• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Gravitational radiation and black hole formation from gravitational collapse in theories of gravity with broken Lorentz symmetry.

    Thumbnail
    View/Open
    BHATTACHARJEE-DISSERTATION-2019.pdf (1.351Mb)
    SHERPA_RoMEO - Gen Relativity and Gravitation.pdf (154.6Kb)
    SHERPA_RoMEO - Physical Review D.pdf (154.3Kb)
    Madhurima_Bhattacharjee_copyrightavailabilityform.pdf (971.3Kb)
    Access rights
    Worldwide access
    Date
    2019-07-12
    Author
    Bhattacharjee, Madhurima, 1989-
    0000-0002-1561-5038
    Metadata
    Show full item record
    Abstract
    Quantum gravity is expected to contain Lorentz symmetry only as an emergent low energy symmetry with the scale at which it is broken presently inaccessible to current experiments. My research, is centered around understanding various physical aspects of gravitational theories that modify general relativity by explicitly breaking Lorentz symmetry (i.e. Hořava-Lifshitz gravity and Einstein-æther theory) in gravitational sector, so that they are consistent with all current observations. In this dissertation I have studied numerically, gravitational collapse of a massless scalar field in Einstein-æther theory showing the existence of outermost “dynamical Universal horizons (dUHs)”. Such a dUH evolves into the causal boundary, even for excitations with arbitrarily large speeds of propagation. I have also studied the gravitational wave solutions in Einstein-æther theory and their behavior, especially how they may be potentially distinguishable by present or future detectors from the standard prediction of general relativity. I have also studied analytically black hole solutions in 2D Hořava gravity (non-projectable) which is non-minimally coupled with a nonrela-tivistic scalar field with focus on understanding Hawking radiation and the properties of the universal horizons.
    URI
    https://hdl.handle.net/2104/10752
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Physics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV