• Login
    View Item 
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    •   BEARdocs Home
    • Graduate School
    • Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Convection from realistic ice roughness on a simulated NACA 0012 airfoil.

    View/Open
    SHANNON-THESIS-2015.pdf (8.594Mb)
    Timothy_Shannon_copyright and availability.pdf (766.9Kb)
    Access rights
    Worldwide access
    Access changed 12/4/17
    Date
    2015-07-29
    Author
    Shannon, Timothy Andrew.
    Metadata
    Show full item record
    Abstract
    Ice roughness properties are critically important to the development of ice accretions on aircraft surfaces. Ice accretions degrade aircraft performance by increasing the skin friction drag, increasing the weight of the aircraft, and decreasing the lift and stall angle. During the aircraft design process, icing effects are simulated using ice predictions codes such as LEWICE. These codes can be improved by providing a better characterization of the convective enhancement caused by ice roughness. Previous studies have considered convective enhancement from ice roughness surfaces with constant properties in the flow direction and in a flow with negligible acceleration. This work investigates convective enhancement from realistic ice roughness surfaces by 1) including roughness variations in the streamwise direction as measured in the Icing Research Tunnel at NASA Glenn with laser scanning and 2) including a flow acceleration profile in the flow direction by installing a foam insert on the wind tunnel ceiling.
    URI
    http://hdl.handle.net/2104/9534
    Collections
    • Electronic Theses and Dissertations
    

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Copyright © Baylor® University All rights reserved. Legal Disclosures.
    Baylor University Waco, Texas 76798 1-800-BAYLOR-U
    Baylor University Libraries | One Bear Place #97148 | Waco, TX 76798-7148 | 254.710.2112 | Contact: libraryquestions@baylor.edu
    If you find any errors in content, please contact librarywebmaster@baylor.edu
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV