• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design, synthesis and biological evaluation of new anti-Cancer nitrogen-containing combretastatins and novel cysteine protease inhibitors for the treatment of Chagas.

    Thumbnail
    View/Open
    rogeliodissert.pdf (17.75Mb)
    permissions.pdf (442.1Kb)
    Access rights
    Worldwide access.
    Access changed 5/24/11.
    Date
    2006-05-29
    Author
    Siles, Rogelio.
    Metadata
    Show full item record
    Abstract
    In an effort to combat cancer, the development of a relatively new type of anti-cancer drugs known as vascular disrupting agents (VDAs) seems to be a promising clinical approach. VDAs selectively interfere with blood flow in the microvessels that carry nutrients and oxygen to the tumor. Blockage of these vessels will stop tumor growth, produce necrosis, and hence prevent proliferation of cancer cells through the body. The discovery of a group of VDAs known as combretastatins (CA) has sparked an exciting area of anti-cancer drug discovery due to their robust biological activity as evidenced through clinical success, particularly for combretastatin A-4 phosphate (CA-4P) and one nitrogen-based combretastatin CA-4 analogue, AVE8062 which are currently in clinical development. Herein, a small library of seventeen new synthetic oxygen and nitrogen-bearing CA-1 and CA-4 analogues is described. Three of these analogues showed significant inhibition of tubulin assembly (IC50= 2-3 μM) as well as in vitro cytotoxicity against selected human cancer cell lines and in vivo blood flow reduction in SCID mice (23-25% at 10 mg/Kg) suggesting that they have potential for further prodrug modification and development as vascular disrupting agents for the treatment of solid tumor cancers. A separate research project has concentrated on the development of cysteine protease inhibitors, primarily focused toward the inhibition of cruzain, the major cysteine protease of Trypanosoma cruzi which is the agent of the parasitic disease called Chagas’ disease. Currently there is no satisfactory treatment for this disease, and the two accepted drugs, nifurtimox and benznidazole, are associated with significant clinical toxicity. A library of fourteen small non-peptidic thiosemicarbazones has been successfully designed, synthesized and tested against cruzain and cathepsin L from which five compounds showed significant cruzain inhibition in the low namolar range. Although the most active compound synthesized, which is a bromotetrahydronaphthalene thiosemicarbazone, exhibited an IC50=12 nM against cruzain, it also showed activity against cathepsin L (IC50=134 nM). This new pharmacophore introduced may prove useful as a lead compound for further optimization. In addition, this research revealed further insights into the complex structure-activity relationship parameters which may lead to the further development of more selective cruzain inhibitors.
    URI
    http://hdl.handle.net/2104/3018
    Department
    Chemistry and Biochemistry.
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Chemistry & Biochemistry

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV