• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unsupervised representational learning of hierarchical graphs with graph convolutional networks.

    Thumbnail
    View/Open
    BOADU-THESIS-2021.pdf (3.075Mb)
    Frimpong_Boadu_copyrightavailabilityform.pdf (394.2Kb)
    Access rights
    No access – contact librarywebmaster@baylor.edu
    Date
    2021-04-30
    Author
    Boadu, Frimpong, 1996-
    0000-0002-4464-6191
    Metadata
    Show full item record
    Abstract
    Interpretation of functional genomic data attempts to correlate gene and protein expression with phenotype. While direct analysis of gene relationships associated with phenotype manifestation provides reasonable correlations, their use for direct assessment often fails to capture numerous complex biological phenomena. As a result, tools that cluster sets of genes based solely on set membership often fail to capture knowledge about contextual relationships of individual gene sets. To leverage large scale gene set relationships and gene set metadata to increase accuracy, we developed an approach that uses the network relationship of genes to extract system-level relationships. We employed an approach that segregates an empirically derived gene-gene network graph using deep learning to encode the network structure into low-dimensional embeddings. By applying graph neural network approaches we can generate lower dimensional embeddings that more accurately identify sets of genes related to biological traits of interest. Using well-adopted metadata over-representation techniques, we further demonstrate that our approach produces drastically different results when compared to direct set comparison methods, and more accurate results when subjected to manual analysis.
    URI
    https://hdl.handle.net/2104/11519
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Computer Science

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV