• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effects of nozzle geometry and extrudate swell on fiber orientation in Fused Deposition Modeling nozzle flow.

    Thumbnail
    View/Open
    HELLER-THESIS-2015.pdf (3.197Mb)
    Blake_Heller_copyright-availabilityform.pdf (22.89Kb)
    Access rights
    Worldwide access
    Date
    2015-07-31
    Author
    Heller, Blake P., 1989-
    Metadata
    Show full item record
    Abstract
    Fused Deposition Modeling (FDM) is a rapidly growing Additive Manufacturing (AM) technology using extruded thermoplastics to produce intricate three-dimensional parts from digital data. Adding discrete fibers to FDM filament feedstock improves mechanical properties of FDM parts; however, little is known about processing and tooling effects on fiber orientation defined by velocity gradients within the polymer melt flow. This research simulates axisymmetric FDM extrudate swell extending from the nozzle exit by adjusting the radial location of the free surface to minimize the integrated free surface stress. Fiber orientation within the polymer melt is calculated from velocity gradients evaluated along streamlines in the fluid domain using orientation tensors, the fast exact closure, and isotropic rotary diffusion. Results quantify the influence of nozzle geometry and extrudate swell on fiber orientation in the extruded polymer. Parametric studies of nozzle geometry show sharp contractions in nozzle geometry near its exit significantly increases average fiber alignment.
    URI
    http://hdl.handle.net/2104/9469
    Collections
    • Electronic Theses and Dissertations
    • Theses/Dissertations - Mechanical Engineering

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV