
Using the Connlib Package to Obtain Parsed
Netlist Data

Peter M. Maurer
Department of Computer Science

Baylor University
Waco, TX 76798

1 Abstract
The connlib package can be used to obtain parsed netlist data from “.ckt” files. These files

must be created using the Functional Hardware Description Language FHDL. This data can be
used in any way you choose. The ISCAS85 and ISCAS89 packages are available as .ckt files, so
these benchmarks can be used to test the software you create.

2 Running the Package
To run the package, you must include file “conndefs.h” in your program. This file is part of

the connlib package, and should be placed in one of your include directories. To parse a file, you
must first open the file using the stdio package, and then pass the open file to the parser. This is
done in the following manner:

 FILE *MyFile;
 char * FileName = "Something.ckt";
 MyFile = fopen(FileName,"r");
 if (MyFile==NULL)
 {
 fprintf(stdout,"Can't open %s\n",FileName);
 exit(100);
 }
 parse(MyFile,1);
 fclose(MyFile);
 nwfixwire(nwhead);
 if (cktbad)
 {
 fprintf(stdout,"Circuit is bad\n");
 exit(100);
 }

The connlib function “parse” is used to parse the file. The second parameter of 1 indicates

that this is a new compilation. You can parse several files together by setting this parameter to 0
for all but the first file. Once the file is parsed, the circuit is not yet completely built. You must
call the function “nwfixwire” with the global variable “nwhead” to complete the construction of
the circuit. Once both of these steps are complete, you must check the global variable “cktbad” to

determine if there were any compile errors. If there were, cktbad will be equal to 1 and error
messages will have been issued. If cktbad is zero, then there were no compile errors.

After you execute this code, the parsed content of the .ckt file is in the global variable
“nwhead” and you’re on your own.

3 Using the Parsed Data.
After a successful parse, the variable “nwhead” points to a linked list of NETWORK

structures. The final NETWORK in the list will have a “next” pointer equal to NULL.

3.1 The NETWORK Structure
The NETWORK structure is defined as follows.

typedef struct network
{
 struct network *next;
 DICTE *id;
 int type;
 int gate_count;
 int net_count;
 int input_count;
 int output_count;
 int io_count;
 int attr_count;
 struct attrhold *attr;
 int fault_count;
 struct fault *faults;
 long user;
 int ref;
 char *gname;
 NET **netlist;
 GATE **gatelist;
 NET **inputs;
 NET **outputs;
 NET **ioputs;
}
NETWORK;

The variables are defined as follows.

next Used to create linked lists of NETWORK structures.

id Points to a dictionary entry. The dictionary entry, in turn, contains the name of

the circuit. Unnamed circuits have generated names.

type This variable will contain one of the following defined constants SUBNET,

ROM, RAM, PLA, or ASM. In most cases the type will be SUBNET, but if

you have other kinds of circuits in your .ckt file, you will see some of the
other types.

gate_count Gives the number of gates in the circuit.

net_count Gives the number nets in the circuit

input_count Gives the number of primary inputs.

output_count Gives the number of primary outputs.

io_count IOPUT count. Always zero for the current version of FHDL

attr_count Gives the number of attributes of the network

attr The user can add attributes to the network statement like this:
 X: network Attr1=A,Thing2=(a,b,c)
 Each attribute is stored in an attr structure, and these are formed into a linked

list, the head of which is pointed to by this variable. None of these attributes
mean anything to FHDL, so use them as you wish. See below for the structure
of an attribute.

fault_count Gives the number of faults in the circuit. Faults can be associated with a net or

with the circuit itself. They mean the same thing regardless.

faults Points to a linked list of fault structures. See below for the format.

user Not used by FHDL.

ref Used by the circuit flattener. Not used otherwise. Indicates whether the circuit

is referenced by another.

gname Used by the code generator. Not used otherwise. This is the function name of

the function created to simulate the circuit.

netlist Points to an array of pointers to NET structures. The array will contain one

structure for each NET in the circuit. This array MAY NOT be sorted.

gatelist Points to an array of pointers to GATE structures. There is one gate structure

per gate in the circuit. This list may be sorted if you wish.

inputs Points to an array of pointers to NET structures. There will be one NET

structure per primary input, listed in the order that the primary inputs were
specified. This actually points to the “netlist” array.

outputs Points to an array of pointers to NET structures. There will be one NET
structure per primary output, listed in the order that the primary outputs were
specified. This points into the “netlist” array.

ioputs Not used in the current implementation of FHDL.

3.2 The DICTE structure
The DICTE structure is represents an entry in the parser’s hash-table. These structures play

double-duty in supplying the names for NETWORKs, NETs, and GATEs. The DICTE structure
is as follows.

typedef struct dicte
{
 struct dicte *next;
 char *name;
 short type;
 short hashp;
 ELEM elem;
}
DICTE;

typedef union dicteu
{
 struct net *n;
 struct gate *g;
 struct network *w;
}
ELEM;

The variables are defined as follows.

next Pointer to the next element. The hash table is a 256-element array of linked lists.
The index is the hash of the name.

name The name of the element. Null-terminated string.

type ISGATE, ISNET, or ISNETWK

hashp Hash of the variable name.

elem Back-pointer to the named element. (See union type above.)

3.3 The ATTRHOLD structure.
The ATTRHOLD structure is defined as follows. NETs, GATEs, and NETWORKs can have

attributes. Each attribute is contained in one ATTRHOLD structure. All attributes for a particular
element are collected into a null-terminated list pointed to by the element.

typedef struct attrhold
{
 struct attrhold *next;
 char *name;
 int valcount;
 char *val[1];
}
ATTRHOLD;

The variables are defined as follows.

next Pointer to the next item in the list. NULL if this is the last.

name The string on the left-hand side of the equal sign.

valcount The number of values specified on the right-hand side of the equal sign.

val An array (NOT always of size 1) containing each value specified on the right.

3.4 The FAULT structure
Although the FHDL system has never been used for fault simulation, there is no reason why

it couldn’t be. You can specify faults in the FHDL language, and if you do, they will be stored in
the following structures.

typedef struct fault
{
 struct fault *next;
 GATE *fgate;
 short dir;
 short pos;
 int type;
 char *type2;
}
FAULT;

Faults are specified using the FHDL “fault” statement. It works like this.

Name: fault MyGate,I3,SA0;
Or
Name: fault MyGate,O0,SA1,Zorro

The field “Zorro” is an extra type field for future expansion.

The variables are defined as follows.

next This variable is used to create linked lists of faults. The final element in the list
has this variable set to NULL.

fgate Pointer to the gate that the fault is associated with. Obtained from the first

parameter.
dir 0=input, 1=output, obtained from the first character of the second parameter.
pos Position in the input or output of the affected net. Obtained from the second

parameter.
type Type of fault: SA0, SA1, WFN, WIS, MII, EIS, WIL, SHO, EIR, WIR
 SA0 and SA1 are stuck at zero and stuck at 1. I forget what the others are. I think

they are Wrong Function, Wrong Input Signal, Missing Input Signal, Extra Input
Signal, and … ? Hmmm.

type2 Extra type field, stored as a string.

3.5 The NET Structure
The net structure is used to hold information about nets. The basic connectivity information

is gathered from the input and output lists of gates. Additional information can be added using
the “wire” statement.

typedef struct net
{
 struct net *next;
 DICTE *id;
 unsigned short type;
 unsigned short width;
 int index;
 int scc_index;
 int input_count;
 int output_count;
 int attr_count;
 struct attrhold *attr;
 int value;
 long user;
 char *gname;
 struct gate *gates[1];
}
NET;

The variables are defined as follows.

next This is used to create a linked list of NET structures. By the time you get this
structure, this variable will be unused, so you can use it for whatever you wish.

id Points to a dictionary entry giving the name of the net.

type Type is PI, PO, PIO (not currently used), GI, GO, CZERO, CONE,

ACTIVE_LOW, NO_CONNECT. These types can be combined, so nets typically
have several type codes. Use AND OR and NOT to check for specific codes.

width Normal value is 1. Can be greater than 1 if the net is to be considered a bus. This

can have any value, but most of our code-generators won’t accept anything larger
than 32. What you do is up to you.

index Unused by FHDL. Many connlib applications use this as a back-index into the

netlist array. Use it for anything you wish.

scc_index Unused by FHDL. This was added for a specific application that partitioned

circuits into fanout-free networks, and by another application that partitioned
sequential circuits into strongly connected components. Use it for anything you
wish.

input_count Number of gates that use this net as an input. (Roughly. If the net appears twice in

the input list of a gate, this counts as two gates.)

output_count Number of gates that use this net as an output. Same rule about duplicate usage.

attr_count The number of net attributes. These come from the WIRE statement.

attr A linked list of ATTRHOLD structures, one per attribute.

value Not used by FHDL. Used by interpretive simulators to store the value of the net.

You may use it for anything you wish.

user Unused by FHDL. Use it for anything you wish.

gname Used by code generators to generate variable names to hold the net values. If you

don’t use our code generators, you can use it for anything you wish.

gates An array of pointers to GATE structures, usually larger than 1. The size of the

array is equal to input_count+output_count. The gates that use the net as an input
are listed first, then the gates that use the net as an output. The gates are listed in
no particular order.

3.6 The GATE Structure
Every gate in the circuit is assigned to a GATE structure. The GATE structure has the

following format

typedef struct gate
{
 struct gate *next;
 DICTE *id;
 char *ctype;
 int type;
 long type2;
 int index;
 int scc_index;
 int input_count;
 int output_count;
 int attr_count;
 struct attrhold *attr;
 struct fault *faults;
 long user;
 char *gname;
 struct net *nets[1];
}
GATE;

The variables are defined as follows.

next Used to create linked lists of gates. By the time you get this structure, this variable
will be unused, so use it for whatever you wish.

id Pointer to a dictionary entry giving the name of the gate. Unnamed gates will be

given a generated name before they get to you.

ctype The character-string version of “type”. If the type of a gate is not recognized, it is

assumed to be a subnetwork reference. “type” will contain SUBNET and “ctype”
will contain the name of the network being referenced.

type One of the following codes: SUBNET AND OR NOT NAND NOR XOR XNOR

AOI OAI HLCV BUF BUFI TGATE TGATEI TBUF TBUFI SCC SUBCKT
DFF1 DFF2 DFF3 DFF4 RSFF JKFF1 JKFF2 JKFF3 JKFF4 TFF TFF1 TFF2
TFF3 TFF4 DEMUX DECODER ENCODER ALU ADDER COMPARATOR
MULTIPLIER DIVIDER REGISTER COUNTER ASM_STATE ASM_TEST
ASM_COND_OUT EXPAND DISTRIBUTE COLLECT ROMWORD
PLAWORD

 BUF is not the same as BUFF. BUFF gates are non-inverting amplifiers with a
single input and a single output. They are converted to type HLCV before you
ever see them. Remember HLCV is a BUFF gate. BUF is a tristate buffer with a

data input and a control input. AOI and OAI gates never are specified as bare AOI
and OAI. The ctype must be examined to find the true gate type. In cytpe, the
AOI or OAI prefix will be followed by a non-ascending sequence of digits that
give the input groupings for the gate. The number of gate inputs will equal the
sum of these digits. Thus AOI4321 is an AOI gate with four input groupings, one
of size 4, one of size 3, one of size 2 and one of size 1. These groups appear in the
input list in the order specified. The function of an AOI4321 is:
()abcd efg hi j . AOI is a negated sum of products, OAI is a negated
product of sums.

type2 This variable is used when “type” contains SUBNET. This gives the type of the

subnet. It will be one of SUBCKT, ROM, PLA, or ASM.

index Unused by FHDL. Use this variable for whatever you wish.

scc_index Unused by FHDL. Use this variable for whatever you wish.

input_count The number of gate inputs.

output_count The number of gate outputs.

attr_count The number of gate attributes.

attr Linked list of gate attributes, one structure per attribute. Note that gate-types

DEMUX through COUNTER in the list above have pre-defined attributes, but
nothing else does. You can use attributes to specify gate delays, or anything else
you wish. Even in the case of pre-defined attributes, these attributes are used
ONLY by the code generator, so you can use them however you wish.

faults See the discussion of faults under the NETWORK structure. Faults can be

attached to the GATE structures or to the NETWORK structure, but usually not
both.

user Unused by FHDL. Use this for whatever purpose you wish.

gname Used by the code generator to generate a legal C++ name for the gate, should it be

necessary that the gate have one. Sometimes this is necessary, sometimes it isn’t.
If you are not using one of our code-generators, then you can use this variable for
whatever you wish.

nets An array of NET structure pointers. The input list is specified first, in the order

the y appear on the gates input list. The output list follows the input list. Again,
nets are listed in the order they appear on the gate statement.

4 Other connlib Functions
Memory elements will not be set up correctly unless you call some additional functions. The

code given above assumes that you have a single netlist type circuit that you want to play with. If
you want to create more complex types of circuits with ASMs, ROMs, and PLAs, you must add
the following function calls after the call to “nwfixwire”.

 asmaud1(nwhead,&asmptr,&hdwptr1);
 asmaud2(asmptr);
 memaud(hdwptr1,&memptr,&hdwptr);

The first function call filters out all ASMs into a separate linked list headed by “asmptr”.

Everything else is dumped into a separate list headed by hdwptr1. (Both variables are pointers to
a NETWORKs.) The second function call verifies that the ASM specification is semantically
correct. The third function call filters out ROM and PLA circuits and places them on a separate
linked list headed by “memptr”. Everything else (standard netlists) is placed on the list hdwptr.
Both variables are pointers to NETWORKs. After calling these three functions, you should test
the global variable “cktbad” to see if any errors have occurred. If this variable is non-zero, there
have been errors and you should stop. If it is zero, everything is OK and you can continue.

If you’ve gone to all this trouble, you’ll almost certainly want to call the next three functions.

 sgtype2(hdwptr);
 expand(hdwptr);
 audit(hdwptr,0);

The first verifies that the type fields of all structures are set properly. The second flattens the

circuit. ROMs, PLAs, and ASMs are not subject to flattening, that’s why the other functions
filter them out. The final function call does a final semantic check on the flattened circuit to flag
any remaining errors. The zero parameter says that IOPUTS are not allowed.

When the circuit is flattened, the main circuit is assumed to be the first one in the list. Any
time a circuit reference is found, the entire list is searched for a matching name. Thus the order
of the specifications is arbitrary. Circuit references may not be circular. This would lead to a
circuit of infinite size and is definitely considered to be an error.

You should check the global variable “cktbad” after calling expand and after calling audit.
If you have gotten this far, you may wish to call one of our code generators. They are all

named “makec”. The connlib version of makec generates a C function that can be used to
simulate the circuit. The code is generated into an open output file (of stdio variety) that must be
supplied by you. Here is a sample function call:

 FILE *cfile;
 cfile = fopen("MyCFile.c","w");
 makec(hdwptr,cfile);

The function makec does not generate a main routine. You can, of course, supply your own,

but I’d recommend using our main routine generator, genmain. We have many versions of
makec. Each one requires its own version of genmain. To call genmain add the following lines
after the makec call.

 genmain(hdwptr,cfile);
 fclose(cfile);

Most of our compiled simulators will now execute gcc to compile the generated code. What

you do at this point is up to you.

5 ROMs, PLAs and ASMs.
ROMs, PLAs, and ASMs all act as if they were a single combinational gate. To be used they

must be referenced from a conventional circuit. They cannot be simulated in isolation. The
content of these types of circuits is highly restricted. ROMs may contain only ROMWORD type
gates. PLAs may contain only PLAWORD type gates. ASMs may contain only ASM_TEST,
ASM_STATE, and ASM_COND_OUT type gates.

5.1 ROMs
ROMWORD gates appear in the ROM circuit in ascending order by address, starting with

address 0. Addresses may not be skipped, but it is not necessary to fill out the entire address
space. The missing words will be treated as zeros. There may be many output fields of differing
sizes, or a single bus-type output field. This information is taken from the primary output list of
the ROM NETWORK structure. Each ROMWORD gate must have a value for each output field.
These fields are in null terminated character string format and are stored in the net array of the
GATE structure in the order specified. Each element of the net array contains a pointer to a
character string. The character strings are assumed to be in hexadecimal format without the
leading 0x.

5.2 PLAs
PLAWORD gates appear in the PLA circuit in the order specified, although this order is not

particularly important. Each PLAWORD gate must have an input operand followed by one or
more output operands. These operands are stored in the net array in null-terminated character
string format. The input count of the PLAWORD will be 1 and the output count will equal the
number of output fields of the PLA. The number of output fields is determined by the output list
declaration of the PLA NETWORK. The input string is in trinary format containing the
characters 0, 1, and x, where x represents “don’t care”. This is the “address” of the PLAWORD.
The output fields are assumed to be in hexadecimal format without the leading 0x.

5.3 ASMs
ASM gates are linked pretty much like ordinary gates. (Read the FHDL manual.) Things that

look like inputs and outputs are treated as input and output links. Additional linkage information
is supplied through the attributes. (Yes, those things that look like attributes are stored as
attributes.) Even though the ASM has an internal state, it is treated as if it were an ordinary
combinational gate.

