• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bayesian spatial misclassification model for areal count data with applications to COVID-19.

    View/Open
    CHEN-DISSERTATION-2021.pdf (843.3Kb)
    Jinjie_Chen_CopyrightAvailabilityForm (469.2Kb)
    Access rights
    No access – contact librarywebmaster@baylor.edu
    Date
    2021-04-21
    Author
    Chen, Jinjie, 1986-
    Metadata
    Show full item record
    Abstract
    As of December 14, 2020, there have been more than 72.1 million confirmed cases, of which more than 1.61 million have died of COVID-19 globally. In the United States, there are more than 16,200,000 confirmed cases and 299,000 COVID-19-related deaths, the most cases, and deaths of any country. However, even with the huge number of confirmed diagnoses, the public burden of the pandemic is still masked by under-reporting and misclassification. Based on the Bayesian spatial model and Poisson regression, we study two topics, aiming to provide a flexible quantitative approach for simulating and correcting the under-reporting and misclassification of COVID-19 at the US state level. Topic 1 quantifies under-reporting rates with Poisson-logistic regression, combined with the prior information derived from the results of the SARS-CoV-2 antibody sampling study, and then estimates the true case of COVID-19 in each state of the US. Topic 1 also combines the Besag-York-Mollié 2 (BYM2) model to correct the bias of parameter estimation caused by ignoring the spatial autocorrelation. Topic 2 proposes a bivariate Bayesian spatial misclassification model, which can simultaneously calibrate the misclassification of two counts of the same area (for example, state or county). Deaths related to COVID-19 are considered to be misclassified to other causes and vice versa (although the latter case is relatively fewer). In addition, because the number of deaths at the state level shows obvious spatial similarity, BYM2 random effects are included to explain the variability beyond the covariates. Our model was applied to state-level COVID-19 deaths and other deaths, achieving satisfactory results that can be a reference for estimating the true COVID-19 deaths. Topic 3 proposes and discusses the determination of sample size based on skew-normal distribution. This method adopts Bayesian intensive simulation to overcome limitations of closed-form approximation and normality assumption while ensuring sufficient statistical power and nominal coverage of confidence interval (or credible set). Our approach demonstrates good performance and application prospects.
    URI
    https://hdl.handle.net/2104/11366
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Statistical Sciences

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV