• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical and theoretical study of natural oscillations of supported drops with free and pinned contact lines.

    View/Open
    SAKAKEENY-DISSERTATION-2021.pdf (10.11Mb)
    Jordan_Sakakeeny_Copyright Permissions_Journals of The American Physical Society.pdf (183.9Kb)
    Jordan_Sakakeeny_CopyrightAvailabilityForm.pdf (212.4Kb)
    Access rights
    No access – contact librarywebmaster@baylor.edu
    Date
    2021-04-19
    Author
    Sakakeeny, Jordan, 1993-
    0000-0002-8368-9127
    Metadata
    Show full item record
    Abstract
    The oscillation of drops supported by solid surfaces is important to a wide variety of applications, such as dropwise condensation. Identification of the natural frequencies of supported drops of different sizes and liquids on different material surfaces is essential to developing techniques to enhance drop shedding using acoustics or surface vibration. This dissertation presents a systematic investigation of the effect the contact angle, the gravitational Bond number, the contact line mobility, and the perturbation force angle on the natural frequencies of the drop through parametric direct numerical simulation. The open-source multiphase flow solver, Basilisk, has been used for both 2D-axisymmetric and full 3D simulation. The geometric volume-of-fluid method has been used to capture the drop surface. Two asymptotic limits of contact line mobility, the free and pinned contact lines are considered. The results show that the for all the oscillation modes, the frequency scales with the capillary frequency. For the axisymmetric longitudinal modes, normalized frequency decreases with the contact angle, increases with the gravitational Bond number, and increases when the contact line changes from the free to pinned conditions. For the lateral oscillation mode, the variation trends of the oscillation frequency with the contact angle and contact line mobility remain the same, but the frequency slightly decreases with the Bond number. The simulation results match with inviscid theory remarkably well and also agree well with the experimental data on different material surfaces. An inviscid theoretical model is also established. The model yields expressions for the frequency as a function of the contact angle and the Bond number, with all parameters involved fully determined by the equilibrium drop theory and the simulation. The model predictions are compared with the simulation results and excellent agreement is achieved.
    URI
    https://hdl.handle.net/2104/11473
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Mechanical Engineering

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV