Multidimensional power amplifier circuit optimizations for adaptive radar.

dc.contributor.advisorBaylis, Charles Passant, 1979-
dc.creatorFellows, Matthew, 1989-
dc.date.accessioned2017-06-05T12:53:27Z
dc.date.available2017-06-05T12:53:27Z
dc.date.created2017-05
dc.date.issued2017-03-30
dc.date.submittedMay 2017
dc.date.updated2017-06-05T12:53:27Z
dc.description.abstractAs wireless technology and dynamic spectrum allocation continue to proliferate, the ability to dynamically reconfigure radar transmitter power amplifiers will become necessary for adaptive radar. Reconfigurable transmitters will require the ability to tune input parameters such as load impedance, waveform bandwidth, and amplifier bias voltage to provide excellent performance while adjusting to real-time changes in requirements. This dissertation presents design tools and search algorithms to maximize power-added efficiency (PAE) while providing compliance with spectral regulations and transmitting sufficient power. The presented contributions include 1) the S metric for spectral compliance, 2) the Smith Tube as a tool for design and optimization, 3) optimization algorithms to maximize waveform bandwidth using the Bandwidth Smith Tube, 4) an optimization for power-added efficiency under adjacent-channel power ratio (ACPR) constraints in the Bias Smith Tube, and 5) an optimization for power-added efficiency, adjacent-channel power ratio, and output power demonstrated on the Smith Chart and in the Bias Smith Tube. These algorithms will be applicable toreal-time reconfiguration for adaptive radar systems.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2104/10038
dc.language.isoen
dc.rights.accessrightsWorldwide access.
dc.rights.accessrightsAccess changed 8/20/19.
dc.subjectCognitive radar. Optimization. Power amplifier.
dc.titleMultidimensional power amplifier circuit optimizations for adaptive radar.
dc.typeThesis
dc.type.materialtext
local.embargo.lift2019-05-01
local.embargo.terms2019-05-01
thesis.degree.departmentBaylor University. Dept. of Electrical & Computer Engineering.
thesis.degree.grantorBaylor University
thesis.degree.levelDoctoral
thesis.degree.namePh.D.

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
FELLOWS-DISSERTATION-2017.pdf
Size:
5.67 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
IEEE Author Resources.pdf
Size:
335.8 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Matthew_Fellows_copyright and availability form.pdf
Size:
614.86 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.95 KB
Format:
Plain Text
Description: