• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On the performance of convolutional neural networks initialized with Gabor filters.

    Thumbnail
    View/Open
    RAI-THESIS-2021.pdf (3.885Mb)
    Mehang_Rai_CopyrightAvailabilityForm.pdf (283.7Kb)
    Mehang_Rai_Rightslink® by Copyright Clearance Center.pdf (99.20Kb)
    Access rights
    Worldwide access
    Date
    2021-08-05
    Author
    Rai, Mehang, 1996-
    Metadata
    Show full item record
    Abstract
    Over the years, image recognition has been gaining popularity due to its various possible usages. Convolutional Neural Networks (CNNs) have been the classic approach taken on by many researchers because of their capability to learn through the parameter space given a sufficient amount of representative data. When observing a fully trained CNN, researchers have found that the pattern on the kernel filters (convolution window) of the receptive convolutional layer closely resembles the Gabor filters. Gabor filters have existed for a long time, and researchers have been using them for texture analysis. Given the nature and purpose of the receptive layer of CNN, Gabor filters could act as a suitable replacement strategy for the randomly initialized kernels of the receptive layer in CNN, which could potentially boost the performance without any regard to the nature of the dataset. The findings in this thesis show that when low-level kernel filters are initialized with Gabor filters, there is a boost in accuracy, Area Under ROC (Receiver Operating Characteristic) Curve (AUC), minimum loss, and speed in some cases based on the complexity of the dataset.
    URI
    https://hdl.handle.net/2104/11590
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Computer Science

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV