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CHAPTER ONE 
 

Introduction To Scholarisine A and Related Natural Products 
 
 

1.1  Isolation, Characterization, and Biosynthesis 
 
 

1.1.1  The Scholarisines 
 
 In 2008, Luo and coworkers isolated scholarisine A (1.10, Figure 1.10) from the 

leaves of an Alstonia scholaris variant that is native to the Yunnan province of the 

People’s Republic of China.1  A. scolaris, more commonly known as milk wood or 

devil’s tree, is native to Asia, Africa, and Australia.  After the initial isolation of 1.10, 

Luo and coworkers isolated scholarisines B-G from a bark extract of A. scholaris.2  Both 

the leaves and bark of A. scholaris have been used as traditional medicines for centuries 

due to their anti-inflammatory, anti-asthmatic, anti-tussive, and anti-bacterial properties. 

While the biological activity of 1.10 (as opposed to the whole extract of A. scholaris) has 

yet to be determined, scholarisine B (1.11), E (1.14), and G (1.15) exhibit moderate 

activity toward COX-1, COX-2, and 5-LOX inflammatory enzymes.  Scholarisine G 

(1.15) in particular exhibited selectivity toward COX-2 (91.1% inhibition at 100 M), 

over COX-1 (38.5 %, 100 M) and 5-LOX (57.3%, 100 M). 3  

 The structure and connectivity of 1.10 was elucidated through extensive 

spectroscopic studies.  The molecular formula was determined to be C19H18N2O2 based 

upon high resolution electrospray ionization mass spectrometry (HRESIMS) (307.1440 

m/z, [M+H]+).  A UV spectrum of 1.10 indicated the presence of an indolenine motif 

(220, 268 nm), while the presence of a lactone and aromatic ring was determined by 
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FTIR spectroscopy (1766 cm-1 and 1641, 1575 cm-1, respectively).  The basic structural 

makeup, including the presence of a substituted indole ring, was determined by 1H, 13C, 

and DEPT NMR studies.  While HMBC, HSQC, and COSY NMR experiments were 

utilized to determine the structural connectivity.  NOE correlations, obtained via ROESY, 

between H19-H21 and H-18-H15 aided in the structural determination of the core, while 

the correlations between H3, H15, and H16 helped determine the relative 

stereochemistry.1  The absolute stereochemistry of 1.10 was recently confirmed by Smith 

and coworkers via the enantioselective total synthesis of (+)-1.10.4 

 

  
 

Figure 1.10  The scholarisine family 

1.1.2  Biosynthetic Origins 

Scholarisines A-F are members of the akuammiline family of natural products 

which all possess similar C7-C16 connectivity, representative examples of the family are 

illustrated in Figure 1.11. 5  The family’s namesake akuammiline (1.16) was isolated in 

1932,6 and is considered to be a biogenic precursor to several members the family.  
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Figure 1.11  Representative examples of the akuammiline family 
 
 

 The akuammiline alkaloids are believed to arise from the same biogenic 

precursor, geissoschizine (1.26, Scheme 1.10), through formation of a C16-C7 bond.  The 

biosynthetic origins of 1.10 have been traced back through strictosidine to geraniol (1.21) 

and tryptophan (1.23).7c  The monoterpene secoirodoid pathway converts 1.21 to 

secologanin (1.22), while tryptophan decarboxylate (TDC) converts 1.23 to tryptamine 

(1.24).  Strictosidine synthase then catalyzes a Pictet-Spengler type reaction to convert 

secologanin (1.22) and tryptamine (1.24) into strictosidine (1.25).7  Strictosidine (1.25) is 

thought to be converted to geissoschizine (1.26) via a sequence involving loss of glucose, 

aldehyde condensation, and reduction.8  Oxidative coupling at C7 of geissoschizine can 

then lead to the formation of the C7-C16 bond, characteristic of the akuammaline 

alkaloids, delivering rhazimal (1.27).9 

 Rhazimal (1.27) can be further manipulated to give many other members of the 

akuammiline family.  For example, akuammiline (1.16) is believed to derive from 1.27 

by the reduction of the aldehyde followed by acylation of the resultant alcohol (Scheme 

1.11).10  Subsequent oxidation of 1.16 at C5, followed by nucleophilic addition of the 
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resultant hemiaminal hydroxyl to the pendant imine at C2 would deliver oxabicycle 

contained in picraline (1.19).11 

 

  
 

Scheme 1.10  Biosynthesis of Rhazimal 
 
 

A parallel biosynthetic pathway from rhazimal (1.27) can be envisioned as giving 

rise to several other members of the akuammiline family.  In this sequence a 

deformylation event producing strictamine (1.17)12 precedes C5 oxidation and oxabicyle 

formation to yield picrinine (1.18), which in turn can serve as a biogenetic precursor to 

aspidophylline A (1.20) via C5 reduction and N-formylation.13,14  Picrinine (1.18) is 

proposed to be a direct precursor to scholarisine A (1.10) through the opening of the 

oxabicycle to 1.18a followed by olefin migration to generate enamine 1.18b.  Addition of 

the derived enamine to the pendant aldehyde, forming alcohol 1.18c.  Lactonization and 

loss of methanol could then furnish scholarisine A (1.10).1,15  Alternatively one could 
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imagine ring closure of aldehyde 1.18b by direct addition of the adjacent olefin followed 

by 1,3-hydride shift to produce alcohol 1.18c.16  

 

  
 

Scheme 1.11  Biosynthesis of scholarisine A and related alkaloids1,16 
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1.2 Completed Syntheses and Synthetic Attempts Toward Scholarisine A 

1.2.1  Smith and Coworkers Enantioselective Synthesis 

 In 2012, Smith and coworkers reported the first total synthesis of 1.10.4,6a  As 

illustrated retrosynthetically in Scheme 1.12, the Smith approach employed a late stage 

cyclization and oxidation to furnish 1.10 from alcohol 1.28.  The lactone of 1.28 was 

obtained via oxidation, lactonization, and deprotection of diol 1.29 which, in turn, was 

derived from the reduction and homologation of lactone 1.30.  Indole 1.30 was produced 

by employing Fischer’s protocol on the oxidation product of alcohol 1.31, which was 

derive from epoxide 1.32 by reductive cyclization of the nitrile and epoxide moieties.  

The latter compound was prepared by alkylation and epoxidation of known lactone 1.33. 

 

  
 

Scheme 1.12  Smith’s retrosynthetic analysis 
 
 

 In the forward sense (Scheme 1.13) Smith’s synthesis commenced with the 

reduction of commercially available anhydride 1.34 with lithium aluminum hydride 

(LiAlH4) to produce diol 1.35 in 90% yield.  Diol 1.35 was resolved by selective 

acylation under enzymatic conditions to deliver the desired isomer (+)-1.36 (95% ee) 

accompanied by the corresponding diacetate 1.37 (3.4:1, respectively).  The mixture was 
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moved forward through a tosylation/substitution sequence to give nitrile 1.38.  

Subsequent basic hydrolysis and acidification delivered lactone ( )-1.33 in 70% yield 

from diol 1.36.  Under the basic conditions, the diacetate was saponified to the diol, 

which was then chromatographically separated from the desired lactone 1.33.  

Deprotonation of lactone 1.33 with lithium diisopropylamide (LDA) and 

functionalization with cyanobenzotriazole (BtCN) gave the nitrile, which was 

stereoselectively alkylated on the convex face to generate ( )-1.39.  Epoxidation of 1.39 

(mCPBA) produced epoxides ( )-1.32 (desired) and ( )-1.40 as a 3:1 mixture of 

diastereomers.  Fortunately, the major diastereomer could be isolated by crystallization 

from toluene in a 58% yield. 

 

 
 

Scheme 1.13  Epoxide formation 

 Nitrile ( )-1.32 was subjected to rhodium mediated reduction upon which the 

resultant amine cyclized onto the epoxide to deliver alcohol ( )-1.31.  Amine protection 

with benzoyl chloride and alcohol oxidation with Dess-Martin Periodinane (DMP) 

furnished ketone (+)-1.41 in a 71% yield over 2 steps.  Condensation of (+)-1.41 with 1-

benzyl-1-phenylhydrazine initiated a Fischer indole synthesis which produced benzyl 
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protected indole ( )-1.42 which, without purification was subjected to LiAlH4 reduction 

of the lactone and benzoyl moieties followed by selective protection of the sterically least 

hindered of the two derived alcohols (70% yield over three steps).  Oxidation of alcohol 

( )-1.43 using Ley’s conditions delivered aldehyde (+)-1.44 in good yield. 

 

  
 

Scheme 1.14  Formation of the tetracycle 
 
 

 To complete the synthesis, aldehyde (+)-1.44 was alkylated with 

benzyloxymethyl lithium, followed by the removal of the silyl protecting group with a 

potassium hydroxide (KOH) wash to form diol (+)-1.29 in 63% yield as a single 

diastereomer.  Oxidation of the primary alcohol with 2-iodoxybenzene (IBX) and further 

oxidation of the resultant lactol under Ley’s conditions generated lactone ( )-1.45 in a 

57% yield over two steps.  A two step global benzyl deprotection (AlCl3) and 

hydrogenation with Pearlman’s catalyst furnished alcohol ( )-1.45.  Protection of the 

secondary amine as the corresponding trifluoracetamide and tosylation of the primary 

alcohol set the stage for a t-butylimino(pyrrolidino)phosphorous mediated cyclization 

that produces the bridging lactone (+)-1.46 in a 53% yield over five steps.  Hydrolysis of 

the trifluoroacetamide and oxidation of the resultant secondary amine to the cyclic imine 

furnished synthetic (+)-1.10 in 25 overall steps from commercially available materials. 
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Scheme 1.15  Completion of Smith’s synthesis 

1.2.2  Snyder and Coworkers Synthesis 
 
 Snyder and coworkers completed the second total synthesis of (+)-1.10 in 2013, 

utilizing a novel alpha-arylation strategy that introduces the indolenine ring at a late 

stage. 17   As illustrated retrosynthetically in Scheme 1.16, Snyder and coworkers 

introduced the indolenine motif of (+)-1.10 by intramolecular arylation of lactone 1.47, 

which in turn was generated by condesation of ketone 1.48 with o-iodoanaline.  The 

lactam present in 1.48 arose from ester 1.49 via epimerization and lactamization.  The 

requisite tricycle (1.49) was produced by 6-exo-trig radical cyclization of enoate 1.50 

which, in turn, arose from a Diels-Alder reaction utilizing an appropriately functionalized 

pyrone. 
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Scheme 1.16  Snyder’s retrosynthetic analysis 
 
 

 In the forward sense, Snyder’s synthesis was initiated by conversion of N-Boc-D-

serine to corresponding Weinreb amide (1.52).  Oxazolidine formation in the presence of 

boron trifluoride diethyl etherate (BF3 OEt2) and subsequent vinyl Grignard addition 

gave enone 1.53 in excellent yield over two steps.  Subsequent Diels-Alder cycloaddition 

with pyrone 1.54 furnished an 83% yield of diastereomeric endo-cycloadducts that 

proved separable and favored the desired isomer (1.55).  Deprotection of oxazole 1.55 

with trifluoroacetic acid (TFA) and following bromination under Appel’s conditions 

delivered bromide 1.50, in a 71% yield over two steps.   

 

  
Scheme 1.17  Formation of ester 1.50 
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With bromide 1.50 in hand, Snyder and coworkers attempted their desired 6-exo-

trig cyclization in the presence of allyltributylstannane as a radical trap and triethylborane 

(Et3B)/O2 as an initiator (Scheme 1.18).  In the event, the reaction occurred to deliver a 

moderate yield of a single diastereomer (1.49) possessing the requisite stereochemistry at 

C20 for conversion to the natural product.  Initial attempts to epimerize amide 1.49 for 

subsequent lactamization failed and resulted only in the formation of pyrazine dimers.  

Thus, as illustrated a two-step oxidation-reduction sequence was developed that employs 

trimethylguanidine (TMG) and TEMPO under an atmosphere of air to furnish an enamine 

(1.57, 68% yield) which, in turn, is reduced to the desired amine upon exposure to 

sodium cyanoborohydride (NaBH3CN).  Heating of the reaction mixture to 80 °C 

following the reduction event promotes lactamization to deliver alcohol 1.58 in an 

excellent yield over two steps.  Oxidation of 1.58 with IBX to produce ketone 1.48 and 

concomitant imine formation with 2-iodoaniline resulted in C-H arylation precursor 1.47.  

 

  
 

Scheme 1.18  Formation of the scholarisine A core 
 
 

With aryl iodide 1.47 in hand, the key C-H arylation could be attempted.  In the 

presence of tributyltinhydride (Bu3SnH) and 1,1’-azobis(cylohexanecarbonitrile) 
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(ACHN) as a radical initiator, the desired indolenine 1.59 was formed in a 25% yield as a 

3:1 mixture of regioisomers.  The regioisomeric ratio may be derived from the initial 

condensation to form imine 1.47, as the mixture was moved forward crude.  Ozonolysis 

of alkene 1.59, utilizing a reductive workup, delivered alcohol 1.61 in a 68% yield.  

Treatment of 1.61 with Lawesson’s reagent produced thioimidate 1.62 and subsequent 

reaction with Raney nickel furnished imine 1.63 in a moderate yield over two steps.  The 

synthesis was completed with the oxidation to the indolenine utilizing iodosobenzene 

(PhIO), delivering (+)-1.10 in 15 steps from commercially available 1.51. 

 

 

Scheme 1.19  Completion of Snyder’s synthesis 
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1.2.3  Higuchi and Coworkers Model Study 
 
 In 2013, Higuchi and coworkers published a model study toward the core of 1.10 

wherein an oxidative enolate coupling is employed to create the partial core structure of 

1.10.18  In a retrosynthetic sense, model substrate 1.64 derives from oxidative coupling of 

bicyclo[7.3.1]decane 1.65 which, in turn, arises from lactonization of acid 1.66.  

Assembly of the requisite eight-membered ring was achieved by a ring-closing 

metathesis/hydrogenation sequence originating from diene 1.67.  Alcohol 1.67 was 

generated through an alkyllithium addition to aldehyde 1.68.  

 

  
 

Scheme 1.20  Higuchi’s model studies 
 
 

 In the forward sense Higuchi’s  model study was initiated with the lithiation of 

alkyl bromide 1.69, which is produced in six steps from commercially available cis-2-

butene-1,4-diol 1.70.  The derived alkyllithium was then combined with aldehyde 1.68  

(produced from commercially available alcohol 1.72), to deliver the corresponding 

secondary alcohol which was then acylated with acetic anhydride to give diene 1.74 in a 

56% yield as a 1:1 mixture of diastereomers.  Ring closing metathesis of 1.74 followed 

by hydrogenation of the disubstituted alkene (PtO2), and silyl deprotection produced 
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alcohol 1.75 in a 60% yield, over 3 steps.  Oxidation to the carboxylic acid, silver 

mediated acetate hydrolysis, and benzyl deprotection under dissolving metal reduction 

conditions furnished indole 1.77.  At this point the cis and trans diastereomers were 

separated and cis-1.77 was lactonized, by formation of the mixed anhydride with Ac2O, 

to deliver lactone 1.65.  To complete the model study lactone 1.65 was treated with 

lithium bis(trimethylsilyl)amide (LiHMDS) using NIS as an oxidant to deliver the desired 

indolenine 1.64, which contains the ABCE ring system of 1.10.  

 

  
 

Scheme 1.21  Completion of Higuchi’s model study 
 
 

1.3 Conclusion 

 Due to their interesting and complex structures, the akuammiline alkaloids have 

garnered considerable attention from the synthetic community.  Scholarisine A (1.10) is 
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no exception and since its isolation in 2008, has been the focus of two total synthesis 

efforts (Smith and Snyder) as well as several model system studies.  The first total 

synthesis, by Smith and coworkers, not only confirmed the structure and absolute 

stereochemistry of 1.10 but also featured an interesting one-pot reductive cyclization 

process that provides access to complex core architecture of scholarisine.  In contrast, 

Snyder and coworkers developed a novel C-H arylation strategy to form the indolenine 

motif.  The dramatic differences taken in these two approaches serve to illustrate how the 

complex core architectures found in many natural products can serve as inspirational 

challenges to synthetic chemists and lead to the development of both new chemical 

methods and strategies that can serve to improve our ability to access important 

molecules.  Importantly these completed syntheses represent only two of many 

approaches one can envision employing to access scholarisine A and other interesting 

members of this large and growing family of alkaloids.  Our efforts in this latter regard 

will be detailed in the subsequent chapters of this thesis.   
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CHAPTER FOUR 
 

Model Studies Toward the Synthesis of Phomoidride D: A 3rd Generation Approach 
 
 

4.1  A Retrosynthetic Approach 
 
 

4.1.1  Phomoidride D Model Substrate Retrosynthetic Analysis 
 
 To continue our ongoing synthetic studies toward Phomoidride D, we needed to 

reconsider our approach.  Our first-generation strategy was very successful initially, but 

stalled when attempting to introduce the maleic anhydride.  To circumvent this, a second-

generation plan was developed wherein a late stage carbonylation would deliver the 

maleic anhydride.  Unfortunately, this route failed due to early incorporation of a 

requisite -hydroxy ester which, due to an unanticipated retro-aldol reaction, thwarted the 

key Wharton fragmentation.  Subsequent studies revealed that the Wharton fragmentation 

could be performed successfully following ester reduction; however, the additional redox 

manipulations diminished the efficiency of the route and led us to propose the current, 

third-generation, synthetic strategy toward phomoidride D.  As with our second-

generation approach, our initial efforts were performed using a model substrate which we 

hoped would help us to define not only the appropriate starting aromatic substrate but 

also develop the late-stage sequence leading to the maleic anhydride (Figure 4.10).  A 

retrosynthetic analysis for the third generation approach is shown in Scheme 4.10. 
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Figure 4.10  Model of the phomoidride core 
 
 

 

Scheme 4.10  A retrosynthetic analysis for our third-generation model study 

As illustrated, the initial disconnection envisions late-stage introduction of the 

maleic anhydride via carbonylation of an intermediate derived from -keto ester 4.11 

(Scheme 4.10).  To avoid the unproductive retro-aldol reaction observed in the second-

generation approach, the current plan calls for preparation of beta-keto ester 4.11 using 

ketone 4.12 as substrate.  The latter, in turn, is envisioned to derive from Wharton 

fragmentation of acetate 4.13.  The core isotwistane unit found in 4.13 and 4.14 will arise 



 110

via a radical cascade closely paralleling that employed in the early generation approaches 

and thus the current strategy calls for the intermediacy of ethyl acetal 4.15.  The lactone 

and ethyl acetal of 4.15 are seen as being introduced into the [2.2.2]bicycle 4.16 using 

reagents and conditions that are akin to those which had proved fruitful in our early 

generation approaches.  Also, similar to our previous studies is the envisioned aryl 

oxidation/intramolecular Diels-Alder cycloaddition cascade (proceding through the 

intermediacy of cyclohexadiene 4.17) that is illustrated as the initial key reaction 

sequence.   

 
4.2  Model Studies Toward the Synthesis of Phomoidride D 

 
 

4.2.1  The Phenolic Oxidation/Diels-Alder Sequence 
 
 In the previous two generations toward phomoidride D, our group utilized a 

phenolic oxidation/Diels-Alder sequence to form the [2.2.2]bicycle of 4.16.  The 

distinguishing feature in the substrates employed for this reaction in the first- and second-

generation approaches is the number of ester moieties (two vs. one, respectively).  

Interestingly, exploiting this reaction in the third-generation approach toward 4.16 

requires a similar change; however in this instance the number of ester substituents is 

reduced from one to none.  As illustrated in Table 4.10, the requisite catechol substrate 

now possesses a single additional alcohol substituent.   

In contrast to generations one and two, wherein the aryl-oxidation proceeded 

smoothly with all substrates we employed, our efforts to advance diol 4.18a through a 

similar reaction failed to produce any of the desired product (Table 4.10).  By simply 

comparing the nature of 4.18a to the substrates employed in generations one and two, we 
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believed that the lack of an electron withdrawing substituents on the intermediate diene 

was causing of the loss of reactivity.  In an effort to address this electronic difference we 

prepared a variety of substrates possessing a range of what could be considered electron 

withdrawing protecting groups.  As indicated in Table 4.10, the presence of an acetate or 

trifluoroacetate did nothing to promote cycloaddition; however,, to our delight, substrates 

possessing sulfonyl-protecting groups, such as methanesulfonyl (4.18d) or 2-

nitrobenzenesulfonyl (4.18e), underwent the desired aryl oxidation/Diels-Alder reaction 

to furnish bicycles (4.16d and 4.16e, respectively).  Given that the nosyl protected phenol 

(4.18e) gave us the best results we chose to move forward with this as our first major 

intermediate.1 

 
Table 4.10  Optimization of the phenolic oxidation/Diels-Alder reaction 

 

  
 
 

 As illustrated in Scheme 4.11 synthesis of the nosylated intermediate (4.16e) on-

scale began with nosylation and allylation of the commercially available 2,4-

dihydroxybenzaldehyde 4.19.  As one might anticipate, this is not a particularly 

regioselective transformation and nearly equimolar amounts of 4.20 and 4.21 are initially 
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produced.  However, we discovered that filtering and washing the worked-up reaction 

mixture with methanol allows for the isolation of a 5:1 mixture of regioisomers, favoring 

the desired benzaldehyde 4.20.  Subsequent Dakin oxidation of 4.20  (mCPBA) delivers 

phenol 4.22.  At this point, the regioisomers were separated and the desired regioisomer 

was functionalized with allyl iodide 4.23 to produce 4.24 in 44% yield.2   The aryl 

oxidation/Diels-Alder substrate was completed by removal of the allyl protecting group 

in 4.24 using Pd(PPh3)4 and potassium carbonate (K2CO3) in methanol.3   
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Scheme 4.11  Phenolic oxidation/Diels-Alder sequence 
 
 

 As with material prepared in our initial small scale studies, the resultant phenol 

4.18e was treated with lead tetraacetate (Pb(OAc)4) in 1,2-dichloroethane (DCE) at reflux 

to induce formation of diene 4.19 via Wessely oxidation.  Although this intermediate is 
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observable (in some instance isolable) under the 90 °C reaction conditions employed here 

the intermeidate undergoes further reaction via a [4+2] cycloaddition to give 

[2.2.2]bicycle 4.16e.4  The resultant Diels-Alder adduct (4.16e) was isolated in a 62% 

yield, along with a small amount (<5%) of the deacylated product. 

 
4.2.2  Formation of the Isotwistane Core 
 
 Having successfully implemented the first cascade sequence and accessed 4.16e, 

we turned next toward setting the stage for the second, a radical-mediated cascade.  The 

two carbon atoms that would serve as the linchpin in this cascade, along with the lactone 

carbonyl, would be introduced using an aldol reaction that was analogous to that 

employed in the earlier generation approaches.  As is evident from the chemistry 

illustrated in Scheme 4.12, we chose to employ tert-butyl 3-(dimethylamino)propionate 

(4.25) as the nucleophilic component in the aldol reaction.  This choice to use a t-butyl 

ester was dictated by our interest in developing an acid promoted procedure that would 

allow us to advance the aldol product through acetate hydrolysis and lactonization in a 

single pot.  After a thorough study of the reaction conditions, it was determined that the 

best yields of alcohol 4.27 are observed when magnesium bromide is used as a Lewis-

acid to activate ketone 4.16e and the lithium enolate derived from 4.25 is used as the 

nucleophile.5  The nosyl protecting group was removed from the aldol product using 

thiophenol (PhSH) and cesium carbonate (Cs2CO3)6 and the resulting keto-alcohol was 

subjected to oxidation (mCPBA) and Cope elimination to generate , -unsaturated ester 

4.27 in 30% yield over three steps.7   In accord with our plan, exposure of 4.27 to 

hydrochloric acid resulted in acetate hydrolysis and lactonization to furnish the desired 

lactone 4.28 in excellent yield. 
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Scheme 4.12  Isotwistane formation 

 
 With lactone 4.28 in hand, the final two carbons needed to complete construction 

of the radical cyclization substrate were introduced via coupling of 4.28 to bromoacetal 

4.29 using N,N-dimethylaniline as a base in DCM at reflux, conditions developed by 

Stork for delivering 4.29 to hindered tertiary alcohols.8  The desired radical cyclization 

substrate (4.15) was produced as an inconsequential mixture (1:1) of diastereomeric 

acetals (4.15) in 68% yield.  In previous studies several methods had been employed in 

our group to initiate similar radical cascade reactions.  Of these, the use of SmI2 has often 

proven to be the most efficient.  Thus, we were delighted to find that exposure of 4.15 to 

SmI2 in THF at 0 °C resulted in smooth conversion to isotwistane 4.14 (54% yield).

Although no detailed mechanistic studies have been done we speculate (Scheme 4.13), 

based on previous studies, that this cascade event is initiated by formation of a ketyl 

radical (4.15a) which upon 5-endo ring closure produces an intermediate radical that 

undergoes further reduction to a lactone enolate (4.15b) capable of terminating the 

cascade by intramolecular alpha alkylation.9  It is important to note that in addition to 

allowing for the efficient construction of the requisite isotwistane core, the radical 
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cascade reaction stereoselectively produces the all-carbon quaternary center, a 

synthetically challenging structural element. 

  
 

Scheme 4.13  Possible mechanism for the radical cascade cyclization 
 

 
4.2.3  Formation of the Bicyclo[4.3.1] Core 
 
 Having accessed isotwistane 4.14, the bicylodecadiene core structure found in the 

phomoidrides was now potentially accessible via Wharton fragmentation.  As in the 

second-generation approach we envisioned the fragmentation proceeding by deacylation 

and loss of the mesylate nucleofuge.  Installation of these functionalities was 

accomplished in a three-step sequence that began with acylation of the resident tertiary 

alcohol followed by transacetalization to the corresponding thioacetal, a transformation 

which was readily accomplished upon exposure of the acylated 4.14 to 1,3-propanedithiol 

in the presence of BF3•OEt2.  The resultant crude tertiary alcohol was reacted with 

methanesulfonyl chloride (MsCl), delivering fragmentation precursor 4.13 in 86% yield 

over the three steps.  Inducing fragmentation to the desired bicyclo[4.3.1] core was 

accomplished by the addition of aqueous potassium hydroxide (KOH) in THF.  Initial 

analysis of the crude reaction mixture by 1H NMR spectroscopy clearly indicated that the 
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fragmentation had occurred due to the characteristic vinyl resonance; however, loss of the 

distinct diastereotopic resonances associated with the protons residing on the closed 

acetal, coupled with the polar nature of the product, suggested that the fragmentation 

reaction had been accompanied by acetal opening to furnish diol 4.30.  In subsequent 

studies we determined that subjecting the crude reaction mixture to 4-toluenesulfonyl 

chloride (TsCl) and DMAP in pyridine, transforms the diol into the desired ketone 4.12 

which can be isolated in 11% yield over two steps.  To our delight, switching the latter 

conditions to NsCl and Et3N in DCM improved the yield of ketone 4.12 to 72% yield 

from mesylate 4.13. 

  
 

Scheme 4.14  Wharton fragmentation 
 
 

 At this point our model study had clearly demonstrated feasibility in the two-

cascade sequences leading up to the proposed Wharton fragmentation of isotwistane 4.13.  

Moreover, the latter fragmentation, in contrast to the retro-aldol plagued second-

generation approach, proved effective in delivering the phomoidride core and put us in 

position to begin addressing potential concerns associated with maleic anhydride 

installation. 
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4.2.4  -Keto Ester Formation 
 
 As outlined in Chapter 3, our first generation approach had been successful in 

delivering a diester intermediate that was only one oxidation level removed from the 

natural product.  Our inability to complete the synthesis by oxidation of the diester to the 

maleic anhydride led to our developing the second-generation approach, which ultimately 

failed due to an unanticipated retro-aldol reaction.  Although, contrary to synthetic 

dogma, which often calls for maximizing convergency, the results obtained from our first 

and second-generation attempts indicated that our fragmentation based strategy would 

only be successful if the carbonyl carbons of the maleic anhydride were introduced one at 

a time (i.e., in the least convergent manner).  

  Thus, as illustrated in the retrosynthetic analysis for our current approach (vide 

supra, Scheme 4.10) our plan is to first install a beta-keto ester and then, in a fashion 

similar to that of Shair and Fukuyama in their syntheses of phomoidride B (4.35), 

introduce the final carbon via a cabonylation reaction.  Although there is a strategic 

similarity to the work of Shair and Fukuyama with regard to maleic anhydride 

construction, it is noteworthy that these groups employed the regioisomeric beta-keto 

ester as a substrate (Scheme 4.15).  Thus, this past precedent provided some hope but by 

no means assured success.  In any event, as outlined is Scheme 4.16, our plan next called 

for conversion of ketone 4.12 to the corresponding beta-keto ester, a transformation that 

is often best performed under conditions developed by Mander and coworkers.10 
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Scheme 4.15  Shair and Fukuyama’s maleic anhydride formation 
 

 As illustrated in Scheme 4.16, Mander’s conditions for converting a ketone to the 

corresponding beta-keto ester involve initial formation of a lithium enolate followed by 

acylation using methyl cyanoformate (a.k.a., Mander’s Reagent).  A complicating factor 

with 4.12 is the fact that the ketone is flanked by four protons, any of which could 

potentially be removed by a strong base.  This presents a potential regioisomeric issue, 

which we hoped would be controlled to some extent by the quaternary center adjacent to 

one of the methylenes.  If the quaternary center directed enolization away from the 

neopentyl methylene the outcome would be the desired enolate regioisomer 4.11 and 4.31 

(Scheme 4.16).  To our chagrin, initial studies utilizing kinetic enolization conditions 

(super-stoichiometric LDA) akin to those employed by Mander, furnished an acylated 

product which, after 1H and 13C NMR studies was determined to be the undesired 

regioisomer 4.32.   
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Scheme 4.16  -Keto ester formation 
 
 

 Due to the poor yields and undesired regioselectivity observed in our initial 

studies, we decided to more closely examine the reaction conditions.  It is known that one 

can sometimes influence the course of enolate formation by performing the deprotonation 

under thermodynamic conditions instead of the more common kinetic.  It is, a priori, 

difficult to predict if a “kinetic enolate” (generated with a superstoichiometric amount of 

base) will be regioisomerically different from a “thermodynamic enolate” (generated with 

a substoichiometric amount of base, hence under equilibrating conditions); thus, we set 

out to explore these various conditions on our substrate (4.12).  In the event, we 

decreased the equivalents of LDA from 1.1 to 0.9 and warmed the reaction to – 40 °C.  
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To our delight, we found that we could indeed influence the regioisomeric ratio and 

under these conditions the regioisomeric outcome favored the desired -keto ester 4.11

(and 4.31) (Scheme 4.16b).  In addition to delivering the desired ester 4.11 (and 4.31) 

these conditions also resulted in a significant increase in the yield (21% to 53%).  Further 

optimization studies revealed that the use of a sub-stoichiometric amount of a bulkier 

base (LiHMDS), followed by warming the reaction to 0 °C prior to the addition of 

Mander’s reagent, results in the formation 4.11 (and 4.31) in 67% yield (Scheme 4.16c).  

Interestingly the desired beta-keto ester is produced as a mixture of isolable tautomers 

that favors enol (4.31) over the corresponding keto (4.11) form.  The indicated yields for 

this transformation reflect the combined weight of the tautomers. 

 

 
 

Scheme 4.17  Tautomerization experiments 
 
 

 Typically one finds that keto-enol tautomerization of -keto esters is rapid and the 

mixtures are inseparable.  Given the unusual observation in this system we decided to test 

the keto-enol tautomerization under both basic and acidic conditions (Scheme 4.17).  

Subjecting the keto form (4.11) to Et3N in DCM did produce a minimal amount of enol 
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tautomer, but only after 48 hours, while acidic conditions resulted in no tautomerization 

at all.   

 Initial studies to form vinyl triflate 4.33 were performed on keto-tautomer 4.11 

(Scheme 4.18).  As might have been anticipated from our studies with Et3N (vide supra) 

treatment of 4.11 with Hünig’s base and triflic anhydride failed to produce any vinyl 

triflate.11  Thus, we decided to use a stronger base (KHMDS) in conjunction with N-

phenyl triflimide (Tf2NPh).  In the event, deprotonation employing a substoichiometric 

amount of KHMDS in the presence of Tf2NPh, produced desired vinyl triflate 4.33 in 

53% yield.12  It is worth noting that we employed a slight substoichiometric amount of 

base simply to avoid any complications that may have arisen due to excess base.  

  
 

Scheme 4.18  Triflation attempts 
 
 

 Similarly, the enol form was converted to vinyl triflate 4.33 using KHMDS with 

Tf2NPh as the triflating agent to provide vinyl triflate 4.33 in corresponding 68% yield 

(Scheme 4.19). 
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Scheme 4.19  Enol triflation 
 

4.2.5  Maleic Anhydride Formation and Completion of the Model Study 
 
 Having prepared vinyl triflate 4.33 from either keto or enol-tautomer, we turned 

next to completion of the maleic anhydride.  Two slightly different sets of conditions for 

this reaction had already been developed on similar systems and are reported in the 

syntheses of phomoidride B (4.35) by the groups of Shair and Fukuyama (Scheme 

4.15).13 

  In our initial studies to advance the vinyl triflate we explored Shair’s conditions 

and in accord with their protocol exposed 4.33 to a mixture of palladium(II) acetate 

(Pd(OAc)2), trimethyl phosphite (P(OMe)3), and Et3N, in an atmosphere of CO.  

Unfortunately, only decomposition of the starting enol triflate was observed (Scheme 

4.20a).  Turning next to the conditions developed by Fukuyama, vinyl triflate 4.33 was 

exposed to a DMF solution of Pd(OAc)2, tri(2-furyl)phosphine (P(2-furyl)3), Hünig’s 

base, and water, all under an atmosphere of CO.  After heating to 90 °C we were 

delighted to find that these conditions produced the required maleic anhydride 4.38 in 

58% yield, the structure of which was confirmed by single crystal X-ray analysis 

(Scheme 4.20b).   
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Scheme 4.20  Maleic anhydride formation 
 
 

 With maleic anhydride 4.38 in hand, all that was left to finish the model system 

synthesis was removal of the thioacetal and oxidation of the derived aldehyde to the acid.  

Initial attempts using iodination conditions, such as [bis(trifluoroacetoxy)iodo]benzene 

(BTIB) or iodine, did not give aldehyde 4.39.14  Similar conditions were attempted on 

vinyl triflate 4.33, but this too did not deliver the desired aldehyde. 

 

 
 

Scheme 4.21  Initial thioacetal deprotections 
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 Given the difficulties encountered with the milder deprotection reagents we 

decided to attempt conditions which had been developed by Nicolaou for the removal 

thioketals.15   Under these conditions, which involved exposing thioacetal 4.38 to N-

bromosuccinimide (NBS) and silver(I) perchlorate in aqueous acetone, we were excited 

to see removal of the thioacetal protecting group.  However, we were unable to separate 

the aldehyde intermediate 4.39 from succinimide and thus carried the crude mixture 

through the subsequent Pinnick oxidation, which furnished the final product in an 

unoptimized 23% yield.  Importantly, this final step completed the model study and 

validated our third generation strategy.

Scheme 4.22  Completion of the model study 

4.3  Conclusion 
 
 In a first-generation approach toward phomoidride D, we began developing a 

strategy that centers around two cascade sequences as key steps in delivering the 

phomoidride carbocyclic core.  In the first of these sequences a tandem phenolic 

oxidation/Diels-Alder reaction is employed to produce a [2.2.2]bicycle, which is readily 

transformed into a bromo acetal that is poised for conversion to a key isotwistane.  The 

latter transformation is performed via the second cascade sequence which is mediated by 

SmI2 and delivers not only the isotwistane but also sets the quaternary stereogenic center 

that is imbedded in the phomoidride core.  Functional group manipulation sets the stage 
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for a Grob fragmentation which provides access to the bicyclo[4.3.1]decadiene core 

found in the phomoidrides (Chapter 3, section 3.47).  Unfortunately, the first generation 

approach met its demise when conversion of a late stage diester to the corresponding 

maleic anhydride proved impossible.  To circumvent this issue, a model study was 

launched to investigate an alternative (second-generation) approach wherein 

carbonylation of an advanced beta-keto ester would give rise to the maleic anhydride.  

Unfortunately, due to a deleterious retro-aldol reaction, this approach also met with an 

untimely demise, failing prior to the Wharton fragmentation.  In our third-generation 

approach, which has been the focus of this chapter, we combine the strategic elements of 

the first two generations with a better understanding of the late stage reactivity into an 

approach that calls for generating the maleic anhydride unit from an isolated ketone.  As 

described above, this approach was explored in a model study that has allowed us to 

define suitable substrates for the initial aryl-oxidation/Diels-Alder cascade sequence.  In 

addition, the model study established that a simple ketone can be combined with an exo-

methylene lactone and bromoacetal in a cascade cyclization that delivers the requisite 

isotwistane intermediate.  Importantly, these studies also revealed that the desired 

Wharton fragmentation can be induced under mild conditions to furnish a ring opened 

acetal that can be reclosed and thus positioned for subsequent incorporation of the maleic 

anhydride.  With regard to the latter, these models studies helped to establish feasibility 

with regard to the requisite regioselective acylation under Mander’s conditions and 

established that an enol triflate derived from the resultant beta-keto ester is a viable 

carbonylation substrate using conditions developed by Fukuyama.  Finally this model 

study aided in establishing the feasibility of thioacetal removal and oxidation in the 
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presence of the phomoidride core functionality.  Efforts can now be focused on 

translating the model system chemistry onto substrates containing the full complement of 

carbons and functional groups found in natural phomoidride D. 

 
4.4 Experimentals 

 
 

General 
 
 Unless stated otherwise, all reactions were performed using flame or oven-dried 

glassware and under an atmosphere of nitrogen.  DCM, THF, diethyl ether, benzene, and 

toluene were dried using a solvent purification system manufactured by SG Water 

U.S.A., LLC.  Acetonitrile, ethyl acetate, pentanes, hexanes, DMF, DMSO, and DCE 

were supplied by either Fisher Scientific or Sigma-Aldrich and were used as received.  

Triethylamine, diisopropylamine, and methanol were stirred over calcium hydride and 

distilled before use.  All other commercially available reagents were used as received.   

 Unless stated otherwise, reactions were monitored by thin-layer chromatography 

using Silicycle SiliaPlate® TLC glass backed extra hard layer, 60 Å (F-254 indicator, 

250 m thickness).  All purifications were performed using Silicyle SiliaFlash® P60 

silica (40-63 m, 230-400 mesh) as a stationary phase.  High-resolution mass 

spectroscopy was performed by the central instrument facility at Colorado State 

University or on a Thermo Orbitrap ESI mass spectrometer at Baylor University.  Single-

crystal X-ray crystallography was performed by Brian Newell at Colorado State 

University or Prof. Caleb Martin at Baylor University.  1H and 13C NMR spectra were 

taken on Varian VNMRS 500, Varian Inova 400, Bruker Ascend 400, and Bruker Ascend 

600 cryoprobe spectrometers.  Infrared spectra were taken on a Nicolet Avatar 320 FTIR 
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or Bruker Alpha Platinum ATR.  Chemical Shifts ( ) are reported in parts per million 

(ppm) and coupling constants (J) are reported in hertz (Hz).  The reported chemical shifts 

are relative to the residual solvent peaks of the indicated deuterated solvents.   

 
Preparation of Phenol 4.22 
 

 
 
 

 Benzaldehyde Functionalization. To a round bottom flask equipped with a 

magnetic stir bar was added 2,4-dihydroxybenzaldehyde (40.0 g, 290 mmol), 2-

nitrobenzenesulfonyl chloride (NsCl) (64.2 g, 290 mmol), potassium carbonate (K2CO3) 

(96.2 g, 608 mmol), and Acetone (965 mL).  The flask was capped with a rubber septum 

containing a 16 gauge needle open to air and stirred vigorously at room temperature.  

After 25 hours allyl bromide (36.5 mL, 434 mmol) was added rapidly via syringe and 

TLC was used to monitor the reaction progress.  The TLC plates were developed using a 

25% EtOAc/Hex solution and visualized by KMnO4.  The reaction was worked up after a 

total of 47 hours by light concentration and transferring to a separatory funnel containing 

EtOAc (600 mL).  The organic layer was washed with 1M HCl (750 mL) and brine (250 

mL) before drying over MgSO4.  Concentration delivered a mixture of regioisomers as a 

tan solid that was washed with MeOH (~ 500 mL) and filtered by vacuum filtration 

through a fritted funnel until the filtrate appeared colorless.  The resultant white solid 

contained the functionalized benzaldehyde as a 5:1 (desired:undesired) mixture of 

regioisomers (56.9 g) which was moved onto the next step without further purification. 
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 Dakin Oxidation.  To a round bottom flask equipped with a magnetic stir bar was 

added the benzaldehyde (56.9 g, 157 mmol) and dichloromethane (DCM) (500 mL).  The 

solution was cooled in an ice/water bath and mCPBA (35.1 g, 77%, 157 mmol) was 

added.  The flask was capped with a rubber septum fitted with a 16 gauge needle open to 

air and the reaction was allowed to slowly warm to room temperature within the bath.  

After 19 hours K2CO3 (32.5 g, 235 mmol) and MeOH (660 mL) were added all at once.  

After 67 hours the reaction was concentrated and dissolved again in H2O:EtOAc (1:2).  

The layers were separated and the aqueous extracted with EtOAc (2x) and the combined 

organics were washed with brine and dried over MgSO4.  Concentration and purification 

via silica gel flash column chromatography (10% gradient elution from 0%  50% 

EtOAc/Hex) afforded phenol 4.22 (53.1 g, 56% yield) as a brown solid. 

 Rf  = 0.49 (50% EtOAc/Hex); m.p. 81-83 C; 1H-NMR (600 MHz; CDCl3):  

7.95-7.91 (m, 1H), 7.84-7.80 (m, 2H), 7.67 (ddd, J = 7.9, 5.9, 2.9 Hz, 1H), 6.81 (dd, J = 

5.7 Hz, 2H), 6.65 (dd, J = 8.7 hz, 2.6 Hz, 1H), 5.99 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.60 

9s, 1H), 5.41-5.29 (m, 2H), 4.55 (d, J = 12.0 Hz, 2H); 13C-NMR (150 MHz; CDCl3):  

145.8, 145.3, 141.8, 135.4, 132.5, 132.0, 132.0, 128.4, 124.9, 119.3, 115.0, 114.6, 107.3, 

70.3; FTIR (thin film/NaCl): 3498, 3098, 2923, 1545, 1504 cm-1; HRMS (ESI) m/z 

Calc’d for C15H13NO7S [M+Na]+: 374.0305, found: 374.0305. 

 
Preparation of Allyl Ether 4.24
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 To a round bottom flask equipped with a magnetic stir bar was added phenol 4.22 

(46.7 g, 133 mmol), alkyl iodide 4.23, potassium carbonate (91.9 g, 665 mmol), cesium 

carbonate (2.17 g, 6.65 mmol), and dimethylformamide (DMF) (200 mL).  The flask was 

capped with a polyethylene stopper and stirred at 50 °C.  TLC was used to monitor the 

reaction progress.  The TLC plates were developed using a 25% EtOAc/Hex solution and 

visualized by KMnO4.  The reaction was removed from heat after 23 hours and allowed 

to cool to room temperature.  The reaction was slowly transferred to a separatory funnel 

containing 1M HCl (700 mL) and the aqueous was extracted with EtOAc (3 x 700 mL).  

The combined organics were then washed with 1M HCl, brine and dried over Na2SO4.  

Concentration and purification via silica gel flash column chromatography (10% gradient 

elution from 0%  60% EtOAc/Hex) afforded allyl ether 4.24 (24.7 g, 44% yield) as a 

brown viscous oil. 

 Rf  = 0.24 (25% EtOAc/Hex); 1H-NMR (600 MHz; CDCl3):  7.89 (d, J = 7.9 Hz, 

1H), 7.83-7.79 (m, 2H), 7.65 (ddd, J = 7.9, 6.4, 2.4 Hz, 1H), 6.78-6.69 (m, 3H), 5.96 (ddt, 

J = 17.2, 10.5, 5.2 Hz, 1H), 5.61-5.53 (m, 1H), 5.50-5.45 (m, 1H), 5.36 (dd, J = 17.4 Hz, 

1.8 Hz, 1H), 5.24 (dd, J = 10.2, 1.2 Hz, 1H), 4.48 (d, J = 5.4 Hz, 2H), 3.95 (t, J = 7.0 Hz, 

2H), 2.50 (m, 2H), 1.66 (d, J = 6.0 Hz, 3H); 13C-NMR (150 MHz; CDCl3):  148.9, 

148.8, 148.3, 142.3, 135.4, 132.7, 132.5, 132.0, 128.3, 128.1, 126.4, 124.8, 118.1, 114.4, 

113.4, 108.8, 70.1, 69.2, 32.6, 18.2; FTIR (thin film/NaCl): 2918, 1544, 1504 cm-1; 

HRMS (ESI) m/z Calc’d for C20H21NO7S [M+Na]+: 442.0931, found: 442.0934. 

 
Preparation of (E)-3-hydroxy-4-(pent-3-en-1-yloxy)phenyl 2-nitrobenzenesulfonate 4.18e
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 To a round bottom flask equipped with a magnetic stir bar was added the allyl-

protected phenol 4.24 (24.9 g, 59.3 mmol), potassium carbonate (10.7 g, 77.1 mmol), 

tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) (2.1 g, 1.8 mmol), and methanol 

(200 mL).  The flask was purged with an over-pressure of nitrogen and then allowed to 

stir at room temperature overnight.  TLC was used to monitor the reaction progress.  The 

TLC plates were developed using a 25% EtOAc/Hex solution and visualized by KMnO4.  

The reaction was worked up by filtration through a plug of silica, using ethyl acetate to 

flush out the organics.  Concentration and purification via silica gel flash column 

chromatography (10% gradient elution from 0%  70% EtOAc/Hex) afforded phenol 

4.18e (14.5 g, 64% yield) as a brown solid. 

 Rf  = 0.16 (EtOAc/Hex); m.p.  84-85 C; 1H-NMR (400 MHz; CDCl3):  7.93 (d, J 

= 8.0 Hz, 1H), 7.83-7.78 (m, 2H), 7.66 (ddd, J = 7.9, 6.4, 2.8 Hz, 1H), 7.76-7.67 (m, 3H), 

5.74 (s, 1H), 5.61-5.54 (m, 1H), 5.49-5.41 (m, 1H), 4.01 (t, J = 6.7Hz, 2H), 2.46 (q, J = 

6.5 Hz, 2H), 1.68 (d, J = 6.3 Hz, 3H); 13C-NMR (100 MHz; CDCl3):  146.6, 145.3, 

143.0, 135.42, 132.4, 132.0, 128.7, 128.4, 126.2, 124.9, 113.6, 112.0, 109.1, 69.2, 32.5, 

18.1; FTIR (thin film/NaCl): 3507, 3099, 3027, 2941, 1605, 1546, 1504 cm-1; HRMS 

(ESI) m/z Calc’d for C17H17NO7S [M+H]+: 380.0805, found: 380.0801. 

 
Preparation of -Acetoxy Ketone 4.16e and -Hydroxy Ketone 4.16e-OH   
 

 
 

 To a sealed tube equipped with a magnetic stir bar was added phenol 4.18e (2.0 g, 

5.3 mmol), lead(IV) acetate (2.8 g, 6.3 mmol), and 1,2-dichloroethane (DCE) (53 mL).  
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The reaction vessel was sealed and heated at 90 C for 14 hours.  Upon cooling the 

reaction progress was analyzed by TLC.  The TLC plates were developed using 50% 

EtOAc/Hex solution and visualized by KMnO4.  The reaction was then concentrated and 

purified immediately by silica gel flash column chromatography (10% gradient from 20% 

 100% EtOAc/Hex) affording the product as a 20:1 mixture favoring 4.16e (1.4 g, 62% 

yield) as and orange foam. 

 
 -Acetoxy Ketone 4.16e. Rf = 0.22 (50% EtOAc/Hex); 1H-NMR (400 MHz; 

Benzene-D6):  7.67 (dd, J = 7.4, 2.0 Hz, 1H), 6.85 (dd, J = 7.8, 1.5 Hz, 1H), 6.67-6.57 

(m, 2H), 5.82 (dd, J = 7.6, 2.8 Hz, 1H), 3.64-3.58 (m, 2H), 3.26 (td, J = 12.0, 4.0 Hz, 

1H), 3.14 (t, J = 2.8 Hz, 1H), 1.51 (s, 3H), 1.39-1.29 (m, 2H), 1.09 (p, J = 3.6 Hz, 1H), 

0.735 (q, J = 2.8 Hz, 1H), 0.75-0.69 (m, 1H), 0.66 (d, J = 7.2 Hz); 13C-NMR (100 MHz, 

Benzene-D6)  198.91, 195.14, 168.13, 146.40, 135.15, 132.02, 131.63, 128.44, 124.72, 

116.48, 93.62, 62.19, 57.80, 40.63, 37.21, 35.61, 28.34, 21.44, 20.00; FTIR (thin 

film/NaCl): 3099, 2963, 1754, 1653, 1592, 1547 cm-1; HRMS (ESI) m/z Calc’d.for 

C19H19NO9S [M+H]+: 438.0859, found: 438.0850. 

 
 -Hydroxy Ketone 4.16e-OH. Rf = 0.27 (75% EtOAc/Hex); m.p. 60-62 C; 1H-

NMR (400 MHz; CDCl3):  8.01 (dt, J = 7.8, 1.0 Hz, 1H), 7.88-7.82 (m, 2H), 7.75-7.69 

(m, 1H), 6.04 (dd, J = 7.6, 2.8 Hz, 1H), 3.86 (ddt, J = 11.2, 5.6, 1.2 Hz, 1H) 3.53 (td, J = 

12.5, 2.7 Hz, 1H), 3.18 (t, J = 2.7 Hz, 1H), 2.68 (dd, J = 7.6, 3.6 Hz, 1H), 2.11-2.05 (m, 

2H), 1.94-1.85 (m, 1H), 1.82 (p, J = 3.2 Hz, 1H), 1.63-1.58 (m, 1H), 1.13 (d, J = 7.0 Hz, 

3H); 13C-NMR (100 MHz, CDCl3)  206.51, 194.81 (instrument artifact), 144.61, 135.89, 

133.28, 132.36, 127.74, 125.12, 119.64, 90.18, 61.50, 57.74, 42.80, 39.32, 37.17, 34.92, 
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28.80, 20.20; FTIR (neat): 3382, 3099, 2961, 1742, 1651, 1592, 1543 cm-1; HRMS (ESI) 

m/z Calc’d.for C19H19NO9S [M+H]+: 396.0753, found: 396.0755. 

 
Preparation of tert-Butyl Enoate 4.27 
 

 
 
 

Lithium tert-Butyl 3-(dimethylamino)propionate formation.  To a flame dried 

round bottomed flask equipped with a magnetic stir bar was added freshly distilled 

diisopropylamine (1.5 mL, 10.5 mmol) and THF (12 mL).  The solution was then cooled 

in a dry ice/acetone bath and n-butyllithium (6.6 mL, 1.6 M in hexanes, 10.5 mmol) was 

added dropwise.  After 20 minutes the reaction was placed into and ice water bath.  After 

20 more minutes the reaction was recooled to – 78 C and a solution of methyl 3-

(dimethylamino)propionate (1.8 g, 10.5 mmol) in THF (3.0 mL) was added.  The reaction 

was allowed to stir at this temperature for 20 minutes.   

To a flame dried round bottomed flask equipped with a magnetic stir bar was 

added ketone 4.16e (1.4 g, 3.3 mmol), MgBr2•OEt2 (1.7 g, 6.6 mmol), and THF (33 mL).  

The solution was then cooled in an acetonitrile/dry ice bath.  The lithium enolate was 

added via cannula over 25 minutes as the solution slowly turns red.  The reaction 

progress was followed by TLC and the TLC plates were developed using 50% 

EtOAc/Hex solution and visualized by KMnO4.  After an additional 25 minutes of 

stirring at – 40 C the reaction was quenched by adding saturated ammonium chloride 

(5.0 mL).  The solution was the allowed to warm to room temperature when it was 

diluted with water and extracted three times with EtOAc.  The combined organics were 
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washed with brine and dried over MgSO4.  Concentration afforded a brown oil which was 

moved forward crude. 

 
Deprotection of the Nosyl Enol Ether.  To a round bottomed flask equipped with a 

magnetic stir bar was added the crude enol ether, thiophenol (0.51 mL, 4.9 mmol), 

cesium carbonate (1.6 g, 4.9 mmol), and MeCN (17 mL).  The reaction progress was 

followed by TLC and the TLC plates were developed using 50% EtOAc/Hex solution 

and visualized by KMnO4.  The solution was allowed to stir 1 hour when it was quenched 

with the addition of saturated ammonium chloride (10 mL).  The solution was then 

extracted three times with EtOAc and the combined organics were washed with brine and 

dried over Mg2SO4.  Concentration afforded the ketone as a brown oil that was carried 

forward to the next reaction crude. 

 
Enoate Formation.  To a round bottomed flask equipped with a magnetic stir bar 

was added the crude aminopropionate and DCM (25 mL).  The solution was then cooled 

in an ice water bath and mCPBA (2.4 g, 77%, 10.5 mmol) was added.  The cooling bath 

was removed and the reaction was allowed to warm for 20 minutes before basic Al2O3 

(5.4 g) was added.  The reaction progress was followed by TLC and the TLC plates were 

developed using 50% EtOAc/Hex solution and visualized by KMnO4.  The reaction was 

stirred 6 hours before it was filtered to remove the solid, using DCM to rinse.  The filtrate 

was then washed twice with saturated sodium bicarbonate and once with brine.  The 

combined organics were then dried over Na2SO4 and concentrated.  The crude was 

purified via silica gel flash column chromatography (5% gradient from 0%  35% 

EtOAc/Hex) affording 4.27 as a white solid in 30% yield over 3 steps.
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 Rf = 0.58 (50% EtOAc/Hex); m.p. 133-135 C; 1H-NMR (400 MHz; CDCl3):  

6.03 (d, J = 1.6 Hz, 1H), 5.76 (d, J = 1.2 Hz, 1H), 5.38 (d, J = 1.2 Hz, 1H), 4.45-4.39 (m, 

1H), 4.36-4.30 (m, 1H), 3.36 (d, J = 3.5 Hz, 1H), 2.67-2.67 (m, 1H), 2.60 (m, 1H), 2.26 

(dd, J = 19.6, 1.6 Hz, 1H), 2.14-2.06 (m, 2H), 1.95 (s, 3H), 1.84-1.76 (m, 1H), 1.74-1.69 

(m, 1H), 1.50 (s, 9H), 0.94 (d, J = 7.6 Hz, 3H); 13C-NMR (100 MHz; CDCl3)  212.24, 

194.96 (instrument artifact), 168.62, 167.43, 144.11, 123.66, 103.70, 82.21, 77.87, 64.07, 

61.48, 38.29, 35.47, 34.29, 32.10, 30.91, 28.22, 22.38, 20.94; FTIR (thin film/NaCl): 

3524, 2975, 2931, 1729, 1626 cm-1; HRMS (ESI) m/z Calc’d.for C20H28NO7 [M+Na]+: 

403.1733, found: 403.1735. 

 
Preparation of -Lactone 4.28 

 
 
 To a cone-shaped flask equipped with a magnetic stir bar was added the tert-butyl 

enoate 4.27 (0.38 g, 1.0 mmol) and DCM (5.2 mL).  Concentrated HCl (0.05 mL, 12 M, 

0.60 mmol) was added dropwise and the reaction was allowed to stir.  The reaction 

progress was followed by TLC, and the TLC plates were developed using 50% 

EtOAc/Hex solution and visualized by KMnO4.  After 1.5 hours the reaction was filtered 

to remove the -lactone 4.28 as a white solid.  The filtrate was then washed once with 

water and the aqueous was extracted three times with DCM.  The combined organic 

layers were washed with brine and dried over MgSO4.  Concentration afforded the -

lactone 4.28 which was combined (0.25 g, 95%) and moved forward without further 

purification. 
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 Rf = 0.31 (50% EtOAc/Hex); 1H-NMR (400 MHz; DMSO-d6):  6.61 (s, 1H), 

6.31 (s, 1H), 5.96 (s, 1H), 4.56 (td, J = 12.2, 3.7 Hz, 1H), 3.98 (dd, J = 11.5, 6.5 Hz, 1H), 

2.56 (d, J = 2.7 Hz, 1H), 2.36 (ddd, J = 7.1, 4.6, 2.7 Hz, 1H), 2.18 (dd, J = 20.0, 3.5 Hz, 

1H), 2.08 (q, J = 3.0 Hz, 1H), 1.91-1.81 (m, 3H), 1.60 (dt, J = 13.2, 3.2 Hz, 1H), 0.91 (d, 

J = 7.0, 3H); 13C-NMR (100 MHz; DMSO-d6)  209.45, 166.16, 140.49, 128.88, 105.35, 

74.60, 63.08, 61.93, 39.97, 38.18, 37.61, 29.13, 27.89, 20.60; FTIR (neat): 3443, 3109, 

2977, 2921, 2908, 2863, 1777, 1728, 1661 cm-1; HRMS (ESI) m/z Calc’d.for C14H16O5 

[M+H]+: 265.1076, found: 265.1078. 

 
Preparation of -Bromo Ethyl Acetal 4.15 

 
 

 To a flame dried round bottomed flask, equipped with a magnetic stir bar and 

fitted with a water cooled condenser, was added -lactone 4.28 (2.5 g, 9.4 mmol), the 

bromoacetal (5.6 g, 2.4 mmol), dimethylaniline (3.0 mL, 2.4 mmol) and DCM (94 mL).  

The reaction was heated to 40 C and after an hour at this temperature more bromoacetal 

(5.6 g, 2.4 mmol) and dimethylaniline (3.0 mL, 2.4 mmol) were added.  This was 

repeated every hour for 5 more additions.  After the final addition the reaction was 

allowed to stir 14.5 more hours at 40 C, where the reaction progress was followed by 

TLC.  TLC plates were developed using 50% EtOAc/Hex solution and visualized by 

KMnO4.  Upon cooling the reaction was filtered, using DCM to rinse the solid, and the 

filtrate was washed with water.  The aqueous was extracted three times with DCM and 

dried over MgSO4.  Concentration and silica gel flash chromatography (10% gradient 
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from 0%  70% EtOAc/Hex) afforded the -bromo ethyl acetal 4.15 (2.7 g) in a 68% 

yield. 

 Rf = 0.47 (50% EtOAc/Hex); 1H-NMR (400 MHz; CDCl3):  6.68 (s, 0.6H), 6.61 

(s, 0.4H), 6.00 (s, 0.6H), 5.84 (s, 0.4H), 4.85 (t, J = 4.3 Hz, 0.6H), 4.71 (dd, J = 5.9, 4.3 

Hz, 0.4H), 4.61 (td, J = 12.4, 4.4 Hz, 0.4 H), 4.52 (td, J = 12.0, 4.4 Hz, 0.6H), 4.16-4.10 

(m, 1H), 3.52-3.36 (m, 4H), 2.87 (d, J = 2.3 Hz, 0.6H), 2.75 (d, J = 2.7 Hz, 0.4H), 2.60-

2.48 (m, 1H), 2.25-1.96 (m, 4H), 1.81 (br. s, 1H), 1.71-1.62 (m, 1H), 1.19 (t, J = 7.2 Hz, 

1.8H), 1.12 (t, J = 7.2 Hz, 1.2H), 1.01 (dd, J = 7.2, 1.8 Hz, 3H); 13C-NMR (100 MHz; 

CDCl3)  208.63, 208.49, 194.91 (instrument artifact), 165.77, 135.74, 1353.30, 132.46, 

130.29, 106.06, 105.65, 97.20, 97.16, 80.07, 63.73, 61.89, 61.69, 61.42, 61.30, 40.70, 

40.31, 38.72, 38.61, 38.51, 38.25, 31.86, 31.75, 29.58, 29.55, 28.65, 28.19, 20.88, 15.12, 

14.93; FTIR (neat): 2966, 2914, 1765, 1727, 1657 cm-1; HRMS (ESI) m/z Calc’d.for 

C18H23BrO6 [M+Na]+: 437.0576, found: 437.0576. 

 
Preparation of Ethyl Acetal 4.14 

 
 

 In the following reaction special precautions were taken to avoid light.  All 

reaction vessels were wrapped in aluminum foil and the reaction was carried out in a 

darkened hood.  The THF used in the following procedure was degassed over 4 Å 

molecular sieves via FPT. 
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 Purification of 1,2-diiodoethane.  1,2-diiodoethane was taken up in Et2O and 

placed into a separatory funnel.  The organic was washed with a 50/50 mixture of 

saturated sodium thiosulfate and brine.  The aqueous was extracted twice with Et2O and 

the combined organics were dried over Na2SO4.  Concentration afforded a white solid 

that was further dried under high vacuum.   

 
 Preparation of SmI2.  To a flame dried round bottomed flask, equipped with a 

magnetic stir bar and water cooled condenser, was added samarium powder (0.75 g, 5.0 

mmol) in THF (19 mL).  A separate solution of 1,2-diiodoethane (0.79 g, 2.8 mmol) in 

THF (9.0 mL) was added to the samarium solution.  After 20 minutes of stirring the 

reaction mixture had turned deep blue in color and the reaction was heated to 55 C for 14 

hours. 

 
 Preparation of Ethyl Acetal 4.14.  To a solution of SmI2 (0.10M in THF) cooled 

in an ice water bath was added the -bromo ethyl acetal 4.15 (0.39 g, 0.93 mmol) in THF 

(8.5 mL).  After 30 minutes the brown solution was allowed to warm to room 

temperature.  The reaction progress was followed by TLC.  TLC plates were developed 

using 50% EtOAc/Hex solution and visualized by KMnO4.  After 1.5 more hours the 

reaction solution was filtered and the organic was washed with saturated aqueous sodium 

thiosulfate and 1M HCl.  The acidic layer was extracted twice with EtOAc.  The 

combined organics were washed with brine and dried over MgSO4.  Concentration 

followed by purification via silica gel flash chromatography (10% gradient from 20%  

70% EtOAc/Hex) delivered the ethyl acetal 4.14 (0.17 g) in a 54% yield. 
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 Ethyl Acetal Diastereomer A: Rf = 0.32 (50% EtOAc/Hex); 1H-NMR (400 MHz; 

CDCl3):  5.46 (dd, J = 5.9, 2.0 Hz, 1H), 4.20 (td, J = 12.5, 3.1 Hz, 1H), 3.99 (dd, J = 

11.7, 5.9 Hz, 1H), 3.77 (dq, J = 9.8, 7.0 Hz, 1H), 3.53 (dq, J = 9.8, 7.0 Hz, 1H), 2.71 (dd, 

J = 14.1, 5.9 Hz, 1H), 2.32-2.29 (m, 2H), 2.21-2.03 (m, 3H), 1.99-1.90 (m, 3H), 1.82-

1.68 (m, 3H), 1.48 (dt, J = 13.3, 2.7 Hz, 1H), 1.28 (d, J = 7.4 Hz, 3H), 1.21 (t, J = 7.0 Hz, 

3H); 13C-NMR (100 MHz,)  177.70, 109.50, 106.94, 95.91, 77.85, 63.97, 63.03, 56.94, 

53.83, 52.04, 44.23, 39.39, 38.38, 37.82, 30.71, 27.74, 20.99, 15.34; FTIR (neat): 3469, 

2929, 1759 cm-1; HRMS (ESI) m/z Calc’d.for C18H24O6 [M+H]+: 337.1651, found: 

337.1648. 

 
 Ethyl Acetal Diastereomer B:  Rf = 0.20 (50% EtOAc/Hex); 1H-NMR (400 MHz; 

CDCl3):  5.30 (d, J = 4.3 Hz, 1H), 4.21 (td, J = 12.5, 3.1 Hz, 1H), 3.94 (dd, J = 11.9, 6.1 

Hz, 1H), 3.83 (dq, J = 9.0, 7.2 Hz, 1H), 3.35 (dq, J = 9.3, 6.8 Hz, 1H), 2.63 (d, J = 12.9 

Hz, 1H), 2.18 (d, J = 12.9 Hz, 1H), 2.10-1.89 (m, 8H), 1.81 (p, J = 3.6 Hz, 1H), 1.68 (dt, 

J = 14.7, 2.2 Hz, 1H), 1.45 (dt, J = 13.4, 2.9 Hz, 1H), 1.26 (d, J = 7.8 Hz, 3H), 1.13 (t, J = 

7.0 Hz, 3H); 13C-NMR (100 MHz; CDCl3)  194.23 (instrument artifact), 177.30, 107.67, 

107.16, 95.35, 79.32, 62.53, 62.35, 56.24, 54.19, 50.87, 43.74, 39.63, 38.65, 38.44, 30.81, 

27.8, 20.92, 14.68; FTIR (neat): 34.36, 2913, 1789 cm-1; HRMS (ESI) m/z Calc’d.for 

C18H24O6 [M+Na]+: 359.1471, found: 359.1466. 

 
Preparation of isotwistane 4.13 
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 Acetate protection.  To a cone shaped flask equipped with a magnetic stir bar was 

added ethyl acetal 4.14 (0.90 g, 2.7 mmol), acetic anhydride (0.82 mL, 8.0 mmol), 

Mg(ClO4)2 (0.09 g, 0.27 mmol), and DCM (11 mL).  The reaction vessel was capped and 

the solution was allowed to stir 23 hours.  The reaction progress was followed by TLC. 

TLC plates were developed using 50% EtOAc/Hex solution and visualized by KMnO4.  

The reaction was worked up by washing with brine and drying over Na2SO4.  Upon 

concentration the crude was azeotroped twice with EtOH and twice with toluene.  The 

crude solid was moved on to the next reaction without further purification. 

 
 Preparation of the thioacetal.  To a cone shaped flask equipped with a magnetic 

stir bar was added the protected tertiary alcohol, 1,3-propanedithiol (1.36 mL, 13.5 

mmol), and DCM (27.0 mL).  The solution was cooled in an ice water bath and BF3•OEt2 

(1.70 mL, 13.5 mmol) was added.  The reaction was allowed to stir at 0 C for 45 minutes 

after which it was allowed to warm to room temperature.  The reaction progress was 

followed by TLC.  The TLC plates were developed using 50% EtOAc/Hex solution and 

visualized by UV light.   After a total of 2.5 hours the reaction was recooled to 0 C and 

acetone (5.00 mL) was added slowly.  The solution was then washed with water and 

brine and dried over MgSO4.  Concentration yielded the solid thiophenol which was 

moved forward to the next reaction without further purification. 

 
 Mesylate functionalization.  To a round bottomed flask equipped with a magnetic 

stir bar was added the thiophenol, 4-(dimethylamino)pyridine (DMAP) (0.99 g. 8.1 

mmol), triethylamine (1.1 mL, 8.1 mmol), and DCM (27 mL).  The solution was cooled 

in an ice water bath and methanesulfonyl chloride (0.63 mL, 8.1 mmol) was added.  The 
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reaction progress was followed by TLC.  The TLC plates were developed using 50% 

EtOAc/Hex solution and visualized by KMnO4.   After 3 hours of stirring at this 

temperature the reaction was quenched with the addition of 1M HCl (10 mL).  The 

solution was then washed with brine and dried over MgSO4.  Concentration and silica gel 

flash chromatography (10% gradient, 20%  60% EtOAc/Hex) delivered the isotwistane 

4.13 (1.2 g, 86% yield) as a white solid.   

 Rf = 0.36 (50% EtOAc/Hex); 1H-NMR (400 MHz; CDCl3):  4.76 (dd, J = 8.2, 

3.9 Hz, 1H), 4.33, (td, J = 12.1, 3.9 Hz, 1H), 4.01 (dd, J = 12.3, 5.7 Hz, 1H), 3.24 (s, 4H), 

3.02-2.88 (m, 3H), 2.82-2.74 (m, 2H), 2.54-2.44 (m, 3H), 2.33 (dd, J = 15.7, 3.9 Hz, 1H), 

2.23 (dd, J = 14.7, 3.7 Hz, 1H), 2.10-2.02 (m, 1H), 2.00 (s, 3H), 1.97-1.88 (m, 1H), 1.85-

1.72 (m, 4H), 1.56 (d, J = 13.3 Hz, 1H), 1.21 (d, J = 7.4, 3H); 13C-NMR (100 MHz; 

CDCl3)  194.95 (instrument artifact), 174.61, 169.54, 105.50, 97.14, 79.82, 62.81, 52.32, 

50.02, 47.53, 42.27, 40.89, 39.97, 38.40, 37.67, 36.55, 31.40, 30.75, 30.01, 27.03, 25.49, 

21.73, 20.80; FTIR (neat): 2911, 1765, 1737 cm-1; HRMS (ESI) m/z Calc’d.for 

C22H30O8S3 [M+H]+: 519.1182, found: 519.1177. 

 
Preparation of ketone 4.12 

 
 
 

 Wharton Fragmentation.  To a flask equipped with a magnetic stir bar was added 

isotwistane 4.13 (1.2 g, 2.3 mmol), 1M KOH in H2O (12 mL, 12 mmol), and MeOH:THF 

(1:1, 23 mL).  The reaction vessel was sealed and heated to 40 C.  The reaction progress 
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was followed by TLC and the plates were developed using 50% EtOAc/Hex solution and 

visualized by KMnO4.  After 2.5 hours the reaction was cooled in an ice water bath and 

concentrated HCl was added dropwise via Pasteur pipette until the solution reached a pH 

of 1.  The solution was then diluted with Ethyl Acetate and washed with brine (3x).  The 

organic was then dried over Na2SO4.  Concentration delivered a white solid (0.90 g, 98% 

yield), which was moved forward crude. 

 
 Acetal Formation with TsCl.  To a flask equipped with a magnetic stir bar was 

added the crude diol (0.090 g, 0.23 mmol), pyridine (5.0 mL), and p-toluenesulfonyl 

chloride (0.086 gm, 0.45 mmol).  The reaction was cooled in an ice water bath before the 

addition of DMAP (0.0028 g, 0.023 mmol) and the reaction was heated to 105 °C.  After 

6 hours the reaction was cooled to room temperature and quenched with the addition of 

1M HCl.  The solution was then transferred to a separatory funnel and the aqueous was 

extracted with EtOAc.  The combined organics were then washed with brine and 

concentrated.  Purification by silica gel flash column chromatography (30%  50% 

EtOAc/Hex) delivered ketone 4.12 (0.10 g, 12% yield) as a white solid. 

 
 Acetal Formation with NsCl.  To a flask equipped with a stir bar was added the 

crude diol (1.2 g, 3.0 mmol), 2-nitrobenzenesulfonyl chloride (NsCl) (1.3 g, 5.7 mmol), 

and DCM (30 mL).  To the stirred heterogeneous solution was added triethylamine 

(Et3N) (1.3 mL, 9.0 mmol) and the solution became homogeneous.  The reaction progress 

was followed by TLC using 50% EtOAc/Hex solution to develop and KMnO4 to 

visualize.  After 2 hours the reaction was diluted with DCM and washed with brine (2x).  

The organic was dried of MgSO4 and concentrated.  Silica gel flash column 
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chromatography (1% gradient, 0%  6% EtOAc/DCM) delivered ketone 4.12 (0.80 g, 

73% yield) as a white solid. 

 Rf = 0.43 (50% EtOAc/Hex); m.p. 163–165 C; 1H-NMR (400 MHz; CDCl3):  

5.75 (d, J = 1.6 Hz, 1H), 4.06 (dd, J = 9.2, 7.6 Hz, 1H), 4.00-3.94 (m, 1H), 3.88-3.81 (m, 

1H), 2.97-2.87 (m, 3H), 2.75-2.62 (m, 4H), 2.60-2.53 (m, 2H), 2.43 (q, J = 8.0 Hz, 1H), 

2.24 (dd, J = 14.6, 7.2 Hz, 1H), 2.18 (ddd, J = 13.3, 4.0, 1.0 Hz, 1H), 2.07-1.91 (m, 4H), 

1.69 (dq, J = 13.2, 3.9 Hz, 1H), 1.18 (d, J = 7.9 Hz, 3H); 13C-NMR (100 MHz; CDCl3)  

205.00, 175.85, 138.37, 133.33, 105.64, 61.31, 60.48, 49.29, 45.66, 42.17, 41.27, 39.93, 

36.96, 36.22, 33.37, 27.94, 27.45, 25.41, 22.63; FTIR (neat): 2921, 1785, 1698 cm-1; 

HRMS (ESI) m/z Calc’d.for C19H19NO9S [M+H]+: 381.1195, found: 381.1193. 

 
Preparation of -Keto Ester 4.32 

 
 
 

 Mander’s Reaction. To a flask equipped with a stir bar was added 

diisopropylamine (iPrNH2) (8 L, 0.06 mmol), and THF (0.2 mL).  The stirred solution 

was cooled to – 20 °C via a dry ice/acetonitrile bath and n-butyllithium (nBuLi) (0.04 

mL, 0.06 mmol, 1.53 M solution in hexanes) was added dropwise.  After stirring at this 

temperature for 50 minutes, the enolate solution was cannulated rapidly into a flask 

containing a solution of ketone 4.12 (0.02 g, 0.05 mmol) in THF (0.3 mL) cooled in a dry 

ice/acetone bath.  After 30 minutes, hexamethylphophoramide (HMPA) (9 L, 0.05 

mmol) and methyl cyanoformate (5 L, 0.06 mmol) were added dropwise to the enolate 
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solution.  The reaction progress was followed by TLC, using a 50% EtOAc/Hexane 

solution to develop and KMnO4 to visualize.  After 1 hour and 40 minutes the reaction 

was quenched with the addition of H2O (0.2 mL).  The solution was then diluted with 

DCM, washed with NH4Cl (sat. aq.) and brine, and dried over Na2SO4.  Silica gel flash 

column chromatography (10% gradient, 0%  70% EtOAc/Hex) delivered -keto ester 

4.32 (5 mg, 21% yield) as a clear oil.  Crude 1H NMR indicated a 2:1 ratio of undesired 

(4.32):desired (4.31). 

 Rf = 0.33 (50% EtOAc/Hex); 1H-NMR (400 MHz; CDCl3):  6.06 (d, J = 3.0, 

1H), 4.04 (t, J = 8.0 Hz, 1H), 3.99-3.83 (m, 1H), 3.82-3.71 (m, 1H), 3.74 (s, 3H), 3.51 (s, 

1H), 3.08-2.91 (m, 3H), 2.84-2.55 (m, 7H), 2.15-2.00 (m, 4H), 1.87 (m, 1H), 1.35 (d, J = 

7.8, 3H); 13C-NMR (100 MHz, CDCl3)  200.8, 174.5, 166.9, 135.1, 133.27, 106.1, 68.1, 

60.8, 52.8, 52.3, 43.0, 41.0, 40.4, 39.3, 37.2, 33.8, 32.7, 29.9 (H grease), 27.7, 27.2, 25.4, 

23.1; HRMS (ESI) m/z Calc’d.for C21H26O6S2 [M+Na]+: 461.1063, found: 461.1067. 

 
Preparation of Enol 4.31 and -keto Ester 4.11 

 
 

 To a vial equipped with a magnetic stir bar was added ketone 4.12 (20 mg, 0.05 

mmol) and THF (0.5 mL).  The solution was cooled in a dry ice/acetonitrile bath and 

lithium bis(trimethylsilyl)amide (LiHMDS) (1.0 M solution in Toluene, 0.05 mL, 0.05 

mmol) was added dropwise.  After 35 minutes at this temperature the reaction vessel was 

placed into an ice/salt water bath.  After 30 minutes the reaction vessel was recooled to –
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40 °C and after 10 more minutes hexamethylphosphoramide (HMPA) (0.1 mL, 0.6 

mmol) was added.  After stirring 20 minutes at – 40 °C, methyl cyanoformate (4 L, 0.05 

mmol) was added.  The reaction progress was followed by TLC and the plates were 

developed using 50% EtOAc/Hex solution and visualized by KMnO4.  After 25 minutes 

the reaction was quenched with the addition of sat. aq. NH4Cl (0.2 mL) and was warmed 

to room temperature. The solution was then diluted with DCM and washed sat. aq. 

NH4Cl and brine.  The organic was then dried of Na2SO4 and concentrated.  Silica gel 

flash column chromatography (10% gradient, 0%  50% EtOAc/Hex) delivered -keto 

ester 4.11 (3 mg, 14% yield) and its enol tautomer 4.31 (12 mg, 53% yield) as colorless 

oils. 

 
 Enol Tautomer: Rf = 0.52 (50% EtOAc/Hex); 1H-NMR (400 MHz; CDCl3):  

13.82 (s, 1H), 5.71 (s, 1H), 4.06 (t, J = 8.4 Hz, 1H), 3.97 (dd, J = 11.7, 5.4 Hz, 1H), 3.89-

3.79 (m, 4H), 3.27 (d, J = 2.2 Hz, 1H), 3.01-2.81 (m, 4H), 2.80-2.58 (m, 3H), 2.33 (q, J = 

8.0 Hz, 1H), 2.29-2.26 (m, 1H), 2.21 (dd, J = 14.5, 7.6 Hz, 1H), 2.08-1.92 (m, 3H), 1.61-

1.54 (m, 1H), 1.25 (H grease), 0.97 (d, J = 7.7 Hz, 3H); 13C-NMR (100 MHz; CDCl3)  

175.54, 174.62, 171.68, 136.10, 132.17, 103.49, 100.42, 61.52, 55.16, 52.71, 49.29, 

44.62, 41.55, 38.33, 36.18, 36.04, 33.64, 29.84 (H grease), 28.13, 27.62, 25.51, 22.85; 

FTIR (neat) 2928, 1780, 1733, 1635, 1575 cm-1; HRMS (ESI) m/z Calc’d.for C21H26O6S2 

[M+H]+: 439.1249, found: 438.1248. 

 
 Ketone Tautomer: Rf = 0.30 (50% EtOAc/Hex); 1H-NMR (400 MHz; CDCl3):  

5.82 (d, J = 2.1 Hz, 1H), 4.08-3.93 (m, 2H), 3.92-3.75 (m, 1H), 3.72 (s, 3H), 3.19 (s, 1H), 

2.97-2.85 (m, 4H), 2.75-2.57 (m, 4H), 2.55-2.47 (m, 1H), 2.24 (dd, J = 14.6, 7.0 Hz, 1H), 
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2.10-1.88 (m, 4H), 1.80-1.71 (m, 1H), 1.22 (d, J = 7.9 Hz, 3H); 13C-NMR (100 MHz; 

CDCl3)  200.58, 195.00 (instrument artifact), 174.65, 169.02, 138.83, 132.56, 104.49, 

61.68, 60.90, 60.74, 52.95, 49.67, 44.27, 40.74, 40.04, 36.76, 36.06, 32.83, 27.67, 27.17, 

25.36, 23.01; FTIR (neat) 2931, 1786, 1743, 1704 cm-1; HRMS (ESI) m/z Calc’d.for 

C21H26O6S2 [M+H]+: 439.1249, found: 439.1251. 

 
 Methyl Carbonate: Rf = 0.43 (50% EtOAc/Hex); 1H-NMR (400 MHz; CDCl3):  

5.76 (s, 1H), 5.26 (ddd, J = 5.7, 2.1, 1.0 Hz, 1H), 4.09-4.02 (m, 1H), 3.99-3.92 (m, 1H), 

3.83 (td, J = 12.1, 3.4 Hz, 1H), 3.76 (s, 3H), 2.87 (dddd, J = 25.5, 23.2, 11.5, 7.0 Hz, 3H), 

2.76-2.61 (m, 4H), 2.48 (d, J = 16.4 Hz, 1H), 2.38 (q, J = 8.0 Hz, 1H), 2.23 (dd, J = 14.5, 

7.6 Hz, 1H), 2.13-2.11 (m, 1H), 2.05-1.89 (m, 3H), 1.64-1.58 (m, 1H), (d, J = 8.0 Hz, 

3H); 13C-NMR (100 MHz; CDCl3)  195.00 (instrument artifact), 175.80, 154.20, 145.93, 

134.82, 133.28, 118.27, 104.05, 61.43, 55.28, 50.50, 49.37, 44.38, 41.69, 38.18, 36.81, 

36.24, 33.32, 28.18, 27.68, 25.50, 22.06: FTIR (neat) 2928, 2360, 1779, 1754 cm-1; 

HRMS (ESI) m/z Calc’d.for C21H26O6S2 [M+H]+: 439.1249, found: 439.1249. 

 
Preparation of Vinyl Triflate 4.33 

 
 
 

 From Enol 4.31.  To a flask equipped with a magnetic stir bar was added enol 

4.31 (0.05 g, 0.1 mmol) and THF (0.9 mL).  The solution was cooled in a dry 

ice/acetonitrile bath and a solution of potassium bis(trimethylsilyl)amide (0.5 M in 

toluene, 0.4 mL, 0.2 mmol) was added dropwise.  After 1 hour at this temperature a 
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solution of N-phenyl-bis(trifluoromethanesulfonimide) (0.07 g, 0.2 mmol) in THF (0.3 

mL) was added.  TLC was used to monitor the reaction progress.  The TLC plates were 

developed using 50% EtOAc/Hex solution and visualized with p-anisaldehyde stain.   

After 25 minutes the cooling bath was removed and the solution allowed to warm to 

room temperature for additional hour.  The reaction was quenched with the addition of a 

saturated solution of NH4Cl (0.3 mL, aqueous) and diluted with EtOAc.  The organic was 

washed with water and brine, and then dried over Na2SO4.  Concentration and 

purification via silica gel flash column chromatography (10% gradient elution from 0% 

 60% EtOAc/Hex) afforded vinyl triflate 4.33 (0.05 g, 65% yield) as a yellow residue. 

 

 
 
 

 From Ketone 4.11.  To a flask equipped with a magnetic stir bar was added 

ketone 4.11 (0.13 g, 0.30 mmol) and THF (3.0 mL).  The solution was cooled in a dry 

ice/acetonitrile bath and hexamethylphosphoramide (HMPA) (0.57 mL, 3.3 mmol) was 

added.  After 5 minutes a solution of potassium bis(trimethylsilyl)amide (0.5 M in 

toluene, 0.56 mL, 0.28 mmol) was added dropwise.  After 25 minutes the reaction was 

removed from the cooling bath and allowed to warm to room temperature where the 

solution became homogenous and dark red in color.  After 55 minutes a solution of N-

phenyl-bis(trifluoromethanesulfonimide) (0.11 g, 0.31 mmmol) in THF (1.0 mL) was 

added rapidly.  TLC was used to monitor the reaction progress.  The TLC plates were 

developed using 50% EtOAc/Hex solution and visualized with KMnO4 stain.  After 40 
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minutes the reaction was quenched with a saturated solution of NH4Cl (1.0 mL, aqueous).  

The solution was diluted with EtOAc and washed with NH4Cl (saturated, aqueous), brine, 

and dried over Na2SO4.  Concentration and purification via silica gel flash column 

chromatography (10% gradient elution from 0%  50% EtOAc/Hex) afforded vinyl 

triflate 4.33 (0.09 g, 53% yield) as a yellow residue. 

 Rf = 0.54 (50% EtOAc/Hex); 1H-NMR (400 MHz; CDCl3):  5.85 (d, J = 4.0 Hz, 

1H), 4.05-3.96 (m, 2H), 3.85-3.78 (m, 4H), 3.09 (s, 1H), 2.96-2.83 (m, 3H), 2.80 (d, J = 

4.0 Hz, 1H), 2.73-2.62 (m, 3H), 2.43 (qd, J = 7.8, 1.8 Hz, 1H), 2.38-2.33 (m, 1H), 2.27 

(dd, J = 14.5, 7.5 Hz, 1H), 2.07-1.91 (m, 3H), 1.68-1.61 (m, 1H), 1.20 (d, J = 7.8 Hz, 

3H); 13C-NMR (100 MHz; CDCl3)  174.6, 165.8, 145.2, 134.3, 134.0, 129.3, 102.7, 

61.4, 53.2, 50.6, 50.0, 47.7, 41.1, 37.4, 36.5, 36.1, 33.1, 27.9, 27.4, 25.3, 21.7;  FTIR 

(neat): 2955, 1782, 1736 cm-1;  HRMS (ESI) m/z Calc’d.for C22H25F3O8S3 [M+H]+: 

571.0742, found: 571.0741. 

 
Preparation of Malaic Anhydride 4.38 

 
 

 To a flask equipped with a magnetic stir bar was added palladium(II) acetate 

(0.036 g, 0.164 mmol), tri(2-furyl)phosphine (0.190 g, 0.820 mmol), a solution of vinyl 

triflate 4.33 (0.093 g, 0.164 mmol) in DMF (3.2 mL), diisopropylethylamine (0.210 mL, 

1.23 mmol), and H2O (0.220 mL, 12.30 mmol) (in that order).  The reaction vessel was 

purged with carbon monoxide (CO) for 15 minutes by submerging the tip of an 18-gauge 

syringe needle into the solution and stirring vigorously.  The gas inlet was replaced with a 
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balloon containing CO and the reaction was heated in a 90 °C oil bath.  After 2.5 hours 

the reaction was removed from the heating bath and allowed to cool to room temperature.  

After 30 minutes of cooling the reaction was quenched with 1 M HCl (3.20 mL).  The 

aqueous was extracted with EtOAc (3x) and the organics washed with brine and dried 

over Na2SO4.  Concentration and purification via silica gel flash column chromatography 

(10% gradient elution from 0%  60% EtOAc/Hex) afforded maleic anhydride 4.38 

(0.045 g, 63% yield) as a yellow solid. 

 Rf = 0.48 (50% EtOAc/Hex); 1H-NMR (400 MHz; CDCl3):  5.78 (s, 1H), 4.09-

4.02 (m, 2H), 3.89 (td, J = 12.3, 3.1 Hz, 1H), 3.31 (s, 1H), 3.10 (d, J = 20.0 Hz, 1H), 

3.02-2.86 (m, 3H), 2.75-2.64 (m, 2H), 2.58 (dd, J = 19.2, 2.3 Hz, 1H), 2.54-2.43 (m, 2H), 

2.35 (dd, J = 14.5, 7.4 Hz, 1H), 2.17-2.08 (m, 1H), 2.07-1.94 (m, 2H), 1.72 (d, J = 12.0 

Hz, 1H), 0.92 (d, J = 7.7 Hz, 3H); 13C-NMR (100 MHz, CDCl3)  174.9, 164.8, 164.5, 

142.4, 140.5, 135.9, 133.7, 102.8, 61.6, 51.6, 45.4, 44.3, 41.3, 38.4, 36.9, 35.9, 32.7, 27.9, 

27.4, 25.4, 22.6;  FTIR (neat): 2925, 1761 cm-1;  HRMS (ESI) m/z Calc’d.for C21H22O6S2 

[M+H]+: 435.0936, found: 435.0933.   

 
Preparation of Carboxylic Acid 4.10 

 
 
 

 Thioacetal deprotection. To a flask equipped with a magnetic stir bar was added 

maleic anhydride (0.04 g, 0.09 mmol) 4.38 and taken up in acetone:H2O (9:1, 0.4 mL).  A 

solution of NBS (0.03 g, 0.2 mmol) and AgClO4 (0.04g, 0.2 mmol) in acetone:H2O (9:1, 
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0.6 mL) was added at room temperature.  TLC was used to monitor the reaction progress.  

The TLC plates were developed using a 50% EtOAc/Hex solution and visualized with 

KMnO4.  After 30 minutes the reaction was worked up by diluting with EtOAc and 

transferred to a separatory funnel, where the solution was washed with H2O.  The 

aqueous layer was extracted with EtOAc (2x) and the combined organics washed with 

brine and then dried over Na2SO4.   Concentration and purification via silica gel flash 

column chromatography (10% gradient elution from 0%  60% EtOAc/Hex) afforded 

the aldehyde as an oil. 

 
 Pinnick Oxidation. To a flask equipped with a magnetic stir bar was added the 

aldehyde (0.02 g, 0.05 mmol) and MeCN (0.5 mL).  This was allowed to dissolve before 

the addition of H2O (0.5 mL) and cooling in an ice/water bath.  H2O2 (30%, 0.005 mL, 

0.05 mmol) was then added followed by a solution of NaClO2 (0.01 g, 0.1 mmol) and 

NaH2PO4 (0.003 g, 0.03 mmol) in H2O (0.5 mL).  TLC was used to monitor the reaction 

progress.  The TLC plates were developed using 75% EtOAc/Hex and visualized with 

KMnO4.  After 1 hour in the cooling bath the reaction was quenched with the addition of 

a saturated solution Na2S2O3 (1 mL, aqueous).  The solution was diluted with EtOAc and 

transferred to a separatory funnel, where the organic layer was washed with H2O, and 1M 

HCl.  The aqueous was extracted with EtOAc (2x) and combined organics dried over 

Na2SO4.  Concentration and purification via silica gel flash column chromatography 

(25% gradient elution from 25%  100% EtOAc/Hex:5% AcOH)  afforded carboxylic 

acid 4.10 (0.008 g, 23% yield). 

 Rf = 0.13 (50% EtOAc/Hex:5% AcOH); 1H-NMR (400 MHz; CD3CN):  5.88 (s, 

1H), 4.01-3.96 (m, 1H), 3.82 (td, J = 11.9, 3.3 Hz, 1H), 3.25 (s, 1H), 3.07 (q, J = 16.0 Hz, 
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2H), 2.90-2.72 (m, 2H), 2.48-2.40 (m, 2H), 2.08-1.99 (m, 1H), 1.77-1.71 (m, 1H), 0.91 

(d, J = 8.0 Hz, 3H);  13C-NMR (100 MHz; CD3CN)  190.3, 190.2, 176.4, 165.9, 142.6, 

141.9, 136.9, 134.1, 104.1, 62.3, 49.7, 45.2, 43.1, 39.4, 36.5, 36.3, 33.0, 22.4;  FTIR 

(neat): 3366,  2922, 1765, 1702 cm-1;  HRMS (ESI) m/z Calc’d.for C18H16O8 [M+NH4]+: 

378.1189, found: 378.1182.   
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Figure B.17  13C-NMR spectrum (100 MHz; CDCl3) of compound 4.18e 

 
Figure B.18  FTIR spectrum (thin film/NaCl) of compound 4.18e 
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Figure B.20  13C-NMR spectrum (100 MHz; Benzene-D6) of compound 4.16e 

 
Figure B.21  FTIR spectrum (thin film/NaCl) of compound 4.16e 
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Figure B.26  13C-NMR spectrum (100 MHz; CDCl3) of compound 4.27 
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D.1  X-ray Crystallography Reports Relevant to Chapter Two 

D.1.1  Crystal Structure Analysis of Norbornane 2.39



















D.2  X-ray Crystallography Reports Relevant to Chapter 4 

D.2.1  Crystal Structure Analysis of maleic anhydride 4.38















D.3  X-ray Crystallography Reports Relevant to Chapter 5 

D.3.1  Crystal Structure Analysis of ketone 5.24
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