Mode couplings and resonance instabilities in finite dust chains

Date

Authors

Qiao, Ke
Kong, Jie
Matthews, Lorin Swint.
Hyde, Truell Wayne.

Access rights

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society

Abstract

Employing a numerical simulation, the normal modes are investigated for finite, one-dimensional horizontal dust chains in complex plasma. Mode couplings induced by the ion flow within the sheath are identified in the mode spectra and the coupling rules are determined. Two types of resonance-induced instabilities are observed, one bidirectional and one unidirectional. Bidirectional instability is found to cause melting of the chain with the melting proceeding via a two-step process which obeys the Lindemann criterion. The relationship between the normal mode spectra observed in finite systems and the wave dispersion relations seen in larger systems was also examined using a dust chain model. For this case, the dispersion relation was obtained through multiplication of the mode spectra matrix by a transition matrix. The resulting dispersion relations exhibit both the general features observed in larger crystals as well as several characteristics unique to finite systems, such as discontinuities and strong energy-density fluctuations.

Description

Keywords

Citation

Physical Review E, 91(5), 053101, May, 2015

Collections