• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Moment analysis methods of ultrasonic waveforms to characterize the internal temperature and melt transition boundary for materials with irregular porosity.

    Thumbnail
    View/Open
    WATSON-THESIS-2021.pdf (3.233Mb)
    Tyler_Watson_CopyrightAvailabilityForm (2).pdf (46.97Kb)
    Access rights
    Worldwide access
    Date
    2021-08-05
    Author
    Watson, Tyler R., 1996-
    Metadata
    Show full item record
    Abstract
    The utilization of acoustic measurements occurs frequently in a multitude of industries. Monitoring the internal thermal and phase states of materials is of particular interest to the petro-chemical, food, and polymer processing industries, and ultrasound has found limited investigation within the literature for such applications. In this thesis, ultrasound is shown to be useful for monitoring spatial thermal variations through the thickness of a material system without the need to access the interior of the medium in question. The research presented within this thesis will show how the characterization of the internal thermal state of a structure containing random and irregularly shaped internal voids is possible using the internal moments of the captured acoustic waveform. Studies are presented to demonstrate the sensitivity of the resulting analysis to variations in the experimental configuration. The results of this research demonstrate how the proposed methodology is capable of quantifying the internal thermal and phase states of porous mediums with thermal gradients and approximating the two-dimensional variation of the temperature from ultrasonic waveforms.
    URI
    https://hdl.handle.net/2104/11588
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Mechanical Engineering

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV