• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bayesian inference for vaccine efficacy and prediction of survival probability in prime-boost vaccination regimes.

    View/Open
    LU-DISSERTATION-2019.pdf (20.03Mb)
    Angel_Lu_copyrightavailabilityform.pdf (881.3Kb)
    Access rights
    No access-contact librarywebmaster@baylor.edu.
    Date
    2019-11-08
    Author
    Lu, Yuelin, 1992-
    Metadata
    Show full item record
    Abstract
    This dissertation consists of two major topics on applying Bayesian statistical methods in vaccine development. Chapter two concerns the estimation of vaccine efficacy from validation samples with selection bias. Since there exists a selection bias in the validated group, traditional assumptions about the non-validated group being missing at random do not hold. A selection bias parameter is introduced to handle this problem. Extending the methods of et al. scharfstein (2006), we construct and validate a data generating mechanism that simulates real-world data and allows evaluation of their model. We implement the Bayesian model in JAGS and assess its performance via simulation. Chapter three introduces a two-level Bayesian model which can be used in predicting survival probability from administrated dose concentrations. This research is motivated by the need to use limited information to infer the probability of survival for the next Ebola outbreak under a heterologous prime-boost vaccine regimen. The first level models the relationship between dose and induced antibody count. We use a two-stage response surface to model this relationship. The second level models the association between the antibody count and the probability of survival using a logistic regression. We combine these models to predict survival probability from administrated dosage. We illustrate application of the model with three examples in this chapter and evaluate its performance in Chapter four.
    URI
    https://hdl.handle.net/2104/10808
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Statistical Sciences

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV