• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Taphonomic and mass-extinction research from an ichnological perspective.

    Thumbnail
    View/Open
    WIEST-DISSERTATION-2018.pdf (3.747Mb)
    SHERPA_RoMEO - PALAIOS.pdf (150.9Kb)
    Logan_Weist_copyrightavailabilityform.pdf (255.2Kb)
    Access rights
    Worldwide access.
    Date
    2018-05-31
    Author
    Wiest, Logan A., 1987-
    Metadata
    Show full item record
    Abstract
    The assemblage of Pleistocene megafauna at Waco Mammoth National Monument (WMNM) and the terrestrial Cretaceous-Paleogene (K-Pg) boundary at Big Bend National Park are just two examples that demonstrate the peril effects of an extreme environmental perturbation on ancient ecosystems. Ichnology is the study of traces that are generated by organismal behavior; therefore, analyzing major die-offs through an ichnological lens can provide a unique perspective to understand the ethology of the survivors. At WMNM trace-fossil analysis was combined with taphonomy, which revealed that the Columbian mammoth herd was subjected to extensive vertebrate and invertebrate scavenging. These findings necessitated a re-evaluation of the causal mechanisms responsible for the death of the herd, as well as demonstrated that scavenging organisms out-survived, at least for some time, the large herbivores in this case. The application of ichnology to the terrestrial K-Pg boundary revealed new findings about the surviving organisms in response to the end-Cretaceous extinction. Herbivorous, soil-dwelling insects, as evidenced from analogous traces, were significantly reduced in body size (Lilliput effect) following the aftermath of the event. These findings, in conjunction with research on marine-organism responses, provide empirical evidence that the Lilliput effect was a phenomenon that affected surviving organisms across highly disparate trophic levels and ecosystems. Lastly, a hybrid approach of ichnology and zooarchaeology was used to develop morphological criteria for taphonomic analysts to differentiate between carnivore traces and unintentional, preparator air-scribe marks, which can be more similar than one might imagine. Utilization of an ichnological perspective to study survival behaviors from the ancient past may one day help address some of the decisions regarding our current mass extinction.
    URI
    http://hdl.handle.net/2104/10422
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Geosciences

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV