
ABSTRACT
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Winston Ewert, Ph.D.

Chairperson: Robert J. Marks II, Ph.D.

Information theory is a well developed field, but does not capture the essence

of what information is. Shannon Information captures something in its definition

of improbability as information. But not all improbable events convey information.

Kolmogorov complexity captures the idea of information as something easily described.

But not all easily described objects are information. The proposed Algorithmic

Specified Complexity takes into account both Shannon Information and Kolmogorov

complexity to gain a fuller evaluation of information. We demonstrate this concept and

develop several examples. We show the low probability of high Algorithmic Specified

Complexity. We apply the concept to both images and functional machines from the

Game of Life.
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CHAPTER ONE

Measuring Information

This chapter published as: Ewert, W., Dembski, W. A., & Marks II, R. J. (2012).
Algorithmic Specified Complexity. Engineering and Metaphysics. Tulsa, OK.

1.1 Introduction

Intuitively, humans identify objects such as the carved faces at Mount Rushmore

as qualitatively different from that of a random mountainside. However, quantifying

this concept is an objective manner has proved difficult. Both mountainsides are made

up of the same material components. They are both subject to the same physical

forces, and will react the same to almost all physical tests. Yet, there does appear to

be something quite different about Mount Rushmore. There is a special something

about carved faces that separates it from the rock it is carved in.

This “special something” is information. Information is what distinguishes

an empty hard disk from a full one. Information is the difference between random

scribbling and carefully printed prose. Information is the difference between car parts

strewn over a lawn, and a working truck.

While humans operate using an intuitive concept of information, attempts to

develop a theory of information has thus far fallen short of the intuitive concept.

Claude Shannon developed what its today known as Shannon information theory

[1]. Shannon’s concern was studying the problem of communication, that of sending

information from one point to another. However, Shannon explicitly avoided the

question of the meaningfulness of the information being transmitted, thus not quite

capturing the concept of information as we are defining it. In fact, under Shannon’s

model random noise typically exhibits a large amount of information, the precise

opposite of the intuitive concept.
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Another model of information is that of algorithmic information theory [2, 3, 4].

Techniques such as Kolmogorov complexity measure the complexity of an object as

the minimum length computer program required to recreate the object; Chaitin refers

to such minimum length programs as elegant [5]. As with Shannon information,

random noise is the most complex because it requires a long computer program to

describe. In contrast, simple patterns are not complex because a short computer

program can describe the pattern. But neither simple patterns or random noise are

what we think of as information. As with Shannon information, there is a disconnect

between Kolmogorov complexity and conceptual information.

Other models are based on algorithmic information theory, but also take in

account the computational resources required for the programs being run. Levin

complexity adds the log of the execution time to the complexity of the problem [6].

Logical depth, on the other hand, is concerned with the execution time of the shortest

program [7]. There is a class of objects which are easy to describe but expensive to

actually produce. It is argued [8] that objects in this class must have been produced

over a long history. Such objects are interesting, but do not seem to capture all of

what we consider to be the intuitive concept of information. English text or Mount

Rushmore correspond to what we think of as information, but its not clear that they

can be most efficiently described as long running programs.

One approach to information is the specified complexity as expressed by Dembski

[9]. Dembski’s concern is that of detecting design, the separation of that which can be

explained by chance or necessity from that which is the product of intelligence. In order

to infer design, and object must be both complex and specified. Complexity refers

essentially to improbability. The probability of any given object depends on the chance

hypothesis proposed to explain it. Improbability is a necessary but not sufficient

condition for rejecting a chance hypothesis. Events which have a high probability

under a given chance hypothesis do not give us reason to reject that hypothesis.
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Specification is defined as conforming to an independently given pattern. The

requirement for the pattern to be independent of the object being investigated is

fundamental. Given absolute freedom of pattern selection, any object can be made

specified by selecting that object as the pattern. It is not impressive to hit a bullseye

if the bullseye is painted on after the arrow has hit the wall. It is impressive to hit

the bullseye if the bullseye was painted before the arrow was fired.

Investigators are often not in the position of being able to choose the target

prior to investigating the object. Consider the example of life. Life is a self-replicating

process, and it would seem that an appropriate specification would be self-replication.

Self-replication is what makes life such a fascinating area of investigation as compared

to rocks. We know about self-replication because of our knowledge of life, not as an

independent fact. Therefore it does not qualify as an independent specification. If we

did not already have examples of self-replicating entities, we would not have picked as

the specification.

The same is true of almost any specification in biology. It is tempting to consider

flight a specification, but we would only be defining the pattern of flight because we

have seen flying animals. As with life in general, specific features in biology cannot be

specified independently of the objects themselves.

The concept of specification has been criticized for being imprecisely defined

and unquantifiable. It is also charged that the maintaining the independence of the

patterns is difficult. But specification has been defined in a mathematically rigorous

manner in several different ways [9, 10, 11]. Kolmogorov complexity, or a similar

concept, is a persistent method used in this definitions. Our goal is to present and

defend a simple measure of specification that clearly alleviates these concerns. Towards

this end, we propose to use conditional Kolmogorov complexity to quantify the degree

of specification in an object. Combining this with the complexity, we can quantify the

specified complexity as algorithmic specified complexity.
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As noted, Kolmogorov complexity has been suggested as a method for measuring

specification. The novelty in method presented in this paper is the use of conditional

Kolmogorov complexity. However, this paper also elucidates a number of examples of

algorithmic compressibility demonstrating wider applicability then is often realized.

1.2 Method

1.2.1 Kolmogorov

Kolmogorov complexity is a method of measuring information. It is defined as

the minimum length computer program, in bits, required to produce a binary string.

K(X) = min
U(p,)=X|p∈P

|p| (1.1)

where

• K(X) is the Kolmogorov complexity of X

• P is the set of all possible computer programs

• U(p, ) is the output of program p run without input

The definition is given for producing binary strings.

Kolmogorov complexity measures the degree to which a given bitstring follows a

pattern. The more a bitstring follows a pattern, the shorter the program required to

reproduce it. In contrast, if a bitstring exhibits no patterns, it is simply random, and

a much longer program will be required to produce it.

Consider the example of a random binary string, 100100000010100000001010.

It can be produced by the following Python program:

print ’100100000010100000001010’

In contrast, we have the string, 000000000000000000000000, which can be produced

by

print ’0’ * 24

4



Both strings are of the same length, but the string following a pattern requires a

shorter program to produce. Thus we have a technique for measuring the degree to

which a binary string follows a pattern.

Specification is defined as following an independently given pattern. Kolmogorov

complexity gives us the ability to precisely define and quantify the degree to which a

binary string follows a pattern. Therefore, it seems plausible that we can measure

specification using Kolmogorov complexity. The more compressible a bitstring, the

more specified it is.

However, Kolmogorov complexity seems unable to capture the entirety of what

is intended by specification. Natural language text is not reducible to a simple pattern;

however, it is an example of what we’d consider specification. The design of an

electronic circuit should also be specified, but it is not reducible to a simple pattern.

In fact, the cases of specification that Kolmogorov complexity seems able to capture

are limited to objects which exhibit some very simple pattern. But these are not the

objects of most interest in terms of specification.

We use an extension of Kolmogorov complexity known as conditional Kolmogorov

complexity [12]. The program now has access to additional data as its input.

K(X|Y ) = min
U(p,Y )=X|p∈P

|p| (1.2)

where U(p, Y ) is the output of running program p with input Y . The input provides

additional data to the program. As a result, the program is no longer restricted to

exploiting pattern in the desired output, but can take advantage of the information

provided by the input. Henceforth, we will refer to this input as the context.

The use of context allows the measure to capture a broader range of specifications.

It is possible to describe many bitstrings by combining a short program along with

the contextual information. A useful range of specifications can be captured using

this technique.
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1.2.2 Algorithmic Specified Complexity

To combine the measurement of specification and complexity, we use the following

formula for algorithmic specified complexity (ASC).

A(X,C, p) = − log p(X)−K(X|C) (1.3)

where

• X is the bitstring being investigated

• C is the context as a bitstring

• p is the probability distribution which we suppose X to have been selected

from

• p(X) is the probability of X occurring according to the chance hypothesis

under consideration

Since high compressibility corresponds to specification, we subtract the compressed

length of the string. Thus high improbability counts for specified complexity, but

incompressible strings count against it.

For this number to become large requires X to be both complex, (i.e. improbable),

and specified, (i.e. compressible). Failing on either of these counts will produce a low

or negative value. Since Kolmogorov complexity can, at best, be upper bounded, the

ASC can, at best, be lower bounded.

At best this measure can reject a given probability distribution. It makes no

attempt to rule out chance based hypothesis in general. However, it can conclude

that a given probability distribution does a poor job in explaining a particular item.

The value of ASC gives a measure of the confidence we can have in rejecting a chance

hypothesis.

1.2.3 Functionality

Perhaps the most interesting form of specification is that of functionality. It is

clear that machines, biological structures, and buildings all have functionality. But
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quantifying that in an objective manner has proven difficult. However, ASC gives us

the ability to do this.

Any machine can be described, in part, by tests that it will pass. You can test

the functionality of a car by seeing whether it accelerates when the gas or brake pedals

are pushed. You can test the functionality of a cell by seeing whether it self-replicates.

A test, or a number of tests, can be defined to identify the functionality of an object

The existence of a test gives us the ability to compress the object. Consider the

following pseuocode program:

counter = 0

for each possible building design

if building won’t fall over

counter += 1

if counter == X

return building design

where X is some number. This program will output the design for a specific building.

Different values of X will produce different buildings. But any building that will not

fall over can be expressed by this program. It may take a considerable amount of space

to encode this number. However, if few designs are stable, the number will take much

less space than required to actually specify the building plans. Thus the stability of

the building plan enables compression, which in turn indicates specification.

Kolmogorov complexity is not limited to exploiting what humans perceive as

simple patterns. It can also capture other aspect such as functionality. Functionality

can be described as passing a test. As a result functional objects are compressible.
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1.3 Examples

1.3.1 Natural Language

As the first example, consider the sentence: “the quick brown fox jumps over

the lazy dog.” We can encode this sentence as UTF-32, a system for encoding that

allows the encoding of symbols from almost any alphabet. Since each character takes

32 bits, the message will be encoded as a total of 1376 bits. In this case, we will take

the context to be the English alphabet along with a space. This is a minimal level of

information about the English language.

To specify one of the 27 characters, will require log2 27 bits. To specify the 43

character in the sentence will thus take 43 log2 27 bits. We also need to record the

number of characters at 2 log2 43 ≈ 10.85 bits. 1 Altogether, the bits required to

specify the message requires 43 log2 27 + 2 log2 43 ≈ 215.32 bits.

However, in order to actually give a bound for Kolmogorov complexity, we must

also include the length of the computer program which interprets the bits. Here is an

example computer program in Python which could interpret the message

print ’’.join(alphabet[index] for index in encoded_message)

This assumes that the alphabet and encoded message are readily available and in

form amenable to processing within the language. It may be that the input has to

be preprocessed, which would make the program longer. Additionally, the length of

the program will vary heavily depending on which programming language is used.

However, the distances between different computers and languages only differs by a

constant [13]. As a result, it is common practice in algorithmic information theory, to

discount any actual program length and merely include that length as a constant, c.

Consequently, we can express the conditional Kolmogorov complexity as

K(X|C) ≤ 215.32 bits + c. (1.4)

1 A more compact representation for numbers is available. See the log∗ method in Cover and
Thomas [13].
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The expression is less than rather than equal, because it is possible that an even more

efficient way of expressing the sentence exists. But we know that at least this efficiency

is possible.

The encoded version of the sentence requires 32 bits for each character, giving a

total of 1376 bits. We adopt a simplistic probability model, supposing that each bit is

generated by the equivalent of a coin flip. This means that the complexity, − logP (X)

is 1376 bits. Using equation 1.3,

A(X,C, p) = − log(p)−K(X|C) ≥ 1376 bits− 215.32 bits− c = 1160.68 bits− c.

(1.5)

This means that we have 1166 bits of algorithmic specified complexity by equation 1.3.

Those 1166 bits are a measure of the confidence in rejecting the hypothesis that

the sentence was generated by random coin flips. The large number of bits gives a

good indication that is highly unlikely that this sentence was generated by randomly

choosing bits.

However, we can also analyze the hypothesis that the sentence was generated

by choosing random English letters. In this case we can calculate the probability of

this sentence as

P (X) =

(
1

27

)43

. (1.6)

The complexity is then

− logP (X) = − log

(
1

27

)43

= 43 log 27 ≈ 204.46 bits. (1.7)

In which case the algorithmic specified complexity becomes

A(X,C, p) = − log p(X)−K(X|C) (1.8)

=≥ 204.46 bits− 215.32 bits− c (1.9)

= −10.85 bits− c. (1.10)

The negative bound indicates that we have no reason to suppose that this sentence

could not have been generated by a random choice of English letters. The bound is
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negative as a result of two factors. In the specification, 10.85 bits were required to

encode the length. On the other hand, the probability model assumes a length. Hence

the negative bits indicate information which the probability model had, but was not

provided in the context. Since the only provided context is that of English letters,

this is not a surprising result. We did not identify any sort of pattern beyond that

explained by the probability model.

We can also expand the context. Instead of providing the English alphabet as our

context, we provide the word list of the Oxford English Dictionary [14]. In the second

edition of that dictionary there were 615,100 word forms defined or illustrated. For

the purpose of the alphabet context, we encode each letter as a number corresponding

to that character. In this case, we can choose a number corresponding to words in the

dictionary. We can thus encode this message:

K(X|C) ≤ 9 log2 615, 100 + 2 log2 9 + c ≈ 179.41 + c. (1.11)

Access to the context of the English dictionary allows much better compression than

simply the English alphabet as comparing equations 1.4 and 1.11 shows.

Using equation 1.3, we determine

A(X,C, p) = − log p(X)−K(X|C) (1.12)

≥ 204.46 bits− 179.41 bits− c (1.13)

= 25.05 bits− c. (1.14)

This gives us confidence to say this sentence was not generated by randomly choosing

letters from the English alphabet.

It would be possible to adopt a probability model that selected random words

from the English language. Such a probability model would explain all of the specifi-

cation in the sentence. It would also be possible to include more information about

the English language such that the specification would increase.
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This technique depends on the fact that the numbers of words in the English

language is much smaller then the number of possible combinations of letters. If the

dictionary contained every possible combination of letters up to some finite length, it

would not allow compression, and thus we would not be able to indicate specification.

A language where all possible combinations of letters were valid words could still show

specification, but another technique would have to be used to allow compression.

But one could also use a much smaller dictionary. A dictionary of 10 words

would be sufficient to include all the words in this sentence. The ASC formula would

give a much smaller compressed bound:

K(X|C) ≤ 9 log2 10 + 2 log2 9 ≈ 36.24 bits. (1.15)

This is a reduction of over 100 bits from equation 1.11. This is because it takes about

16 bits less to encode each word when the dictionary is this small. This is because the

sentence is much more closely related to the context. It requires much less additional

information to use the context.

But it is possible to include words not included in the dictionary. The program

would have to fall back on spelling the word one letter at a time. Only bounds of

the ASC can be computed. It is always possible a better compression exists; i.e. the

object could be more specified than we realize.

1.3.2 Random Noise

While natural language is an example of something that should be specified,

random noise is an example of something which should not. We will calculate the ASC

of a random bitstring. This bitstring will contain 1000 bits, where each bit is assigned

with equal probability 1 or 0. Since randomness is incompressible, calculating the

Kolmogorov complexity is easy. The only way of reproducing a random bitstring is to

describe the whole bitstring.

K(X) ≤ 2 log2 1000 + 1000 + c ≈ 1020 bits + c (1.16)

11



The probability of each bitstring is 2−1000 and thus the complexity will be 1000 bits.

Calculating the ASC:

A(X,C, p) = − log p(X)−K(X|C) ≥ 1000 bits−1020 bits−c = −20 bits−c. (1.17)

As expected, the ASC is negative, there is no evidence of pattern in the string which

are not explained by the probability model.

However, we can also consider the case of a biased distribution. That is, 1 and

0 are not equally likely. Instead, a given bit will be one two thirds of the time, while

zero only one third of the time. The entropy of each bit can be expressed as

H(Xi) = −1

3
log2

1

3
− 2

3
log2

2

3
≈ 0.6365 bits. (1.18)

for any i The entropy of a bit is the number of bits required in an optimal encoding

to encode each bit. This means we can describe the whole sequence as

K(X) ≤ 2 log2 1000 + 1000 ∗H(Xi) + c ≈ 656.5 bits + c. (1.19)

If we adopt the uniform probability model, the complexity is still 1000 bits and

A(X,C, p) = − log p(X)−K(X|C) (1.20)

≥ 1000 bits− 656.5 bits− c (1.21)

= 343.3 bits− c. (1.22)

This random sequence has a high bound of algorithmic specified complexity. It is

important to remember that the ASC bound only serves to measure the plausibility of

the random model. It does not exclude the existence of another more accurate model

that explains the data. In this case, if we use the actual probability model used to

generate the message

− log2(p) = H(Xi) ∗ 1000 ≈ 636.5 bits. (1.23)
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and the resulting ASC:

A(X,C, p) = − log p(X)−K(X|C) (1.24)

≥ 636.5 bits− 656.5 bits− c (1.25)

= −20 bits− c. (1.26)

The bound of ASC gives us reason to reject a uniform noise explanation for this data,

but not the biased coin distribution.

Dembski [9] has considered the example of ballot rigging where a political party

is almost always given the top billing on the ballot listing candidates. Since the

selection is supposed to be chosen on the basis of a fair coin toss, this is suspicious.

ASC can quantify this situation. We can describe the outcome by giving the numbers

of heads and tails, follow by the same representation as for the biased coin distribution.

K(X) ≤ 2 logXh + 2 logXt + log

(
Xt +Xh

Xh

)
+ c (1.27)

where Xh is the number of heads, Xt is the number of tails We assume a probability

model of a fair coin

− log2(p) = Xh +Xtbits. (1.28)

This gives us:

A(X,C, p) = Xh +Xt − 2 logXh − 2 logXt − log

(
Xt +Xh

Xh

)
− c (1.29)

= Xh +Xt − log

(
X2
hX

2
t

(
Xt +Xh

Xh

))
− c. (1.30)

Figure 1.1 shows the result of plotting this equation for varying numbers of head

and tails given 20 coin tosses. As expected, for either high numbers of tails or high

number of heads, the bound of ASC is high. However, for an instance which looks like

a random sequence, the ASC is minimized.

1.3.3 Playing Cards

Another interesting case is that of playing cards for poker. In playing cards

if the distribution is not uniform; somebody is likely cheating. For the purpose of
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Figure 1.1: ASC for varyingly biased coin sequences and 20 coin tosses.

Table 1.1: Poker hand frequency.

Name Frequency
Royal Flush 4
Straight Flush 36
Four of Kind 624
Full House 3744
Flush 5108
Straight 10200
Three of a Kind 54912
Two Pair 123552
One Pair 1098240
None 1302540

investigating card hands, we can simply assume a uniform random distribution over

all five-card poker hands.

We will consider the hands for the game of poker. A poker hand is made up of 5

cards. Some categories of hands are rarer then others. Table 1.1 shows the frequency

of the different hands.

Given a uniform distribution, every poker hand has the same probability, and

thus the same complexity. There are 2,598,960 possible poker hands. This gives us

− log2 p(X) = − log2(
1

2, 598, 960
) ≈ 21.3 bits. (1.31)
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While the probability of every poker hand is the same, the Kolmogorov complexity

is not. To describe a royal flush requires specifying that is a royal flush, and which

suit it is in. However, describing a pair requires specifying which the paired value as

well as both suit in addition to the three cards not involved in the pair. In general,

describing hand requires specifying the type of hand, which of all the hands with that

type. This gives us

K(Hi|C) ≤ log2 10 + log2 |H|+ c. (1.32)

where 10 is the number of types of hands. H is the set of all hands of a particular

type, and Hi is a particular hand in that set.

There are 1,098,240 possible pairs. Putting this in Equation 1.32 gives:

K(Hi|C) ≤ log2 10 + log2 |H|+ c ≈ 23.39 bits + c. (1.33)

On the other hand, describing a pair without using the context gives

K(Hi|C) ≤ log2 2, 598, 960 + c ≈ 21.3 bits + c. (1.34)

Single pairs are so common that the space required to record that it was a pair is more

then the space required to record the duplicate card straightforwardly. Accordingly,

we must take the minimum of the two methods

K(Hi|C) ≤ min(log2 10 + log2 |H|, log2 2, 598, 960) + c. (1.35)

Table 1.2 shows the ASC for the various poker hands. Rare hands have large

ASC, but command hands have low ASC. This parallels what we would expect, because

a rare hand might cause us to expect cheating, but a common hand will not.

In other card games, a card is turned over after hands have been dealt to

determine trump. The suit of the card is taken to trump for that round of the game.

If the same suit is repeatedly chosen as trump, someone may ask what the odds are.

This question can be difficult to answer because every possible sequence of trump suits
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Table 1.2: The ASC of the various poker card hands.

Name Frequency Complexity Compressed Length ASC
Royal Flush 4 21.310 5.322 15.988
Straight Flush 36 21.310 8.492 12.818
Four of a Kind 624 21.310 12.607 8.702
Full House 3744 21.310 15.192 6.117
Flush 5108 21.310 15.640 5.669
Straight 10200 21.310 16.638 4.671
Three of Kind 54912 21.310 19.067 2.243
Two pair 123552 21.310 20.237 1.073
One pair 1098240 21.310 21.310 0.000
None 1302540 21.310 21.310 0.000

is equally likely. Yet, it is deemed unusual that the same suit is trump repeatedly.

Algorithmic specified complexity allows us to capture this.

We represent the suits as a bit sequence, using two bits for each suit.

K(X) = log2 4 + log2H + c = 2 + log2H + c (1.36)

where 4 is the number of suits, and H is the number of hands played. The complexity

of the sequence is

− logP (X) = 4
−|X|

2 = 2H. (1.37)

The ASC is then

ASC(X, p) = 2H − 2− log2H − c. (1.38)

Note that this equation becomes −c when H = 1. A pattern repeating once is

no pattern at all, and doesn’t provide specification. Figure 1.2 shows the ASC for

increasing numbers of hands. The more times the same suit is chosen as trump, the

larger the number of bits of ASC. Given the same trump for many rounds becomes

less and less probable.
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Figure 1.2: A plot of ASC for getting the same suit repeatedly.

1.3.4 Folding Proteins

In biology, an important prerequisite to a protein being functional is that it

folds. The number of all possible proteins folding has been estimated.

the overall prevalence of sequences performing a specific function
by any domain-sized fold may be as low as 1 in 1077 [15]

We can create a program which outputs a particular protein, given the laws of

physics.

for all proteins of length L

run protein in a physics simulator

if protein folds

add to list of folding proteins
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output the Xth protein from the list

This program given different choices of L and N will output any folding protein

that we choose. This means that we can describe the protein by providing those two

numbers.

K(X|C) = 2 log2 L+ log2 FL + c (1.39)

where C is the context, in this case the law of physics. FL is the number of folding

proteins of length L. Taking Axe’s estimate [15], an assuming simplistically, that it

applies for all lengths of proteins:

FL = 10−774L (1.40)

logFL = −77 log 10 + L log 4 (1.41)

so

K(X|C) = 2 log2 L+ log2 FL + c = 2 log2 L+−77 log 10 + L log 4. (1.42)

For our probability model, we will suppose that each base along the DNA chain

is uniformly chosen. It should be emphasized that according to the Darwinian model

of evolution, the bases are not uniformly chosen. This supposition only serves to test

a simplistic chance model of protein origin. We can calculate the probability as

− log2 Pr(X) = − log2 4−L = L log2 4. (1.43)

Caution should be used in apply this formula. It assumes that proportion of functional

proteins is applicable for all lengths, and implies that a fractional number of proteins

fold.

Finally calculating the ASC,

ASC(X, p) = L log 4− 2 log2 L+ 77 log2 10− L log2 4− c (1.44)

= −2 log2 L+ 77 log2 10− c. (1.45)
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The final bound for ASC depends little on the length of the protein sequence which

only comes to play in the logarithmic term. The significant term is the 77 log2 10 ≈

255.79 bits. This means that we have good reason to believe that folding sequences

were not generated randomly from a uniform distribution.

1.3.5 Functional Sequence Complexity

Kirk Durston et. al. have defined the idea of functional sequence complexity [16].

Functional sequence complexity is related to a special case of algorithmic specified

complexity.

A protein is made from a sequence of amino acids. Some sequences have

functionality and some do not. The case considered in section 1.3.4 above of folding is

one particular case. But perhaps more interesting is considering the case of various

proteins which perform useful biological functions.

Let Ω be the set of all proteins. Let F be the set of all proteins which pass a

functionality test. Let f(x) be a probability distribution over F . Both F and f(x)

can be produced by a simple algorithm using a functionality test on each element of

Ω. Consequently, F and f(x) can be described using a constant program length.

Consider the average for ASC over all elements in F .

∑
x∈F

f(x)A(x,C, p) =
∑
x∈F

f(x)(− log p(x)−K(x|C)) (1.46)

=
∑
x∈F

−f(x) log p(x)−
∑
xinF

f(x)K(x|C)) (1.47)

We can describe any element x given the probability distribution and log f(x) bits.

Given that we can calculate f(x) and F with a constant program gives:

K(x|C) ≤ log−f(x) + c. (1.48)

Place this into equation 1.47.

∑
x∈F

f(x)A(x,C, p) ≥
∑
x∈F

−f(x) log p(x)−
∑
x∈F

−f(x) log f(x)−
∑
x∈F

c (1.49)
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The middle term is recognized as the Shannon entropy.

∑
x∈F

f(x)A(x,C, p) ≥
∑
x∈F

−f(x) log p(x)−H(f)− c
∑
x∈F

f(x) (1.50)

If we assume that the distribution p is uniform, p(x) = 1
|Ω| ,∑

x∈F

f(x)A(x,C, p) ≥ log2 |Ω|
∑
x∈F

f(x)−H(f)− c
∑
x∈F

f(x). (1.51)

The two summations over F, are summations over a probability distribution and

therefore 1. ∑
x∈F

f(x)A(x,C, p) ≥ log2 |Ω| −H(f)− c (1.52)

Equation 5 in Durston’s work, adjusting for notation is

log |Ω| −H(f). (1.53)

This equation derives from making the same uniformity assumption that we have

made here. Thus, for the uniform probability distribution case,

∑
x∈F

(f(x)A(x,C, p)) + c ≥ log |Ω| −H(f). (1.54)

This establishes the relationship between ASC and FSC. The difference is that the

ASC is a lower bound, and includes a constant. This is the same constant as elsewhere:

the length of the program required to describe the specification.

1.4 Objections

1.4.1 Natural Law

We have argued that compressibility in the presence of context is a necessary

condition for information. This is in contrast to other who have argued that lack

of compressibility is a necessary condition for information [17]. But compressible

objects lack complexity. Because a compressible object is describable as some simple

pattern, it is amenable to being produced by a simple process. Many objects in the

real world follow simple patterns. Water tends to collect at lower elevations. Beaches
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follow a slopping pattern. Sparks fly upwards. But these patterns are the result of

the operation of simple law-like processes. Even if the explanations for these patterns

were unknown, we would suppose due to the simplicity of the pattern shown that

some simple explanation existed.

The premise behind this use of compressibility is that it identifies what human

would see as simple patterns. Abel writes:

A sequence is compressible because it contains redundant order
and patterns. [17]

The problem is that algorithms are very versatile and allow the description of many

patterns beyond that which humans would see as patterns. As has been shown by

the various examples in this paper, many objects which do not exhibit what humans

typically identify as redundant order and patterns are in fact compressible. Significantly,

we have argued that functionality actually allows compressibility. Contrary to what

Abel states, functional sequences are compressible by virtue of the functionality they

exhibit. All of the sequences that Abel holds to be mostly incompressible are actually

compressible.

But are compressible objects amenable to explanation by simple processes? Do

all compressible objects lack complexity? If this were true, it would be problematic for

algorithmic specified complexity because all specified objects would also be not complex,

and no object would ever be both specified and complex. But many compressible

objects do not appear to amenable to explanation by a simple process.

As discussed, English text is compressible given a knowledge of the English

language. This does not somehow make it probable that English text will appear on

a beach carved out by waves. Ninety degree angles are very compressible; yet, they

are not typically found in nature. The existence of an explanation from the laws of

nature does not appear to follow from compressibility.
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Kolmogorov complexity deliberately ignores how long a program takes to run.

It is only concerned with the length of the program’s description. A program may

be short but take an astronomical amount of time to run. Many of the specifications

considered in this paper fall into that category. These objects are compressible, but

that compression does not give an practical way to reproduce the object. But if there

is no practical way to reproduce the object, we have no reason to suggest law-like

processes as a plausible explanation.

1.4.2 Context is Subjective

The ASC of any object will depend on the context chosen. Any object can be

made to have high ASC by using a specifically chosen context. But this appears to be

the way that information works. If the authors, who do not understand Arabic, look

at Arabic text, it appears to be no better then scribbling. The problem is not that

Arabic lacks information content, but that we are unable to identify it without the

necessary context. As a result, this subjectivity appears to capture something about

the way information works in the human experience.

As with specification, it is important the context be chosen independent of

object under investigation. While a specification will rarely be independent of the

object under investigation, we believe it is much easier to maintain this independence

in the case of a context.

1.4.3 Incalculability

It is not possible to calculate the Kolmogorov complexity of an object. However,

it is possible to upper bound the Kolmogorov complexity and thus lower-bound the

algorithmic specified complexity. This means that we can say that something is at least

this specified, although we cannot rule out the possibility that it is even more specified.

This means that we cannot mechanically detect that something has specification,

although we can objectively identify it when we see it.
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1.5 Conclusions

Dembski argued that information can be detected by looking for specified

complexity. We propose that all or most forms of specification can be represented

as algorithms, using Kolmogorov complexity. The shorter the algorithm, the more

specified the object is. In order to measure a broader range of specification, we

include the context and thus make use of conditional Kolmogorov complexity. We

have defined the concept of Algorithmic Specified Complexity which takes into account

the probabilistic complexity as well as the Kolmogorov complexity. We have presented

a number of examples showing how this can represent the specification in a variety

of cases. We hope that this paper introduces discussion on the use of conditional

Kolmogorov complexity as a method for measuring specification as well as the use of

Algorithmic Specified Complexity.
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CHAPTER TWO

The Improbability of Algorithmic Specified Complexity

This chapter published as: Ewert, W., Dembski, W. A., & Marks II, R. J. (2013). On
The Improbability of Algorithmic Specified Complexity. 2013 IEEE 45th

Southeastern Symposium on System Theory: SSST 2013. Waco, TX.

2.1 Introduction

Low probability events are often claimed to not happen. But this is fallacious

because low probability events take place all of the time. Any snowflake’s pattern is

highly improbable, but this does not prevent low probability snowflakes from existing.

The common occurrence of low probability events seems paradoxical within the rubric

of the probability paradigm. The paradox is resolved after recognizing there are often

very many improbable events such that the total probability of such low probability

events can actually be quite large.

To illustrate, assume that there exists 101000 possible snowflakes each of which

is equally likely. This means that any given snowflake pattern has a probability of

10−1000. Thus

Pr[Pr[X] ≤ 10−1000] = 1. (2.1)

where X is a random variable corresponding to a particular snowflake pattern. The

equation states that we have a high probability (actually a certainty) of obtaining a

very low probability event.

However, it is commonly assumed that no two snowflakes are alike. This is

because such an event has dramatically lower probability than the occurrence of of

a single specified snowflake. The probability of a second specified snowflake being

identical to the first specified snowflake, however, is

Pr[First snowflake = x, and the second snowflake = x]
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= 10−100010−1000 = 10−2000.

But this is the same as the second snowflake having some other specification.

Pr[First snowflake = x, and the second snowflake = y]

= 10−2000

where x 6= y. We revisit this example is Section 2.3.2.

Another example is the specified arrangement of sand on a beach. Any one

particular arrangement of the sand is highly improbable. But an arrangement of the

sand to spell words is not less probable then an arrangement without words. We

would say, however, that the forming of such words through wind and water would be

next to impossible.

How, then, do we resolve the seeming paradox that improbable events happen

frequently? One resolution of the paradox is through the viewpoint of specified

complexity [9]. An object with specified complexity is, as the name states, both

specified and complex. For an object to be complex means that it is improbable.

Specification means the object exhibits some independent pattern. The identical

snowflakes exhibit a particular pattern: one snowflake is an exact replica of the other.

This is what sets the pair off as distinct from all other pairs of snowflakes. Words

written in the sand also exhibit a pattern: they form English letters.

Improbability gives us a good way to quantify the complexity of an object, but

methods of measuring specification are less obvious. One method uses Kolmogorov

complexity [2, 3, 4]. Kolmogorov complexity is defined to be shortest computer

program length required to reproduce a specified bitstring description of an object.

For identical snowflakes, the first snowflake can be described in detail followed by

the computer command DUPLICATE. In contrast, describing two distinct snowflakes

would require a longer program because each snowflake would have to be described

separately. The program would be about twice as long as the program for the identical
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snowflakes. The identical snowflakes require a shorter program to describe them

because they follow more of a pattern. Short programs and hence smaller Kolmogorov

complexity corresponds to objects which follow a pattern.

Kolmogorov complexity suffers from the property of being unknowable [18].

There is no method to compute the Kolmogorov complexity of an object with arbitrary

length. However, we can give upper bounds for the Kolmogorov complexity. If a given

bitstream of 1000 bits can be compressed without loss to 200 bits, we are assured

that the Kolmogorov complexity of the 1000 bits on the operating system equals or

exceeds 200 bits. Consequently we can show from this bound that there is a pattern

to the input, but we cannot determine whether there is a pattern we are missing.

Additionally, Kolmogorov complexity quantities contain an unknown additive constant

that allows it to be applicable to any computer language. The constant can be thought

of as the length in bits of one computer language translating into another. As a result

of any modeling using Kolmogorov complexity, the quantity is a useful theoretical

construct [13].

Using conditional Kolmogorov complexity [12] we define algorithmic specified

complexity (ASC) [19] as

ASC(X,C, P ) = − log2 P (X)−K(X|C)

where

• X is the object or event or under consideration

• C is the context– the presumed information which can be used to describe

the object

• K(X|C) is the Kolmogorov complexity of X given C. This quantity can not

be computed exactly but can be bounded.

• P (X) is the probability of the occurrence of X.

By taking into account both the probability and the Kolmogorov complexity of an

object, the ASC measures the degree to which an event fits the presumed probability
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distribution. The log2 P (x) term measures the complexity of the object, whereas

−K(X|C) measures the specification. If an event happens which has a high ASC,

we should conclude that since it has a low probability and the rare property of

compressibility, it gives us strong indication to believe that the assumed probability

distribution is incorrect.

The usefulness of this definition depends on the wide variety of constructs that

are compressible. This includes for example simple pattern, such as “01” repeated

32 times. It also includes valid English text, which given a knowledge of the English

language can be compressed. Its also include complex functioning systems because

they can be described by their functionality rather then the system that produces that

functionality. Thus Kolmogorov complexity captures a wide variety of objects that we

deem “special.” Thus we can usefully apply this metric to a wide variety of objects.

2.2 A Bound on the Probability of ASC

The following theorem quantifies the unlikelihood of obtaining a high ASC event.

Theorem 1. The probability of obtaining an object exhibiting α bits of ASC is less then

or equal to 2−α.

Pr[ASC(X,C, P ) ≥ α] ≤ 2−α (2.2)

Proof.

Pr[ASC(X,C, P ) ≥ α]

= Pr[− log2 P (X)−K(X|C) ≥ α]

= Pr[P (X) ≤ 2−α−K(X|C)]

Let β be the set of all events in the domain of X such that P (X) ≤ 2−α−K(X|C).

Pr[ASC(X,C, P ) ≥ α] =
∑
x∈β

P (x).
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The definition of β is such that we have an upper bound on P (x). Thus

Pr[ASC(X,C, P ) ≥ α] ≤
∑

x∈β 2−α−K(x|C)

= 2−α
∑

x∈β 2−K(x|C).

Since Kolmogorov complexity can assume prefix free code [13], a distribution over all

programs is defined by

Pr[X = x] = 2−K(x|C).∑
x∈β 2−K(x|C) is a summation over this distribution for some subset of the values,

thus it less then or equal to one as dictated by the Kraft inequality [13].

Pr[ASC(X,C, P ) ≥ α] ≤ 2−α (2.3)

This proves the theorem.

From the main result of Theorem 1 in (2.2),

− log2 Pr[ASC(X,C, P ) ≥ α] ≥ α

It is therefore unlikely to obtain a high value of ASC. Low probability events commonly

occur, but high ASC events do not.

2.3 Examples

The definition of ASC uses both complexity and specification. We can look at

various cases of these parameters to see how ASC is affected.

2.3.1 Uniform Specification and Complexity

2.3.1.1 Compressible Sequences Suppose that we have 256 items each with

equal probability of occurring and each of the same compressed length. The only way
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for 256 items to all have the same minimum length is to use 8 bit codes for all of them.

For any item in the collection we then have

ASC(X,C, P ) = − log2 P (X)−K(X|C)

= − log2

1

256
− 8

= 8− 8

= 0 bits of ASC

And the bound on 0 bits of ASC is

Pr[ASC(X,C, P ) > 0] ≤ 2−0 = 1

The probability in this case is clearly 1 because all objects will have the same ASC.

2.3.1.2 A Rare Compressible Sequence Suppose we have a single sequence that

can be compressed into 2 bits but has a probability of 2−256. Then we calculate the

ASC

ASC(X,C, P ) = − log2 P (X)−K(X|C)

= − log2 2−256 − 2

= 256− 2

= 254 bits of ASC.

The bound on this is

Pr[ASC(X,C, P ) > 254] ≤ 2−254

which is 4 times as probable as the actual value because there can be only up to 4 bit

sequences of 2 bits in length.

2.3.1.3 A Common Compressible Sequence Suppose that we have a single

sequence that can be compressed into 2 bits and this happens half of the time. We
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calculate the ASC

ASC(X,C, P ) = − log2 P (X)−K(X|C)

= − log2

1

2
− 1

= 1− 2

= −1 bits of ASC.

This gives the bound

Pr[ASC(X,C, P ) > −1] ≤ 21 = 2.

While the sequence is highly compressible, the high probability prevents it from having

a large measure of ASC.

2.3.2 Snowflakes

Consider again the case of the snowflakes. There are, by our assumption, 101000

possible snowflakes. We’ll assume that we can describe each snowflake using a compact

bit pattern taking log2 101000 = 1000 log2 10 ≈ 3322 bits. If we have to describe two

distinct snowflakes, it will take

K(X|C) = 3322 bits + 3322 bits + c (2.4)

= 6644 bits + c

where c is some constant number of bits. The log-probability is

− log2 P (X) = − log2 10−2000 = 2000 log2 10 (2.5)

= 6644 bits.

So the ASC is

− log2 P (X)−K(X|C) = 6644 bits− 6644 bits− c (2.6)

= −c.
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Using Theorem 1 we obtain a bound of 2c which, since c > 0, produces a bound above

1 for the probability of obtaining this pair of snowflakes. There is nothing unusual

about an arbitrary pair of snowflakes.

However, if the two snowflakes are identical, we can describe them by a shorter

program.

K(X|C) = 3322 bits + c.

where c is some constant number of bits. The probability is the same, so the ASC is

− logP (X)−K(X|C) = 6644 bits− 3322 bits− c

= 3322 bits− c.

Using the theorem, we bound the probability at 2−3322+c. Assuming that the constant

c is sufficiently small, this is a vanishingly small probability and thus we can conclude

that obtaining two identical snowflakes would be absurdly improbable. If we did

find two identical snowflakes, we would have to conclude that our original assumed

probability distribution was incorrect.

2.4 Conclusion

The algorithmic specified complexity is a theoretical quantification measuring

how well a probability distribution explains a given event. By using the bound in

Theorem 1, we can establish the probability of obtaining particular amounts of ASC.

We conclude that an object exhibiting high ASC is unlikely to arise. Given a high

ASC object, we have evidence that the assumed probability distribution was incorrect.

Additional examples of ASC are available [19]. We are currently exploring the

capabilities and limitations of the ASC measure.
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CHAPTER THREE

Visual Algorithmic Specified Complexity

3.1 Introduction

It is critical to be able to distinguish patterns and information from noise. As

humans we readily do this. But what is our theoretical basis for doing so? If we look

at a picture of a sunset, we readily identify it as not being a random assortment of

pixels, but why? A random image which looked like a sunset would be astronomically

improbable. However, so would any random image. Thus probability alone does not

seperate the pattern from the noise.

In order for an image to be distinguishable from random noise, it must follow

some independant pattern or specification. If an object follows a specification or a

pattern we say that is specified. The image of the sunset follows a pattern by virtue

of the fact that it looks like other sunsets. Any image containing content rather

than random noise fits some pattern. Naturally, any image looks like itself, but the

requirment is that the pattern must be independent, and therefore the image cannot

form a pattern for itself. If an object is both improbable and specified we say that it

exhibits specified complexity[9].

The question that remains is how to measures this specification. Measuring

complexity is straightforward as it is simply the probability of the image. Specification

can be quantified using K olmogorov Complexity [2, 3, 4]. Kolmogorov complexity

or variations thereof have been previously proposed as a measurement method for

specification[9, 10, 11].

Kolmogorov complexity is defined as the length of the shortest program required

to reproduce a result, in this case the pixels in an image. The more the image can be

described in terms of a pattern, the more compressible it is, and the more specified.
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For example, a black square is entirely described by a simple pattern, and a very

short computer program sufficies to recreate it. As a result we conclude that it is very

specified. In contrast, a completely random image cannot be compressed at all, and

thus we conclude that it is not specified at all. Images with content such as sunsets

take more space to describe than the black square but are more specified than random

noise.

However, it is only uniform random noise which defies compression. Stochastic

processes which follow some other distribution will be compressible. For example,

the black square seems very simple, i.e. not complex. It would seem problematic to

classify such a simple image with the images of sunsets or other content. To account

for this, we have to model a stochastic process which can produce such simple images.

Which images might be considered simple depends on the stochastic process being

modelled.

Given a particular stochastic process, we would like to be able to measure how

well a given image is explained by that process. The goal is seperate those images

which look like they were produced by the stochastic process from those which were

not. Towards this end we use Algorithmic Specified Complexity, [19]

ASC(X,C, P ) = − log2 P (X)−K(X|C) (3.1)

where

• X is the object or event or under consideration

• C is the context, given information which can be used to describe the object

• P (X) is the probability of X under the given stochastic process.

• K(X|C) is the Kolmogorov complexity of X given context C.

By taking into account the Kolmogorov complexity and the probability assigned by the

stochastic process the ASC measures the degree to which image fits the hypothesized

stochastic process. Given high ASC, we have reason to believe that the image is
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unlikely to be produced by that process. In fact, we can conclude that [20]

Pr[ASC(X,C, P ) ≥ α] ≤ 2−α, (3.2)

thus bounding the probability of obtaining high ASC images when sampled according

to a given distribution. For example, we have a one in 1024 chance of obtaining 10

bits of ASC. Large amounts of ASC give strong indication that the image was not

produced by the proposed stochastic process.

ASC is defined based on the conditional kolmogrov complexity, taking the

context as a parameter. The context enables the compression to take advantage of

known information. A picture of a house defies explanation by a simple stochastic

process because it looks like other houses which have previously been seen. If we take

the context to be a library of known images, then the similarity should allow us to

describe the new image by making use of details from the library images. Without

the context, images with simple patterns like shapes or fractals could be deemed

compressible, but it is difficult to see that an image of a house would be compressible.

Including a context lets us take into account prior experience and area of knowledge.

A solid black square may be assigned a high probability by a reasonable stochastic

process. It is very compressible and thus specified, but does not have a level of ASC

due to its low complexity. A random image will be assigned a low probability by

a stochastic process, but it is not compressible and therefore not specified. As a

result, it will not have a high value of ASC either. A sunset will be given a low

probability by a stochastic process (excluding those designed to produce images of

sunsets), and it is also specified, because it can be described by a shorter computer

program. Consequently, the ASC of the sunset image will be high. The ASC allows

us to distinguish between these various categories of images.

This paper’s contribution is to consider the application of ASC to images. By

using a library of images in a number of scenarios we demonstrate ASC’s ability to

distinguish images from noise. We will show that it can work under noise, algorith-
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(a) Newton (b) Pastuer (c) Einstein

Figure 3.1: Images of scientists.

mic transformations, and different camera shots. The paper will investigate these

different examples and show ASC in each one. Thus we demonstrate, by example, the

applicability of ASC.

3.2 Prior Work

The Kolmogorov Complexity of images has been used as a method of computing

image similarity, [21, 22]. These are based on the notion of information distance, [8],

which computes the similarity of two binary sequences (or anything mapped to binary

sequences) using conditional Kolmogorov complexity. The idea is that if two images

are similiar, there should be a set of algorithmic transformations to convert one image

into the other such that it requires less space to describe the transformations than to

simply encode the image directly. Others have worked on the problem of compressing

similiar images, [23, 24]. The idea is that we should be able to take advantage of

image similarities to compress them better. The compressibility of similiar images is

the basis of the work considered here. Without it, it would be impossible to use the

library of images to compress related images.

3.3 Results

3.3.1 Image Library

Figure 3.1 shows three pictures of famous scientists which makes up the library

of images for our context. For contrast, see Figure 3.2 which shows a solid square
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(a) Solid Gray
Square

(b) Random Im-
age

Figure 3.2: Comparison images not included in the library.

and a random image. These are not in the library, but are provided for comparison.

The square is very compressible because of its single solid color, whereas the random

image is not due to the incompressible noise that it contains.

In the simplest case, we want to compress an image exactly identical to one in

the library. We can easily describe such an image merely by its index in the library

and thus:

K(X|C) = dlog 3e+ c (3.3)

The images are 284 x 373 pixels in grayscale, with 256 levels of gray. The raw grayscale

image encoded directly would require 8 ∗ 284 ∗ 373 = 847, 456 bits. Initially, we will

postulate the images were generate by randomnly choosing the grayscale for each pixel

uniformly across all possible values. This would mean that every possible grayscale

image has an equal probability.

Pr[X] = 2−847456 (3.4)

where X is the random variable constiting the image. The complexity of the image is

then:

− log2 Pr[X] = − log2 2−847456 = 847456 bits. (3.5)
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Using the formula for ASC, we obtain for any of the library images

ASC(X,C, P ) = − log2 Pr[X]−K(X|C)

= 847456− 2− c

= 847454− c bits.

Recall that Pr[ASC > 847454] ≤ 2−847454 which renders the probability of generating

these images through such a stochastic process as absurdly improbable.

How does the process fair for a simple pattern such as the solid square? The

solid square can be described by its particular shade of gray, taking 8 bits. Thus the

complete description of the solid square is:

K(X|C) = 8 + c (3.6)

Thus the ASC for the solid square of the same size as the scientists’ pictures would

be 847, 456 − 8 + c = 847, 448 − c bits. The square is only slightly less likely to be

produced by the stochastic process then the detailed images of the scientists. This is

because a stochastic process picking uniformly over all random images of this size is

extermely unlikely to produce a solid image. The stochastic process we are using does

not assign higher probability to simple patterns.

However, we can define a stochastic process which is more likely to do so. We will

adopt an approximation of complexity based on length of Portable Network Graphic

(PNG)[25] files. The PNG format is designed to take advantage of redundancies present

in typical images to produce better compression. Thus the modelled stochastic process

will produce images containing these sorts of redundancies, and such redundancies will

not be a basis for high ASC. The first 8 bytes of a PNG image are always the same,

so we’ve excluded these from the length calculation. We assume that the probability

of an image is thus

Pr[X] = 2−l(X)−8 (3.7)
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Table 3.1: Details on the various images.

Image Complexity Complexity KC ASC ASC
(Uniform) (ASC) (Uniform) (ASC)

Newton 847456 520224 2 847454 520222
Pasteur 847456 543000 2 847454 542998
Einstein 847456 513064 2 847454 513062
Square 847456 6224 8 847448 6216
Random 847456 848808 847456 0 1352

where l(X) is the length in bits of the PNG file required to produce the image.

Naturally, this gives a complexity of l(x)− 8.

Table 3.1 shows the complexity and ASC for the various images under the two

different stochastic models. The pictures of the scientists all compress to similiar

lengths in PNG and are thus deemed similiarily complex. The random image is

significantly more complex, while the solid square is much less complex. Using the

PNG complexity, the square image has two orders of magnitude smaller less ASC than

the other images. The square image is much better explained than any of the library

images. It still has a large amount of ASC, this is because it still takes many bits to

describe the image using PNG. It is still exceedingly unlikely to create solid image by

randomnly generating PNG files.

A somewhat surprising result is the quantity of ASC found in the random image

under the PNG complexity. As might be expected, under a uniform distribution, the

complexity and specification cancel each other out leaving absolutely no indication of

specified complexity. However, the PNG-based stochastic model would assign lower

probabilities to images lacking any sort of redundancy. The absence of redundancy

means that the image does not fit the stochastic process. This is exactly what should

be the case as it was not produced by that stochastic process.
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Figure 3.3: Picture of Louis Pastuer with increasing levels of added noise.
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Figure 3.4: ASC for varying levels of noise.

3.3.2 Noise

Not all images will be exactly identical to those in the library. For a simple case

consider a noisy copy of an image. It is the same as the library version, except that

noise has been added to it. In order to compress that image, we need to specify both

the image in the library as well as the noise.

K(X|C) = dlog2 3e+ pH(N) + c (3.8)

where p is the number of pixels, N is the random variable modelling the noise, and

H(N) is the entropy of that random variable. The entropy of a random variable is
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the average numbers of bits required to describe that result of that random variable.

Note that only the entropy of the random variable affects the description length. The

mean of the variable could be shifted without forcing the image to use any additional

space. The square image cannot be described as similiar to one in the library, but it

can be described as its base color with the noise

K(X|C) = 8 + pH(N) + c (3.9)

Adding noise to a random image producing another random image, leaving us with no

way of compressing it:

K(X|C) = 8p+ c (3.10)

We modelled uniformly random noise added to each pixel. Figure 3.3 shows the

picture of Pastuer as increasing levels of noise are added. Figure 3.4 shows the plot of

the varying images as levels of noise are increased. At 0% noise, the image is exactly

identical to the one in the library. At 100% noise, the image is indistinguishable

from random noise. The three scientit’s images follow each other closely. There is

initially a great deal of ASC, but this decreases as the noise is increased. The square

actually has an initial increase in ASC as noise is added. This is because the PNG file

format works very well to compress a solid square, but does a relatively poor job of

compressing that square with just a small amount of noise.

There is a relatively flat period between twenty and sixty percent. This is caused

by a closely matched increase in the png length of the images and the kolmgorov

complexity of those images. The noise increases both the complexity of the image,

as well as decreasing the specification. These two changes cancel out leaving a slow

change. All of the methods tend towards zero ASC as the noise reaches 100%. The

random image is flat always exhibiting very low amounts of ASC.
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Figure 3.5: ASC for different resizings.

3.3.3 Scaling

Another possibility is that the image is of a different size then the image in the

library. In this case, we should be able to resize the image from the library to match

the one we are compressing. As long as the image has been resized in an algorithmic

way we can describe the image by specifing the value from the library along with the

scaling factor. In this case we’ll represent the scaling factor as x
2000

, and allow scaling

factors from 1
2

to 2. Thus we will encode each scientists image as the index from the

library along with the scaling factor.

K(X|C) = dlog2 3e+ dlog2 2000e+ c (3.11)

For the case of the solid square, it has to be described as the color and the scaling

factor:

K(X|C) = 8 + dlog2 2000e+ c (3.12)
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(a) Context Stick Man (b) Stick Man Image (c) Difference Image

Figure 3.6: The library of images.

For the random image, scaling up can be describe as the original random image and

the scaling factor:

K(X|C) = 8p+ dlog2 2000e+ c (3.13)

where p is the number of pixels in the pre-scaled image. However, Kolmogorov

complexity is defined as the shortest program that produces the result, and this is not

the most efficient method to describe a scaled down random image. Rather we can

encode the image directly:

K(X|C) = 8s (3.14)

where s is the number of pixels in the scaled image. Note that when s = p both

methods will be approximately equal in length. Figure 3.5 shows the ASC for the

images and varying resizes. For the scientists, the ASC increases as the scale does.

It increases quickly for scales below one, whereas it only increases slowly for scales

above 1. This is because scaling up the original images introduces redundancy into

the images which PNG compresses very well. Thus the complexity increases slowly.

Random noise shows ASC after passing the 1.0 point as well because while the base

image is random, redundancy is introduced by the scaling process.

3.3.4 Repeated Element

Figure 3.6 shows two images which both share a stick man figure. Otherwise

the images are random noise. We will consider the image on the left to be our context,
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Table 3.2: The PNG complexity length for the various man images.

Name PNG Complexity
Context 216536
Image 216656
Difference 211832

Figure 3.7: A collection of images.

and attempt to compress the image on the right. The second image can be described

as the stick figure from the first image together with the difference encoded as an

image. The difference is shown in Figure 3.6(c). Note that the noise in the bounding

box of the stickman in Figure 3.6(c) is calculated such that adding it to the noise

around the stick figure in the library image will produce the noise from the target

image. Table 3.2 shows the number of bits required to describe the images by PNG. To

actually describe the image then requires specifying the bounding box of the stickman

in the original image, 4 coordinates, as well as the target in the current image, 2

coordinate. Since the images are 400x400 pixels, this will require:

6 log2 400 ≈ 52bits. (3.15)

Thus

K(X|C) = 52 + l + c (3.16)

where l is the length of the png compression of the difference image. In this case,

l = 211, 576 so K(X|C) ≤ 211628 + c and ASC ≥ 216496− 211628− c = 4868− c

bits.
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Figure 3.8: Aeriel city shot difference images.
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Figure 3.9: ASC plotted by image collection and offset distance.

3.3.5 Photos

Two photographs taken of the same object will differ slightly in all sorts of ways.

For example, the picture may shifted, and the noise will be different. Figure 3.7 shows

a collection of images[26]. Each image is representative of a collection of photos taken

of the same object from slightly varying positions. This images can be made to line up

by shifting the image by an offset. We take these representative images as our context,

and attempt to compress other images in the collection. We do this by recording the

needed offset as well as a difference image, samples of which are shown in Figure 3.8.

Each image can be described as:

K(X|C) = log2 |L|+ log2w + log2 h+ l + c (3.17)
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where L is the set of images in the library, w and h are the height of the image, and

l is the png length of the difference image. The log2 |L| term is to determine which

image from the library should be used. The w and h are present to specify the offset

between the library image and the current one.

Figure 3.9 shows a scatter plot of the ASC. Each point is a single image’s ASC

using the context of the images shown in Figure 3.7. The x axis, distance, is the

manhattan distance of the shift required to line up the two images. For most of the

collections, the ASC moves towards zero as the shift required increases. An exception

is the tiger images which maintain most of their ASC value. However, images with

small shifts contain significant amounts of ASC. This means that we can conclude that

the other images are not simply random noise. They share too much similairty with

the random image to be generated by a stochastic process, even one that introduces

redundancies into images.

3.4 Conclusion

We have sought to demonstrate the applicability of ASC to differentiating noise

from patterns. Given a context of known images, we have demonstrated they can be

used to compress related images. This indicates specification of those related images.

We have estimated the probability of various images by using the number of

bits required for the PNG encoding of the image. This allows us to approximate the

ASC of the various images. We have shown hundreds of thousands of bits of ASC

in various circumstances. Given the bound established on producing high levels of

ASC, we can conclude that the images contain information are not simply noise. We

have shown in a variety of circumstances that random noise does not produce ASC.

Additionally, the simplicity of an image such as the solid square also does not exhibit

ASC, as it is account a high probability. Thus we have demonstrated the theoretical

applicablity of ASC to the problem of distinguishing information from noise.
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CHAPTER FOUR

The Game Of Life

4.1 Introduction

A machine is an arrangement of parts that exhibit some functionality. The

distinguishing characteristic of machines is that the parts themselves are not responsible

for the machine’s functionality, but rather they are only functional due to the particular

arrangement of the parts. The whole is greater than the sum of the parts. Almost

any other arrangement of the same parts would not produce anything interesting.

Arranging a large collection of parts into a working machine is highly improbable.

However, any particular arrangement would be improbable regardless of whether that

arrangement had any functionality whatsoever. Functional machines are specified,

they follow some independent pattern. When something is both improbable and

specified, we say that it exhibits specified complexity [9]. A functional machine is an

example of the idea of specified complexity.

To analyze physical machines in depth would be intractable due to the complexity

of both physics and machines in the real world. However, we can ameliorate this

problem by using a simplified model of reality which nonetheless has many machines

operating in it. An example is Conway’s Game of Life [27]. This is a cellular automata,

a two-dimensional grid of living and dead cells that develop based on simple rules.

Each time step, a cell is determined to be alive or dead depending on the state of its

neighbors in the previous generation.

Within the Game of Life, many patterns (essentially machines) have been

discovered or invented. These are particular arrangements of living and dead cells that

when left to operate by the rules of the game, exhibit some sort of functionality. Some

oscillate, some move, some produce other patterns, etc. Some of these are simple
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enough that they arise from random configurations of cell space. Others required

careful construction, such as the very large Gemini [28]. Our goal is to differentiate

these different categories of patterns. We would like to be able to quantify what

separates a simple glider, readily produced from almost any randomly configured soup

from Gemini, the product of much careful work.

Specified complexity is the mark of non-randomness, of design. A highly probable

object can be explained by randomness, but it will lack complexity and thus not have

specified complexity. Random noise will be improbable, but will lack specification and

thus also lack specified complexity. In order to have specified complexity, both parts

must be present. The object must exhibit a pattern while being improbable.

How does one measure specification? One possibility is to use Kolmogorov

complexity [2, 3, 4]. Kolmogorov complexity or variations thereof have been previously

proposed as a way to measure specification [9, 10, 11]. Kolmogorov complexity is

defined as the length of the shortest computer program, p, in the set of all programs,

P , that produces a specified output X using a universal Turing machine, U .

K(X) = min
U(p,)=X|p∈P

|p|.

Conditional Kolmogorov complexity [12] allows programs to have input, Y , which is

not tallied in the final compression.

K(X|Y ) = min
U(p,Y )=X|p∈P

|p|.

For our purposes, Y can be considered as context. An example is Shakespeare’s Hamlet

compressed with two different resources: 1) Yalpha = the English alphabet, including

numbers and punctuation, and 2) Ycon = an exhaustive concordance of the words used

in all of Shakespeare’s writings [29]. Both resources can be viewed as a code book in

which the entries are lexicographically listed and numbered. Hamlet, corresponding to

the output X, can then either be expressed as a sequence of integers each corresponding

to to an entry in the alphabet list, or indexing an entry in the concordance. Shakespeare
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used 31,534 different words [30]. Although both characterizations only bound the

conditional Kolmogorov complexity (additional compression is possible), we would

expect

K(X|Ycon) < K(X|Yalpha) < K(X).

The more specific the context, the smaller the conditional Kolmogorov complexity.

Either the frequency of occurrence of the words used by Shakespeare, or a concordance

of words used only in Hamlet can be used to reduce the conditional Kolmogorov

complexity even further. Small conditional Kolmogorov complexity can be caused

by 1) placing X in the context of Y , and/or 2) a small (unconditional) Kolmogorov

complexity, K(x).

Algorithmic specified complexity (ASC) [19] is defined as,

ASC(X,C, P ) = I(X)−K(X|C) (4.1)

where

• X is the object or event or under consideration

• C is the context, given information which can be used to describe the object

• K(X|C) is the Kolmogorov complexity of object X given context C.

• P (X) is the probability of X under the given stochastic process.

• I(X) = − log2 (P (X)) is the corresponding self information.

ASC is probabilistically rare in the sense that [20]

Pr[ASC(X,C, P ) ≥ α] ≤ 2−α. (4.2)

ASC provides evidence that a stochastic outcome modeled by a particular distribution,

P (X), does not explain a given object. ASC is incomputable because Kolmogorov

complexity is incomputable [13]. However, the true Kolmogorov complexity is always

equal to or less than any estimate. This means that the true ASC is always equal to

or more than an estimate. We will refer to known estimate as observed algorithmic
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specified complexity (OASC). We know that

ASC(X,C, P ) ≥ OASC(X,C, P ). (4.3)

ASC can be nicely illustrated using various functional patterns in Conway’s the

Game of Life. The Game of Life and similar systems allow a variety of fascinating

behaviors [31]. In the game, determining the probability of a pattern arising from a

random configuration of cells is difficult. The complex interactions of patterns arising

from such a random configuration makes it difficult to predict what types of patterns

will eventually arise. It would be straightforward to calculuate the probability of a

pattern arising directly from some sort of random pattern generator. However, once

the Game of Life rules are applied, determining what patterns would arise from the

initial random patterns is non-trivial. In order to approximate the probabilties, we

will assume that the probability of a pattern arising is about the same whether or

not the rules of the Game of Life are applied. i.e. the rules of the Game of Life don’t

make interesting patterns much more probable then they would otherwise be.

Objects with high ASC defy explanation by the stochastic process model. Thus

we expect objects with large ASC are designed rather than arising spontaneously.

Note, however, we are only approximating the complexity of patterns and the result

is only probabilistic. We expect that patterns requiring more design will have higher

values of ASC. Smaller designed pattern exist, but it is not possible to conclude that

they were not produced by random configurations.

Section 4.2 documents the methodology of the paper. We define a mathematical

formulation to capture the functionality of various patterns. This can be encoded as a

bitstring and a program written to generate the original pattern from this functional

description. Section 4.3 uses this methodology to calculate ASC for a variety of

patterns found in the Game of Life.
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Table 4.1: The library of available operations.

Name Symbol Meaning
Pattern X The pattern being tested
Variable Y, Z,W A defined variable
Parameter i, j, k, l An integer index
Shift ↑, ↓,←,→ The pattern shifted in the specified direc-

tion
Intersection ∩ A pattern consisting of all cells live in two

patterns
Union ∪ A pattern consisting of all cells live in either

of two patterns
Set-Diference r A pattern with lives cells whenever there

is live cell in the first pattern, but not the
second.

Pattern , , , . . . An arbitrary pattern
Integer 1, 5, 7, . . . An arbitrary integer
Math +,−, /, ∗ Mathematical operations on two integers
Repeat (superscript) Any symbol repeated a specified number of

times
Define := Defines a variable to an expression
Equal = Rejects a pattern unless the parameters are

equal
Not Equal 6= Rejects a pattern if the parameters are

equal

4.2 Methods

4.2.1 Specification

The Game of Life is played on grid of square cells. A cell is either alive (a one)

or dead (a zero). A cell’s status is determined by the status of other cells around it.

Only four rules are followed.

(1) Under-Population. A living cell with fewer than two live neighbours dies.

(2) Family. A living cell with two or three live neighbours lives on to the next

generation.

(3) Overcrowding. A living cell with more than three living neighbours dies.
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Figure 4.1: The block, a simple still life.

Figure 4.2: The blinker, a simple period-2 oscillator.

(4) Reproduction. A dead cell with exactly three living neighbors becomes a living

cell.

The rules for the Game of Life are deterministic. Performance is therefore dictated

only by the initially chosen pattern.

In order to demonstrate the compression of functional Game of Life patterns,

we will devise a mathematical formulation for describing this functionality. Let X be

some arbitrary pattern corresponding to a configuration of living and dead pixels. Let

X⊕ be the result of one iteration of the Game of Life applied to X. Suppose that the

following equality holds:

X = X ⊕ . (4.4)

This says that a pattern does not change from one iteration to the next. This is

known as a still-life [27], and an example is presented in Figure 4.1 A more interesting

Figure 4.3: The glider, a simple spaceship.
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pattern can be described as:

X = X ⊕⊕ (4.5)

which can be a pattern that returns to its original state after two iterations. The

relationship is also valid for two iterations of a still-life. In order to completely define

the two iteration flip-flop, we will actually require two equations:

X 6= X⊕ (4.6)

X = X⊕2 (4.7)

We often need to specify that a rule holds only for some parameter and not for any

smaller version of that. We therefore adopt the notation

X = X⊕i (4.8)

to mean a pattern that repeats in i iterations, but not in less than i iterations. An

example for i = 2, shown in Figure 4.2, is a period-2 oscillator[32] or a flip-flop [27].

One of the more famous Game of Life patterns is the glider. This is a pattern

which moves as it iterates. A depiction is shown in Figure 4.3. In order to represent

movements we introduce arrows, so X ↑ is the pattern X shifted up one row. Since

four iterations regenerates the glider shifted one unit to the right and one unit down,

we can write

X ↓→= X ⊕4 . (4.9)

This defines the functionality of moving in the direction and speed of the glider.

We can also simply insert a pattern into the mathematical formulation. For

the simplest case, we can say that the pattern is equal to a particular pattern. For

example,

X = (4.10)

Note that to the right of the equals sign here is a small picture of the glider in

Figure 4.3. We can also combine patterns, for example taking the union:

= ∪ , (4.11)
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or the intersection:

= ∩ . (4.12)

We can also describe a pattern as the set-difference of two other patterns. Since ArB

denote elements in A not in B, we have for example:

= r . (4.13)

At times, it may be useful to define variables. For example

Y := X⊕32 (4.14)

Y = Y⊕32 (4.15)

where := denotes “equal to by definition”. This reduces to

X⊕32 = X ⊕64 . (4.16)

Table 4.1 provides a listing of all of the supported operations.

More than one pattern X will generally satisfy any given equation. In fact, some

equations will admit an infinite set of patterns that satisfy the constraints. We will

resolve this by defining a total ordering on the set of patterns. Any given pattern

can be identified by a set of equations and a non-negative integer identifying which

satisfying pattern is wanted.

In theory, a Game of Life pattern could have an infinite number of live cells.

This poses a problem for attempting to assign an integer to each living cell. An infinite

number of living cells requires an initialization of an infinite number of living cells.

We will constrain initialization to a finite number of living cells cells to avoid such

occurrences.

Another issue is that there is an infinite number of patterns for any given number

of living cells. For example, two living cells could be seperated by any amount of space.

However, because a cell is only affected by its immediate neighbors, cells cannot affect

53



the state of other cells which are sufficiently far away. How far away is sufficient? We

can inspect the equations we are testing against to see the number of ⊕ operations,

after taking repetition into account. This gives us the number of iterations that could

be checked, and thus the size of the observable universe for any given cell. We are not

interested in any pattern where there is a gap larger than the size of the observable

universe. Let U = L+ T + 1 where L is the number of living cells in a pattern, and T

is the number of ⊕ operations. Given a bounding-box larger than U × U , there must

exist a gap larger than the size of the observable universe. Consequently there is a

finite number of interesting patterns for a given number of living cells, and we can

number them.

The full ordering can be defined by a set of rules with lower-numbered rules

having priority:

(1) Smaller number of living cells

(2) Smaller bounding box area

(3) Smaller bounding box width

(4) Lexicographically ordering according to the encoding of cells within a box

bounding the living cells. For example, bounding the living cells in the upper

left configuration in Figure 4.3 and reading left to right then down gives

010001111 = (143)10.

We will append each equation with a number, in the form #i indicating that

we are interested in the ith pattern to fit the equation. Thus the glider becomes:

X ↓→= X⊕4,#0 (4.17)

as the smallest pattern which fits the description.

4.2.2 Binary Representation

In order to use the ASC results, we need to encode the mathematical represen-

tation as a binary sequence. Each symbol is assigned a 5 bit binary code as specified
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Table 4.2: Binary Encodings.

Nullary operations
Symbol Encoding
X 00000
Y 00001
Z 00010
W 00011
i 00100
j 00101
k 00110
l 00111

Unary Operations
Symbol Encoding
⊕ 01000
↑ 01001
↓ 01010
← 01011
→ 01100

Binary Operations
Symbol Encoding
∩ 01101
∪ 01110
r 01111
+ 10000
− 10001
∗ 10010
/ 10011
:= 10100
= 10101
6= 10110
(repeat) 10111

Literals
Type Encoding
Number 11001
Pattern 11010

Special
Type Encoding
Stop 11111
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in Table 4.2. Any valid formula will be encoded as a binary string using those codes.

All such formulas will be encoded as prefix-free codes.

Firstly, a number of the operations have zero arguments, known as nullary

operators. These are listed first in Table 4.2. Such operations are simply encoded

using their 5 bit sequence. Since they have no arguments, their sequence is completed

directly after the five bits. Thus X will be encoded as 00000 and W will be encoded

as 00011. All the nullary operations are trivially prefix free since all have exactly five

bits.

An operation that takes a single argument, known as a unary operation, can be

encoded with its 5 bit code followed the by representation of the subexpression. Thus

X ↑ can be represented as 0100100000. Since the subexression can be represented in a

prefix free code, we can determine the end of it, and adding five bits to the beginning

maintains the prefix-free property.

Operations with two arguments, or binary operations, are encoded using the

five bit sequence followed by the sequence for the two subexpressions. So X = X⊕

can be recorded as 10101000000100000000. ⊕i can be recorded as 101110100000100.

Note that ⊕ usually takes an argument, but this is not needed when it is used as the

target of a repeat. As with the unary case, the prefix free nature of the subexpressions

allows the construction of the large formula.

The literals in Table 4.2 are denoted by the five bit code along with an encoding

of the integer or pattern. Any positive integer n can be encoded using dlog2(n+ 1) +

log2 ne+ 1 bits, hereafter l(n) bits in a prefix free code using the Levenstein code[33].

See Section 4.2.3 for a discussion of binary encodings for arbitrary patterns.

To declare there are no more operations to be had, we will use a the five bit

sequence, 11111. Simply concatenating all the equations would not be a prefix free

code since the binary encoding would be a valid prefix to other codes. After the last
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equation, 11111 is appended as a suffix preventing any longer codes from being valid

and making the system prefix free.

To calculate the length of the encoding we add up:

• Five bits for every symbol

• l(n) bits for each number n in the equation

• The length of the bit encoding of any pattern literals.

• Five bits for the stop symbol

• l(n) bits for the parameters and sequence numbers

4.2.3 Binary Encoding For Patterns

In order to use OASC we need to define the complexity or probability of the

patterns. We would like to define the probability based on the actual probability of

the pattern arising from a random configuration. We will model the patterns as being

generated by a random sequence of bits.

In order to use a random encoding of bits, we need to define the bit encoding

for a Game of Life pattern. Section 4.2.2 contains a definition of an encoding, but it

is based on functionality. The probability of a pattern arising is clearly not related to

its functionality, and thus this measure is not a useful encoding for this purpose.

There are different ways to define this encoding. We can encode the width and

height of the encoding using Levenstein encoding and each cell encoded as a single bit

indicating whether it is living or not. This gives a total length of

α(p) = l(pw) + l(ph) + pwph (4.18)

where pw is the width of the pattern p and ph is the height of the pattern. We will

call this the standard encoding.

However, in many cases patterns consist of mostly dead cells. A lot of bits are

spent indicating that a cell is empty. We can improve this situation by recording the

57



Figure 4.4: The Gosper gliding gun.

number of live bits and then we can encode the actual pattern using less bits:

β(p) = l(pw) + l(ph) + l(pa) +

⌈
log2

(
pwph
pa

)⌉
(4.19)

where pa is the number of alive pixels in pattern, p We will call this the compressed

encoding.

To demonstrate these methods, consider the Gosper gliding gun in Figure 4.4.

Using the standard encoding this requires

α(p) = l(pw) + l(ph) + pwph

= l(36) + l(9) + 36 ∗ 9

= 12 + 8 + 324

= 344 bits.

Using the compressed encoding requires:

β(p) = l(pw) + l(ph) + l(pa) +

⌈
log2

(
pwph
pa

)⌉
= l(36) + l(9) + l(36) +

⌈
log2

(
324

36

)⌉
= 12 + 8 + 12 + 160 = 192 bits.

The compressed method will not always produce smaller descriptions as it does here.

However, we can use both methods, and simply add an initial bit to specify which

method was being used. Thus the length of the encoding for a pattern, p is:

P (p) = 1 + min(α(p), β(p)) (4.20)
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where the 1 is to account for the extra bit used to determine which of the two methods

was used for encoding.

However, we need to determine the Shannon information for a pattern, p. There

are two ways to encode each pattern, and both need to be considered.

Pr[X = p] = Pr[X = p|C] Pr[C]

+ Pr[X = p|C] Pr[C]

where X is the random variable of the chosen pattern, and C is the random event

which is true when the compressed encoding is used. Since each method is equally

probable:

Pr[X = p] =
2−α(p)

2
+

2−β(p)

2

=
2−α(p) + 2−β(p)

2
(4.21)

Our primary purpose in this paper is to demonstrate OASC for functional

machines in the Game of Life. However, the process also serves as a test of the

hypothesis that the approximation to the probability of a pattern and its corresponding

information in (4.20) arising is reasonably close. Are there features of random Game

of Life patterns that tend to produce additional functionality? If so, we expect that

we will obtain larger than expected values of ASC.

4.2.4 Computability

The mathematical formulation developed here for the Game of Life is less

powerful than a Turing complete language. For example, there is no conditional

looping mechanism. The Game of Life itself is Turing complete [34]; however, our

equations using the components in Table 4.2 describing the Game of Life are not.

There are concepts that cannot be described using the operations we have defined.

However, the proof on the bound of ASC only requires that the language used to
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describe the pattern is prefix-free. Thus the theoretical results regarding the bound

ASC still apply to the language defined here.

In order to use ASC, we must algorithmically derive the machine from the

equations describing it. A program would systematically test all pattern in order of

increasing size while checking whether they pass the test. Since the pattern specified

whether it is the first, second, third, etc. pattern to pass the test, the process can

stop and output the pattern once it is reached. Thus a constant length interpreter

program can derive the pattern from the equations, and ASC using a standard Turing

machine is a constant langer than the OASC results presented here.

The language used here is used in part for the simplicity in understanding. It

allows the comparison of the complexity of various specifications without constants

which is difficult in standard Kolmogorov complexity.

Essentially, we have included the interpreter for our formulation as part of the

context. The interpreter has details on the Game of Life, but not on the nature of

patterns in it. This allows the description of the pattern in the Game of Life without

any undue bias towards the patterns found in the Game of Life.

4.3 Results

4.3.1 Oscillators

The simplest oscillator is one which does not actually change, that is a still life.

An example is depicted in Figure 4.1. This object can be described as:

X = X⊕,#0 (4.22)

as this is the smallest pattern that can fit the test. There are four symbols taking

twenty bits to describe. There are five bits for the stop symbol and one bit to describe

the sequence number. This gives a total of 26 bits to describe this pattern. Using

standard encoding will require l(2) + l(2) + 2 ∗ 2 + 1 = 4 + 4 + 4 = 13. Thus the
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(a)
block

(b)
blinker

(c)
caterer

(d)
maz-
ing

(e)
pseudo-
barberpole

(f)
unix

(g) bur-
loaferime-
ter

(h)
fig-
ure
eight

(i) 29p9

Figure 4.5: The smallest known oscillators for each category.

ASC is at least 13− 26 = −14 bits of ASC. Since ASC is negative, the pattern is well

explained by the stochastic process.

A flip-flop or period two oscillator as depicted in Figure 4.2 can be described as:

X = X⊕i, i = 2,#0 (4.23)

This takes 6 symbols (the repeat counts as a symbol) plus the stop symbol the parameter

and the sequence number. That is a total of 35+ l(2)+ l(0) = 35+4+1 = 40 bits. The

blinker encoded using standard encoding will take l(1)+ l(3)+3+1 = 2+5+3+1 = 11

bits. The OASC is then 11 − 40 = −29 bits. Again, this pattern fits the modelled

stochastic process well.

