• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Folding, dynamics and interaction studies of the Neuropeptide Y family.

    Thumbnail
    View/Open
    Dissertation (8.632Mb)
    Permission Form (515.9Kb)
    Access rights
    Worldwide access.
    Access changed 5/21/14.
    Date
    2011-12-19
    Author
    Hegefeld, Wendy A.
    Metadata
    Show full item record
    Abstract
    Detailed molecular knowledge of the complex dynamics of biological processes such as folding and the interaction with cellular membranes may greatly advance the treatment of human disease. The Neuropeptide Y family of peptides are highly conserved peptides found in nature, consist of 36 amino acids, and are widely distributed in the central nervous system of mammals. A detailed study of thermodynamics, kinetics, membrane translocation, and receptor interaction of human neuropeptide Y (NPY) and the thermodynamics and detailed molecular modeling of human peptide YY (PYY) were investigated. These studies employed a combination of experiment and simulation to characterize the two most important members of the neuropeptide Y family. The formation of secondary structures is one of the most fundamental processes in protein folding. To obtain a detailed understanding of protein folding it is useful to study peptide models that provide well defined stable structures in solution. NPY and PYY are composed primarily of two important secondary structural elements: the α-helix and hairpin-like structure. Therefore, further analysis of the three most prevalent helical secondary structures found in nature (α-, 3₁₀-, π-helix) and the β-hairpin structure were carried out with carefully designed peptide models to characterize their individual structures and formation. These studies suggest two different mechanisms of formation for helical and β-hairpin structures.
    URI
    http://hdl.handle.net/2104/8265
    Department
    Biomedical Studies.
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Biomedical Studies

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV