• Login
    View Item 
    •   BEARdocs Home
    • CASPER
    • Astronomy and Space Science Theory Group (ASSTG)
    • ASSTG Articles
    • View Item
    •   BEARdocs Home
    • CASPER
    • Astronomy and Space Science Theory Group (ASSTG)
    • ASSTG Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dust as probes: Determining confinement and interaction forces

    Thumbnail
    View/Open
    main article (3.357Mb)
    Date
    2020-10
    Author
    Hartmann, Peter
    Rosenberg, Marlene
    Juhasz, Z.
    Matthews, Lorin
    Sanford, Dustin
    Vermillion, Katrina
    Reyes, Jorge
    Hyde, Truell
    Metadata
    Show full item record
    Abstract
    The PK-4 system is a micro-gravity dusty plasma experiment currently in operation on-board the International Space Station. The experiment utilizes a long DC discharge in neon or argon gases. We apply our 2D particle-in-cell with Monte Carlo collisions discharge simulation to compute local plasma parameters that serve as input data for future dust dynamics models. The simulation includes electrons, Ne+ ions, and Ne^m metastable atoms in neon gas and their collisions at solid surfaces including secondary electron emission and glass wall charging. On the time scale of the on-board optical imaging, the positive column appears stable and homogeneous. On the other hand, our simulations show that on microsecond time scales the positive column is highly inhomogeneous: ionization waves with phase velocities in the range between 500 m s−1 and 1200 m s−1 dominate the structure. In these waves, the electric field and charged particle densities can reach amplitudes up to 10 times of their average value. Our experiments on ground-based PK-4 replica systems fully support the numerical findings. In the experiment, the direction of the DC current can be alternated, which has been found to favor dust particle chain formation. We discuss possible mechanisms for how the highly oscillatory plasma environment contributes to the dust particle chain formation.
    URI
    https://hdl.handle.net/2104/11773
    Collections
    • ASSTG Articles
    • HIDPL Articles

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV