• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Orbits, pseudo orbits, and the characteristic polynomial of q-nary quantum graphs.

    Thumbnail
    View/Open
    HUDGINS-DISSERTATION-2020.pdf (1.919Mb)
    Tori_Hudgins_CopyrightAvailabilityForm.pdf (151.6Kb)
    Access rights
    Worldwide access
    Date
    2020-07-17
    Author
    Hudgins, Victoria Kathryn, 1989-
    0000-0001-5214-9200
    Metadata
    Show full item record
    Abstract
    Quantum graphs provide a simple model of quantum mechanics in systems with complex geometry and can be used to study quantum chaos. We evaluate the variance of the coefficients of a quantum binary graph’s associated characteristic polynomial, which is related to the quantum graph’s spectrum. This variance can be written as a finite sum over pairs of short pseudo orbits on the graph with the same topological and metric lengths.To account for all pairs of this type, we first count the numbers of primitive periodic orbits and primitive pseudo orbits on general q-nary graphs by exploiting properties of Lyndon words. We then classify the primitive pseudo orbits on binary graphs by their numbers of self-intersections, the number of repetitions of each self-intersection, and the lengths of self-intersections, in order to determine the contributions of primitive pseudo orbit pairs to the variance. By arranging the sum in a way that considers the contribution of each primitive pseudo orbit paired with all possible partners, we can evaluate the sum over all pairs of primitive pseudo orbits and then use the graph’s ergodicity to asymptotically determine the variance in the limit of large binary graphs. The Bohigas-Giannoni-Schmit conjecture suggests spectral statistics of generic quantum graphs are typically modeled by those of random matrices, in the limit of large graphs. However, we show that, for families of binary graphs, there is a uniform family-specific deviation from random matrix behavior in the variance of coefficients of the characteristic polynomial. Related results for the variance of the coefficients of the characteristic polynomial for general q-nary quantum graphs are also investigated.
    URI
    https://hdl.handle.net/2104/11123
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Mathematics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV