• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Solving degenerate stochastic Kawarada partial differential equations via adaptive splitting methods.

    View/Open
    PADGETT-DISSERTATION-2017.pdf (8.966Mb)
    Josh_Padgett_copyrightavailabilityform.pdf (1.121Mb)
    SHERPA_RoMEO - Journal of Mathematical Analysis and Applications.pdf (155.6Kb)
    Padgett_NMPDE.pdf (324.9Kb)
    Padgett_Springer.pdf (297.0Kb)
    Access rights
    Worldwide access.
    Access changed 12/11/19.
    Date
    2017-07-08
    Author
    Padgett, Josh Lee, 1990-
    Metadata
    Show full item record
    Abstract
    In this dissertation, we explore and analyze highly effective and efficient computational procedures for solving a class of nonlinear and stochastic partial differential equations. We are particularly interested in degenerate Kawarada equations arising from numerous multiphysics applications including solid fuel combustion and oil pipeline decay. These differential equations are characterized by their strong degeneracies on the boundary, quenching blow-up singularities in the spatial domain, and vibrant stochastic influences in the evolution processes. In addition, physically relevant numerical solutions to Kawarada-type equations must preserve their positivity and monotonicity in time throughout computations, for all valid initial datum. In light of these concerns and challenges, the numerical methods and analysis developed in this dissertation incorporate nonuniform finite difference approximations of the underlying singular differential equation on arbitrary spatial grids. These approximations are then advanced in time via proper adaptive mechanisms and splitting procedures, when multiple dimensions are involved. Degenerate stochastic Kawarada equations in one-, two-, and three-dimensions are explored. The numerical procedures developed in each case are rigorously shown to not only be unconditionally stable, but also preserve the anticipated solution positivity and monotonicity throughout computations. While the numerical stability is proven in the local linearized sense, the stability analysis has been successfully extended to a novel setting that significantly considers all nonlinear influences. Nonlinear convergence of the quenching numerical solutions, as well as their temporal derivatives, are discussed and assessed through generalized Milne devices for the two-dimensional problem. These explorations offer new insights into the computations of similar singular and stochastic differential equation problems. Intensive simulation experiments and validations are provided.
    URI
    http://hdl.handle.net/2104/10099
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Mathematics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV