• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Topic on the statistical analysis of high-dimensional data.

    View/Open
    STEIN-DISSERTATION-2019.pdf (20.88Mb)
    Caleb_Stein_copyright permissions.msg (184Kb)
    Caleb_Stein_copyrightavailabilityform.pdf (63.58Kb)
    Access rights
    No access - Contact librarywebmaster@baylor.edu
    Worldwide access
    Date
    2019-04-15
    Author
    Stein, Caleb Karl, 1985-
    Metadata
    Show full item record
    Abstract
    High-dimensional genomic data can provide deep insight into biological processes. However, conventional statistical methods typically cannot be applied directly to genomic data sets because the high dimensionality of markers commonly exceeds sample size, rendering the sample covariance matrix to be singular. Here, we examine three scenarios involving high-dimensional genomic data: reordering of principle components of multi-class data based on alternative criteria, comparing tests for two population means on high-dimensional data, and correcting for systematic batch effects in microarray data. All three investigations overcome issues of dimensionality and use principal components for dimension-reduction, visualization, or statistical analysis. First we use alternatively ordered principal components to produce low-dimensional models for visualization; second, we compare five high-dimensional tests of two-means and describe a principal-component alternative to Hotelling's T2 test; and finally, we utilize principal component reduction of microarray data to visualize existing batch effects between cohorts. Overall, we explore solutions to the analysis of high-dimensional, genomic data through the use of principal components analysis or other adaptations to reach the desired analytic objectives.
    URI
    https://hdl.handle.net/2104/10685
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Statistical Sciences

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV