• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of carbon fiber laminates via the use of pulse-echo ultrasound to quantify ply-stack orientation and manufacturing defects.

    Thumbnail
    View/Open
    BLACKMAN-DISSERTATION-2021.pdf (36.24Mb)
    Blackman_CopyrightPermissio_MDPI .pdf (179.7Kb)
    Nathaniel_Blackman_copyright and availability form_1.pdf (1.624Mb)
    Access rights
    No access – contact librarywebmaster@baylor.edu
    Date
    2021-11-10
    Author
    Blackman, Nate J., 1994-
    0000-0002-4822-5677
    Metadata
    Show full item record
    Abstract
    The use of carbon fiber composites have become more prevalent. Laminated composites provide advantages over traditional materials as the final properties of the part can be tuned. These materials also provide new challenges relating to testing and validation. Traditional testing methods are destructive in nature, creating additional costs. Non-destructive testing can be used to verify the safety of composite parts. This research addresses challenges in the quantification of the ply stack of laminated plain-weave carbon fiber composites and the detection and sizing of foreign objects within carbon fiber laminates via the use of pulse-echo ultrasound. The first scientific contribution of this work is a method to determine the number of lamina and orientation of each lamina for plain weave carbon fiber laminates. Current methods to verify the ply stack are destructive, increasing product waste and costs. The method developed uses pulse-echo ultrasound causing no damage to the inspected part. The method is demonstrated by analyzing 12 unique laminates ranging from 3 lamina to 18 lamina in thickness. The ply stacks represented are also varied. The technique accurately determines the number of lamina and correctly predicted the orientation of 115 out of 117 plies within ±3° of the true orientation. The second scientific contribution of this work is the development of a method to detect and quantify foreign objects in carbon fiber composites. Foreign objects create localized weakness within the composite leading to safety concerns. The method presented can detect various materials of concern common to a manufacturing environment and likely to be foreign objects. In addition, the technique provides an advancement in the quantification of foreign objects with an average error in determining the area of foreign objects of 2.5% in one study presented. The final contribution of this work is the presentation of a portable ultrasonic housing that allows for the acquisition of ultrasound scans with comparable resolution to those taken from an immersion system. Foreign object detection and quantification is demonstrated using this housing and compared with scans taken from an immersion system. The housing allows for additional real-world applications of the developed techniques presented in this dissertation.
    URI
    https://hdl.handle.net/2104/11715
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Mechanical Engineering

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV