• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synthesis and application of C₂ asymmetric phosphinines via their pyrylium salt precursors.

    Thumbnail
    View/Open
    dissertation (2.089Mb)
    permissions form (55.81Kb)
    Access rights
    Worldwide access
    Date
    2010-06-23
    Author
    Bell, Jason R.
    Metadata
    Show full item record
    Abstract
    The development of new chiral ligands for asymmetric catalysis is an increasingly important area of research. Though many ligands are phosphorus based, one class of phosphorus ligands, phosphinines (phosphabenzenes), have been little studied. Most studies of chiral phosphinines, especially for those used in asymmetric catalysis have involved essentially attaching achiral phosphinines to chiral auxiliaries. The synthesis of the first C₂ chiral phosphinine was accomplished by converting (+)-camphor to the corresponding pyrylium salt, and then converting the pyrylium to the phosphinine. Though several initial attempts failed at forming the necessary pyrylium salt using simpler synthetic methods, an effective route for forming the pyrylium was chosen utilizing the preformed 3-ene-1,5-dione precursor. The camphor-based phosphinine was fully characterized and applied to two asymmetric catalytic test reactions, asymmetric hydrosilylation and asymmetric hydrogenation. Though (+)-camphor provided a convenient, cost-effective, and enantiomerically pure starting material, nature provides few compounds fitting all the necessary requirements for the starting materials. Therefore, derivatized cyclohexanones were also synthesized. Specifically, pyryliums salts based on 2-methyl-2-phenylcyclohexanone were synthesized, albeit in low yield. Attempts to use the improved synthetic method developed for the camphor-based pyryliums failed at the chlorination stage. Attempts to convert the (+)-camphor chlorobenzylidene intermediate into C₁ chiral pyryliums also failed. The C₂ asymmetric phosphinine based on camphor did react with benzyne to yield a new chiral phosphabarrelene.
    URI
    http://hdl.handle.net/2104/7925
    Department
    Chemistry and Biochemistry.
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Chemistry & Biochemistry

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV