• Login
    View Item 
    •   BEARdocs Home
    • College of Arts and Sciences
    • Department of Biology
    • Student Publications and Presentations
    • View Item
    •   BEARdocs Home
    • College of Arts and Sciences
    • Department of Biology
    • Student Publications and Presentations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Induced Mutation in Caenorhabditis elegans Causes Dopamine Resistance

    View/Open
    Research poster (4.584Mb)
    Copyright and availability forms from the authors (3.241Mb)
    Access rights
    Worldwide access
    Date
    2018-08-06
    Author
    Walker, Brody
    Grewal, Amanpreet Singh
    Grayson, Nicholas Kallas
    Harris, Luke Reed
    Diokpa, Chijindu
    Aceves, Tatiana
    Metadata
    Show full item record
    Abstract
    In humans, drug addiction is linked to varying dependencies of dopamine levels in the brain. The neurotransmitter is involved in many behavioral mechanisms in animals and mediates the reward pathway. In C. elegans, one of the effects of dopamine is to inhibit motor neuron activity and create a basal slowing response in the N2 (wild types). As a result, egg-laying in wild types is inhibited. To induce egg laying, mutagenized C. elegans were created with EMS (ethyl methansulfonate) to potentially produce a dopamine resistant mutation. After mutagenesis, 334 nematodes were isolated and screened for egg laying behavior. Both wild type and mutant nematodes were exposed to M9 (control), dopamine, and L-dopa (dopamine precursor) solutions. After 1 hour of incubation in these conditions, quantitative analysis was performed to assess the amount of eggs produced. Using an ANOVA test, statistical significance (p<0.001) was found between the wild type and mutant groups both exposed to dopamine. This implies there has been an induced dopamine resistance. The precursor to dopamine, L-dopa, showed similar effects with regard to egg laying behavior. When the dopamine pathway in C. elegans is known, the gene or group of genes implicated for dopamine resistance can be determined. Once identified, a homologous gene in humans could be located and studied for similar drug-resistant effects. The knowledge gained from this research has implications in the fields of gene therapy and drug abuse.
    URI
    http://hdl.handle.net/2104/10400
    Collections
    • Student Publications and Presentations

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV