Charging and Growth of Fractal Dust Grains

Date

Authors

Matthews, Lorin Swint.
Hyde, Truell Wayne.

Access rights

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE Transactions on Plasma Science

Abstract

The structure and evolution of aggregate grains formed within a plasma environment are dependent on the charge acquired by the micron-sized dust grains during the coagulation process. The manner in which the charge is arranged on developing irregular structures can affect the fractal dimension of aggregates formed during collisions, which, in turn, influences the coagulation rate and size evolution of the dust within the plasma cloud. This paper presents preliminary models for the charge and size evolution of fractal aggregates immersed in a plasma environment calculated using a modification to the orbital motion-limited (OML) theory. Primary electron and ion currents that are incident on points on the aggregate surface are determined using a line-of-sight (LOS) approximation: only those electron or ion trajectories that are not blocked by another grain within the aggregate contribute to the charging current. Using a self-consistent iterative approach, the equilibrium charge and dipole moment are calculated for the dust aggregate. The charges are then used to develop a heuristic charging scheme, which can be implemented in coagulation models. While most coagulation heories assume that it is difficult for like-charged grains to oagulate, the OML_LOS approximation indicates that the electric potentials of aggregate structures are often reduced enough to allow significant coagulation to occur.

Description

Keywords

Citation

IEEE Transactions on Plasma Science, 36(1), 310-314, 2008.