• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bayesian inference for correlated binary data with an application to diabetes complication progression.

    View/Open
    Dissertation (719.8Kb)
    Permissions Form (1.639Mb)
    Access rights
    Baylor University access only
    Date
    2006-10-26
    Author
    Carlin, Patricia M.
    Metadata
    Show full item record
    Abstract
    Correlated binary measurements can occur in a variety of practical contexts and afford interesting statistical modeling challenges. In order to model the separate probabilities for each measurement we must somehow account for the relationship between them. We choose to focus our applications to the progression of the complications of diabetic retinopathy and diabetic nephropathy. We first consider probabilistic models which employ Bayes' theorem for predicting the probability of onset of diabetic nephropathy given that a patient has developed diabetic retinopathy, modifying the work of Ballone, Colagrande, Di Nicola, Di Mascio, Di Mascio, and Capani (2003). We consider beta-binomial models using the Sarmanov (1966) framework which allows us to specify the marginal distributions for a given bivariate likelihood. We present both maximum likelihood and Bayesian methods based on this approach. Our Bayesian methods include a fully identified model based on proportional probabilities of disease incidence. Finally, we consider Bayesian models for three different prior structures using likelihoods representing the data in the form of a 2-by-2 table. To do so, we consider the data as counts resulting from two correlated binary measurements: the onset of diabetic retinopathy and the onset of diabetic nephropathy. We compare resulting posterior distributions from a Jeffreys' prior, independent beta priors, and conditional beta priors, based on a structural zero likelihood model and the bivariate binomial model.
    URI
    http://hdl.handle.net/2104/4829
    Department
    Statistical Sciences.
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Statistical Sciences

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV