more sensitive to the violation of 

LID.  
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APPENDIX A 
 

Item Indicator and Description 

 
Table A.1 

 
PISA Item Descriptions 

Testlet 
Indicator 

Item Indicator Description 

SP PR220Q01 READ - P2000 South Pole Q1 
 PR220Q02B READ - P2000 South Pole Q2B 
 PR220Q04 READ - P2000 South Pole Q4 
WL PR412Q01 READ - P2009 World Languages Q1 
 PR412Q05 READ - P2009 World Languages Q5 
 PR412Q06T READ - P2009 World Languages Q6 
 PR412Q08 READ - P2009 World Languages Q8 
CF PR420Q02 READ - P2009 Children’s Futures Q2 
 PR420Q06 READ - P2009 Children’s Futures Q6 
 PR420Q09 READ - P2009 Children’s Futures Q9 
 PR420Q10 READ - P2009 Children’s Futures Q10 
AB PR432Q01 READ - P2009 About a book Q1 
 PR432Q05 READ - P2009 About a book Q5 
 PR432Q06T READ - P2009 About a book Q6 
N PR437Q01 READ - P2009 Narcissus Q1 
 PR437Q06 READ - P2009 Narcissus Q6 
 PR437Q07 READ - P2009 Narcissus Q7 
JV PR446Q03 READ - P2009 Job Vacancy Q3 
 PR446Q06 READ - P2009 Job Vacancy Q6 
FS PR453Q01 READ - P2009 Find Summer Job Q1 
 PR453Q04 READ - P2009 Find Summer Job Q4 
 PR453Q05T READ - P2009 Find Summer Job Q5 
 PR453Q06 READ - P2009 Find Summer Job Q6 
B PR456Q01 READ - P2009 Biscuits Q1 
 PR456Q02 READ - P2009 Biscuits Q2 
 PR456Q06 READ - P2009 Biscuits Q6 
WR PR466Q02 READ - P2009 Work Right Q2 
 PR466Q03T READ - P2009 Work Right Q3 
 PR466Q06 READ - P2009 Work Right Q6 

Note. SP = South Pole; WL = World Languages; CF = Children’s Futures; AB = About a 
book; N = Narcissus; JV = Job Vacancy; FS = Find Summer Job; B = Biscuits; WR = 
Work Right. 
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APPENDIX B 

Example R Syntax 

 
# load package sirt  
library(sirt) 
# number of replications 
reps<-1:100 
#conditions to be varied 
cond<-1 
#testlet variance 
tvar<-.2 
#sample size 
N<-1400 
#samplesize 
TT<-4 
#total number of items 
TnI<-12 
testlet.sim<-function(reps){ 
  # generate dataset 
  N <- N   # number of persons 
  I <- 3      # number of items per testlet 
  TT <- TT    # number of testlets 
   
  ITT <- I*TT 
  # b is difficulty with a mean of 0 and sd of 1 
 
  b <- round( rnorm( ITT , mean=0 , sd = 1 ) , 2 ) 
  sd0 <- 1 # sd trait 
  sdt <- rep(sqrt(tvar), TT ) # sd testlets 
  sdt <- sdt 
   
  # simulate theta 
  theta <- rnorm( N , sd = sd0 ) 
  # simulate testlets 
  ut <- matrix(0,nrow=N , ncol=TT ) 
  for (tt in 1:TT){ ut[,tt] <- rnorm( N , sd = sdt[tt] ) } 
  ut <- ut[ , rep(1:TT,each=I) ] 
  # calculate response probability 
  prob <- matrix( pnorm(theta + ut + matrix(b , nrow=N , ncol=ITT , byrow=TRUE ) ) , 
N, ITT) 
  Y <-matrix(0,nrow=N , ncol= TnI ) 
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  Y <- (matrix(runif(N*ITT), N , ITT) < prob )*1 
    # true pass/fail from generated data set 
  true<- theta 
  true<-as.data.frame(true) 
  true$pass<- ifelse (true$true >= -0.67, 1, 0)  
# estimate Rasch model in sirt package 
  rasch<- mcmc.3pno.testlet( dat=Y ,  est.slope=FALSE , est.guess=FALSE ,  
                             burnin=1000, iter=2000 )   
   # Rasch estimated pass/fail 
 person<-rasch$person 
  person$pass<- ifelse (person$EAP >= -0.67, 1, 0)  
   
  # define testlets 
  testlets <- rep(1:TT , each=I)  
# estimate Rasch testlet model in sirt package  
  rasch.testlet<-mcmc.3pno.testlet(Y, testlets=testlets, est.slope=FALSE, 
est.guess=FALSE, burnin=1000, iter=2000 ) 
   # estimated testlet pass/fail 
 person.testlet<-rasch.testlet$person 
  person.testlet$pass<- ifelse (person.testlet$EAP >= -0.67, 1, 0)  
    # combine pass fail decisions for generated data , Rasch and testlet 
  ability<-as.data.frame(cbind(true$true, person$EAP, person.testlet$EAP)) 
  colnames(ability)<-c("true", "rasch", "testlet") 
   
  pass<-as.data.frame(cbind(true$pass, person$pass, person.testlet$pass)) 
  colnames(pass)<-c("true", "rasch", "testlet") 
    # create table to write out of pass/fail decisions 
  rasch.table<-table(pass$true, pass$rasch) 
  rasch.d<-matrix(rep(0,4), nrow=1, ncol=4) 
  rasch.d[1,1]<-rasch.table[1] 
  rasch.d[1,2]<-rasch.table[2] 
  rasch.d[1,3]<-rasch.table[3] 
  rasch.d[1,4]<-rasch.table[4] 
  colnames(rasch.d)<-c("rasch.Tfail", "rasch.Fpass", "rasch.Ffail", "rasch.Tpass")   
   
  testlet.table<-table(pass$true, pass$testlet) 
  testlet.d<-matrix(rep(0,4), nrow=1, ncol=4) 
  testlet.d[1,1]<-testlet.table[1] 
  testlet.d[1,2]<-testlet.table[2] 
  testlet.d[1,3]<-testlet.table[3] 
  testlet.d[1,4]<-testlet.table[4] 
  colnames(testlet.d)<-c("testlet.Tfail", "testlet.Fpass", "testlet.Ffail", "testlet.Tpass")     
   
  rasch.testlet.table<-table(pass$testlet, pass$rasch) 
  rasch.testlet.d<-matrix(rep(0,4), nrow=1, ncol=4) 
  rasch.testlet.d[1,1]<-rasch.testlet.table[1] 
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  rasch.testlet.d[1,2]<-rasch.testlet.table[2] 
  rasch.testlet.d[1,3]<-rasch.testlet.table[3] 
  rasch.testlet.d[1,4]<-rasch.testlet.table[4] 
  colnames(rasch.testlet.d)<-c("rasch.testlet.Tfail", "rasch.testlet.Fpass", 
"rasch.testlet.Ffail", "rasch.testlet.Tpass")  
   
  c1.all.d<-cbind(rasch.d, testlet.d, rasch.testlet.d) 
c1.all.d<-as.data.frame(c1.all.d) 
 
  write.csv(c1.all.d, 
paste0("~/Desktop/Dropbox/Hodge_Dissertation/Analysis/cond1/c1_rep",reps,".csv"), 
            row.names=FALSE)  
} 
 
  # run simulation above for each replication 
sapply(reps, testlet.sim) 
  # read back in propotion tables for each replication 
setwd("~/Desktop/Dropbox/Hodge_Dissertation/Analysis/cond2") 
fileList <- list.files(path= "~/Desktop/Dropbox/Hodge_Dissertation/Analysis/cond1/", 
pattern=".csv") 
 
c1temp<-as.data.frame(matrix(unlist(t(sapply(fileList, read.csv))), nrow=100)) 
 
colnames(c1temp)<-c("rasch.Tfail", "rasch.Fpass", "rasch.Ffail", "rasch.Tpass", 
"testlet.Tfail", "testlet.Fpass", "testlet.Ffail", "testlet.Tpass", "rasch.testlet.Tfail", 
"rasch.testlet.Fpass", "rasch.testlet.Ffail", "rasch.testlet.Tpass") 
c1temp$rep = 1:nrow(c1temp) 
c1temp$c<-cond 
#proportion  
propc1<-c1temp[,1:12]/ 1400 
#mean of the proportion for rasch compared to testlet 
Tf<-mean(propc2$rasch.testlet.Tfail) 
Fp<-mean(propc2$rasch.testlet.Fpass) 
Ff<-mean(propc2$rasch.testlet.Ffail) 
Tp<-mean(propc2$rasch.testlet.Tpass) 
rasch.testlet.mean<-cbind(Tf, Fp, Ff, Tp) 
rasch.testlet.mean 
# decision consitency of rasch compared to testlet 
dc<-Tf + Tp 
dc 
# missclassifcation consitency 
mc<-Fp + Ff 
mc 
# number of people misclassified 
nFp<-mean(c1temp$rasch.testlet.Fpass)  
 nFf<-mean(c1temp$rasch.testlet.Ffail) 
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 nFp + nFf 
 
# ntestlet isnumber of testlets 1=4, 2=8, 3=12 
# nitems is number of items in testlets 1= 3, 2=4, 3=7 
#testletv is the tesltet variance where 0.2 is group 1 and 0.7 is group 2 
# nper is percent of items in testlet 1= 100 2=.75 
#nsample is sample size 1= 1600 and 2=6000 
#c1temp is the data object that contains all of the reps for condition 1 
#c2temp condition 2 
#c9temp condition 9 
#c10temp condition 10 ect 
 
# this was done for all conditions  
#group labels for c1 
c1temp$ntestlet<- 1 
c1temp$nitems<-1 
c1temp$testletv<-1 
c1temp$nper<-1 
c1temp$nsample<-1 
#write in file for each condition with added columns for condition 
# this was done for all conditions  
write.csv(c1temp, 
paste0("~/Desktop/Dropbox/Hodge_Dissertation/AnalysisDissertation/Anova/c01.csv"),r
ow.names=FALSE) 
#Rasch testlet by Rasch decision consistency 
dc<-(c.all.anova$rasch.testlet.Tfail + 
c.all.anova$rasch.testlet.Tpass)/(c.all.anova$rasch.testlet.Tfail + 
c.all.anova$rasch.testlet.Fpass + c.all.anova$rasch.testlet.Ffail + 
c.all.anova$rasch.testlet.Tpass) 
#take a look at data before running ANOVA 
# ntestlet 
# nitems 
# testletv 
# nper 
# nsample 
# I manually added the dc to this csv file. 
c.all.anova <- 
read.csv("~/Desktop/Dropbox/Hodge_Dissertation/AnalysisDissertation/Anova/c.all.ano
va.csv") 
 
#descriptives 
describe(dc) 
 
describeBy(dc, list(c.all.anova$nitems,c.all.anova$ntestlet)) 
describeBy(dc, list(c.all.anova$nitems,c.all.anova$testletv)) 
describeBy(dc, list(c.all.anova$nitems,c.all.anova$nper)) 
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describeBy(dc, list(c.all.anova$nitems,c.all.anova$nsample)) 
describeBy(dc, list(c.all.anova$ntestlet,c.all.anova$testletv)) 
describeBy(dc, list(c.all.anova$ntestlet,c.all.anova$nper)) 
describeBy(dc, list(c.all.anova$ntestlet,c.all.anova$nsample)) 
describeBy(dc, list(c.all.anova$nper,c.all.anova$testletv)) 
describeBy(dc, list(c.all.anova$nper,c.all.anova$nsample)) 
describeBy(dc, list(c.all.anova$nsample,c.all.anova$testletv)) 
 
#interactions 
interaction.plot(x.factor = c.all.anova$nitems, trace.factor = c.all.anova$ntestlet,  
                 response = dc, fun = mean, type = "b", legend = T, ylab = "dc",  
                 xlab = "nitems", trace.label = "ntestlet", main = "Interaction Plot",  
                 pch = c(1, 19)) 
interaction.plot(x.factor = c.all.anova$nitems, trace.factor = c.all.anova$testletv,  
                 response = dc, fun = mean, type = "b", legend = T, ylab = "dc",  
                 xlab = "nitems", trace.label = "testletv", main = "Interaction Plot",  
                 pch = c(1, 19)) 
interaction.plot(x.factor = c.all.anova$nitems, trace.factor = c.all.anova$nper,  
                 response = dc, fun = mean, type = "b", legend = T, ylab = "dc",  
                 xlab = "nitems", trace.label = "nper", main = "Interaction Plot",  
                 pch = c(1, 19)) 
interaction.plot(x.factor = c.all.anova$nitems, trace.factor = c.all.anova$nsample,  
                 response = dc, fun = mean, type = "b", legend = T, ylab = "dc",  
                 xlab = "nitems", trace.label = "nsample", main = "Interaction Plot",  
                 pch = c(1, 19)) 
interaction.plot(x.factor = c.all.anova$ntestlet, trace.factor = c.all.anova$testletv,  
                 response = dc, fun = mean, type = "b", legend = T, ylab = "dc",  
                 xlab = "ntestlet", trace.label = "testletv", main = "Interaction Plot",  
                 pch = c(1, 19)) 
interaction.plot(x.factor = c.all.anova$ntestlet, trace.factor = c.all.anova$nper,  
                 response = dc, fun = mean, type = "b", legend = T, ylab = "dc",  
                 xlab = "ntestlet", trace.label = "nper", main = "Interaction Plot",  
                 pch = c(1, 19)) 
interaction.plot(x.factor = c.all.anova$ntestlet, trace.factor = c.all.anova$nsample,  
                 response = dc, fun = mean, type = "b", legend = T, ylab = "dc",  
                 xlab = "ntestlet", trace.label = "nsample", main = "Interaction Plot",  
                 pch = c(1, 19)) 
interaction.plot(x.factor = c.all.anova$nper, trace.factor = c.all.anova$testletv,  
                 response = dc, fun = mean, type = "b", legend = T, ylab = "dc",  
                 xlab = "nper", trace.label = "testletv", main = "Interaction Plot",  
                 pch = c(1, 19)) 
interaction.plot(x.factor = c.all.anova$nper, trace.factor = c.all.anova$nsample,  
                 response = dc, fun = mean, type = "b", legend = T, ylab = "dc",  
                 xlab = "nper", trace.label = "nsample", main = "Interaction Plot",  
                 pch = c(1, 19)) 
interaction.plot(x.factor = c.all.anova$nsample, trace.factor = c.all.anova$testletv,  
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                 response = dc, fun = mean, type = "b", legend = T, ylab = "dc",  
                 xlab = "nsample", trace.label = "testletv", main = "Interaction Plot",  
                 pch = c(1, 19)) 
hist(c.all.anova$dc, xlab="Decisison Consistency") 
ntestlet<-factor(c.all.anova$ntestlet) 
nitems<-factor(c.all.anova$nitems) 
testletv<-factor(c.all.anova$testletv) 
nper<-factor(c.all.anova$nper) 
nsample<-factor(c.all.anova$nsample) 
 
c.all.anova$testletv2<-factor(c.all.anova$testletv, levels= c("1", "2"), labels=c("0.2", 
"0.7")) 
c.all.anova$ntestlet2<-factor(c.all.anova$ntestlet, levels= c("1", "2", "3"), labels=c("4", 
"8", "12")) 
c.all.anova$nper2<-factor(c.all.anova$nper, levels= c("1", "2"), labels=c("100%", 
"75%")) 
c.all.anova$nitems2<-factor(c.all.anova$nitems, levels= c("1", "2", "3"), labels=c("3", 
"4", "7")) 
c.all.anova$nsample2<-factor(c.all.anova$nsample, levels= c("1", "2"), labels=c("1400", 
"6000")) 
describeBy(c.all.anova$dc,list(c.all.anova$nsample2,c.all.anova$ntestlet2)) 
data.out = aov(c.all.anova$dc ~ nitems+ntestlet+testletv+ 
                 nper+nsample+ 
                 nitems*ntestlet*testletv*nper*nsample ) 
 
#check residuals 
qqnorm(resid(data.out), xlab = "Expected Normal Values", ylab = "Observed Values") 
qqline(resid(data.out), col = "red", lwd = 3) 
# Identify any observations that depart from the straight line on the 
# plot 
identify(qqnorm(resid(data.out))) 
library(car) 
qqPlot(resid(data.out), ylab = "Residuals", xlab = "Normal Quantiles", 
col.lines = "red4", grid = FALSE) 
 
hist(resid(data.out), probability=TRUE, xlab="Residuals")  
 curve(dnorm(x, mean=mean(resid(data.out)), sd=sd(resid(data.out))), col="darkblue", 
lwd=2, add=TRUE) 
 
qqnorm(data.out$res) 
# ANOVA estimates 
summary(data.out) 
# eta squared  
library(lsr) 
etaSquared(data.out)  
#re-label factors by name  
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c.all.anova$testletv2<-factor(c.all.anova$testletv, levels= c("1", "2"), labels=c("0.2", 
"0.7")) 
c.all.anova$ntestlet2<-factor(c.all.anova$ntestlet, levels= c("1", "2", "3"), labels=c("4", 
"8", "12")) 
c.all.anova$nper2<-factor(c.all.anova$nper, levels= c("1", "2"), labels=c("100%", 
"75%")) 
c.all.anova$nitems2<-factor(c.all.anova$nitems, levels= c("1", "2", "3"), labels=c("3", 
"4", "7")) 
c.all.anova$nsample2<-factor(c.all.anova$nsample, levels= c("1", "2"), labels=c("1400", 
"6000")) 
 
#boxplots for conditions with effect size 
boxplot(dc ~ testletv2, data = c.all.anova, ylab = "DC",  
   main = "Testlet Variance") 
 
boxplot(dc ~ ntestlet2*nper2, data = c.all.anova, ylab = "DC",  
   main = " Number of Tesltets by Percent Total Items") 
 
boxplot(dc ~ ntestlet2*testletv2, data = c.all.anova, ylab = "DC",  
   main = "  Number of testlets by Testlet Variance") 
 
boxplot(dc ~ nitems2* nper2, data = c.all.anova, ylab = "DC",  
   main = "Number of Items by Percent Total Items ") 
 
boxplot(dc ~ ntestlet2*testletv2*nper2, data = c.all.anova, ylab = "DC",  
   main = "Testlets by Testlet Variance by Percent Total Items ") 
 
boxplot(dc ~ nper2, data = c.all.anova, ylab = "DC",  
   main = "Percent Total Items in Testlets") 
 
 
#Mean and SD for all main and two-way interactions 
aggregate(c.all.anova$dc~c.all.anova$testletv2, FUN="mean", digits=4) 
describeBy(c.all.anova$dc,c.all.anova$testletv2) 
 
aggregate(c.all.anova$dc~c.all.anova$ntestlet2, FUN="mean", digits=4) 
describeBy(c.all.anova$dc,c.all.anova$ntestlet2) 
 
aggregate(c.all.anova$dc~c.all.anova$testletv2+c.all.anova$nper2, FUN="mean", 
digits=4) 
describeBy(c.all.anova$dc,list(c.all.anova$testletv2,c.all.anova$nper2)) 
 
aggregate(c.all.anova$dc~c.all.anova$nper2, FUN="mean", digits=4) 
describeBy(c.all.anova$dc,c.all.anova$nper2)  
aggregate(c.all.anova$dc~c.all.anova$nper2+c.all.anova$ntestlet2, FUN="mean", 
digits=4) 
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describeBy(c.all.anova$dc,list(c.all.anova$nper2, c.all.anova$ntestlet2)) 
 
aggregate(c.all.anova$dc~c.all.anova$testletv2+c.all.anova$ntestlet2, FUN="mean", 
digits=4) 
describeBy(c.all.anova$dc,list(c.all.anova$testletv2,c.all.anova$ntestlet2)) 
 
aggregate(c.all.anova$dc~c.all.anova$nitems2, FUN="mean", digits=4) 
describeBy(c.all.anova$dc,c.all.anova$nitems2) 
 
aggregate(c.all.anova$dc~c.all.anova$nitems2+ c.all.anova$ntestlet2, FUN="mean", 
digits=4) 
describeBy(c.all.anova$dc,list(c.all.anova$nitems2,c.all.anova$ntestlet2)) 
 
aggregate(c.all.anova$dc~c.all.anova$nsample2, FUN="mean", digits=4) 
describeBy(c.all.anova$dc,c.all.anova$nsample2) 
 
aggregate(c.all.anova$dc~c.all.anova$nsample2+ c.all.anova$ntestlet2, FUN="mean", 
digits=4) 
 
 
#mcmc objects for diagnostics 
#this was done for all conditions 
 
# MCMC summary this summary for posterior 
summary(rasch) 
summary(rasch.testlet) 
# trace plots 
#pdf("~/Desktop/Dropbox/Hodge_Dissertation/AnalysisDissertation/ 
#RaschMCMCplotCondition1rep1.pdf") 
 plot(rasch) 
 #dev.off() 
 
#pdf("~/Desktop/Dropbox/Hodge_Dissertation/AnalysisDissertation/ 
#TestletMCMCplotCondition1rep1.pdf") 
plot(rasch.testlet) 
#dev.off() 
 
# autocorralation plots 
autocorr.plot(rasch$mcmcobj) 
autocorr.plot(rasch.testlet$mcmcobj) 
 
# geweke z score and plots 
geweke.diag(rasch$mcmcobj,frac1=0.1, frac2=0.5 ) 
geweke.plot(rasch$mcmcobj,frac1=0.1, frac2=0.5 ) 
geweke.diag(rasch.testlet$mcmcobj,frac1=0.1, frac2=0.5 ) 
geweke.plot(rasch.testlet$mcmcobj,frac1=0.1, frac2=0.5 ) 
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# Raferty and Lewis 
raftery.diag(rasch$mcmcobj, q = 0.025, r = 0.025, s = 0.95) 
raftery.diag(rasch.testlet$mcmcobj, q = 0.025, r = 0.025, s = 0.95) 
#M: number of burn-ins necessary 
# N: number of iterations necessary in the Markov chain 
# Nmin: minimum number of iterations for the “pilot” sampler 
# I: dependence factor, interpreted as the proportional increase 
#in the number of iterations attributable to serial dependence. 
#High dependence factors (> 5) are worrisome and may be due 
#to influential starting values, high correlations between 
#coefficients, or poor mixing. 
 
# Heidelberg and Welch Diagnostic 
heidel.diag(rasch$mcmcobj) 
heidel.diag(rasch.testlet$mcmcobj) 
#If the chain passes the first part of the diagnostic, then it takes the 
#part of the chain not discarded from the first part to test the 
#second part. 
#The halfwidth test calculates half the width of the (1 − )% 
#credible interval around the mean. 
#If the ratio of the halfwidth and the mean is lower than some , 
#then the chain passes the test. Otherwise, the chain must be run 
#out longer. 
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