• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Kinetics and mechanistic detail of Ni⁺ assisted organic decomposition reaction at low internal energies.

    Thumbnail
    View/Open
    Dissertation (1.264Mb)
    Permissions Form (389.5Kb)
    Copyright JPC (1.285Mb)
    Access rights
    Worldwide access
    Date
    2011-12-19
    Author
    Laboren, Ivanna E.
    Metadata
    Show full item record
    Abstract
    The unimolecular decomposition kinetics of jet-cooled cluster ions have been monitored over ranges of internal energies. The clusters are formed by the combination of Ni cation with and organic ketone, aldehyde or ether molecules. The internal energy delivered to the clusters is provided through laser photon absorption. The quantum of photon energy approximates the total energy content of the reacting species as the clusters are jet cooled prior to photon absorption. The interaction of the organic substrate with the transition metal cation lowers the kinetic barriers to the activation of σ-bond. Thus the cation activates organic bonds and mediates the formation of products. The unimolecular decomposition products in these studies are a stable neutral with the corresponding ion. This dissertation will focus on the unimolecular decomposition kinetics of Ni⁺- Butanone. First order rate constants are acquired for the precursor ion dissociation into three product channels. The temporal growth of each fragment ion is selectively monitored and yields similar valued rate constants. The common-valued rate constants, comparisons to earlier studies, and the results of DFT calculations reveal the dissociation dynamics. This unimolecular decomposition reaction is proposed to proceed along two parallel reaction coordinates that originate with the rate-limiting Ni⁺ oxidative addition into either the OC-CH₃ or OC-C₂H₅ σ-bond in the butanone molecule. Rate constant values for the activation of both bonds are determined.
    URI
    http://hdl.handle.net/2104/8268
    Department
    Chemistry and Biochemistry.
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Chemistry & Biochemistry

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV