
 
 

 

 

 

 

ABSTRACT 

On the Goldbach Conjecture 

Westin King 

Director: Dr. David Arnold, Ph.D. 
 
 
 

Goldbach's conjecture, proposed in 1742, is one of the oldest open questions in 
mathematics. Much work has been done on the problem, and despite significant progress, 
a solution remains elusive. The goal of this paper is to give an introduction to Goldbach's 
conjecture, discuss the history of the problem, summarize important papers on the 
subject, examine methodologies used to attack the problem, and explain related problems 
and consequences of the conjecture. 
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CHAPTER ONE

Introduction

The Goldbach conjecture considers a relationship between all natural numbers

greater than 2 and the prime numbers. A prime number p is a natural number

such that when p = ab, the only possible choices for a and b in the natural numbers

are 1 and p. Goldbach originally considered 1 to be a prime, but today we consider 2

to be the smallest prime. The first few primes are 2, 3, 5, 7, 11, 13.... In 1742, Christian

Goldbach proposed Conjecture 1 in a letter to Leonhard Euler [39].

Conjecture 1. Every integer greater than 2 can be written as the sum of at most

three primes.

Example 1. Some examples of Conjecture 1:

3 = 1 + 1 + 1

5 = 2 + 2 + 1

13 = 5 + 5 + 3

27 = 13 + 7 + 7

100 = 91 + 7 + 2

Euler replied that he believed the conjecture to be true, but he could not prove

it. Later, Goldbach remarked that his original conjecture follows from what we now

know as the strong Goldbach conjecture.

Conjecture 2 (Strong Goldbach Conjecture). Every even integer greater than 4 can

be written as the sum of two odd primes.

Example 2. Some examples of Conjecture 2:

6 = 3 + 3

34 = 31 + 3 = 29 + 5 = 23 + 11 = 17 + 17
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66 = 61 + 3 = 59 + 7 = 53 + 13 = 47 + 19 = 43 + 23 = 37 + 29

100 = 97 + 3 = 89 + 11 = 83 + 17 = 71 + 29 = 59 + 41 = 53 + 47

From the strong conjecture, an immediate corollary:

Corollary 1. If Conjecture 2 is true, then every odd integer greater than 7 can be

written as the sum of three odd primes.

Proof. Suppose the strong Goldbach conjecture to be true. Then, we can write an

even n ≥ 6 as n = p + q, where p and q are odd primes. It follows then that every

odd k ≥ 9 can be written as k = n+ 3 = p+ q + 3. �

Example 3. Examples of Corollary 1:

9 = 3 + 3 + 3

39 = 31 + 5 + 3

77 = 71 + 3 + 3

The primes 3, 5, and 7 are omitted from Corollary 1 because they can not be

represented as the sum of three odd primes. Since 3 is the smallest odd prime,

9 = 3 + 3 + 3 is the smallest integer represented as the sum of 3 odd primes. The

conclusion of Corollary 1 is known as the weak, or ternary, Goldbach conjecture.

By the same method as the proof of Corollary 1, if the weak Goldbach conjecture

is proven independently, it will imply every even integer greater than 2 is the sum of

at most four primes.

Currently, the weak Goldbach conjecture has been solved by Deshouillers et al.

when assuming the generalized Riemann hypothesis and Terence Tao has demon-

strated that all odd numbers are the sum of at most five odd primes without assuming

the generalized Riemann hypothesis.

Olivier Ramaré has proven that all even numbers larger than 2 can be written as a

sum of no more than six primes, independent of the generalized Riemann hypothesis.
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Biography of Christian Goldbach

Christian Goldbach was born March 18, 1690 in Königsberg, part of modern-day

Kaliningrad Oblast, a satellite of Russia located between Poland and Lithuania. He

studied at Royal Albertus University and taught at the St. Petersburg Academy of

Sciences. He also worked for the Russian Ministry of Foreign Affairs and died on

November 20, 1764.

Goldbach is best known for the Goldbach conjecture, but he also proved several

theorems and made significant progress on several more through correspondence with

mathematicians such as Leonhard Euler, Gottfried Liebniz, and Nicholas Bernoulli

[18].

History

The Goldbach conjecture dates back to a letter from Christian Goldbach to Leon-

hard Euler on June 7, 1742, although René Descartes may have been aware of this

problem in the early 17th century [1].

A major breakthrough did not occur until Godfrey Hardy and John Littlewood

[13] showed in 1923 that the weak Goldbach conjecture is true for all sufficiently large

odd numbers when assuming the generalized Riemann hypothesis.

In 1930, Lev Schnirelmann [29] made progress on the strong Goldbach conjecture

by showing that every even integer greater than 2 can be written as the sum of at

most twenty primes, a result that has been improved several times.

Next, Ivan Vinogradov [36] improved Hardy and Littlewood’s results in 1937 by

proving that the weak conjecture holds for all sufficiently large odd numbers without

assuming the Riemann hypothesis.

Using methods developed by Vinogradov, over the next two years Nikolai Chudakov

[4], J. G. van der Corput [34] and T. Estermann [9] proved that all but a finite number

of even integers can be written as the sum of two primes.
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In 1939, K. Borozdin [33] was the first to find an upper bound, 314348907, for de-

scribing Vinogradov’s ”sufficiently large odd number.”

The most recent improvement to Schnirelmann’s results on the strong conjecture

is by Olivier Ramaré [24]. In 1995, Ramaré demonstrated that even numbers larger

than 2 can be written as the sum of at most six primes.

In the same year, Leszek Kaniecki [15] showed that every odd natural number is

the sum of at most five primes when assuming the Riemann hypothesis, implying

every even natural number is the sum of at most six primes.

In 1997, D. Zinoviev [41] proved that all odd integers greater than 1020 are the

sum of at most three primes when assuming the generalized Riemann hypothesis.

Immediately following this, J. M. Deshouillers, G. Effinger, H. te Riele, and D. Zi-

noviev [8] improved Kaniecki’s result by demonstrating that the weak conjecture is

true assuming the generalized Riemann hypothesis.

Y. Saouter [28] computationally proved in 1998 that the largest gap between two

primes smaller than 1020 is less than 4× 1011, meaning all odd natural numbers less

than 1020 are the sum of at most three primes. Combined with D. Zinoviev’s paper

the previous year, this provides a second argument for the truth of the weak Goldbach

conjecture under the generalized Riemann hypothesis.

The upper bound found by Borozdin was lowered to e3100 by Liu Ming-Chit and

Wang Tian-Ze [17] in 2002.

In a recent 2012 preprint to appear in Mathematics of Computation, Terence Tao

[32] improved Kaniecki’s result by proving that all odd integers are the sum of at

most five primes without the Riemann hypothesis.

Also in 2012, Tomás Olivera e Silva computationally verified that the strong con-

jecture is true up to 4× 1018.

As for related results, in 1953 Linnik [16] proved there is some constant K such

that every sufficiently large even number is the sum of two primes and at most K
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powers of 2. Chen Jingrun [3] proved in 1973 that all sufficiently large even numbers

can be written as either p1 + p2 or p1 + p2p3 where pk is prime.

Also in 2002, Roger Heath-Brown and Jan-Christoph Schlage-Puchta [14] improved

Linnik’s result by showing K = 13 is sufficient and a year later Pintz and Ruzsa [22]

showed only K = 8 is necessary.
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CHAPTER TWO

Methods of Proof

An effective method for proving a conjecture about the nature of all the natural

numbers is to partition the set of natural numbers into several finite subsets and one

infinite subset and prove the conjecture for each of those subsets. Most recently using

this method, Ramaré and Saouter (2003) [23] have demonstrated that integers less

than 1.13 × 1022 are the sum of at most three odd primes. Additionally, Liu and

Wang (2002) [17] have shown that integers greater than e3100 ≈ 2.06× 101346 are the

sum of at most three odd primes. What remains is to determine how to handle the

interval [1.13× 1022, e3100].

Hardy-Littlewood Circle Method

The Hardy-Littlewood method was originally developed to attack the Waring prob-

lem, which asks for each natural number k, what value must s take such that every

natural number is the sum of at most s kth powers of natural numbers.

One starts with A = (am), a strictly increasing sequence of nonnegative integers.

Let F (z) =
∞∑
m=1

zam . If Rs(n) is the number of representations of natural number n

as the sum of s members of A, then

Rs(n) =
1

2πi

∫
C

F (z)sz−(n+1)dz,

where C is a circle centered at 0 with radius 0 < ρ < 1 [35].

The Hardy-Littlewood method deals with how to evaluate the integral when the

radius of the circle is precisely 1. In this form, one can not evaluate the contour

integral over the circle of radius 1 because there exist singularities that lie on the

circle when the radius is 1. For example,
∞∑
m=1

1am diverges. The solution is to break

the circle into major arcs, which are intervals of (0,1] containing the singularities of
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the function F on the unit circle, and minor arcs, which contain whatever is left over.

The integral when r = 1 is then estimated by separately estimating the integrals over

the major and minor arcs and summing the two.

This method must be adapted slightly in order to attack the Goldbach conjecture.

When working on the weak conjecture, Vinogradov [36] found that if he replaced F (z)

with f(α) =
∑
p≤n

log(p)e2πiαp and let A be the set of all primes less than or equal to

a natural number n, which changes the infinite summation to a finite one, then one

can derive

(1)

∫
M

f(α)3e−2πinαdα +

∫
m

f(α)3e−2πinαdα =
∑

p1,p2,p3
p1+p2+p3=n

log(p1) log(p2) log(p3).

Here, M and m represent the major and minor arcs respectively. Clearly, if (1) is

greater than 0, then n can be represented as the sum of three primes. In evaluating

the integrals of the major and minor arcs, Vinogradov found that there exists some

natural number n such that (1) is greater than 0 for all natural numbers bigger than

n [35].

Selberg Sieve

Another method employed in theorems related to the Goldbach conjecture is the

Selberg sieve. Atle Selberg developed his sieve in the 1940s to estimate the size of

a sifted set, which is a set of positive integers whose members meet some list of

conditions.

Suppose A is a finite set of natural numbers and P is a set of primes. Let Ap be a

subset ofA for every p ∈ P . Suppose z is a positive real number and set P (z) :=
∏
p∈P
p<z

p.

The purpose of the sieve is to give an upper bound to the size of

S(A,P , z) = A \
⋃
p|P (z)

Ap.
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Next, let d represent a squarefree number that is the product of members of P , and

define Ad := ∪p|dAp. Assume there exist X > 0 and a multiplicative function f that

satisfies f(p) > 0 ∀p ∈ P , and for every squarefree d there is a real number Rd with

|Ad| =
X

f(d)
+Rd.

A multiplicative function f(n), n ∈ N is one such that f(1) = 1 and whenever

gcd(a, b) = 1, then f(ab) = f(a)f(b). Then define

f(n) =
∑
d|n

g(d),

where g is some multiplicative function uniquely determined by f . Since both f and

g are multiplicative, we can use Möbius inversion [40] to get

g(n) =
∑
d|n

µ(d)f(
n

d
),

where µ(d) is the Möbius function:

µ(d) =


−1 if d square free with an odd number of prime factors

1 if d square free with an even number of prime factors

0 otherwise

Then, if we define

V (z) =
∑
d≤z
d|P (z)

µ2(d)

g(d)
,

by Selberg (1947), we can conclude
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Theorem 1 (Selberg Sieve).

S(A,P , z) ≤ X

V (z)
+O

 ∑
d1,d2≤z
d1,d2|P (z)

|Rgcd(d1,d2)|

 ,

where O(f(x)) represents a function g(x) such that g(x) ≤ cf(x) for some constant

c, and X > 0. This is known as big O notation and describes how a function f(x)

behaves asymptotically as x tends towards infinity.

Example 4. Use the Selberg sieve to give an upper bound for the prime counting

function, π(x; k, a) = #{p ≤ x | p ≡ a(mod k)}.

Let

A = {n ≤ x |n ≡ a(mod k)},

and

P = {p | gcd(p, k) = 1}.

Then we see that

S(A,P , z) = #{n ≤ x |n ≡ a(mod k), p - n ∀p ∈ P}.

That is, S(A,P , z) contains the integers less than x and congruent to a modulo k

that are also not multiples of primes in P . Thus, an upper bound of S(A,P , z) is

also an upper bound of π(x; k, a). Because a p ∈ P is coprime to k,

|Ad| =
x

kd
+O(1).

Using the notation described above, let X = x
k
, f(d) = d, g(d) = φ(d), and

Rd = O(1). Then
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V (z) =
∑
d≤z

(d,k)=1

µ2(d)

φ(d)
,

and so

π(x; k, a) ≤ S(A,P , z) ≤ x

kV (z)
+O(z2).

This example is part of a proof of the Brun-Titchmarsh theorem [7]. A little more

manipulation will give an explicit formula for an upper bound to π(x; k, a).

Similar methods are used in proofs concerning the Goldbach conjecture, some of

which use the Selberg sieve to approximate primes in arithmetic progression, like

in the example, while others use it to approximate the prime counting function.

Generally, more precise values for f(x) and X are chosen in order to attain a more

accurate upper bound for S(A,P , z).

The Riemann Hypothesis

The Riemann hypothesis is one of the millennium problems determined by the Clay

Institute and has seen significant progress, but no proof. The nontrivial zeroes of the

Riemann zeta function are intimately connected with the prime numbers, and thus

the Riemann hypothesis and Goldbach conjecture are related.

In 1859, Bernhard Riemann [26] conjectured:

Conjecture 3 (Riemann hypothesis). All nontrivial zeros of the Riemann zeta func-

tion lie on the critical line, <(s) = 1
2

+ it, where 1
2

is the real component and it is the

imaginary component.

The Riemann zeta function is defined for all complex numbers s 6= 1 as

ζ(s) =
∞∑
n=1

1

ns
.

Euler demonstrated an equivalence from the Riemann zeta function to

10



∞∑
n=1

1

ns
=

∏
p

1

1− 1
ps

,

where the product is taken over the primes, p. Because of this equivalence, the Rie-

mann hypothesis is connected with the distribution of primes and the number of zeros

of the Riemann zeta function less than some natural number x is an approximation

of the number of primes less than x, known as π(x).

Riemann also suggested that the prime counting function, π(x), is approximated

by Li(x) =
∫ x
0

dt
log(t)

, but this was not proven until later.

Figure 1. ζ(s) for 0 ≤ s ≤ 50

Seen in Figure 1, the first few zeros of the Riemann zeta function occur at imaginary

components 14.135, 21.022, 25.011, 30.425, 32.935, 37.586, 40.919, 43.327, 48.005, and

49.774 [19].

The generalized Riemann hypothesis concerns Dirichlet L-functions, of which the

Riemann Zeta function is a special case. Suppose χk(n) is a multiplicative, arithmetic

function that has period k. An arithmetic function for natural numbers n and m,

ψ(n) is one such that ψ(n + m) = ψ(ψ(n) + ψ(m)) and ψ(nm) = ψ(ψ(n)ψ(m)). A

period of k means ψ(n) = ψ(n + km), where n, k, and m are natural numbers. The

Dirichlet L-function of χk is defined as

Lk(s, χ) =
∞∑
n=1

χk(n)

ns
,
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when s is a complex number [38].

Conjecture 4 (Generalized Riemann Hypothesis). If Lk(s, χ) = 0, then s does not

have a real part larger than 1
2
.

Kaniecki [15] notes that it is not known how closely the Riemann hypothesis and

Goldbach conjecture are related, since the distribution of zeroes of the Riemann zeta

function gained by assuming the Riemann hypothesis is not immediately useful in

proving theorems relating to Goldbach’s problem. Deshouillers et al. [8] show that

the generalized Riemann hypothesis is much more useful, since one is not constrained

to the case when χk(n) = 1, like in the case of the standard Riemann hypothesis.

Computing

With the rise in computing power, computers have played an increasingly important

role in the verification of theorems. Perhaps the most famous theorem to be proven

with the assistance of a computer is the four color theorem, which states that at most

four colors are needed to color any map of contiguous regions such that no two regions

of the same color are adjacent. Concerning the Goldbach conjecture, Olivera e Silva

(2012) [20] has determined that even natural numbers up to 4× 1018 are the sums of

two odd primes, Saouter [28] has shown that all odd numbers up to 1020 are the sum

of three primes, and Wedeniwski [37] has verified that all the nontrivial zeroes of the

Riemann zeta function in the interval [0, 3.29× 109] lie on the critical line, <(s) = 1
2
.

Some concern has been raised over the validity of computer-assisted proofs. Much

of what a computer does can not reasonably be verified by a human being, so there is

uncertainty about whether the program and its output are truly error free. This can

be overcome by defining what constitutes a computer-based proof and by verifying

results in multiple computer languages, compilers, and with different hardware. An

alternative resolution is to use computers to verify human work, instead of using them

to do work that can not reasonably be done otherwise.
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Another objection to using computers for brute-force proof of theorems is that they

provide no insight into new or useful concepts, since they simply exhaust possibili-

ties. For many purposes, the Goldbach conjecture and Riemann hypothesis included,

modern computers are not powerful enough to come close to providing a complete

proof. However, they are capable of providing useful lower bounds with which to

build theorems [5].

On the other hand, the likelihood that a top-tier theorem proving program will

return a false positive that is not caught by human inspection as part of the verifica-

tion process is much lower than the error rates in prestigious math journals [12]. A

computer-assisted proof can always be re-verified once a new method is developed and

retracted if it is discovered to be a false positive, just like purely human-constructed

proofs.
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CHAPTER THREE

Summaries of Major Papers

On the Vinogradov bound in the three primes Goldbach conjecture

M. Liu and T. Wang [17] use the Hardy Littlewood circle method to prove:

Theorem 2. Every odd integer ≥ e3100 is a sum of three odd primes.

The authors employ several new methods to improve previous bounds, including a

refinement of certain numerical estimates and a slight change to the general Hardy-

Littlewood circle method. Usually with the circle method, the unit interval is broken

into several disjoint subsets, for which Liu and Wang use Mj, 1 ≤ j ≤ 4, where

M1 ∪M2 contain the major arcs, and M3 ∪M4 are the minor arcs. They split these

unions and treat M2 as a minor arc in order to obtain a better lower bound for the

integral over the major arc, M1, better upper bounds for the integral over the minor

arcs M2 and M3, and a better Vinogradov estimate, which approximates sums of the

form
∑
p≤N

e2iαp where α is real and p a prime, for M4.

Combining these modified methods and computational work done on Mathematica,

Liu and Wang find that the value of the integral found using the circle method has a

sufficiently large lower bound, which then allows them to conclude Theorem 2, which

is independent of the truth of the generalized Riemann hypothesis.

On Šnirel’man’s Constant

Olivier Ramaré [24] focuses most of his paper on proving

Theorem 3. For x ≥ e67,

|{n ∈ [x, 2x] : ∃p1, p2 primes, with n = p1 + p2}| ≥
x

5

which he then uses to prove
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Theorem 4. Every even integer is the sum of at most 6 odd primes.

To prove Theorem 3, Ramaré uses the Selberg sieve to determine an upper bound

for the number of representations of an even integer as the sum of two primes. He

shows that this upper bound is asymptotic to a function, which is then used to

construct an estimate for the size of |{n ∈ [x, 2x] : ∃p1, p2 primes, with n = p1 + p2}|.

This estimate is split into three disjoint pieces and Ramaré proves bounds for each

piece, giving a bound for the whole estimate.

Ramaré then proves a theorem concerning sums of certain sequences of integers

and combines it with Theorem 3, allowing him to conclude that every integer larger

than 3.006 × 1030 is the sum of at most 6 odd primes. Ramaré completes his proof

by giving an algorithm that shows any even integer n ≤ 3.006× 1030 is the sum of at

most 6 odd primes, proving Theorem 4.

All odd integers greater than one are the sum of at most five primes

The primary method Terence Tao [32] uses to prove that all odd numbers greater

than 1 is the sum of at most five primes is to represent a number n as the sum of

three primes and an integer between 2 and N0 where N0 : = 4× 1014. By Richstein

[25], this integer between 2 and N0 can be represented as the sum of at most two

primes, therefore every odd integer greater than 1 can be written as the sum of at

most five primes. There are several major theorems proven by other mathematicians

that Tao utilizes in his paper. Richstein (2000) [25] has verified

Theorem 5. All even numbers between 4 and N0 are the sum of two primes.

Ramaré and Saouter (2003) [23] demonstrated

Theorem 6. Even natural numbers less than 1.13× 1022 are the sum of two primes.

While Liu and Wang (2002) [17] have shown

Theorem 7. Natural numbers greater than e3100 are the sum of at most three primes.
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Tao uses the method developed by Ramaré and Saouter to determine that every

odd integer between 3 and 8.7× 1036 is the sum of at most five primes, then uses the

Hardy-Littlewood circle method to show an odd n is the sum of at most five primes

when 8.7× 1036 ≤ n ≤ e3100.

The author examines n in the interval [8.7× 1036, e3100] and breaks this interval up

into various arcs that encompass the entire interval for use with the Hardy-Littlewood

circle method. He then proves that his theorem holds true in each of the arcs he

constructs. The majority of the paper is spent proving theorems used for determining

the various arcs.

Tao’s result is independent of the truth of the Riemann hypothesis since he uses a

bound proven true by Sebastian Wedeniwski (2003) [37]:

Theorem 8. All nontrivial zeros of the Riemann zeta function in the interval [0, 3.29×

109] lie on the line <(s) = 1
2
.

Tao also mentions in several places that bounds or constants used could be im-

proved, but that they were sufficient for his theorem.

From this result, an immediate corollary:

Corollary 2. Every even integer n ≥ 5 is the sum of at most 6 odd primes.

Proof. Suppose every odd integer n ≥ 3 is the sum of at most 5 odd primes. Then

n+ 3 is even and the sum of at most 6 odd primes. �

This is an alternate proof of Theorem 4 [24].

On Vinogradov’s constant in Goldbach’s ternary problem

In this paper, Dmitrii Zinoviev [41] proves

Theorem 9. Assuming the generalized Riemann hypothesis, every odd number greater

than 1020 is a sum of three prime numbers.

16



The primary goal of the paper is to demonstrate that a function,

J(N) =
∑

p1+p2+p3=N

ln(p1) ln(p2) ln(p3),

where pi are prime and N ≥ 1020, has a lower bound greater than zero. Clearly, if

J(N) > 0 for some N, then there must exist p1, p2, and p3 such that N = p1 +p2 +p3.

An equivalent formulation of J(N) is shown and allows the author to work more

easily with the bounds on J(N).

Assuming the generalized Riemann hypothesis allows Zinoviev to estimate values

for the gamma function and for π(x; k, l), which is the prime counting function for the

number of primes less than x and congruent to l modulo k. The generalized Riemann

hypothesis is necessary for these estimations because they deal with sums over zeroes

of Dirichlet L-functions, of which the Riemann Zeta function is a special case.

These estimations, as well as several others, allow the author to determine that

J(N) is greater than 0 when N ≥ 1020, proving the theorem.

This paper brought Goldbach’s weak conjecture, when assuming the generalized

Riemann hypothesis, within a computationally realistic distance. Soon after Zinoviev

published this paper, Deshouillers, Effinger, te Riele, and Zinoviev [8] published a

joint paper that proved Goldbach’s weak conjecture when assuming the generalized

Riemann hypothesis. Deshoulliers and te Riele proved that every even number 4 ≤

m ≤ 1013 is the sum of two prime numbers. Finally, it was demonstrated that there

exists a prime p such that for every natural number 6 ≤ n ≤ 1020, n−p ≤ 1.615×1012.

The conclusion is that n is the sum of at most 3 primes.

Y. Saouter [28] computationally proved that all odd natural numbers less than 1020

can be represented as the sum of three primes, which gives a second proof of the weak

Goldbach conjecture assuming the generalized Riemann hypothesis when combined

with this paper.
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On Šnirelman’s constant under the Riemann hypothesis

Leszek Kaniecki [15] assumes the Riemann hypothesis in order to show

Theorem 10. Every odd natural number can be written as the sum of at most five

odd primes.

The Riemann hypothesis allows Kaniecki to place an upper bound on

λ(x) =


2 if 0 < x ≤ 7

maxp≤x(p
′ − p) if x > 7

where p and p′ are consecutive prime numbers. The function λ(x) measures the largest

gap between successive prime numbers in the interval [1, x].

Next, Kaniecki uses λ(x) to show that there exists some constant h for which every

interval of the form [x, x + h] when 0 ≤ x ≤ ee
11503

contains some number that is

the sum of two primes, p1 and p2. He then splits the interval [0, ee
11503

] into several

disjoint subintervals and proves that h < 1.405× 1012 in all cases.

This implies that 3 < m = n − (p1 + p2) < 1.405 × 1012 for all 9 < n ≤ ee
11503

.

Therefore, because of work done by Sinalso, Young, and Potler [31], [21], m is the

sum of 2 or 3 prime numbers, implying n is the sum of 4 or 5 primes, completing

Theorem 10.

Kaniecki notes that his results could be improved by the same argument to show

that every even number can be represented as the sum of at most four odd primes,

but it would require a lot of time by a computer.
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CHAPTER FOUR

Related Conjectures and Consequences

Twin Primes Conjecture

The twin prime conjecture states that there are infinitely many primes p and q

such that q = p+ 2.

Example 5. A few twin primes:

5 = 3 + 2

7 = 5 + 2

73 = 71 + 2

The largest twin primes known were discovered in December of 2011: 3756801695685×

2666669− 1 and 3756801695685× 2666669− 3. Each of these has over 200, 000 digits [2].

Larry Gerstein (1993) [10] has shown that the Goldbach conjecture is related to

the twin prime conjecture.

Proposition 1. The strong Goldbach conjecture is true if and only if, for each integer

n ≥ 2, there exist integers k, p, and q, where 0 ≤ k ≤ n − 2 and p and q are prime,

such that n2 − k2 = pq.

Proof. By assumption, for all integers n ≥ 2 there exist at least two primes p ≤ q

such that 2n = p+ q. If k ≥ n− 2 is a natural number, then p = n−k and q = n+k,

and therefore pq = (n − k)(n + k) = n2 − k2. Conversely, suppose for every integer

n ≥ 2 there exists some natural number k ≤ n − 2 and primes p and q with p ≤ q

such that n2− k2 = pq. Then (n+ k)(n− k) = pq, so p+ q = n+ k+n− k = 2n. �

Gerstein then proposes setting k = 1 and makes the following conjecture:

Conjecture 5. There are infinitely many integers n ≥ 2 for which there exist primes

p and q such that n2 − 1 = pq.
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If n2− 1 = (n+ 1)(n− 1) = pq, then for q > p, q = n+ 1 and p = n− 1. Therefore,

q = p+ 2, meaning Conjecture 5 is equivalent to the twin primes conjecture.

Goldbach’s Number

Goldbach’s number, G(n), is the number of unique combinations of primes p + q

that satisfy the Goldbach conjecture for some n. Fliegel and Robertson [6] note, when

considering a graph of G(n), that G(n) tends to form bands, prompting the authors

to entitle it Goldbach’s comet. They find that these bands arise from the number of

different combinations of prime numbers that satisfy the Goldbach conjecture for n.

For example, if n ≡ 0 (mod 6), then n (mod 6) ≡ 5 + 1 or 1 + 5. Alternatively,

when n ≡ 2 (mod 6), then n (mod 6) ≡ 1 + 1, and when n ≡ 4 (mod 6), then n

(mod 6) ≡ 5 + 5. Since there are twice as many combinations for n ≡ 0 (mod 6)

than in either of the other two cases above, G(n) is approximately twice as large for

numbers divisible by 6 than the base tail (those numbers with only powers of 2 as

factors) on the comet, as seen in Figure 2.
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Figure 2. G(E) for 1 ≤ E ≤ 100, 000. [6]

Here are some Goldbach combinations and their corresponding Goldbach number:

Example 6.

4 = 2 + 2 G(4) = 1

10 = 5 + 5 = 7 + 3 G(10) = 2

34 = 31 + 3 = 29 + 5 = 23 + 11 = 17 + 17 G(34) = 4

66 = 61 + 3 = 59 + 7 = 53 + 13 = 47 + 19 = 43 + 23 = 37 + 29 G(66) = 6

100 = 97 + 3 = 89 + 11 = 83 + 17 = 71 + 29 = 59 + 41 = 53 + 47 G(100) = 6

The authors note that for n divisible by prime p, E is approximately p−1
p−2 times larger

than numbers not divisible by p. This does not apply when p = 2 since the base tail

is made of those numbers only divisible by 2. When n has multiple prime factors, E

is approximately (p1−1)(p2−1)(p3−1)...
(p1−2)(p2−2)(p3−2)... times larger than the base tail when pi ≥ 3. The

scaling in Figure 2 is not sufficient to distinguish between the base tail and bands
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that are close to it, such as n = 2e2 · 101e101 , which would be 101−1
101−2 = 100

99
≈ 1.01 times

as high as the base tail. However, one can see the band created by those numbers

n = 2f2 · 3f3 · 5f5 , which is about (3−1)(5−1)
(3−2)(5−2) = 2·4

1·3 = 8
3
≈ 2.67 times as high as the base

tail.

These results are an attempt to explain the tails on the graph on G(n) and are not

rigorous as they are only approximations based on the number of p and q that could

satisfy n = p + q. The authors note that if one were to find a rigorous lower bound

of the base tail, then the Goldbach conjecture would surely be quickly proven.

Untouchable Numbers

An untouchable number k is a number that cannot be represented as the sum of

the proper divisors of any integer. That is, k can not be written as σ(n)− n, where

σ(n) is the sum of the divisors of n. The natural number n is subtracted from σ(n)

because n is not considered a proper divisor of itself.

Example 7. Some touchable and untouchable numbers:

σ(8)− 8 = 24−1
2−1 − 8 = 26− 8 = 7, therefore 7 is a touchable number.

σ(6)− 6 = (2
2−1
2−1 )(3

2−1
3−1 )− 6 = 3 ∗ 4− 6 = 6, so 6 is also a touchable number.

However, 5 is an untouchable number. 5 = 1 + 4 = 2 + 3 are the only ways to

write 5 as the sum of unique natural numbers and neither of the two ways can be the

sum of natural divisors of any number.

A proof of the Goldbach conjecture that demonstrates every even number greater

than 4 is the sum of two unique primes would prove that 5 is the only odd untouchable

number, as Richard Guy [11] notes:

Proposition 2. Suppose 2n = p + q, p and q distinct primes, for 6 ≤ n. Then 5 is

the only odd untouchable number.

Proof. Assume 2n = p+ q, p and q distinct primes, for 6 ≤ n.

Consider 2n+ 1 = p+ q + 1 and the composite pq:
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σ(pq)− pq = (
p2 − 1

p− 1
)(
q2 − 1

q − 1
)− pq

= (p+ 1)(q + 1)− pq

= pq + p+ q + 1− pq

= p+ q + 1

= 2n+ 1

Therefore, 5 is the only odd untouchable number. �
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CHAPTER FIVE

Outlook

While a complete proof for Goldbach’s conjecture still may be far off, significant

progress has been made towards a solution, especially on the weak conjecture. Un-

fortunately, there have also been many false or questionable proofs. One notable

case is that of Henry Pogorzelski, who claimed to have proven the strong conjecture

in 1977 [39]. His proof assumes three open questions that have not been acknowl-

edged to be resolved. Perhaps Pogorzelski has proven Goldbach’s conjecture, but the

mathematical community is not yet ready to accept his proof as valid.

Moving forward, there are several discoveries that would certainly help the effort

to prove Goldbach’s conjecture. Firstly, the factoring power of quantum computers

would help immensely in discovering primes and raising the upper computed bound

for integers that are the sum of two or three primes. Secondly, a better understanding

of the distribution of primes, particularly in the interval below Chen’s upper bound

of e3100 and above what has been calculated by computer. This would especially help

in a proof of the weak conjecture where it is sufficient to find a prime p3 such that

n− p3 lies within some interval for which it is known that n− p3 = p1 + p2. A similar

technique was used by O. Ramaré in his proof that every even number is the sum

of at most 6 primes. Unfortunately, the usefulness of this technique declines when

considering the strong conjecture and there is no longer the luxury of simply placing

n − p1 within some interval that has already been calculated. However, a better

understanding about the location of a prime number is certainly is not detrimental

to proving Goldbach’s conjecture.
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