• Login
    View Item 
    •   BEARdocs Home
    • CASPER
    • Hypervelocity Impacts and Dusty Plasma Lab (HIDPL)
    • HIDPL Articles
    • View Item
    •   BEARdocs Home
    • CASPER
    • Hypervelocity Impacts and Dusty Plasma Lab (HIDPL)
    • HIDPL Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dusty Plasma Correlation Function Experiment

    Thumbnail
    View/Open
    Main article (329.8Kb)
    Date
    2004
    Author
    Smith, Bernard (Bernie).
    Vasut, John
    Matthews, Lorin Swint.
    Hyde, Truell Wayne.
    Reay, Jerry
    Cook, Mike
    Schmoke, Jimmy
    Metadata
    Show full item record
    Abstract
    Dust particles immersed within a plasma environment, such as those in protostellar clouds, planetary rings or cometary environments, will acquire an electric charge. If the ratio of the inter-particle potential energy to the average kinetic energy is high enough the particles will form either a “liquid” structure with short-range ordering or a crystalline structure with long range ordering. Many experiments have been conducted over the past several years on such colloidal plasmas to discover the nature of the crystals formed, but more work is needed to fully understand these complex colloidal systems. Most previous experiments have employed monodisperse spheres to form Coulomb crystals. However, in nature (as well as in most plasma processing environments) the distribution of particle sizes is more randomized and disperse. This paper reports experiments which were carried out in a GEC radio frequency reference cell modified for use as a dusty plasma system, using varying sizes of particles to determine the manner in which the correlation function depends upon the overall dust grain size distribution. (The correlation function determines the overall crystalline structure of the lattice.) Two-dimensional plasma crystals were formed of assorted glass spheres with specific size distributions in an argon plasma. Using various optical techniques, the pair correlation function was determined and compared to those calculated numerically.
    URI
    http://hdl.handle.net/2104/8006
    Collections
    • HIDPL Articles
    

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV