• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design and synthesis of novel β-cyclodextrins and their application as chiral stationary phases for gas chromatography.

    Thumbnail
    View/Open
    Dissertation (2.315Mb)
    Permissions Form (117.2Kb)
    Access rights
    Worldwide access.
    Access changed 3/18/13.
    Date
    2011-01-05
    Author
    Hayden, Tiffany Renee Turner.
    Metadata
    Show full item record
    Abstract
    Enantiomers can be directly separated only with use of systems containing a chiral selector. Cyclodextrins (CDs) and modified cyclodextrins have been used as chiral selectors for their ability to form host-guest complexes with various analytes. The scaffold of the CD allows for assembly of functional groups with controlled geometry. CDs can be readily modified through substitution of the hydroxyl groups, giving rise to derivatives with significantly different properties, especially increased solubility and controlling the hydrophobicity of the cavity. Even though CDs can be readily modified, the syntheses can be tedious and complicated with various protecting group strategies to control the reactivity of the various alcohols. The preparation of modified cyclodextrins for use as chiral stationary phases (CSP) for gas chromatography (GC) is the focal point of this research. Our effort to identify useful new β-CD derivatives involved attempts to make bridged (annulated) derivatives, could increase the thermal stability of the derivatives, and change the length, width and polarity of the CD cavity. To date, there are no reports of annulated CD derivatives in the chemical literature. In the process of evaluating a wide range of electrophiles that could accomplish annulation, several new β-CD derivatives, i.e., per(6-O-TBS-2,3-O-cyclodimethylsilyl)- β-CD, per(6-O-TBS-2,3-O-cyclodiphenylsilyl)- β-CD, per(6-O-Pivaloyl-2,3-O-cyclodimethylsilyl)-β-CD, per(6-deoxy-2,3-O-methyl)- β-CD, and per(6-deoxy-2,3-O-allyl)- β-CD, were synthesized. Two of the new derivatives were evaluated as components of stationary phases for GC, per(6-O-TBS-2,3-Ocyclodimethylsilyl)-β-CD and per(6-deoxy-2,3-O-methyl)-β-CD. Overall, this work resulted in five new CD derivatives.
    URI
    http://hdl.handle.net/2104/8101
    Department
    Chemistry and Biochemistry.
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Chemistry & Biochemistry

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV