Transport properties of disordered 2D complex plasma crystal

Date

Authors

Kostadinova, Eva Georgieva, 1992-
Guyton, Forrest.
Cameron, Adam
Busse, Kyle
Liaw, Constanze.
Matthews, Lorin Swint.
Hyde, Truell Wayne.

Access rights

Journal Title

Journal ISSN

Volume Title

Publisher

Contributions to Plasma Physics

Abstract

In this work, we investigate numerically the transport properties of a 2D complex plasma crystal using diffusion of coplanar dust lattice waves. In the limit where the Hamiltonian interactions can be decoupled from the non-Hamiltonian effects, we identify two distinct types of wave transport: Anderson-type delocalization and long-distance excitation. We use a recently-developed spectral approach to evaluate the contribution of the Anderson problem and compare it to the results of the simulation. The benefit of our approach to transport problems is twofold. First, we employ a highly tunable macroscopic hexagonal crystal, which exhibits many-body interactions and allows for the investigation of transport properties at the kinetic level. Second, the analysis of the transport problem in 2D is provided using an innovative spectral approach, which avoids the use of scaling and boundary conditions. The comparison between the analytically predicted and numerically observed wave dynamics allows for the study of important characteristics of this open system. In our simulations, we observe long-distance lattice excitation, which occurs around lattice defects even when the initial perturbation does not spread from the center to the exterior of the crystal. In the decoupled Hamiltonian regime, this many-body effect can be contributed to the dust lattice interaction with the plasma environment.

Description

Keywords

Citation

Contributions to Plasma Physics, 2018

Collections