However, the same pattern could be described as:

X = ,#0 (4.24)

which has three symbols, and will require 11 bits for the pattern. The #0 is required,

despite there being only one pattern which fits the equation, for consistency with the

search process described in section 4.2.4. Thus the length is 3 ∗ 5 + 5 + l(0) + 11 =

20 + 1 + 11 = 32 giving at least 11− 32 = 21 bits of ASC. In fact any pattern can be

said to have at least −21 bits of ASC, because that is the overhead required to simply

embed the pattern in its own description.

Simply by changing the value of i this same construct can describe an oscillator

of any period. It will describe the smallest known oscillator of that period. Figure 4.5

shows the smallest known oscillators for periods up to nine. Smaller oscillators
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Table 4.3: ASC for the smallest known oscillators in each category.

Name Period I(X) K(X|C) OASC Bound Pr[X]
block 1 12.68 38.0 -25.32 4.189 ∗ 10+07 3.232 ∗ 10−01

blinker 2 10.68 40.0 -29.32 6.702 ∗ 10+08 3.292 ∗ 10−01

caterer 3 61.68 41.0 20.68 5.953 ∗ 10−07 7.692 ∗ 10−11

mazing 4 60.83 42.0 18.83 2.146 ∗ 10−06 4.545 ∗ 10−09

pseudo-barberpole 5 95.0 43.0 52.0 2.220 ∗ 10−16

unix 6 75.96 43.0 32.96 1.197 ∗ 10−10 5.882 ∗ 10−10

burloaferimeter 7 117.0 43.0 74.0 5.294 ∗ 10−23

figure eight 8 50.91 44.0 6.91 8.315 ∗ 10−03 3.030 ∗ 10−08

29p9 9 113.96 45.0 68.96 1.742 ∗ 10−21

than these may exist, but for now we believe these to be the ones described by the

formulation. Table 4.3 shows the calculated values of OASC for the various oscillators.

The Pr[X] column derives from experiments on random soups [35]. The missing entries

do not appear to have been observed in random trials.

The K(X|C) for the smallest known oscillator increases slowly as the period

increases. The complexity generally increases, but not always. Caterer is the first

oscillator with a positive amount of ASC. It does appear out of random configurations

but at a rate much lower the ASC bound. The ASC bound is violated in only one case,

that of the unix oscillator. This oscillator shows up more often than our assumption

regarding the probabilities would suggest. The pattern has a certain simplicity to it

which isn’t captured by our metric.

Any pattern in the Game of Life can be constructed by colliding gliders [32]. The

unix pattern can be constructed by the collision of six gliders. The psuedo-barberpole,

the smallest known period five oscillator, requires 28 gliders. The burloaferimeter, the

smallest known period seven oscillator, requires 27 gliders. The unix pattern requires

much less gliders to construct than either of the two most similar oscillators considered

here. For its size, the unix pattern is easier to construct than might be expected.
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(a)
glider

(b) 58P5H1V1 (c) 77P6H1V1 (d) 83P7H1V1

(e) Four engine cordership

Figure 4.6: The smallest known spaceships for each speed moving diagonally.

4.3.2 Spaceships

A spaceship is a pattern in life which travels across the grid. It continually

returns back to its original state but in a different position. The first discovered

spaceship was the glider depicted in Figure 4.3. We previously showed in Equation 4.9

that it could be described as

X ↓→= X⊕4,#0.

this has 8 symbols so the length will be 5 ∗ 8 + 5 + l(4) + l(0) = 45 + 6 + 1 = 52. The

complexity is 20 and the ASC is at least 20− 52 = −32 bits. As previously noted, any
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Table 4.4: ASC for the smallest known diagonal spaceships for each speed.

Name Period Speed Complexity K(X|C) OASC
glider 4 c

4
19.96 74.0 -54.04

58P5H1V1 5 c
5

296.0 75.0 221.0
77P6H1V1 6 c

6
459.0 75.0 384.0

83P7H1V1 7 c
7

733.0 75.0 658.0
Four engine cordership 96 c

12
962.0 89.0 873.0

pattern can be described such that it has at least −21. This matches the observation

that glider often arise from random configurations.

As with oscillators we can readily describe the smallest version of a spaceship.

In addition to varying with respect to the period, spaceships vary with respect to the

speed and direction. Speeds are rendered as fractions of c, where c is one cell per

iteration. First we will consider spaceships that travel diagonally like the gilder. In

general to travel with a speed of c/s with period p can be described as

X ↓
p
s→

p
s = X⊕p,#0 (4.25)

This describes a spaceship moving down and the right. Due to the symmetry of the

rules of the Game of Life, the same spaceships could all be reoriented to point in

different directions. That would change the direction of the arrows, but not the length

of the description. The length of this is 5 ∗ 12 + 5 + l(p
s
) + l(p) + l(0) = 66 + l(p

s
) + l(p).

Figure 4.6 shows the smallest known diagonally moving spaceships for different

speeds. If we assume that these are the smallest spaceships for these speeds, then

Equation 4.25 describes them. Table 4.4 shows the ASC for these various spaceships.

The glider has negative ASC, it is simple enough to be readily explained by a random

configuration. The remaining diagonal spaceships exhibit a large amount of ASC,

fitting the fact that they are all complex designs. This is expected from look at

Figure 4.6 where the remaining patterns are much larger than the glider.
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(a)
lightweight
space-
ship

(b)
25P3HV1V0.2

(c)
37P4H1V0

(d)
30P5H2V0

(e) Spider (f) 56P6H1V0 (g) Week-
ender

Figure 4.7: The smallest known spaceships for each speed moving orthogonally.

Table 4.5: ASC for the smallest known orthogonal spaceships for each speed.

Name Period Speed Complexity K(X|C) OASC
lightweight spaceship 2 c

2
33.99 57.0 -23.01

25P3HV1V0.2 3 c
3

97.0 58.0 39.0
37P4H1V0 4 c

4
177.0 59.0 118.0

30P5H2V0 5 2c
5

133.0 62.0 71.0
Spider 5 c

5
211.0 60.0 151.0

56P6H1V0 6 c
6

242.0 60.0 182.0
Weekender 7 2c

7
158.0 62.0 96.0

In addition to the diagonally moving spaceships we can also consider orthogonally

moving spaceships. These move in only one direction, and so can be described as:

X ↑
p
s = X⊕p,#0 (4.26)

The length of this is 5 ∗ 9 + 5 + l(p
s
) + l(p) + l(0) = 51 + l(p

s
) + l(p) + l(0). As with the

diagonal spaceships, the same designs can be reoriented to move in any direction. The

equation can be updated by simply changing the arrow. Figure 4.7 shows the smallest

known spaceship for a number of different speeds. Table 4.5 shows the ASC for the

various spaceships. The simplest orthogonal spaceship, the lightweight spaceship, has

negative bits of ASC. This matches the observation that these spaceships do arise out

of random configurations [36]. The remaining spaceships exhibit significant amounts
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Figure 4.8: 31 iterations of the Gosper gun.

of ASC, although not as much as the diagonal spaceships, and are not reported to

have been observed arising at random.

4.3.3 Guns

Figure 4.8 shows the Gosper gun running through 31 iterations. The 30th

iteration is the same as the original configuration except that it also includes a glider.

The glider will escape and the gun will continue to produce gliders indefinitely. This

is known as a gun. We can describe this gun as:

X⊕30 = X ∪ →24↓10,#0 (4.27)

That is, the configuration after thirty iterations is equal to the original configuration

with a glider added at a particular position. There are 60 bits for the symbols and

it will require 20 bits to describe the glider, so 60 + 20 + l(30) + l(24) + l(10) + l(0)

which is 60 + 20 + 11 + 11 + 8 + 1 = 111 bits. The complexity is 196 bits. This gives
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Figure 4.9: The glider being eaten by the eater.

us 196− 111 = 85 bits of OASC. At a probability of 2−85, we conclude the Gosper

gun is unlikely to produced by a random configuration.

4.3.4 Eaters

Most of time when a glider hits a still life, the still life will react with the glider

and end up being changed into some other pattern. However, with patterns known as

eaters, such as that displayed in Figure 4.9, the pattern “eats” the incoming glider

resulting it returning to its original state. There are two aspects that make it an eater.

Firstly, it must be a still life:

X = X⊕ (4.28)

Secondly, it must recover from eating the glider:

(X ∪ ↑3←4)⊕4 = X (4.29)

The two equation have a total of 18 symbols, and the glider will require 20 bits to

encode. Thus the total length will be 5 ∗ 18 + 5 + 20 + l(3) + l(4) + l(4) + l(0) =

5 ∗ 18 + 5 + 20 + 4 + 7 + 7 + 1 = 134 bits. The complexity of the eater is 29 bits. The

OASC is thus 29− 134 = −105 bits. The eater is thus simple enough to be explain by

a random configuration.

4.3.5 Ash Objects

Within the Game of Life, it is possible to create a random soup of cells and

observe what types of objects arise from the soup. The resulting stable objects, still-lifes

and oscillators, are known as ash[32]. Experiments have been performed to measure the
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(a)
blinker

(b)
block

(c)
bee-
hive

(d)
loaf

(e)
boat

(f)
tub

(g)
pond

(h)
ship

(i)
long-
boat

(j)
toad

Figure 4.10: The ten most common Game of Life ash objects.

frequencies of various objects arising from this soup [35]. Figure 4.10 shows the ten most

common ash objects, together comprising 99.6% of all ash objects. We observe that

these objects are fairly small, and thus will not exhibit much complexity. The largest

bounding box is 4 x 4 which will require at most 1+ l(4)+ l(4)+16 = 1+7+7+16 = 31

bits. Describing the simplest still life required 26 bits, leaving at most 4 bits of ASC.

Consequently, none of these exhibit a large amount of ASC.

4.4 Conclusions

We have demonstrated the ability to describe functional Game of Life pattern

using a mathematical formulation. This allows us to compress, theoretically if not

practically, Game of Life patterns which exhibit some functionality. Thus ASC has

the ability to capture functionality.

We made a simplifying assumption about the probabilities of various pattern

arising. We have merely calculated the probability of generating the pattern through

some simply random process not through the actual Game of Life process. We

hypothesized that it was close enough to differentiate randomly achievable patterns

from one that were deliberately created. For the most part, this appeared to work,

with the exception of the unix pattern. However, even that pattern was less then an

order of magnitude more probable then the bound suggested. This suggests for the

most part that the approximation was reasonable, although it could be improved.

We conclude that many of the machines built in life do exhibit ASC. ASC was

able to largely distinguish constructed patterns from those which were produced by
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random configurations. They do not appear to have been generated by a stochastic

process approximated by the probability model we presented.

There are many more patterns in the Game of Life which have been invented or

discovered. We have only investigated a sampling of the most basic patterns. Further

investigation of specification in Game of Life pattern is certainly possible. Our work

here demonstrates the applicability of our method.
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